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[11 A methodology is presented for evaluating the temporal moments of solutes
undergoing linear rate-limited mass transfer processes based on a Lagrangian approach to
solute transport in heterogenecous media. The temporal moments of sorbing solutes are
written as a function of those of conservative tracers. The general continuous diffusion rate
model that has recently appeared in the hydrologic literature is used to model the rate-
limited mass transfer processes. The methodology is also applied to desorption from an
initially uniformly contaminated aquifer, and the concentration expected value and
variance are found quasi-analytically. The conditional temporal moments of sorbing
solutes can be written as a function of the conditional moments of conservative tracers.
Conditioning results in a reduction of the variance of travel time. The amount of reduction
depends on the chemical model selected.  INDEX TERMS: 1829 Hydrology: Groundwater
hydrology; 1832 Hydrology: Groundwater transport; 1869 Hydrology: Stochastic processes; 1831 Hydrology:

Groundwater hydrology; KEYWORDS: reactive transport, temporal moments, groundwater, conditional

statistical moments, multirate sorption, desorption

Citation:

Lawrence, A. E., X. Sanchez-Vila, and Y. Rubin, Conditional moments of the breakthrough curves of kinetically sorbing

solute in heterogeneous porous media using multirate mass transfer models for sorption and desorption, Water Resour. Res., 38(11), 1248,

doi:10.1029/2001 WR001006, 2002.

1. Introduction

[2] The subject of evaluating temporal moments to a
control plane for conservative and reactive tracers in heter-
ogeneous media has been receiving increasing attention in
the groundwater literature since the late 1980s. A possible
explanation is the awareness that most of the information
that can be gathered in the field is in the form of break-
through curves (BTCs). Another important reason is that
most environmental regulations are based upon probabilities
of not exceeding a given concentration in a predetermined
amount of time (mass flux arrival times).

[3] Temporal moments in heterogeneous domains are
usually analyzed within a Lagrangian framework, where
the travel time, T, is the time for a particle to move from its
initial location to a control plane. T is not known determin-
istically due to the impossibility of fully sampling the
heterogeneous domain, so it is treated as a random variable
and the low-order moments are derived.

[4] Past work on conservative tracers has determined the
moments of the travel time for different domain dimension-
alities, different correlation models, and different flow
configurations. Most of the studies consider uniform mean
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flow. Initial work, by Shapiro and Cvetkovic [1988], pro-
vided the temporal moments for long travel distances.
Cvetkovic et al. [1992] obtained the first two moments for
travel time as a function of distance in isotropic 2-D and 3-
D correlation models. Bellin et al. [1992] numerically
obtained travel time cumulative distribution functions
(CDFs). Rubin and Dagan [1992] presented a method to
condition the travel time CDF on transmissivity measure-
ments. Sanchez-Vila [1995] derived analytical expressions
for the 2-D isotropic case including local dispersion. Cvet-
kovic et al. [1996] provided analytical-numerical results for
the first two temporal moments, showing dependence of the
mean of T on distance. Nonlinearity of the mean of T, which
affects the results for second order in 7, had not been
considered in the previous analytical approaches. Finally,
Dagan and Indelman [1999] developed the temporal
moments for the dipole flow case.

[5] The study of temporal moments of sorbing solutes has
been carried out in parallel. In most of the literature, the
sorption models considered are either instantaneous equili-
brium or one-site kinetics [e.g., Cvetkovic and Shapiro,
1990; Selroos and Cvetkovic, 1992]. Harvey and Gorelick
[1995] derived differential equations for the temporal
moments of kinetically sorbing solutes for instantaneous
equilibrium, first order kinetics, and the mobile-immobile
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domain model. These equations take the form of the non-
reactive transport equation with different source terms, so
that they may be solved using any existing code that can
solve the nonreactive transport equation. Valocchi [1985]
and Goltz and Roberts [1987] derived equations for the
temporal moments of a solute undergoing linear kinetic
sorption in a homogeneous hydraulic conductivity field.
Rubin et al. [1997] developed a general methodology that
could be applied to the two-site kinetics model and the
mobile-immobile domain model and that could include
conditioning in a straightforward manner. Conditioning
ensures that measured values, such as values of hydraulic
conductivity, are fully utilized. James et al. [1997] pre-
sented a method for conditioning the temporal moments of a
solute retarded by local equilibrium sorption. Cvetkovic et
al. [1998] provided a general framework to incorporate
other types of linear nonequilibrium sorption processes with
variability in the sorption parameters. Cvetkovic et al.
[1999] extended their previous results to incorporate matrix
diffusion. For a detailed explanation of the sorption process,
see Grathwohl [1998].

[6] In the last few years, the hydrologic literature has
focused on new, more general, mass transfer models that
recognize the possibility of having a large number of mass
transfer rates between water and soil at any single location.
The initial models are termed multirate discrete models
[Haggerty and Gorelick, 1995; Chen and Wagenet, 1995].
An immediate extension is a model that assumes a contin-
uous distribution of mass transfer rates [Chen and Wagenet,
1995; Haggerty and Gorelick, 1998]. The continuous model
had previously been used effectively in the soil contami-
nation literature [e.g., Connaughton et al., 1993; Pedit and
Miller, 1994] for interpreting desorption experiments in
laboratory columns, which shows the potential of this
model. Subsequently, many authors have investigated the
efficiency of different continuous models. There has been
some agreement that the gamma and the lognormal models
(to be presented later in this paper) are the ones that provide
the best fit to experimental results [Culver et al., 1997,
Haggerty and Gorelick, 1998; Deitsch et al., 2000].

[7] In order to focus on the effect of multirate mass
transfer on solute transport, we treat the parameters for
the sorption models as spatially uniform but treat hydraulic
conductivity as variable in space, as has been done in
several other studies [Berglund and Cvetkovic, 1995; Sel-
roos, 1995; Rubin et al., 1997; Dagan and Indelman, 1999].
Therefore our results are valid for aquifers in which the
sorption parameters vary only slightly in space. In this
paper, we extend the formulation of Rubin et al. [1997] to
incorporate a continuous distribution of mass transfer rate
coefficients. We find that the moments of the BTC for a
sorbing solute can be written in terms of those for a
conservative one. Closed form expressions for the temporal
moments are obtained for the three continuous distribution
models most commonly used in the literature: two-site
kinetics, gamma, and lognormal. In addition, we show
how conditioning can be incorporated into the method.

2. Mathematical Statement of the Problem

[8] The problem can be stated as finding the moments of
the travel time for a sorbing solute traveling from an
injection point to a control plane downgradient under any
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given flow conditions. To reach the control plane, the solute
follows a certain streamtube, which will be tortuous due to
heterogeneity. Along this streamtube, it is possible to write
the advection-dispersion equation in dimensionless form
[see, e.g., Haggerty and Gorelick, 1995; Rubin et al.,
1997; Rubin, 2002, chap. 10]:

aC,

aC, aC, B
or oT Va_ =9 (1)

where C; is the dimensionless mobile concentration (C; =
C'1/C| ser, where C'} is mobile solute mass per unit volume of
fluid, and C,,r is a reference concentration); C, is the
dimensionless immobile concentration (C; = C'5/(KpC ref),
where C’, is sorbed mass per unit mass of soil, and Kp, is the
distribution coefficient); V is dimensionless velocity (V =
v/U, where v is the actual velocity, and U is a reference
velocity); T is dimensionless time (T = Ut/ly, where t is
actual time, and Iy is the integral scale of the log hydraulic
conductivity, Y, in the mean flow direction); and v is the
coordinate along the streamtube, nondimensionalized by Iy
The parameter (3 is the total capacity factor, which has been
nondimensionalized by multiplication with Kp. The total
capacity factor is the ratio of the total mass in the immobile
zone to the total mass in the mobile zone at equilibrium
[Haggerty and Gorelick, 1998]. For example, when porosity
in the immobile zone is neglected, By = psKp(l — &)/o,
where ¢ is the porosity of the mobile zone and p; is the mass
density of the soil solids. In (1), local dispersion has been
neglected, so that no mass transfer between streamtubes is
considered. Equation (1) must be coupled with an equation
describing the kinetics of the mass transfer process.

[o] The equations for the mass transfer model with a
continuous distribution of mass transfer rate coefficients are
[Haggerty and Gorelick, 1998]

Btot

0C1 6C2 ac1
/ B(a ) doct V=0 2)
) _aey - o) ®)

where o is a dimensionless mass transfer rate coefficient
(o = oTy/U, where o is the mass transfer rate coefficient
with units 1/time). Therefore it is explicitly stated in (2) and
(3) that the concentration in the immobile domain is not
represented by a single value, but by a continuous
distribution of values. Haggerty and Gorelick [1998]
discuss the convenience of writing 3(c) in terms of the
total capacity factor, B¢ = [5°B(c)day; therefore B(cv) can be
written the following way:

B(a) = Bior p(av), 4)

where p(a) can be any function such that p(a) is nonnegative
and real for all nonnegative and real values of «, and

fp Ydo = 1.

3. General Solution

[10] The problem considered is a pulse of concentration
instantaneously injected at time zero into a clean aquifer, so
that the initial and boundary conditions are

Ci(m,T=0)=Cy(n, T=0) =0, (5)
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Ci(n— 00, T)=0 (6)
and
Ci(n=0,T) =§(T). (7)
Applying the Laplace transform to the coupled equations (2)
and (3) gives
sCi + S/ B(a)Ca(a)dar = =V ——,
0
SCZ(OL) = OL[C] — 62(04)]’ (8)

where an overbar on a variable indicates the Laplace
transform of the variable. Equations (8) can be combined to
form a single equation for C;:

sC) <1+/ Sjuﬁ(a)du) _ Vaa(;l 9)

0

We now let L represent the Euclidean distance along the
mean trajectory from the source to the control point or
plane. The solution of (9) for this case is

Ci(L,s) = exp |:—ST(L)(1+Bt0t / H%p(u)du)] (10)

0

where T, given by

()

corresponds to the travel time along the trajectory from the
injection point () = 0) to the control plane located at the
Euclidian distance L, or at a distance m(L) along the
trajectory, downstream. In a real medium, L will be known,
but m will not.

[11] As the medium is heterogeneous, no explicit results
for (L) can be obtained for any given domain or flow
configuration, unless the domain is sampled exhaustively.
An alternative is to work with the expected BTC. Usually,
the stochastic variable in flow problems is hydraulic con-
ductivity (3-D analysis) or transmissivity (2-D analysis). In
this approach, T(L) is considered a random variable, and we
can substitute information about its statistical moments for
its unknown actual value.

[12] As (10) is valid in any given realization of the
heterogeneous domain, the mean concentration in Laplace
space is simply found by taking the ensemble average of
(10) over T:

<61 (L,s)) = (exp |:_ST<1 + Btot/

0

H—up(u)dOL)} ). (12)

The noncentral temporal moments of the expected BTC,
which are given by
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JH(CH(L, )t
TH(L) —‘20—7 (13)
f C1 Lt
0

can be computed directly from (10) without having to
determine the expression for C; in real space using the
result af Aris [1958]: t(L) = (—1)'d'/ds'|s—g where
ti(L) = [ t'dt. Using this relationship, the first, second,
and third central moments of the travel time are

(R) = TR =

(1 +Bo) (™), (14)

=T - (TR)

(1 B+ 20 [ P g (15)
0

Q

SR = TR 3TRTR 4 2(TR)’
= EIT\IR( + Brot) +602 NRBtot(l + Bror)

/&da% S Bm/p(—?du (16)
0 0

Q QU

where the dependence on L is not shown, for brevity. The
superscripts R and NR stand for reactive and nonreactive
solutes respectively. Notice that the mathematical expres-
sions do not depend on the flow configuration or the
dimensionality of the problem, and that these appear
implicitly in "%, The method is easily extended to
higher-order moments. Equations (14)—(16) give the
statistical moments of the breakthrough curve for a reactive
solute as a function of those of a conservative tracer. These
are ensemble moments for one streamtube. When the
domain is stationary, they are equivalent to moments over
many streamtubes at the control plane in one realization for
a line of injection that is long in a direction normal to the
mean flow direction. The parameters defining the chemical
model are assumed uniform. The general solution given
here can be specialized to the desired model by using the
appropriate p(c).

[13] The temporal moments for conservative tracers that
appear in (14)—(16) can be obtained from the relationships
between central and noncentral moments and the CDF of T,
G(L, 7) [see Rubin et al., 1997]:

o0
= / it
0

The expression for G(L, T) for transport of a conservative
tracer to a control plane normal to the mean flow direction is
given by Dagan and Nguyen [1989]. For the specific case of
a Gaussian pdf for displacements, the expression becomes
[Dagan and Nguyen, 1989]

'(1 = G(L, 7))dr. (17)

G(L,7) = %erfc (L (18)

— Xi(7)
2X1 1 (T ) '
where X;;(1) is the longitudinal solute displacement
variance at time 7, and X,(7) is the longitudinal displace-
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Figure 1. Definition sketch showing one possible path
that the solute would travel to the control plane. The travel
time is the time it takes the solute to travel from the source
to the control plane.

Control Plane

ment at time 7. For the case of uniform in the average flow,
the situation is shown in Figure 1.

4. Commonly Used Models

[14] The models investigated in the following sections,
which have been used extensively in the literature for linear
mass transfer rate-limited processes, are the one-site kinetic
model, the two-site kinetics model, the gamma model, and
the lognormal model. For a single sorption site, the con-
tinuous model for 3(a) reduces to () = Bo0(cx — ), and
(1) is immediately recovered from (2). Therefore for the
one-site model, p(«) is the Dirac delta function: p(a) = §(«
— Otl).

[15] In a multirate discrete model, p(a) is given by
multiple spikes correspondilr\}g to the different rates consid-

ered in the model: p(a) = > (8;/Bor) 0 —

i), where N is

the finite number of spikesf Al discrete multirate model with
two mass transfer rates is referred to as the two-site kinetics
model. Each of the two different reaction rates employed in
the two-site kinetics model is associated with a volumetric
fraction of the sorption sites. The expression for p(w) is
given by a function with two singularities:

= ﬁ6(0¢ —aq) + B—zﬁ(u — Q).

Btot Btot

If oy =2 «u, the one-site kinetic model is recovered, with
Bt = B1 + Bo. However, there is usually a difference in
orders of magnitude between o and oy, as they can be
associated with different particle sizes (e.g., clays and silts).
When o, > ay and o, — o0, the soil fraction correspond-
ing to 3, can be considered to be in instantaneous equili-
brium, and the mobile-immobile domain model [van
Genuchten and Wierenga, 1976] is recovered. The two-site
model used in this way is often referred to as the equili-
brium/kinetic two-site model. Although the distributed rate
parameter models (such as lognormal and gamma) often
provide a better fit than the two-site model, there are some
cases where the two-site model performs better. For exam-
ple, Haggerty and Gorelick [1998] found that for one
desorption case of TCE from sand from Livermore, Cal-

p() (19)
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ifornia, a model with two rate coefficients performed better
than the gamma and lognormal models. In addition, Culver
et al. [1997] found that the two-site equilibrium/kinetic
model best fits desorption data when the time of exposure
to the contaminant was small (1 week for a laboratory-scale
experiment). Karapanagioti et al. [1999] found that intro-
ducing a second rate to model fast sorption improved the
match to experimental data for phenanthrene sorption to an
alluvial aquifer material compared to using a single rate.

[16] In a continuous model, p(a) can be any piecewise
continuous function with unit integral. The gamma model
may be the most commonly used continuous model in the
literature [Connaughton et al., 1993; Pedit and Miller,
1994; Chen and Wagenet, 1995; Culver et al., 1997; Deitsch
et al., 2000]. The gamma model has two positive parame-
ters, which are the shape parameter, a, and the scale
parameter, b. The expression for p(w) is

a—1

P(e) = G &P (_ %)

The gamma model is very flexible, as can be seen by
examining the shape of p(a) for different values of the
shape parameter, a, in Figure 2. p(c) for this model can
range from an exponential distribution to a normal
distribution.

[17] The lognormal model is the other most commonly
used distribution for distributed mass transfer rate coeffi-
cients. The lognormal model is based on physical consid-
erations, as grain size usually follows a lognormal
distribution, and rate coefficients are linked to grain size
[Buchan et al., 1993]. This model has been successfully
used to interpret BTCs in desorption experiments by Pedit
and Miller [1994] and Haggerty and Gorelick [1998], and
more recently, has been successfully applied to the inter-
pretation of single-well and convergent flow tracer tests at
the Waste Isolation Pilot Plant site in New Mexico [Hagg-
erty et al., 2001; McKenna et al., 2001]. Like the gamma
model, the lognormal model is a two-parameter model. The
two parameters correspond to the mean, p, and the standard
deviation, o, of the natural logarithm of the mass transfer
rate coefficients, o. The expression for p(e) is

1

2ToQ

(20)

plo) = st —P|. D

5. Application to One and Two Mass
Transfer Rates

[18] In the one-site kinetic model, B(a) = Bod(ax — ),
so that

(€1(L9) = fexp | =50 (14 B S| 22
Therefore
(L) = (1 + B (PR(L), (23)
PR = ML)+ 22 (R ), (4)
SA(L) = SO+ B 602 (0) 2 (14 8,
+ 6% (TR(L)). (25)

1
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Figure 2. Probability density functions for the gamma distribution for different values of the shape

parameter, a.

Closed form expressions for equations (23), (24), and (25)
can be obtained using (18) to determine G(L, 7).

[19] For the two-site kinetics model, the first moment is
still given by (23), while the second moment becomes

L) = ML)+ B 42(2 4 2 ). )

[20] To evaluate the impact of the chemical parameters on
the second moment, we compare with the second temporal
moment for a conservative tracer. Combining (17), (18), and
Xy; from Dagan [1989, equation 4.6.14] for three-dimen-
sional, uniform in the average flow with an isotropic
exponential log hydraulic conductivity covariance, we
obtain the expressions for the nonreactive temporal
moments. The integration is performed numerically. In the
subsequent analysis, we concentrate on the ratio of the
variance of the travel time to a control plane a distance L
downstream for a reactive solute to that of a conservative
solute, which, from (26), is given by

O.Z,R(L)

T

(L) .

_ 2, (B B
= (14 Byo) +2 (0” + Ocz) RN

For any given choice of chemical parameters, the variance
ratio is a monotonically decreasing function that goes from
infinity at L — 0 to a constant value for large travel
distances. The travel time variance curves for the geochem-
ical models with a continuous distribution of mass transfer
rates also take this shape. This is due to the effect of
sorption. At very early times, only some of the solute has
been sorbed, and some has acted as a nonreactive tracer.
Therefore the spread between the portion that has been
retarded and the portion that has not is large compared to the
spread of a nonreactive tracer. This larger spread is
indicated by the large travel time variance ratio. As time

increases, more of the solute experiences sorption and the
resulting retardation, which partially counteracts the spread-
ing, and the variance ratio begins to decrease. The variance
ratio (27) consists of two terms, one depending on (3;,; and
one depending on all of the reaction parameters and the
expected value of the nonreactive travel time. The term that
causes the variance ratio to decrease at early times is the
second term, which decreases when o.>™% grows faster
than (T"%).

[21] The next step is to find the sensitivity of (27) to the
different parameters involved in the formulation. The param-
eters for the geochemical model are varied over the general
ranges over which they have been found to vary in the
experiments by Haggerty and Gorelick [1998] and Culver et
al. [1997]. Figure 3 shows the variance ratio versus distance
for different values of 3, while (3, and therefore the first
moment (see equation 23), remain constant. Notice that the
variance ratio in (27) decreases as (3; decreases, provided
a, > «. This occurs because as 3; decreases, fewer of the
sorption sites are associated with the smaller rate coefficient,
«;. The rapid rate, o, dominates, so the effects of non-
equilibrium sorption are reduced. For very small values of
31, the variance ratio curves are very close to each other.
Physically, this is because going from 3; = 0.1 to 3; =0.01 is
equivalent to going from 0.1% to 0.01% of the sorption sites
being governed by «y, because 3, is 100. This is a very
small change in the actual number of sites associated with
«;p. In a similar analysis, by varying «; while 3;, 3, and the
alpha ratio (o/0p) remain constant, we found that the
variance ratio decreases as «; increases.

6. Application to a Continuous Distribution
of Mass Transfer Rates
6.1.

[22] For the gamma model, given by (20), the expression
for (C;) in Laplace space is

Gamma Model for p(x)
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Figure 3.

Impact of B, (while keeping (3, constant) in the two-site model upon the ratio between the

variance of travel time for a reactive solute with respect to that of a nonreactive solute as a function of
distance in an unbounded three-dimensional domain under uniform mean flow conditions. The additional
parameters remain constant: 3y, = 100, oy = 0.001, o, = 0.1 and ay® = 0.5.

(Ci(L,s)) = <exp{fst(L) [1 + abyy (%)a

~exp(s/b)I'(—a,s/b)] }>7

where I'(—a, s/b) is the incomplete gamma function, defined
as

(28)

dt. (29)

[23] In a few cases in the literature, the best fit to the lab
or field concentration curves were obtained with a very
large value of a (a > 1) [Culver et al., 1997; Deitsch et al.,
2000]. In most cases, a < 1 [Connaughton et al., 1993; Pedit
and Miller, 1994; Culver et al., 1997; Deitsch et al., 2000],
which means that many of the sorption sites have a small o
and therefore react slowly (see Figure 2). The exact expres-
sions for the first two moments when a > 1 are

(L)) = (14 B (T (L)), (30)

(L) = L)1+ ) 25 s (L)

31
When a < 1, the first moment is still given by (30), but the
second moment is infinite. This corresponds to a break-
through curve with a very long tail. Haggerty et al. [2000]
have recently demonstrated that under a gamma model,
breakthrough curves follow a power law proportional to
t 7272 for large times. Therefore moments of order larger
than or equal to a + 1 are infinite.

[24] For a — oo (while the product ab remains finite) the
gamma model converges to the one-site kinetic model. To

show this, we make use of the following property of the
incomplete gamma function [Abramowitz and Stegun,
1974]:

< () els/orast) < (32)

cta+l b b

As a > 1, the 1 in the denominator of the leftmost term in
(32) is negligible, so we can write

1
+a

<E)aexp(s/b)l“(—a, s/b) ~ , (33)

(=l

so that

L) = fexp | -s0) (1 4o ) 1o 09

Equation (34) is formally equivalent to the one-site kinetic
equation with «; = ab. Noticing that ab is precisely the
expected value of a gamma distribution with its pdf given
by (20), we get that for very large a, the gamma
distribution can be replaced with a single mass transfer
rate coefficient.

[25] For a> 1 and b small, as a increases, the variance of
the travel time decreases. This is obvious from (31) because
the second term is proportional to 1/(a — 1). The small value
of b causes the second term in (31) to dominate. Physically,
when a increases and b is held constant, the mean of the
gamma distribution, which is equal to ab, increases. This
increase in the reaction rates decreases the kinetic effect so
that spreading is reduced. The shape of the travel time
variance ratio is the same as for the two-site kinetics model
in that it decreases and then becomes constant.
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Figure 4. Expected value and variance of the concentration for desorption from an initially
contaminated aquifer for a one-site kinetic model with 3 = 1, oy = 0.1 and for a two-site kinetics
model with 3; = 0.5, 3, = 0.5, oy =0.001, and o, = 0.1. The dimensionless distance to the control plane,

L, is 10 and oy” = 0.25.

6.2. Lognormal Model for p(ov)

[26] The first temporal moment for the lognormal model
is the same as that for the gamma model and is given by
(30). The second moment is given by

2
(35)

02
sTR(L) = st™L) (1 4+ biot)*+2bior (YR (L) Yexp (—u + —) ;

and always exists, provided o is finite.

[27] The ratio of reactive to nonreactive travel time
variance for the lognormal model decreases and then
becomes constant as shown for the two-site model. As p,
the average of the rate parameters, increases, the variance
ratio decreases. This can be understood by noting that as p
increases, the reaction approaches instantaneous equili-
brium, which does not produce the spreading that kinetic
sorption produces. When the sorption and desorption are
kinetic, the ratio of the timescale of desorption to the
timescale of advection is larger than when the sorption is
instantaneous, so some of the solute plume is advected
downstream while the tail is left behind, slowly desorbing.
As o, the standard deviation of the distribution of rate
parameters, increases, the variance ratio increases, because
when o is small, most of the sites have a reaction rate
parameter near the value of the average, so there is less
spreading, as all of the solute experiences a similar reaction.

7. Desorption

[28] Rate-limited desorption from an initially contami-
nated aquifer by flushing with clean water is an important
problem for site remediation, and it has been studied
recently in the literature. Haggerty and Gorelick [1994]
studied different pumping well configurations to remediate

a contaminated aquifer governed by a single mass transfer
rate coefficient. Berglund and Cvetkovic [1995] investigated
the effect of several aquifer parameters on the time to
cleanup of a contaminant plume for radial flow for the case
of a single mass transfer rate coefficient. They found that
the time to cleanup increases as the variance of the log
hydraulic conductivity increases, and it increases as the
mass transfer rate coefficient decreases. Their results also
show that an increase in the distribution coefficient causes
an increase in the time to cleanup. Huang and Goltz [1999]
developed analytical results for rate-limited mass transfer in
the vadose zone. Our approach can be extended to the case
of desorption from an initially contaminated aquifer with an
initially uniform mobile concentration, C; o, by changing
the initial and boundary conditions.
[29] The initial and boundary conditions are

Ci(n, T=0)=Cip,C2(n,T=0)=Cy, (36)
Ci(n— 00,T) = Cip (37)
and
Ci(n=0,T > 0)=0. (38)
The solution of (2) and (3) for this case is
Ci(L,s) = % 1 —exp|—st(L)| 1+ er/ ?1103 da
0 (39)

From the property of the Laplace transform of a derivative,
dC,(L,t)/dt = sC(L,s) — Cj g, it follows that the Laplace
transform of the derivative of —C,(L, t)/C, o is equal to the
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Figure 5. Effect of log hydraulic conductivity variance on the time for an initially contaminated aquifer
to be cleaned to 5% of the initial concentration at a plane 10 integral scales downstream. A two-site
model was used with 3; =3, =0.5, a; = 0.001 and a, = 0.1. Inset shows CDF of travel time for the same

log hydraulic conductivity variances.

right hand side of (10). Therefore expressions similar to (12)
apply for the temporal moments of —dC;(L, t)/dt, and the
two problems are mathematically very similar.

[30] Figure 4 shows the expected value and variance of
the concentration at a control plane 10 integral scales
downstream calculated by solving (39) for C(L, t) with a
numerical Laplace transform inversion algorithm and using
the relationship (i) =] cwoewra to calculate the
moments of the concentfation. This gives ensemble
moments over many realizations for one streamtube. How-
ever, they can also be interpreted as moments over all
streamtubes at the control plane when clean water is
injected over an infinite plane at L = 0. The geochemical
models considered in Figure 4 are a one-site model with (3,
=1 and o = 0.1, and a two-site model with 3; = 0.5, 3, =
0.5, a; = 0.001 and o, = 0.1. The concentration is
normalized by the initial concentration. As expected, the
normalized expected value of the concentration decreases
from one to zero. The variance of the concentration is zero
when the normalized expected value of the concentration is
stable at one or zero, because no uncertainty in the value of
the concentration exists in those cases. The results using the
two-site model are similar to those found using the one-site
model. However, because o is so much smaller than the «
used in the one-site model, which indicates a slower mass
transfer rate, the concentration decreases more slowly when
the two-site model is used.

[31] The dependence of the time required for flushing of
an initially contaminated aquifer with clean water to
decrease the concentration at a control plane 10 integral
scales downstream on the log hydraulic conductivity var-
iance was investigated. A two-site model was used with 3; =
B> =0.5, a; =0.001, and o, = 0.1. Figure 5 shows the value
of the log hydraulic conductivity variance versus the time

required for the concentration to decrease to 5% of its
original value. As the log hydraulic conductivity variance
increases, the time required for cleanup also increases. This
is in agreement with the results of Berglund and Cvetkovic
[1995]. As the log hydraulic conductivity variance increases,
the CDF of the travel time becomes more spread out as
shown in the inset in Figure 5. Therefore the trailing edge of
the contamination is longer, and it takes more time to get to a
small percentage of the initial concentration. One would
expect that the same phenomena would cause a decrease in
the time to reach a large percentage, say 95%, of the initial
concentration as the log hydraulic conductivity variance
increases. This is indeed the case (results not shown).

8. Conditional Moments

[32] To fully benefit from the measured hydraulic con-
ductivity data, conditioning is often used [Dagan, 1989;
Rubin and Dagan, 1992; Rubin et al., 1999; Rubin, 2002].
For our method, nonreactive conditional temporal moments
can be used as input. We consider conditioning on all of the
available measurements, such as transmissivities, heads, and
groundwater flow or velocities, or on soft information, such
as geophysical data. Because the chemical parameters are
treated as deterministic, randomness is associated only with
the travel time. Then, we can immediately write the first two
conditional temporal moments as

(L))" = (1 +bo) (M (L) (40)

L) = L)1+ b+ 20 (L)€

0\8
=3
o
Rl



LAWRENCE ET AL.: TEMPORAL MOMENTS OF KINETICALLY SORBING SOLUTE

10° . :

30 -9

10°

10"

10°

10°

10 10 10’

10° 10° 10 10

Dimensionless Distance

Figure 6. Example showing that travel time variance is not zero when there is no uncertainty in the log
hydraulic conductivity. Curves are for a lognormal model with 3 = 2.2, p = 5.3, and o = 3.

where the superscript C indicates that a moment is
conditional. These are ensemble moments and cannot be
interpreted as moments over the control plane for one
realization, because the measurements make the domain
nonstationary. For example, the effect of the measurements
on one streamtube is not the same as it is on a streamtube in
another location. The conditional CDF of T, GC(L, T), can
be obtained from the unconditional one using Bayesian
principles [Dagan and Nguyen, 1989; Rubin and Dagan,
1992]. One advantage of this type of conditioning is the
reduction in uncertainty, which has been demonstrated in
several cases [e.g., Rubin, 1991; Harvey and Gorelick,
1995]. The travel time variance represents both variability
between realizations due to uncertainty and actual spread
due to kinetic sorption, which is present in even one
realization. The first term on the right hand side of equation
(41) gives a measure of the uncertainty, while the second
term represents the spread caused by kinetic sorption.
Figure 6 shows the travel time variance for a lognormal
model with B, = 2.2, p= 5.3, and o = 3 for different values
of the log hydraulic conductivity variance, 0. From Figure
6, we see that even when there is no uncertainty in the flow,
such as when oy = 0, the travel time variance is not zero.

[33] We now present examples of the reduction in uncer-
tainty by conditioning. For this purpose, we use numerical
results by Rubin [1991]. That paper showed several exam-
ples of the effect of conditioning with transmissivity values
upon statistical moments for nonreactive solutes. In each of
the sets, which varied in the amount of conditioning data,
the author computed the effect of conditioning on the
longitudinal mean displacement, (X;), and the longitudinal
displacement covariance, X;;, as a function of travel time.
From this information, it is possible to derive the condi-
tional CDF as

L- < X(t) >
2XT ()

GE(L,1) = Serfo (42)

We selected two of the examples by Rubin [1991] to use
here. The first one corresponds to conditioning on 9
transmissivity measurements beginning at the injection
point and continuing in the mean flow direction at a
spacing of 1.25Iy. The value of each measurement was a
unit positive fluctuation of the natural logarithm of
transmissivity from the mean. The mean and covariance
of the longitudinal displacement are given as curve d in
Figures 7a and 7b of Rubin [1991]. Curve c of Figures 9a
and 9b of Rubin [1991] shows the mean and covariance of
the longitudinal displacement after conditioning on three
transmissivity measurements, again with unit positive
fluctuations, located at the coordinates (0,1), (5,1), and
(10,1), which are nondimensionalized by Iy. The injection
point is at (0,0). We have used these curves to identify the
reduction in uncertainty by computing the conditional
second reactive temporal moment and comparing it to the
unconditional one for a given set of chemical parameters.

[34] The results for four cases of conditioning with the
lognormal geochemical model are shown in Figure 7 in
terms of the percent reduction of the second moment,
computed as

2,RNC 2R.C
(L) s

L
Percent Reduction = (L) 100%,

S%,RNC L) (43)

where M€ stands for not conditional. In all cases, the amount
of reduction due to conditioning is significant. An important
point to make from Figure 7 is that both the shape and the
amount of reduction depend strongly on the parameters that
define the chemical model. The values of . and o used are
based on values found by Haggerty and Gorelick [1998]
and Culver et al. [1997] to fit experimental data. Curve a in
Figure 7 shows the reduction in the travel time variance for
a lognormal model with p = 5.3 and o = 3.0 due to
conditioning on the data from Figure 9, curve ¢, of Rubin
[1991]. The reduction in travel time variance is around 14%.
When larger values for o (0 = 6.3 to 10) were used with this
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Figure 7. Example of percentage reduction in the conditional variance of travel time with respect to the
unconditional one for a reactive solute (equation 43). The chemical model assumed is lognormal with (3,
=22, 0y2 =0.25, and p = 5.3. Curve a shows o = 3 and the variance for a tracer is given in Figure 9,
curve ¢, of Rubin [1991]. The variance for a tracer for curves b through d is given in Figure 7, curve d, of
Rubin [1991], and for curve b, o = 3; for curve ¢, 0 = 6.3; and for curve d, o = 0.

conditioning data, the reduction was steady at 14% for the
entire travel distance analyzed. For the remaining three
curves in Figure 7, the set of data from curve d of Figure 7
from Rubin [1991] was used, and p = 5.3. In curve b of
Figure 7, 0 = 3.0, and in curve ¢ of Figure 7, o = 6.3. For the
smaller value of o, the reduction of variance shows a peak
of almost 65% followed by a rapid decline. For the larger
value of o, the reduction of variance is at its maximum of
around 42.5% at the shortest distance and gradually reduces
at larger distances. This same result is obtained as the value
of o increases. The change in the shape of the curve of the
percent reduction in travel time variance with changing
values of o reflects the change from one term of (35) to the
other dominating the value of the travel time variance.
When o is small, the first term dominates. Because this term
represents the uncertainty, one would expect the condition-
ing to have a greater impact when the first term dominates.
We can see from curve d of Figure 7, that when o = 0, the
effect of conditioning is even more significant with a
maximum variance reduction of almost 85%.

[35] The effect of conditioning decreases with increasing
travel distance, because conditioning data only goes up to a
distance of 10 integral scales. Some of the curves show an
increase in the effectiveness of conditioning with increasing
distance while close to the injection point. Very close to the
injection point, the solute has not encountered much heter-
ogeneity. There is not much uncertainty, so conditioning is
not as effective as it is at slightly later times.

9. Summary and Conclusions

[36] When analyzing solute transport in real field situa-
tions, most of the data is in the form of breakthrough curves
(BTCs). In a heterogeneous media, the actual shape of the

BTC depends on the heterogeneous structure of the domain
and on the parameters that characterize the sorptive behav-
ior of the solute. One of the main findings of this paper is
that for any chemical model that considers linear mass
transfer reactions, it is possible to relate the moments of
the BTC to those for a conservative tracer that would be
transported in the same medium under the same flow
conditions. This is valid for any given realization of the
field. Because the moments of the BTC for conservative
tracers cannot be obtained exactly (unless measured) in a
heterogeneous domain, the moments of the expected BTC
are used.

[37] We presented closed form solutions for the continu-
ous diffusion rate model. The method can easily be
extended to the multirate models that have been found to
fit experimental data in recent literature. We have shown
that the method can be applied to the problem of an
instantaneous point injection of contaminant and to desorp-
tion from an initially contaminated aquifer.

[38] Conditioning is easily addressed in this method. The
dependence of the conditional temporal moments on only
the chemical parameters and the conditional temporal
moments of a nonreactive tracer reduces computational
effort, because the moments of the nonreactive tracer can
be calculated once, and then used repeatedly with the
applicable chemical parameters. We have shown how con-
ditioning can dramatically reduce the variance of travel
time. The amount of variance reduction depends on the
chemical model selected.

Notation
a shape parameter for the gamma model.
b scale parameter for the gamma model.



LAWRENCE ET AL.: TEMPORAL MOMENTS OF KINETICALLY SORBING SOLUTE

C; dimensionless mobile concentration.
dimensionless initial mobile concentration.
C, dimensionless immobile concentration.

erfc() the complementary error function.
g(L, T) probability density function (pdf) of travel time.
G(L, ) cumulative distribution function (CDF) of

travel time.
Iy integral scale of the natural log of hydraulic
conductivity.
distribution coefficient.
L distance from injection to control plane.
volumetric fraction of the solid that reacts at a
particular rate a.
s Laplace’s variable.
T dimensionless time.
ith noncentral moment of the expected break-
through curve.
t real time.
t; ith noncentral, nonnormalized temporal mo-
ment.
U reference velocity.
v velocity.
V  dimensionless velocity.
x coordinate along flow direction.
longitudinal displacement at time T.
longitudinal displacement variance at time T.
Y natural log of hydraulic conductivity.
a or oy dimensionless mass transfer rate coefficient.
B; or B(cr) capacity coefficient.
Bt total capacity factor.
0() Dirac delta function.
& porosity in the mobile zone.
I'() gamma function.
I'(,) incomplete gamma function.
1 dimensionless coordinate along the stream
tube.
p mean of the natural logarithm of the rate
coefficients for the lognormal model.
ps mass density of the soil solids.
o standard deviation of the distribution of rate
coefficients for the lognormal model.
0s Vvariance.
> third central moment of travel time.
T travel time.

C, NC superscripts referring to conditional and not
conditional.

R, NR superscripts referring to reactive and nonreac-
tive.

[39] Angle brackets indicate expected value. Overbar
indicates Laplace transform.
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