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Abstract. Most field methods used to estimate transmissivity values rely on the analysis 
of drawdown under convergent flow conditions. For a single well in a homogeneous and 
isotropic aquifer and under steady state flow conditions, drawdown s is directly related to 
the pumping rate Q through transmissivity T. In real, nonhomogeneous aquifers, s and Q 
are still directly related, now through a value called equivalent transmissivity Teq. In this 
context, Teq is defined as the value that best fits Thiem's equation and would, for example, 
be the transmissivity assigned to the well location in the classical interpretation of a steady 
state pumping test. This equivalent or upscaled transmissivity is clearly not a local value 
but is some representative value of a certain area surrounding the well. In this paper we 
present an analytical solution for upscaling transmissivities under radially convergent 
steady state flow conditions produced by constant pumping from a well of radius r w in a 
heterogeneous aquifer based upon an extension of Thiem's equation. Using a perturbation 
expansion, we derive a second-order expression for Teq given as a weighted average of the 
fluctuations in log T throughout the domain. This expression is compared to other 
averaging formulae from the literature, and differences are pointed out. Teq depends upon 
an infinite series which may be expressed in terms of coefficients of the finite Fourier 
transform of the log transmissivity function. Sufficient conditions for convergence of this 
series are examined. Finally, we show that our solution agrees with existing analytical ones 
to second order and test the solution with a numerical example. 

1. Introduction 

Almost all hydrogeological books explain the relationship 
between drawdown and pumping rate in a homogeneous iso- 
tropic aquifer (Thiem's equation). This equation can be used 
to estimate transmissivity values from measured steady state 
drawdowns. It can also be used to provide estimations on the 
drawdown that are to be expected for a certain pumping rate in 
order to help estimate the productivity of the well as limited by 
the maximum drawdown allowed. These estimations are based 

on the analysis of drawdowns under uniform radially conver- 
gent flow conditions. 

In heterogeneous media, flow toward a pumping well is still 
convergent but not uniformly radial. Nonuniform flow in het- 
erogeneous media has not been addressed frequently in the 
literature. Early work [Shyidler, 1964; Matheron, 1967] was 
devoted to finding "apparent" effective transmissivity values 
(Teff) in an annular domain with an inner and outer radii 
where they applied constant head boundary conditions. Teff is 
defined in this context as the constant value of T which would 

provide a discharge value equal to the expectation of the dis- 
charge for the heterogeneous formation under the same 
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boundary conditions. Apparent values range from the arith- 
metic mean of the T values, when the inner radius tends to 
zero, to the harmonic mean of the T values, when the outer 
radius tends to infinity. Dagan [1989] and Neuman and Orr 
[1993], among others, use instead a local definition for Tef f as 
the average between radial specific discharge and head gradi- 
ent in an ensemble of T field realizations at a certain location. 

Dagan [1989] discusses the difference between the value of Tef f 
near the well, depending on the type of boundary conditions 
applied. This difference was later confirmed by different au- 
thors working either with constant flux [e.g., Naff, 1991] or 
constant head [e.g., Indelman et al., 1996] boundary conditions. 
Recent work provided the full analytical solution for effective 
conductivity as a function of the radial distance to the pumping 
well for infinite [Indelman and Abramovich, 1994] and finite 
(annular) [Sdnchez-Vila, 1997] domains. 

The problem of upscaling transmissivity values into blocks of 
certain size (equivalent T values) under radially convergent 
mean flow has received less attention in the literature. An 

upscaled value is nonlocal by definition. The most important 
reason for upscaling is the need for incorporating measure- 
ments taken at different supports (scales of observation). A 
second reason is just practical: Numerical solutions involve 
partitioning the domains into elements that cannot be smaller 
than a certain size, which is generally larger than the repre- 
sentative scale of the measurements. While theQry for upscal- 
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ing under parallel flow conditions is available (see Wen and 
G6mez-Herndndez [1996] and Renard and de Marsily [1997] for 
recent reviews), in the radial flow case the work is mostly 
pseudoempirical: Desbarats [1992] addresses upscaling in a 
combined empirical-numerical approach in a two-dimensional 
domain, a work later expanded to three dimensions [Desbarats, 
1994]; Durlofsky [1992] looks at different numerical upscaling 
techniques; and G6rnez-Herndndez and Gorelick [1989] use a 
power-averaging approach to assign block T values in a com- 
plex groundwater flow system, including several wells. On the 
other hand, most of the analytical work has concentrated on 
units composed of two bounded regions of different (fixed) T 
values separated by some sharp discontinuity, either radial 
[Butler, 1988] or elliptical [Tiederman et al., 1995]. 

2. Previous Existing Averaging Formulae 
In a two-dimensional domain, Desbarats [1992] provides a 

relationship for block transmissivity Tb given as a weighted 
spatial average of point support T values 

Tb = exp W -•-dV 

where Y(x) = In T(x) are the point log-transmissivity values, V 
is the block volume, and r is the radial distance from the center 
of the well. In this formula, W is given by 

fv dV w = r'(x) (2) 

The expression for Tb given in (1) is empirical, and it is based 
on an extension of the parallel flow case. In his paper, Desbar- 
ats [1992] finds (1) to work very well for multivariate log- 
Gaussian T fields in which the transmissivity at the well is not 
very different from the expected value of T taken as a random 
space function. 

A rigorous definition of block or equivalent transmissivity 
Teq in a two-dimensional annular domain V is the value that 
suits the following relationship 

Q - 2 rr In r e/rw Teq -'- 2 rrA Teq (3) 
where Q is the pumping rate, rw and r e are the internal and 
external radii, hw and h e are the heads at the inner and outer 
radii, respectively, and .4 - (h e - hw)/ln (re/rw). In short, 
Teq is the value that best suits Thiem's formula, which is strictly 
valid only in confined aquifers, although under the restriction 
of small drawdowns can also be used in phreatic aquifers. On 
the basis of this definition, Cardwell and Parsons [1945] proved 
that in a heterogeneous aquifer, Teq is bounded by the 
weighted harmonic and the weighted arithmetic averages of T 
over V; that is, 

dV 1 T(x) dV 

W T(x)r2(x ) -< Teq -< • r2(x ) (4) 

Only a few simplistic cases of heterogeneity exist where an 
exact formula for Teq can be calculated. One is the case where 
the transmissivity values are just a function of the radial dis- 
tance to the well (e.g., when they are distributed in circular, 
radially symmetric annuli), which gives Teq equal to the 

weighted harmonic mean, the lower bound in (4). In contrast, 
when T is constant in sectors extending from the inner to the 
outer radius, Teq is equal to the weighted arithmetic mean, the 
upper bound in (4) (which in this case coincides with the 
simple, nonweighted, arithmetic mean). For more general 
cases an exact solution is not available. 

In this work we develop an analytical expression for T eq 

based on a series expansion of the flow discharge at the well in 
a heterogeneous domain under saturated, steady state, radially 
convergent mean flow conditions. The analysis can also be 
looked at in a different way: If we want to substitute the 
variable T by a single value which leads to the same drawdown 
(definition of Teq), we need to find the relationship between 
the real transmissivity field (point support values) and the 
upscaled value. This relationship is given as a weighted average 
of all the values in some area surrounding the well. The up- 
scaling formula obtained is compared with the empirical aver- 
aging formula (1) and the two bounds in (4). We will see that 
these four expressions all contain the same terms up to first 
order in the series development but differ in second-order 
terms. 

3. Derivation of equivalent transmissivity under 
radially convergent, steady state flow 

In the annular domain V, by setting h w and h e and measur- 
ing Q we use (3) to define apparent equivalent transmissivity in 
a heterogeneous aquifer. Our objective is to write a consistent 
expansion of Q and to derive the expression for the first few 
terms in the expansion as a function of the spatial distribution 
of Y. 

3.1. Problem Assumptions 

Before starting with the mathematical derivations we want 
to point out the simplifying assumptions we use and the limi- 
tations to the results brought up by them. The first assumption 
is that Yw = In T(r w, 0) is a constant (homogeneous T value, 
not depending on 0, at the well). This is not restrictive as 
generally the integral scale of Y is much larger than the well 
radius, so that the variation inside the well is negligible. Ad- 
ditional assumptions used in the derivations are (1) I(Y) - 
Ywl < 1 (where ( ) stands for expectation) and (2) Y' (p, 
is continuous and of bounded variation. Assumption 1 states 
that the local Yw value should not be very far from the mean, 
and it is used in the series expansion development. Assumption 
2 is used in some of the mathematical derivations in the ap- 
pendix. It should be noted that these conditions may be relaxed 
somewhat in the final solutions since the integrations per- 
formed tend to "smooth" out the effects of the perturbations. 

A possible limitation is given by one of the boundary con- 
ditions imposed, that the hydraulic head be constant at an 
outer radius r e . This is violated almost always to some degree 
except in the particular case of a well centered in a round 
island. In any case, whenever Y is highly regular (e.g., when the 
integral scale of Y is smaller than re), this condition poses no 
problem. 

3.2. Darcy's Law 

In a general domain under steady state conditions the well 
discharge Q can be obtained by integration of Darcy's velocity 
along any surface containing the well. In particular, we can use 
the surface of the well itself: 
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•0 2'•' Q = - qr(rw, O)rw dO (5) 

where qr is the radial component of Darcy's velocity (which is 
normal to the surface of the well at every point) integrated 
over the aquifer thickness. Using Darcy's law, considered valid 
at the local scale, we have 

0 

qr(rw, O)=-Tw •rr h(r, 0) .... (6) 

where T w is the transmissivity at the well, which is a constant 
value, as stated previously. Our next step is to compute Oh/ 
Or r:rw (that is, the head gradient at the well). 

h(ø) = hw r = 1 

' h © = he r = R 

h (i) = 0 

atr = 1 andr = R fori = 1,..., n. 

(12) 

(•3) 

3.4. Evaluation of Q 

Combining (5) and (6), using the expansion in h, and writing 
the resulting expression in the normalized coordinates, we 
have 

f02• I 0 (0)( r 0 Q= rw •rr h , O) + • h(•)(r, O) + • h(2)(r, 0) 

3.3. Groundwater Flow Equation 

The steady state groundwater flow equation written in terms 
of Y = In T is 

V2h + VYVh = 0 (7) 

At this point we normalize the spatial coordinates by r w. The 
boundary conditions in normalized polar coordinates are writ- 
ten as 

h(r, 0)=hw r= 1 
(8) 

h(r, O) = he r = R 

where R - re/r w. As Y(x) is heterogeneous, (7) cannot be fully 
solved analytically except for very particular cases. To over- 
come partially this problem, we expand the drawdown as h = 
h (ø) + h (•) + h (2) + .... Approximations to h are obtained 
by truncating this expansion. To obtain the h (i) terms, we need 
also to expand Y(x) as the sum of two terms: a certain mean 
value not depending on x plus a spatially variable part. As the 
transmissivity at the well is a very significant value, we choose 
its logarithm Yw as the constant value in the decomposition; 
that is, Y = Yw + Y'. This is an important difference from the 
traditional stochastic approach, where the constant value cho- 
sen is equal to the expected value of the random variable and 
thus the remaining term has a zero mean; in our approach, 
(Y') -7= 0. By substituting the expansions of h and Y into (7) 
we have 

V2h © + V2h (•) + V2h © + Vy'Vh © + Vy'Vh (•) + VY'Vh © 

+ .... 0 (9) 

(note that VYw = 0). This equation can be solved in an 
iterative way. There are infinite possibilities for selecting the 
iterative procedure from this equation, although not all of 
them are necessarily convergent. The most convenient one is to 
write a set of equations so that equation i contains all the terms 
in Y'kh(i), with k + j = i. These equations are then 

V2h © = 0 (10) 

+'' '1 dO = Qo + Q• + Q2 -3- ''' r=l 

where we are introducing the notation 

(14) 

Qi = Tw • h(i)(r, O) dO (15) 
r=l 

The approach we take assumes implicitly that each of the Q i 
terms is small compared to the preceeding ones so that after a 
few terms we are capable of capturing most of the features of 
Q and we can drop the higher-order terms. A necessary but not 
sufficient condition is that heterogeneity not be very strong 
(i.e., the variance of Y, o-•. < 1). Our goal is now to evaluate 
the first terms in the expansion of Q (up to Q2)- 

3.5. Evaluation of Qo 

From (10) and (12) we can compute h © (notice that (10) is 
the only equation from the iterative set where Y' does not 
appear) 

h (ø)(r) = hw + A In r (16) 

Because of the radial symmetry of the domain, h (o) is just a 
function of r (normalized radial distance to the pumping well) 
and not of 0, and so, 

Qo = 2rrArw (17) 

Notice that (17) is formally equal to Thiem's formula (equa- 
tion (3)) with transmissivity equal to the value at the well. 

3.6. Evaluation of Q• 

From (11) and (16) we have 

V2h (1) = -Vy, Vh (0) .... 
A OY' 

r Or (•8) 

with homogeneous boundary conditions. The solution to this 
partial differential equation can be written in terms of funda- 
mental solutions 

V2h (i) + VY'Vh (i-•) = 0 i = 1,. ß ß , n (11) 

This way we can find the solution for h (i) sequentially (starting 
with h (o)). It is evident that this set of equations is equivalent 
to (9). There are still infinite possibilities for the expansion of 
h, depending on how boundary conditions are assigned. For 
convenience the h © functions are selected so that all the 

nonhomogeneous boundary conditions are applied to h (o) 

fv 0Y' h(•)(r, O)=A •-•p (p, dp)G(r, O, p, dp)p do 
(19) 

where G is the Green's function corresponding to the follow- 
ing boundary problem: 

V2G(r, 0, p, 4>)= -/3(r- p, 0- 4>) (20) 
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G = 0 r = 1, R (21) 

The solution to this problem is given, for example, by Wein- 
berger [1965]: 

In r In (R/p) • r n- r -n 
G(r, 0, p, &)= 2rrlnR + • 2•rn(R n - R -n) 

n=l 

(22) 

valid for p -> r (which is our case as we will only be interested 
in r = 1, while p varies from 1 to R). Deriving (22) with 
respect to r, integrating it by parts with respect to p, and then 
inserting it into (15), we have 

fo 2• fv O2G Q• = -T,A Y'(p, ok) o-•p d p d ck dO (23) 

where 

02G 1 • n (r n + _r-• OrOp (r, 0, p, 4>)=- 2rrpr In R- • 2rrrp(R n 
n=l 

Then substituting h (•) from (19) and taking the derivative with 
respect to r 

0h (2) 

(r, O)=•rr VpY'Vvh(•)G(r, O, p, cb)p dp dcb 

= A •rr VpY'(p, 4)) 0p* (p* 

1 

ß VpG(p, •, p*, •*)G(r, O, p, •) •-• dV dV* 
(29) 

with dV* = p* d p* d 4>*; after very involved manipulation we 
find that Q 2 can be written as the sum of three terms, which we 
call Q2a, Q2b, and Q2c, equal to (see the appendix for the 
derivations) 

Q2 = Q2a + Q2b + Q2c 

- Qo fv y'2(p, qb) Qo [ fv Y' (p, qb• ] 2W 92 dV + • 92 dV 

ß + (0- (24) 

Integrating (23) over 0 and taking into account that integration 
is carried out in [0, 2rr], the term in (24) including the infinite 
series cancels out except for p = 1, where the infinite series is 
not uniformly convergent and we cannot exchange the series 
and the integral. Nevertheless, in that case, Y'(p, 4>) = Y'(1, 
0) = 0, and so the term drops completely. Then 

f• 1 1 Q1 = T,A Y' ( p, ok) • 1-•-• d p d ck (25) 

and from (17) 

Qo fv Y' (p, 4>) Q1 = • • dV (26) 

where dV = pdpdck and W = J'v 1/p 2 dV= 2rr lnR (easily 
derived). This is our first important result. Notice that if the 
expansion of Y had been performed around a value Y different 
than Y,•, the discussion after (24) would not apply, and the 
infinite series would give a correction term which should be 
added to the sum of (26) plus (17) to render the first-order 
approximation of Q. 

3.7. Evaluation of Q2 

Q 2 can be obtained similarly to Q •, although the mathemat- 
ics are much more involved. From (11) 

•72h © = -VY'Vh (•) (27) 

with homogeneous boundary conditions. The solution is given 
as 

h(2)(r, 0) = fv VpY'VJz(•)G(r' O, p, ok) dV (28) 

Qo ø• IvfvY'(P, qb)Y'(P*,qb*) -'[- • •1 pgp,2 
ß Hn(p, ok, p*, ok*) dV dV* (30) 

where 

Hn -- 

(31) 

Note that Q2b = Q•2/Qo. Finally, using (3) and substituting Q 
by its approximation up to second order, we have 

1 

Teq = 27rA (Q0 + Q• + Q2a + Q2b + Q2c) (32) 

4. Analysis of the Solution 
Using the notation already introduced, it is possible to write 

the second-order expansions of both the formula by Desbarats 
[1992], 

1( 1) Teq = 27rA Q0 + Q• + 5 Q2b (33) 

that corresponding to the weighted harmonic mean, 

1 

Teq = 27rA (Q0 + Q1 q- Q2a + Q2b) (34) 

and that corresponding to the weighted arithmetic mean, 

1 

Teq = 27rA (Q0 + Q•- Q2a) (35) 
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In order to get (33)-(35) we have expanded the corresponding 
formulae around T w so they can be directly compared with 
(32). These same formulae can be obtained in a more compact 
form from (11) of Desbarats [1994] by expanding his expres- 
sions around Tw. Using our notation and expanding the expo- 
nential up to second order, (11) [Desbarats, 1994] reads: 

Teq = exp (Yw) 1 + Y'•, + 5 (Y'v)2 + •-• r2 dV 
(36) 

with 

Y'v = • •- dV (37) 

where w is the power-weighting value. From this expression we 
can finally write a general formula for the approximation of the 
equivalent transmissivity which includes (33)-(35) 

req = 2,rA Qo + Q1 + 5 Q2b + w -Q2a - 5 Q2b 
(38) 

Now, taking w = 0, (38) is equivalent to Desbarats' formula, 
while for w - - 1 and w = + 1 the resulting expressions are 
equal to the weighted harmonic (equation (34)) and arithmetic 
(equation (35)) means. 

It is immediately apparent from the above formulae that our 
second-order solution (equation (32)) agrees with the 
weighted harmonic mean (34) when Q 2c is equal to zero. That 
is the case, for example, when the transmissivity field does not 
depend on 0 since the cosine term is integrated over its full range. 
Thus, we have a simple verification of (32) in one limiting case. 

We note that up to first order in the expansion there are no 
differences in the terms for any of the previous formulae; 
however, differences in the second-order terms do appear. The 
importance of the second-order term will be field dependent. 
In multi-Gaussian random In T fields, Desbarats [1992] shows 
numerically that (33) gives an excellent result. In non-multi- 
Gaussian fields this need not be the case. We will see in the 

next section a synthetic example where the term Q 2c is impor- 
tant and needs to be considered. In real cases the importance 
of the Q2c term should be established before using any of the 
simplified formulae for upscaling purposes. 

5. Synthetic Example 
We have shown in the previous section that in a case where 

the transmissivity is only a function of the radius our expres- 
sion is exact to second order. However, this cannot be consid- 
ered a real example. There is still some discussion in the 
scientific community about whether multi-Gaussianity is a proper 
reflection of real heterogeneity. In this section we want to point 
out that this assumption is critical for upscaling under radial 
conditions. While Desbarats' [1994] formula is applicable to multi- 
Gaussian fields, we want to show with a synthetic example that 
in non-multi-Gaussian fields there is a need for more compli- 
cated formulae, such as the one presented in this paper. 

For that purpose we consider a test field with a known space 
function Y' = • cos (m 0). Here • is a real parameter, and m 
is an integer >1. Around the well we fix an annulus with 
constant Y' = 0. This annulus extends from the well (r = 1) 

Fixed he 

Y' = • cos me 

r= 1.5 

rw=l • .... 

, 
i 

d hw 

re= R=50 •._..__._ 
Figure 1. Geometry of the log transmissivity Y field used in 
the synthetic example; Yw = 0, and so, Y = Y'. 

to r = 1.5. The variable Y' function extends from there to the 

outer radius. The field is represented in Figure 1. 
For this particular T field the integrals appearing in the Q i 

terms can be calculated analytically in terms of Q o: Q • = 0, 
Q2,, = -Qo• 2/4, Q2•, = 0, and Q2c = Qo• 2/2. As a result, 
Q2/Qo = •2/4. The comparison between the numerically 
calculated Q and the analytical Qo and Q 2 as a function of the 
parameter • is shown in Figure 2 for the case m = 3. Figure 
2 clearly shows a range, • -< 1, in which the numerically 
calculated Q is approximately constant and well represented by 
Qo (note that in this particular case, Qo corresponds to (33), 
while (35) gives the exact solution). When 1 -< • -< 10, the flow 
at the well is dominated by the high T regions, and the addition 
of Q2 is necessary for the perturbed solution to accurately 
reproduce the numerical solution. The flat region for • >- 10 

_ 
Qo + 02 

7 Qo 
6 Numerical Solution 

5 ' 

Q/Qo .. ,,/ 4 o• 
0 ? Q = Qo + Q2 + higher order terms 

2 

10' 0o 02 1 1 1 1 

Perturbation Amplitude (13) 

Figure 2. Normalized Q versus perturbation amplitude in 
the analytical and numerical solutions for the synthetic exam- 
ple. 
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corresponds to the range over which the flow to the well is 
controlled by the area near the wellbore where the transmis- 
sivity is small compared to the amplitude of the cosine func- 
tion. It is apparent that for/3 -> 4, terms higher than second 
order are necessary to accurately calculate Q. Notice that as 
the variance can be calculated from 

f0 t32 1 2• [ 32 (mO) dO = 2 oar = • cos 2 (39) 

the case/3 = 4 corresponds to a very high variance (o-•. = 8), 
well above the traditional limit o-•. < 1. 

6. Expansion of Y'(p, 0) in Terms of the Finite 
Fourier Series 

It is apparent from our analysis that successive integration by 
parts on the Green's function integral are done possibly at the 
expense of convergence of the associated infinite series term. It 
is not obvious from the form of (30) under what conditions on 
Y'(p, 0) the infinite sum converges. In this section we develop 
the relationship between the coefficients of the finite Fourier 
series representation of Y' (p, 0) and the subsequent Q i and 
Teq terms. We then find sufficient conditions under which the 
sum of (30) converges in terms of the Fourier coefficients. We 
begin by assuming a finite Fourier representation for Y' (p, 0 ) 
[see Weinberger, 1965]. 

Y'(p, O) - ao(p)/2 + • am(p) cos (mO) + bm(p) sin (mO) 
m=l 

(40) 

Substituting into (26) and (30) gives the relationships 

Q1 - Qoco1/2 (41) 

Q2 = Q o 8 4 (Cm2 q- am2) q- T q- 2 In R • 
m=l m=l 

. fR Hm(p ' p,) pp' [am(p)am(p') + bm(p)bm(p')] dp 
(42) 

where Sm(p, p') -- Sm(p, p', 0, 0), cij = [J'f aJti(p) 
dp/p]/ln R, and dii= [j'• •(p) dp/p]/ln R. From the above 
relations, Teq becomes 

C01 C02 C021 1 2 •r • rw 1 + T- •-+ 4 4 (Cm2 q- dm2) q- 2 lnR • 
m=l m=l 

[am(p)am(p') + bm(p)bm(p')] dp dp' 

(43) 

tion of the last term in (43) is considerably simpler than that 
given in (30). 

Expressing Y' in terms of a Fourier series permits us to use 
the extensive knowledge about Fourier series to increase our 
understanding of the properties of the solution. In particular, 
we can examine the convergence properties of the sum of the 
coefficients and draw conclusions about the necessary condi- 
tions upon Y' (p, 0) for convergence of the sum. We state our 
terms of convergence in the form of a theorem. 

Let Snn be the final sum of (30) and suppose that Y' (p, O) 
is expressible as a finite Fourier series. Suppose further that 
the Fourier coefficients are bounded as 

f(P) 
lam(p) l Ibm(p) l -<'-- (44) , m a 

where f(p) is a monotonically increasing function independent 
of m and a > 1/2. Then Snn is absolutely convergent and has 
an upper bound 

ISu. -< f2(R)•(a) (45) 

where •(a) is the Riemann Zeta function. As a particular case, 
the sum converges when Y' (p, 0) is of bounded variation 
(meaning that for any partition Pi of the interval [0, 2,r] the 
sum of the absolute differences of IvY' (p, 0,)l are bounded), 
in which case, lam(p)l, Ibm(P) l --- O(1/m). 

In order to prove the theorem we use (31) to get an expres- 
sion corresponding to the final sum in terms of just the a m (p) 
terms: 

Hm(p, P ) 
Su..=21nR • •, 

m=l 

am(p)am(p') dp dp' 

2 lnR • 2w(R m - R -m) rn--1 P 

(p,m q- p,-m) d p' + 

q- p-m) P' 

(46) 

A similar term may be written for the b m (p) term. Using the 
triangle inequality and because both am (P) and bm(p) are 
bounded by (44), we may bound the entire sum as 

SH.i < f(R) © m -2a IR 1 {[(•) m (•)-m 1 -21nR • (R m- R -m) • + 
m=l 

ß dp = f2(R) E •-• = f2(R)•'(a) (47) 
m=l 

In order to obtain these solutions we have used the orthogo- 
nality of the sine and cosine functions. Note that the integra- 

where we have used the monotonicity of f (so that f(p) _< 
f(R)). This proves our theorem. 
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Note that the condition a > 1/2 is necessary for conver- 
gence of the final sum (the Riemann Zeta function). This 
condition insures absolute convergence of S•n, but nothing 
can be said about the convergence of St In when a --< 1/2. 
Under this condition the Riemann Zeta function diverges, but 
our earlier use of the triangle inequality might conceivably 
have made Is.l divergent while making SHn convergent (con- 
ditional convergence). Finally, if we assume for any particular 
value of p that Y' (p, 0 ) is of bounded variation with respect to 
0, then it is possible to prove [Apostol, 1975] that each of the 
Fourier coefficients is of order O(1/m). This case easily meets 
our convergence criterion. 

f•' I•' O Y' ß ß Q2=ATw VpY'(p, 4)) Op* (p 4) ) 

In (R/p) 1 
ß VoG(9, 9') lnR p, dVdV* (A3) 

Let U = Y'(p, 4)) and V = VpG (ln R/p)/(ln R), then 
applying Green's Formula, 

Q2 = ATw Op* (p*' 0 ) Y'(P, 4 )) 

7. Conclusions 

As it is well known, transmissivity derived from the inter- 
pretation of a pumping test is not only dependent upon local 
conditions in the area of the well, but it represents an average 
value over a representative volume of aquifer. In this paper we 
derive an analytical expression for the weighting function in- 
volved in the averaging process, which is valid independently of 
the univariate or multivariate distributions of the T field. In 

order to get this weighting function we perform a second-order 
expansion for the flow to a well in a two-dimensional hetero- 
geneous medium assuming constant head boundary conditions 
at the wellbore and an external radius. The perturbed solution 
is similar to a generalized form of the Craft and Hawkins [1959] 
solution but contains a term dependent upon the Green's func- 
tion of the domain. This term may be very important under 
preferential flow conditions. 

The solution is verified by comparison with the exact solu- 
tion for a radial case and with numerical simulations using a 
periodic Y function. Ranges in which the zero-, second-, and 
higher-order terms of the perturbed solution are necessary for 
accurate calculation of the numerical solution were observed in 

this example. We further show that the results for simplified 
cases agree with common knowledge, and we give some con- 
ditions for the transmissivity function under which our averag- 
ing solution, which is expressed in an integral form, converges. 

This work poses a note of caution when using simplified 
formulae for upscaling purposes under radial flow conditions. 
While these formulae have been shown to work in T fields that 

display some regularity (e.g., log-T being multi-Gaussian), in 
other types of fields more complicated formulae, such as the 
one presented in this paper, might be necessary. 

In R/p 
In R VpG(p, p*). dS - fr, Y' (p' 4)) 

ln (R/p) ß Vp lnR --VpG(p, p*))dV] dp* dO*} (A4) 

where a surface integral appears. As for the inner boundary 
Y'(p = 1, 4)) = 0 and for the outer one In (R/p) = 0, we 
have 

JC s In R/p VpG(p, p*) ß dS = 0 Y'(p, 4>) lnR (AS) 

After cancelling this integral we can decompose Q2 into two 
terms: Q2 = Q, + Q•, where 

f•,I•, oY' , O* Q• = -Arw -- (P* )Y' (p, 4)) 
Op* 

In (R/p) 
In R v2o(v, v*)dV do* d0* (A6) 

f•, Iv OY' , O* Qt• = Arw -- (p* )Y' (p, O) op* 

1 o 

plnR Op 
G(O, O*) dV do* dO* (A7) 

Noting that V2pG(p, 0, P*, 4)*) = -a(p- p*), 

Appendix: Derivation of the Q2 Term 
The definition of Q2 is given by (15): 

Q2 = Tw •rr h2(r' O) 
r=l 

dO (A1) 

From (29) we have 

Q2=ATw VpY'(p, 4)) Op* (p ' )VoG(9, 9 ) 

[0 ]1 ß •rr G(r, O, p, O) •-dVdV* dO (A2) r=l 

Integrating with respect to 0, 

Qot --- 
A Tw 
In R f02rr fR OY' -- -•p (P, O)Y'(P, 4))In (R/p)do dO 

(A8) 

and as Y'OY'/Op = 1/20y'2/Op, integrating by parts with 
respect to p, 

Q• = 1-•-• •- In (R/p) 

wATw fvy, 2(p, y, 2(p, dR )dp d O = dV (A9) 29 W •-• 

with W = 2w In R (already defined in the text). Q• can be 
written from (A7) after integration by parts in p* as 
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ATwf•,fo2•'y, 10G (p*, (V, -< p* 

Y'(p*, 4)*)Y'(p, qb) 

10G 

pop 
(p, p*/p -< p* -< R)[ • dV d•* p In R 

ß Y'(p*, 4)*)Y'(p, 4)) • Op • -•p-p (p, p*) dVdp* 

' d4,* ATwf•,fo2•'fpRY' , 4)*)Y'(p, 4)) In R (P* 

p Op* -•pp (p' p dVdp* d•* (A10) 

Note that the discontinuity in 0 G/O p is handled by considering 
the integral over the intervals [0, p) and (p, R], where it is 
continuous assuming Y' to be continuous. An alternate ap- 
proach would be to write OG/Op as a generalized function 
and integrate over the entire range. In this case the delta 
function introduced by the second derivative of G would 
take care of the contributions of the discontinuities. The 

derivative of G is given by the sum of two terms: OG/Op = 
Gpl q- Gp2 where 

In (R/p*) (p < p,) 
2 rrp In R (A11) G p• = -In p* 
2 rrp ln• (P* < p) 

while the Gp2 term includes an infinite series 

Sp2 -- 

l •Pnq-p-n[(3) n (_•__)nJ • =iRn-R -n (p < p*) 

--l•P*n--p*-n[(•) n (•)n] cOS g/(4) -- 4)*) R n _ R-n (p* < p) 

(A12) 

Now Qt• will be the contribution to Qt• given by Gp•. Sub- 
stituting (All) into (A10) and rearranging terms gives 

Q•i = ATw p2 dV dck* 

2z'fr, fr, Y'(P'c•)Y'(P*'C•*) } q- • p2 p,2 dV dV* (A13) 

On the other hand, we term Qt32 the contribution to Qt• 
given by G p2. In order to evaluate .this term we define the 
function 

SN -'- 

l •Pnq-p-n[(3) n (•_)n] • Rn-R -n - (p < p,) rt:l 

_]•p,n_p,-n[(•)n (•) nl COS g/(4) _ 4), ) • •-- R-n n:l (P * < p) 

(A14) 

so that limN_• S N -- Gp2(p, 4 ), P*, 4 )*). Now, assuming 
Q•2 exists, it is equal to 

ATw ffo Qm = lim 1--•--• Y'(p, 4•*)Y'(p, qS) • SNI• d•* dV 

A Tw Ir,fo 2• 1 + lim 1-•-• Y'(p, qb*)Y'(p, •b)• SN[. • drb* dV N-->• 

A Tw f•,f•,y, 1 aS N - lim 1•-• (p*, qb*)Y'(p, qb) • Op* dp* dck* dV N--->o• 

(A15) 

The contribution to Q•2 of the first two terms in (A15) is 
termed Q•2,,•, while we call the third term Q•2,b. Then 

ATw fly, QI32,a -- In R • (P, 4•) 

m Y'(P, 4)*) •pp • cos n(•- •*) d•* dV 
--•ø*d 0 n = 1 

ATw •r ' 1 Y' In R • (P, 4)) lim IN dV N---• 
(A16) 

where IN can be written in terms of D N(49 -- 49' ), which is 
Dirichlet's kernel [Apostol, 1975, pp. 317-319]. 

IN = -- Y'(P, ) DN(4) -- 49*) -- (A17) 

Following Apostol's arguments, if Y' (p, 4>*) is of bounded 
variation on the compact interval [qb - 8, qb + 8] for some 8 < 
rr, then the limit of IN exists and is equal to 

lim IN-- [ lim N--->o• t--->o• 

Y'(p, qb+t) +Y'(p, qb-t) 

2rr Y' (p' 4•*) d4•* (A18) 

If we further assume that Y' (p, 4>) is continuous, then 

lim IN Y'(p, 4)) • (p, 4)*)d(D* N-->o• 

so that, finally, Qt•2,a becomes 

(A19) 
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ATw{ flzY'2(p, 4)) Qt32,a - In R - 102 

Y'(p, •)Y'(p, qb*) } p2 dV d cb * 

On the other hand, Q•32,b is equal to 

(A20) 

ATw • f•.fi•Y'(P*'Cb*)Y'(P'Cb) Q •2,b = In R n•• • p2 
'Hn(p, qb, p*, 4>*)dp* dO* dV (A21) 

where 

Ha: (A22) 

tI (Pn+p-n)[(3)n (•--)n I 
• k •- -- R-n 

cos n(& - &*) 

(p* <p) 

Adding all the terms in (A13), (A20), and (A21), it can be seen 
that one of the terms in Q •2,a cancels out one in Q •; finally, 
we can write Q • as 

Q• - w - p2 dV + • 

Y'(p, qb) Y'(p*,qb*) • fvfv 92 9. 2 dV dV* + n• 1 

Y'(p, •) Y'(p*, •*) , ß } p2 p.2 Hn(p, ok, P , (b ) dV dV* 

(A23) 

Note that the first term is -2 times Q •. Thus Q 2, given as the 
sum of (A9) plus (A23), may be finally written as the sum of 
three terms: 

Q2 - W p2 dV + W p• dV 
,Iv 

o• Ivfr Y'(P' •)Y'(P*' 4'*) + E p2p.2 
rt=l 

ß Hn(p, 4), 19', 4)*) dV dV* 
which corresponds exactly to (30). 

(A24) 
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