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[1] Mixing calculations involve computing the ratios in which two or more end-members
are mixed in a sample. Mixing calculations are useful for a number of tasks in hydrology,
such as hydrograph separation, water or solute mass balances, and identification of
groundwater recharge sources. Most methods available for computing mixing ratios are
based on assuming that end-member concentrations are perfectly known, which is rarely
the case. Often, end-members cannot be sampled, and their concentrations vary in time
and space. Still, much information about them is contained in the mixtures. To take
advantage of this information, we present here a maximum likelihood method to estimate
mixing ratios, while acknowledging uncertainty in end-member concentrations.
Maximizing the likelihood of concentration measurements with respect to both mixing
ratios and end-member concentrations leads to a general constrained optimization problem.
An algorithm for solving this problem is presented and applied to two synthetic examples of
water mixing problems. Results allow us to conclude that the method outperforms
traditional approaches, such as least squares or linear mixing, in the computation of mixing
ratios. The method also yields improved estimates of end-member concentrations, thus
enlarging the potential of mixing calculations. The method requires defining the reliability
of measurements, but results are quite robust with respect to the assumed standard
deviations. A nice feature of the method is that it allows for improving the quality of
computations by increasing the number of samples and/or analyzed species. INDEX
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1. Introduction

[2] Mass balance of chemical species is often used in
hydrology and related sciences to aid in the evaluation of
water balances. Its simplest form consists of measuring the
concentrations of any conservative species in inflowing and
outflowing waters and, assuming continuity, establishing
the mass balance of solute and water as (see Figure 1):

Q1x1 þ Q2x2 ¼ Qpyp ð1Þ
Q1 þ Q2 ¼ Qp; ð2Þ

where Q1 and Q2 are the inflow rates, x1 and x2 are the
corresponding concentrations (in this example only two
end-members are considered) and Qp and yp are the outflow
rate and concentration, respectively. Actually, flow rates can
be eliminated from these equations. Dividing (1) and (2) by
Qp leads to

dp1x1 þ dp2x2 ¼ yp ð3Þ

dp1 þ dp2 ¼ 1; ð4Þ

where dp1 and dp2 are the mixing ratios of end-members 1
and 2 in sample p. If x1 is not equal to x2, then equations (3)
and (4) can be easily solved for dp1 and dp2. In turn,
measurement of any one of the flow rates allows deriving
the others as Q1 = dp1Qp and Q2 = dp2Qp. In short, mixing
ratios help in deriving the mass balance of a water body.
[3] These calculations are basic enough to be described

in classical hydrogeology textbooks [e.g., Custodio and
Llamas, 1984; Zuber, 1986]. We have included them here
to introduce the basic notation. However, we wish to stress
that they are used in all branches of hydrology. Recent
applications include the evaluation of groundwater inflows
to surface water bodies [Ojiambo et al., 2001] or vice versa
[Plummer et al., 1998; Stute et al., 1997]. They have also
been used for the purpose of hydrograph separation [Joerin
et al., 2002] and to evaluate the sources of recharge to
groundwater [Pitkänen et al., 1999]. The original motiva-
tion of our work was the identification and quantification of
recharge sources in the city of Barcelona, where up to eight
end-members had been identified [Vázquez-Suñé et al.,
1997]. However, other urban areas face similar problems
of quantifying a large number of end-members [Yang et al.,
1999; Suk and Lee, 1999].
[4] Mixing calculations are also used in other branches of

earth sciences. For example, erosion rates can be determined
from the composition of suspended and dissolved solids in
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rivers [Allègre et al., 1996; Roy et al., 1999]. Emission
inventories into the atmosphere can also be obtained with
the aid of mixing calculations [Biesenthal and Shepson,
1997]. These are also used to discriminate between mineral
dissolution and atmospheric deposition as the origin of
solutes in mountain rivers [Johnson et al., 2001; Williams
et al., 2001].
[5] Mixing analyses are essentially done with conserva-

tive tracers. However, they can also be used to identify
reaction processes. In this case, departures from mixing
lines (or planes) are attributed to chemical reactions [Skov et
al., 1997; Pitkänen et al., 1999].
[6] Practical application of mixing ratios calculations

may require introducing some complexity in equations (1)
and (2). For example, if more than one species is available,
mixing ratios derived from each species may not be con-
sistent. A least squares approach may then be used to
minimize what are often termed analytical errors. Actually,
when concentration measurements from two species are
known, one can derive the mixing ratios for three end-
members, as illustrated in Figure 2. The methodology can
be easily extended to any number of sources, ne, provided
that concentrations of, at least, ne � 1 conservative species
are available.
[7] An alternative mixing model to the one discussed so

far is the mixing cells model [Campana and Simpson,
1984], which consists of cells or reactors that exchange
water and solutes. This model has been generalized by Adar
and coworkers. They use a suite of chemical and isotopic
tracers to identify spatially varying recharge [Adar and
Nativ, 2000; Adar et al., 1988, 1992].

[8] In summary mixing models are widely used in all
branches of hydrology and also in other sciences. While it is
widely recognized that there is always some uncertainty
involved in the evaluation of the end-members concentra-
tions, they are assumed to be accurately known in most
practical applications.
[9] Uncertainty in end-member flows and concentrations

derive not primarily from analytical error but from spatial
and temporal variability in the end-member flows and
compositions as well as errors in the conceptual model of
the flow system. For example, in the case of rainfall, one
does not know when recharge does occur. As a result, it is
difficult to characterize the portion of precipitation actually
entering into soil and aquifer, even if the spatial and
temporal variability of rainfall were exhaustively sampled.
This is one of the main handicaps for the use of H and
O isotopes. A similar problem occurs with river inflows into
aquifers, which may concentrate during floods. Reversely,
flux averaged concentrations should be used when charac-
terizing aquifer discharges to perform salt balances in rivers
and lakes. However, conventional sampling yields resident
concentrations. This, together with recharge variability
makes the resulting mixing ratios highly uncertain [Joerin
et al., 2002].
[10] In short, accurate definition of the concentrations in

the inflows to any body of water is very difficult. On the
other hand, concentrations of mixed samples are likely to be
less uncertain that those of end-members. The reason is that
uncertainties in mixed samples are due mainly to analytical
errors, as dilution mechanisms in the aquifer filter most
temporal fluctuations in end-members. This smaller uncer-
tainty suggests that it may be possible to use actual
concentration data to impose constraints on valid end-
members concentrations, as illustrated in Figure 3.
[11] The objective of our work is to derive a methodology

to identify mixing ratios in the case of uncertain end-
members using the concentrations of mixed samples to
reduce such uncertainty. The proposed approach is an
extension of that by Kent et al. [1990], who derived a
methodology for fitting planes to uncertain data. Our
extension is twofold [Castillo, 2000]. First, we generalize

Figure 1. Illustration of mixing calculations. Given the
concentrations (x1a and x2a) of a chemical species, a, in
two source waters (end-members), it is possible to derive
the mixing ratios in mixed sample, p, from its concentra-
tion ypa (d1a and d2a, respectively, shown above). When
the concentrations of two (a and b) or more species are
available, measurement errors may lead to inconsistent
mixing ratios. In the example of the figure, mixing ratios
derived from species a are nearly identical for the two
end-member (d1a � d2a). However, if species b is used,
one would conclude that the proportion of end-member 2
(d2b) is much larger than that of end-member 1 (d1a).
Consistent mixing ratios can be obtained by least squares,
which implies projecting the data point onto the mixing
line.

Figure 2. Definition of mixing ratios in a problem with
three end-members and two species.
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it to the case of an arbitrary number of unknowns (the
previous authors only estimated the two coefficients of the
plane equation). Second, we apply it to mixing equations.
This second extension presupposes that all mixing ratios
add up to 1 and be positive.

2. Methodology

2.1. Problem Statement and Solution Steps

[12] The problem is to find the proportions in which ne
end-member waters are mixed in np samples. To this end,
the concentrations of ns species are measured in each of the
mixtures. Measurements are also available for the concen-
trations of end-members. That is, a total of nw = ne + np full
analyses are available. Measurement uncertainty is quanti-
fied through covariance matrices.
[13] The proposed algorithm consists of the following

steps: (0) Initialization, consisting of the definition of initial
mixing ratios by conventional least squares, assuming that
the concentrations of end-members are known; (1) given the
mixing ratios, maximize the likelihood function to estimate
the expected values of mixture and end-member concen-
trations; (2) given the expected values of mixture and end-
member concentrations, maximize the likelihood to obtain
the mixing ratios; (3) repeat steps 1 and 2 until convergence.
Following is a description of each of these steps and a
derivation of the necessary equations.

2.2. Conventional Least Squares for Each Sample
Assuming Known End-Members

[14] The mixing equation of each mixture p can be
written as a generalization of (4):

yps ¼
Xne
e¼1

dpexes þ eps s ¼ 1; ::; ns; ð5Þ

where yps and xes are the concentrations of species s in
sample p and end-member e, respectively, dpe is the
proportion of end-member e in mixture p, and eps is an
error. The latter is often termed measurement error, even
though it may be caused not only by measurements, but also
by conceptual errors (e.g., nonconstant end-member con-
centration). Following previous work [Carrera and Neuman,
1986; Medina and Carrera, 1995] we formulate the
estimation problem in a maximum likelihood framework.
Assuming that the concentrations of end-members are
known and that errors are normally distributed (the effect
of this assumption can be relaxed by forcing the variance to
depend on concentration, i.e., constant close to the detection
limit and increasing the standard deviation for lower
concentrations), the likelihood function is

Lp ¼ exp � 1

2
yp � FDp

� �t

A�1
p yp � FDp

� �� �
; ð6Þ

where yp is the vector of all species measured in the pth
sample [yp

t = (yp1, � � �, yps, � � �ypns)], Ap is their covariance
matrix, F is the ns � ne dimensional matrix of all chemical
analyses of end-members [F = {xes}] and Dp is the vector of
mixing ratios [Dp

t = (dp1, � � � dpe, � � �,dp ne)]. This latter vector
must satisfy the constraint that mixing ratios add up to 1:

D
t
p1ne ¼ 1; ð7Þ

where 1ne is a ne-dimensional vector of 1’s.
[15] In order to maximize (6) subject to (7), we build the

Lagrangian function

L p ¼ � ln Lp þ lpD
t
p1ne; ð8Þ

where lp is a Lagrange multiplier.
[16] Taking derivatives of (8) with respect to Dp and lp

leads to the well know linearly constrained least squares
equations:

FtApF 1ne

1tne 0

0@ 1A Dp

lp

0@ 1A ¼
Ft
pA

�1
p yp

1

0@ 1A: ð9Þ

It should be noticed that, if the same species are analyzed
for all samples and they have the same covariance matrix,
then the coefficient matrix in (9) will also be the same for all
samples. This, together with the fact that the dimension of
the system (ne + 1) is relatively small, makes it very easy to
obtain the mixing ratios for each sample separately. The
only difficulty arises from the fact that mixing ratios must
also satisfy the constraint

0 	 dpe 	 1: ð10Þ

This, together with (7) defines the set of feasible solutions,
which is a simplex set. Its vertices are obtained by setting
each mixing ratio to one while letting the others be equal to
zero. In general, this type of problems can be difficult (see,
e.g., Gill [1981] for a discussion). In our case, however,
constraint (7) implies that it is sufficient to impose
nonnegativity (the condition dpe 	 1 is satisfied auto-
matically). In fact, since Ap is positive definite, the

Figure 3. Mixed water samples often define mixing lines
more accurately than ‘‘noisy’’ end-member concentrations.
In such a case, taking mixing constraints into account may
significantly reduce uncertainty in end-member concentra-
tions by imposing consistency. Consistency is meant in two
ways. First, end-members should fall in the mixing line.
Second, mixed waters should fall within the interval defined
by end-members. This second condition does not constrain
the concentration of end-member 2 but reduces the
uncertainty of end-member 1.
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objective function is convex. As a result, it is sufficient to
set to zero mixing ratios that are negative after the initial
solution of (9), and solve again (9) for the remaining ratios.

2.3. Formulation of the Problem for Known Mixing
Ratios, the Likelihood Function

[17] As stated, the objective is to find the most likely
concentrations of samples and end-members that jointly
satisfy the mixing equations, provided that mixing ratios
are known. To this end, we define the vector of all
concentration data, z, which consists of ns vectors zs
containing the analyses of each species s at all end-members
and samples:

zts ¼ xts; y
t
s


 �
¼ xs1; . . . ; xs ne; ys1; . . . ; ys np

� 
s ¼ 1; ::; ns:

ð11Þ

Let Ms and M be the expected values of zs and z, respec-
tively. Because we are working with all samples together,
mixing ratios are best written as a matrix, rather than as a
vector:

D ¼

D
t
1

D
t
p

:

:

D
t
np

26666666666664

37777777777775
¼

d11 d1e : : d1 ne

dp1 dpe : : dp ne

: : : : :

: : : : :

dnp1 dnpe : : dnp ne

26666666666664

37777777777775
: ð12Þ

For conciseness, it is convenient to define& = (#,� Inp x np),
the extended mixing ratios matrix. This is used to define the
constraints on mixing ratios, by writing (7) simultaneously
for all species as

& 1neþnp ¼ 0np: ð13Þ

Similarly, constraints on the means are obtained by writing
the mixing equations in matrix form assuming the errors are
zero mean:

& Ms ¼ 0np s ¼ 1; ::; ns; ð14Þ

which expresses the expected value of (5) for all samples.
The normality assumption allows us to write the likelihood
function as

L ¼ exp � 1

2
z� Mð ÞtA�1 z� Mð Þ

� �
; ð15Þ

where A is the covariance matrix of all chemical analyses
taken as known. In our implementation we have assumed,
for simplicity, but without loss of generality, that errors in
one species are independent of errors in other species.
However, for any species, they may well be correlated
across samples. This implies that we will be able to filter
out systematic errors caused by improper handling of one
species. This assumption simplifies significantly the speci-

fication of A. Also, it simplifies computations, because it
allows us to rewrite (15) as

f ¼ ln L ¼
Xns
s¼1

� 1

2
zs � Msð ÞtA�1

s zs � Msð Þ
� �

: ð16Þ

This function has to be maximized with respect to # and M,
while ensuring that constraints (13) over # and (14) over M
are satisfied. We propose to do it in two stages: first, obtain
M given # and, second, obtain # given M. These steps are
repeated until convergence.

2.4. Estimation of M, Assuming # Fully Known

[18] Maximization of (16) can be done separately for each
species (if we had assumed that errors were correlated
across species, the equations would have been larger, but
the formalist remains identical). In order to impose con-
straint (14), we first build the Lagrangian:

L ¼ � 1

2
zs � Msð ÞtA�1

s zs � Msð Þ þ Lt
s &Ms; ð17Þ

where Ls is the np � dimension vector of Lagrange
multipliers. Taking derivatives of L with respect to Ms and
Ls and setting them to zero leads to

Ms ¼ zs þ As &
tLs; ð18Þ

where Ls is obtained by multiplying this equation by &

while bearing (14) in mind. This yields

Ls ¼ �Cs&zs; ð19Þ

where Cs = (&As&
t)�1. Finally, substituting this vector back

in (18) yields the solution we were seeking:

Ms ¼ zs � As&
t &As&

tð Þ�1
&zs: ð20Þ

It is interesting to notice from (20) that Ms is simply the
projection of data zs on the mixing equations (5). The effect
of projecting measurements of end-member concentrations
into the mixing equation was illustrated in Figure 3.
Similarly, the projection of mixtures data onto the mixing
line was illustrated in Figure 1. The only peculiarity of (20)
is that it was derived assuming that the mixing ratios were
known. Their evaluation is updated in the next step.

2.5. Derivation of the Equations for #,
Assuming Known M

[19] The objective now is to find the mixing ratios (#)
that maximize the likelihood, knowing that the expected
values of concentrations are given by (20). Substituting (20)
in (16) and applying (14) yields the updated objective
function. In order to maximize it with respect to # while
imposing constraints (13), we build again a Lagrangian
function:

L ¼ � 1

2

Xns
s¼1

zts&
t &Ai&

tð Þ�1
&zs þ Bt& 1; ð21Þ

where B is the np dimensional vector of Lagrange multi-
pliers. In order to maximize this Lagrangian, it is necessary

4 of 11

W12101 CARRERA ET AL.: METHODOLOGY TO COMPUTE MIXING RATIOS W12101



to take derivatives of (21) with respect to # and B. This is
somewhat complex, but facilitated by taking into account
that

@

@#
at&bð Þ ¼ abtne; ð22Þ

where a and b are arbitrary constant vectors of dimensions
np and nw, respectively, and bne is a ne-dimensional vector
equal to the first ne components of b. Equation (22) is easily
derived by considering that @Gij/@dkl equals 1 if i = k and j =
l, and 0 otherwise.
[20] Taking derivatives of (21) with respect to # and B

while bearing (22) in mind and making use of (19) and (20)
leads to

@L =@# ¼ F ¼
Xns
s¼1

LsM
t
sne þ B1tne ¼ 0 ð23aÞ

@L =@B ¼ f ¼ &1nw ¼ 0: ð23bÞ

This is a nonlinear system with np � ne + np equations and
unknowns (np � ne mixing ratios, #, and np Lagrange
multipliers, B). We have solved it using the Newton-
Raphson method, while imposing the nonnegativity
constraints discussed in section 2.2. The solution method
is outlined in the following section.

2.6. Newton-Raphson Solution of the
Minimum Conditions

[21] For solving the nonlinear system (23), we have
expanded F with respect to #:

Fkþ1 
 Fk þ @F

@#
#kþ1 �#k

 �

: ð24Þ

Using (24), (23) is approximated as

@ F

@#
Inp np ne

Itne ne np 0ne np

0B@
1CA D

B

0@ 1A ¼
F

0ne

0@ 1A; ð25Þ

where Inp np ne is a ne-dimensional vector of np dimensional
identity matrices. The components of @F/@# are derived in
Appendix A. Ideally, D is equal to #

k+1 � #
k. However,

the step may be reduced if #k + D leads to worsening the
objective function (21). Therefore # is updated according
to

#kþ1 ¼ #k þ aD; ð26Þ

where a is chosen, starting at 1, so that the updated mixing
ratio matrix yields an improved objective function. Actually,
a one-dimensional search is performed using the techniques
described by Gill [1981] and Carrera and Neuman [1986].
[22] Only nonnegativity lateral constraints need to be

imposed to solve the optimization problem, as discussed
in section 2.1. To do so, when (26) yields a negative mixing
ratio, dpe, its value is fixed to zero (that is, the nonnegativity
constraint is activated). This constraint can be released (that

is, dpe allowed to vary), when increasing dpe may improve
the objective function (i.e., when @L /@dpe � 0). Therefore
at the minimum, the following conditions are satisfied:

@L =@dpe ¼ 0 if dpe > 0 ð27aÞ

@L =@dpe 	 0 if dpe ¼ 0: ð27bÞ

These are termed Kuhn-Tucher conditions [Gill, 1981].

2.7. Implementation

[23] Actual implementation of the above method consists
of the following steps. (0) Initialization (k = 0), which can
be done by defining a set of arbitrary initial mixing
ratios, #0, or by least squares; the latter implies solving
equation (9) and imposing nonnegativity constraints as
discussed in section 2.1; (1) k = k + 1; (2) compute Ls

k+1

and Ms
k+1 using equations (19) and (20), respectively, and

substitute into (16) to obtain the objective function f k+1 and
into (23a) to compute @L /@#; (3) convergence test (only if
k > 0). If max

ep
jdepk+1 � dep

k j < tolerance and jf k+1 � f kj <
tolerance, then STOP. If the objective function worsens or
its improvement is not sufficient, then reduce a, set #k =
#

k + aD, test constraints (that is, activate nonnegativity
constraints when @f/@d < 0), and return to step 2. Otherwise,
continue to step 4: (4) update #. Solve (25) for D, compute
#

k+1 according to (26) with a = 1. Test non negativity
constraints and go to step 1.
[24] This algorithm was programmed in FORTRAN.

Preliminary tests showed that sometimes it failed to con-
verge, in the sense that trying different initial mixing ratios
#

0 led to different minima. When testing synthetic exam-
ples, we observed that initializing with the least squares
solution is a robust option when xs is not far from Ms ne (i.e.,
when end-members are relatively well known). Otherwise,
uniform mixing (i.e., dse = 1/ne) or random initialization
may be better. Since the cost of each trial is moderate, we
have opted for trying several initial mixing ratios (least
squares, uniform and around 10 random perturbations) and
selecting the best as solution. This approach converges in
virtually every case. The resulting code is available on
request or can be downloaded from http://www.h2ogeo.
upc.es.

3. Application of the Methodology to
Synthetic Problems

3.1. Application 1, Two End-Members

[25] This example is aimed at illustrating a case with two
sources and two species. The example is inspired by
Barcelona groundwater, with the two end-members being
Besos River (river) and Mediterranean sea water (sea) and
the two species being chloride (Cl�) and sulphate (SO4

=).
Other than that, the example is totally synthetic. Basic data
are presented in Tables 1 and 2. Data for the runs were
obtained by randomly generating mixing ratios. These
‘‘true’’ ratios, together with the ‘‘true’’ end-member con-
centrations, are used to obtain the ‘‘true’’ concentrations of
mixtures. Measurements are obtained by adding a random
noise with the standard deviations of Table 2. These
measurements will be used for all runs but e as shown in
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Table 2. Differences between runs are restricted to the
number of mixtures (4 or 50) or the input standard devia-
tions of both end-members and mixed samples, also shown
in Table 1.
[26] The first two runs are aimed at illustrating the role of

the assigned standard derivations when the number of
samples is small. Hence only four samples are used. In this
case, the mixing line is poorly defined (Figure 4a). This
reflects the noise in the measurements of mixtures. In fact,
when the variance of end-members is increased and that of
mixed samples is reduced without actually changing the
concentrations (run b), the effect of noise in the latter is
emphasized. As a result, concentration of species (SO4

=)
in end-member (river) becomes negative (Figure 4b and
Table 2).
[27] It might be argued that concentrations should be

constrained to be positive (the same as proportions). We
have found, however, that negative concentrations are a
very rare event, practically restricted to end-members and to
situations where inappropriate parameters were specified
such as artificially increasing the variance of the end-
members while reducing the variance of the mixtures, and
when the number of samples was small. When the variances
are fixed (run a) or the number of samples increased to 50
(run d), or both (run c), the problem is fixed (Table 2 and
Figure 4).
[28] Further examination of Table 2 makes it apparent

that the concentration of Cl� is consistently underestimated.
This reflects the very small measured value of Cl� in some
mixed samples. Sometimes, it reflects the opposite (namely,
that end-member measurements are far away from the
interval of mixture measurements, recall Figure 3). In both
cases, the problem is fixed by perturbing measurements of
end-member concentrations toward the center of gravity of
all concentration measurements while keeping a relatively

large variance. This is what motivates run e (Table 2), which
indeed leads to improved estimates of end-members. In
practical situations, however, it may not be easy to assess
the validity of such concentrations.

3.2. Application 2, Three End-Members

[29] This example is aimed at illustrating the benefits of
redundancy (large number of samples and species) upon the
estimation of both end-members concentrations and mixing
ratios. The formulation of the test is analogous to that of
previous section.
[30] 1. Start with perfectly known concentrations of five

hypothetical species at three end-member waters. These are
shown in Table 3.
[31] 2. Generate 100 mixed samples from 100 uniformly

distributed mixing ratios sets. These will be termed ‘‘true’’
mixing ratios.
[32] 3. Measured data are generated by adding a random

noise with varying standard deviation (see Table 3) to both
end-members and mixed samples. Notice that the standard
deviation is much larger for end-members waters than for
mixed samples. Two sets of end-members have been gen-
erated (low and high variance). All these data are shown in
Figure 5.
[33] 4. Results are evaluated in terms of several indices:

mixing ratios average absolute error; correlation between
true and computed mixing ratios; improvement index for
end-member concentrations, defined as

IM ¼ ns ne
Xns
s¼1

Xne
e¼1

xse � mseð Þ2

s2se

" #�1

: ð28Þ

This latter index measures the improvement caused by
estimation (IM = 2 implies that the mean square error of
end-member concentrations has been reduced by a factor of
two during estimation).
[34] Figure 6a displays the evolution of correlation coef-

ficients between true and estimated mixing ratios for vary-
ing number of samples. A number of issues deserve
discussion. First, in general, correlation grows with the
number of samples. This observation is consistent with
the motivation of our work. That is, data from one sample
help estimating the others. Obviously, this contrasts with
least squares, where mixing ratios are estimated indepen-
dently for each sample, so that they do not benefit from each
other. Still, results are comparable for a small number of
samples (actually, least squares slightly outperforms likeli-
hood in the low noise case with only four samples). Second,
the proposed method yields results that are significantly

Table 1. Standard Deviations for the Runs of Example 1a

End-Members Species True

Estimation Runs

a b c d e

River Cl� 200 200 200 200 200 200
River SO4

= 150 150 250 150 250 250
Sea Cl�, SO4

= 1000 1000 1000 1000 1000 1000
All p Cl� 600 600 300 600 300 600
All p SO4

= 400 400 200 400 200 400
Number of samples (np) 4 4 50 50 50

aConcentration data for all runs have been generated using the ‘‘true’’
standard deviations. However, input standard deviations have been changed
for each estimation run. Standard deviations are in mg/L.

Table 2. Concentrations of End-Membersa

End-Members Species True Measured (Input)b

Computed for Each Run

a b c d e

River Cl� 478 143 (600) 157 179 117 130 511
River SO4

= 244 102 (400) 49 �237 210 264 337
Sea Cl� 21,050 19,405 19,504 19,503 19,971 20,097 19,985
Sea SO4

= 2910 3611 2946 3022 2837 2621 2804
Number of samples (np) 4 4 50 50 50

aInput values, representing measurements, were generated from the true values using noise with the standard deviations of Table 1. Concentrations are in
mg/L.

bMeasured values of end-member concentrations for all runs but e (values in parentheses).
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better than least squares except for the four samples case.
Correlations for the likelihood method are consistently
above 0.99 when more than 10 samples are used, and reach
up to 0.998 for 100 samples. Least squares estimates, on the
other hand, fluctuate between 0.97 and 0.98, when using
small error end-member concentrations, or between 0.93
and 0.94 in the large error case. Finally, when the number of
samples is moderate (more than 10), correlations exhibit
negligible sensitivity to the size of errors in end-member
concentrations. Again, this contrasts with least squares
estimates, whose quality degrades significantly with in-
creasing errors.
[35] Similar results can be observed in terms of the average

absolute error of estimated mixing ratios (Figure 6b). The
main difference is that, now, least squares outperforms

likelihood in the four samples case, both for small and large
errors in input end-member concentrations. Obviously, this
reflects a random fluctuation because the average error of
least squares estimates, which is independent of the number
of wells, is larger than that of the likelihood method.
However, this observation stresses that the real benefit
of the proposed method comes from increasing the number
of wells, which causes errors in mixing ratios to drop to
nearly 0.01, with little sensitivity to errors in end-member
concentrations.
[36] Finally, the improvement index is shown in

Figure 6c. It is clear that estimated end-member concen-
trations are much better than their input counterparts. The
improvement index grows from 3, in the case of four
samples, to 8 for 100 samples. In fact, it is this improvement

Figure 4. Results of example 1. Only four samples are used in runs a and b. This leads to poor mixing
lines and estimation of end-member concentrations. Moreover, results are quite sensitive to small
variations in input standard derivations, leading to negative concentrations in end-member 1 (run b).
Mixing lines are much better and less sensitive to input statistics when 50 samples are used (runs c and d).
In this example, computed end-member concentrations are slightly improved if input ‘‘measurements’’
are well within the interval of mixed samples measurements (run e).
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what caused the reduction in mixing ratios errors with
increasing number of samples shown in Figures 6a and 6b.

4. Summary and Discussion

[37] The problem addressed in this paper consists of
estimating mixing ratios from the concentrations of different
conservative species in a water sample. Solute concentra-
tions at any water sample come from the weighted average
of end-members concentrations, where the weights are the
mixing ratios. One of the main problems of traditional
techniques for computing mixing ratios is the uncertainty
in end-member concentration of each solute. This uncer-
tainty may stem from conceptual errors and from both
spatial and temporal variability, so that pure end-members
may not exist. As a result it is generally not easy to establish
the representativity of an end-member sample. On the other
hand, errors in mixtures concentrations should be much
smaller than those of end-members. Because of this, mix-
tures may contain much information about end-members,
which is what motivates our work.
[38] We have presented here a method that uses concen-

trations of mixtures to condition mixing calculations, while
acknowledging that concentrations of end-members are
uncertain. The method should be especially useful when
many mixtures are available. In fact, joint use of all data is
the basis for the improvements of our method over tradi-
tional approaches. In these, uncertainty is only accounted
for a posteriori and mixing proportions are estimated for
individual samples assuming perfectly known end-members
[e.g., Williams et al., 2001; Yang et al., 1999]. At best it is
possible to do a statistical analysis of the mixing proportions
[Pitkänen et al., 1999; Plummer et al., 1998; Skov et al.,
1997], or use a priori a Monte Carlo approach to account for
time variability in the end-members [Joerin et al., 2002].
These approaches work best when end-members are indeed
constant in space and time and display low uncertainty
[Allègre et al., 1996]. However, when end-members are
variable the proposed method should be used. Acknowl-
edging the uncertainty in end-members leads to an improve-
ment not only on the estimation of actual end-member
concentrations but, more importantly, on the computation
of mixing ratios.

[39] For a given mixing problem, our methodology
requires specifying measured concentrations of both mixed
samples and end-members plus measurement errors (in
practice, standard deviations). In this sense it needs the
same amount of information as other methods based on least
squares [e.g., Allègre and Lewin, 1989]. There is always
some uncertainty about the size of measurement errors.
Laboratories often specify an evaluation of the magnitude
of analytical errors (confidence intervals). This, possibly
enlarged to account for sample contamination during han-
dling, should be sufficient for evaluating uncertainty of
mixture concentrations. However, errors in end-members
involve conceptual decisions that must be addressed indi-
vidually in each case. For example, river recharge may be
restricted to sporadic flood events, when concentrations are
very different from the mean. In such case, a continuous
record of concentrations would be of little use if one does
not know when inflow takes place. That is, standard
deviations may be difficult to assign and a sensitivity
analysis should be performed in each case. Yet, the syn-
thetic applications discussed here suggest that the proposed
method is robust with respect to moderate errors in the
assumed standard deviations.
[40] The example case of flooding rivers points to a more

challenging difficulty. Mixing calculations assume implicitly
that the concentrations of inflows are the same for all
mixtures. This may be true when inflow concentrations
fluctuate with a high frequency (mixing tends to dampen
out these fluctuations). However, it may not be appropriate
for slow fluctuations. In this case, however, the problem lies
in the model concept: simple mixing calculations are not
appropriate and one may need to perform more complex
transport calculations. Even here, ingenuous use of the
method may shed some light on the underlying processes.
For example, differences between computed and measured
end-member concentrations may suggest changes in the
conceptual model. Also, using two end-members to represent
river water (water quality of high and low flows) may help in
separating these two components of inflow. That is, when
done properly, the scope of mixing calculations can be
significantly expanded.
[41] Mixing calculations are often viewed in hydrology as

a preliminary step in the process of building a conceptual
model of where water comes from. These calculations are
frequently followed by more complex models. Although
this approach need not change, we wish to stress two main
points in our research findings. First, these calculations can
be misleading when end-members are uncertain. Second,
they can be greatly improved upon with little additional cost
whenever many mixed samples are available. In fact, by
yielding end-members concentrations possibly different
from measurements, our method may point to inconsisten-
cies in the original conceptual model and suggest how to
modify it.

Appendix A: Computation of @@F//@@#

[42] Using equation (23a) for F and taking derivatives
leads to

@Fij

@dkl
¼

Xns
s¼1

@lsi

@dkl
msj þ lsi

@msj
@dkl

� �
i; k ¼ 1; � � � ; np
j; l ¼ 1; � � � ; ne : ðA1Þ

Table 3. True End-Member Concentrations and Standard Devia-

tions of Noise in Example 2a

Species

1 2 3 4 5

True Concentrations
End-member 1 500 700 100 800 200
End-member 2 100 100 400 200 700
End-member 3 700 400 900 500 50

Standard Deviations (Low-Variance Noise)
End-member 1 100 100 50 100 50
End-member 2 50 50 100 50 100
End-member 3 100 100 100 100 25

Standard Deviations (High-Variance Noise)
End-member 1 200 200 75 200 75
End-member 2 75 75 200 75 200
End-member 3 200 200 200 200 30

aMixed samples standard deviation = 4.
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We now substitute (19) into (A1) to simplify the first term
of the right hand side. We use the fact that

@Ls

@#
¼ Cs

@&

@#
bs; ðA2Þ

where bs = 2bes � zs, and bes = zs � Ms is the estimate of
measurement errors. As @Guv/@dkl = 1, if n = k and v = l, the
first summand in the right hand side of (A1) becomes

@lsi

@dkl
msj ¼ Csik bslmsj: ðA3Þ

Figure 5. Data for example 2. (top) Concentrations of all species in end-members and mixed waters.
(bottom) Mixing ratios. The symbol identifies the mixed waters used in each run. Data used in the run
with four samples were also used in the runs with 10, 20, 50, and 100 samples. Similarly, data used in the
run with 10 samples were also used in the runs with 20, 50, and 100 samples, etc.
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Figure 6. Results of example 2 as a function of the number of samples. (top) Correlation between
computed and true mixing ratios improves with increasing number of samples in the likelihood method,
thus yielding much better results than conventional least squares, which does not depend on the number
of samples. Notice also that contrary to least squares, likelihood results display little sensitivity to the
noise of end-member concentration measurements. (middle) Average absolute error in estimated mixing
ratios is reduced as the number of samples is increased, in contrast to least squares, which displays no
improvement. (bottom) Improvement index (equation (28)) also shows that the estimated end-member
concentrations improve with the number of samples.
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Similarly, the second summand is developed by first noting
that we are just seeking the first ne components of Ms (20).
These are given by

Msne ¼ xs � Asne&
tCs&zs; ðA4Þ

where Asne represents the top ne rows of As (i.e., those
involving the covariances of end-member concentrations of
species s among themselves and with those of sampling
points). Taking derivatives of this expression yields

@Mt
sne

@#
¼ �zts

@&t

@#
Cs&� 2Lt

s

@&

@#
As&þ Lt

s

@&

@#

� �
Asne: ðA5Þ

Here, we have made use of the expression of Cs and the
rules for deriving the inverse of a matrix. We now define

P ¼ Cs&Asne U ¼ As&
tP: ðA6Þ

Using these definitions and (A5), the second term in the
right hand side of (A1) can be expressed components-wise
as

lsi

@ msj
@ dkl

¼ xsi �zslPkj � 2lskUlj þ lskAslj


 �
: ðA7Þ

Adding this to (A3) and summing up over all species yields
@Fij/@dkl, which is what we were seeking.
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