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SUMMARY

In this paper, we study some recent formulations for the computation of upper bounds in limit analysis. We
show that a previous formulation presented by the authors does not guarantee the strictness of the upper
bound, nor does it provide a velocity field that satisfies the normality rule everywhere. We show that these
deficiencies are related to the quadrature employed for the evaluation of the dissipation power. We derive a
formulation that furnishes a strict upper bound of the load factor, which in fact coincides with a formulation
reported in the literature. From the analysis of these formulations, we propose a post-process, which consists
in computing exactly the dissipation power for the optimum upper bound velocity field. This post-process
may further reduce the strict upper bound of the load factor in particular situations. Finally, we also deter-
mine the quadratures that must be used in the elemental and edge gap contributions, so that they are always
positive and their addition equals the global bound gap. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lower (upper) bounds of the load factor A in limit analysis are obtained by constructing discrete
spaces of the velocity and stress fields, v and o, respectively, which are statically (kinematically)
admissible. Although there is a common agreement in the choice of statically admissible spaces,
several options have been reported when designing kinematically admissible spaces that yield upper
bounds of A. The objective of this paper is to study the properties of two proposed upper bound
formulations, and suggest potential improvements.

Kinematically admissible spaces were originally derived by employing piecewise linear and con-
tinuous velocity fields. Although some recent (mixed) formulations have been proposed resorting
to continuous velocity fields [1, 2], the incompressibility constraints in the velocities for some
plasticity criteria does not allow them to furnish tight upper bounds of A, unless some specific
mesh arrangements are used. To improve the accuracy of these values, velocity discontinuities were
originally added in [3] and [4]. These discontinuities were generalised in [5] and [6], and are cur-
rently widely exploited [7-12]. Among these references, the formulation in [6, 9] considers some
additional velocity variables at the edges, which guarantee the strictness of the upper bound, whereas
the more recent article [11] uses quadratic discontinuous velocity fields, which are subjected to some
conditions that guarantee its strictness. We also mention the related recent article [13], where the
upper bounds of the load factor for multibody structures with frictional contact conditions between
them are computed using a mixed linear complementary problem.
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NOTE ON UPPER BOUND FORMULATIONS 897

On the other hand, the formulations in [8] and [7, 12], consider just a discontinuous velocity field
with no further restrictions. The former obtains this field by collapsing a triangular element to a
line, whereas the latter directly introduces a linear velocity jumps. The aim of the present paper is
to study the strictness and behaviour of these two simpler upper bound formulations reported in [8]
and [7,12], and introduce some improvements in the computation of the limit load factor.

After stating the primal and dual forms of the non-discretised problem, we discetise it and analyse
the strictness of the upper bound formulation in terms of the quadrature employed for evaluating the
dissipation power and the conditions that the problems include. This analysis is also extended to the
expression of elemental and edge bound gap contributions.

2. NON-DISCRETISED PROBLEM

2.1. Primal problem

We will assume that the failure mechanism of a body €2 is not necessarily continuous. Hence, in
addition to a continuous deformation, we also consider a failure mechanism involving a set of dis-
continuities at some internal boundaries I" of 2. The body is subjected to surface loads Ag on
the Neumann boundary 'y, and body loads A f, with A the unknown limit load factor. The lower
bound theorem [14] states that the exact limit load is in this case computed as the following primal
(maximisation) problem:

A" =max A
Vio+Af =0 in
; [eln=0 inT (D
st on=J\g in [y
oeB

where A* is the load factor at collapse, n is the external normal, and the operator [a] denotes the
jump of a on the boundary T, that is [a] = a¢ — a®, with a¢’ and a® the values of a at each side of
I'. The admissible set 3 determines the plasticity criteria and will be as yet defined in the following
general form:

B:={o|f(c) <0}. (2

2.2. Saddle-point problem

We will rewrite the maximisation problem in (1) as a saddle-point problem by using the following
definitions:

a(v,o) :=/ e(v):0dQ
Q

b(v,a)::/[[v]]-andF:/[[v]]@n:adF 3)
r r

E(v)::/ﬂv-fdQ—l—/E;ngdF,

where e(v) = %(Vv + (Vv)T), and the operator ® is a symmetrised dyadic product: a®b =
% (a ® b+ b ® a). The bilinear form b (v, 0) represents the internal power at the discontinuities I,
a(v, o) represents the internal power in €2, and the linear form £(v) is the power of the external
forces. On the boundary T, the vector n is the normal pointing from side e towards side e’ of the
discontinuity, and on = %(ae + ae/)n = 0°n = 0 n, where the last two equalities hold due to the
second condition in (1).
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898 J.J.MUNOZ ET AL.

By using the definitions in (3), and noting that the second condition in (1) also implies that
[on-v] = on-[v], the maximisation problem in (1) may be recasted as,
A* =max A
; a(v,6)+b(v,0) = (v), Yve, 4)
SLY o eB

with V the set of velocity functions with integrable bounded jumps on I' and integrable first deriva-
tives on 2. By using this notation, the value of A* in (1) may be also obtained as the following
saddle-point problem:

A* =minmax (A +a(v,0) + b(v,0) — A(v))

veY o€B

= min max (a(v,0) +b(,0)) =a(@®*,0*) +b(*,0"), 5)
é(vve)zl oEB

with v* and 0 * some optimum velocity and stress fields that the collapse mechanism engenders.

2.3. Dual problem and normality rule

By defining the dissipation power D(v) as,
D(v) :=max (a(v,0) + b(v,0)), (6)
o€EB

the saddle-point problem in (5) turns into the following dual (minimisation) problem,

A* = min D(v). @)
vey
L(v)=1

From the expressions of a(v,0) and b(v, o) in (3), it can be observed that D(v) < oo only if the
following normality rules are satisfied:
e(v) =vyd,
[vl®n = y.d,
with y = 0 and y, = 0 the plastic multipliers for the strain rates and the velocity jumps, respec-
tively, and d a vector belonging to the sub-gradient of f(0), defined as df (o) ={d|d : (6 —0*) =
f(o)— f(6*) Yo*}. Wherever f (o) is differentiable, df (o) = % The normality conditions
can be alternatively expressed as,
e(v)eD

[v]®n € D ®

with D := {e|e = ydf(a)} an admissible set for the strain rates and velocity jumps. For the yield
functions that define the von Mises and Mohr—Coulomb criteria, the set D is defined by [15, 16]:

Dym = {eltr(e) = 0}
Dyc = {eltr(e) = (leq] + |e2] + |e3]) sing}

whereas the velocity jumps must belong to the following admissible sets:

Dym ([v]) = {[v]l[v] - n = 0}
Dyc(IvD) = {[vlllv] - n = [[[v]]l sin ¢}

Note that although the previous condition for von Mises is linear, the one for Mohr—Coulomb is
not, but both sets are convex.

®)
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NOTE ON UPPER BOUND FORMULATIONS 899

Assuming that the strain rates and velocity jumps are kinematically admissible, the dissipation
power can be expressed solely as a function of the kinematic quantities as [16]:

D(v) = max (/Q e(v):0dQ + /F n®[v] :adF) = /;2 k(e(v))dQ + /1: kn([v])dl =: D(v).
(10)

The explicit expressions of functions k and k;,, for von Mises and 2D Mohr—-Coulomb plastic cri-
teria are given in Table I. We point out that &, ([v]) is for Mohr—Coulomb criteria linear, whereas
for von Mises is non-linear but convex.

If the dual problem is written in terms of D (v), instead of the definition of D(v) in (6), the optimi-
sation problem must be complemented with the membership constraints in (8), that is, Equation (7)
turns into,

A* =IIIEi$ D(v)
t(v) =1 (11)
sit.4 ew)eD
[v]®n € D.

3. DISCRETISED UPPER BOUND FORMULATIONS

3.1. Discrete optimisation problems

We will consider a discretisation of the domain €2 in a set of N, triangles (tetrahedra in 3D), with
N¢ internal boundaries (edges in 2D, faces in 3D). Upper bounds of A*, henceforth denoted by AUB,
may be obtained by choosing a convenient interpolation of the velocities and the stresses onto this
discretisation that guarantee that the maximisation in (5) is larger than or equal to the exact value
A*. We will show that such an interpolation consists in element-wise linear velocity field vV5, a
discontinuous element-wise constant stresses tensor o€ Y8, and an independent stress field at the
interior edges s&'UP (see Figure 1). These interior edges are the common boundaries of each pair of
elements of the described discretisation and are considered as potential locations of the discontinuity
I in the non-discretised problem.

Table I. Material functions k and k,, in Equation (10)
for von Mises and Mohr—Coulomb plastic criteria.

von Mises Mohr—Coulomb
k(e(v)) \/goy el nglre()
Kn([o]) 2ol gl n
0O V5
® U8
O s®

Figure 1. Velocity and stress discrete fields for the upper bound problem: linear velocities which are discon-
tinuous at triangle internal edges (vYB), constant stresses within each element (o UB), and linear stresses at
the interior edges (s VB).
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3.1.1. Primal optimisation problem. Let us first introduce the discrete counterparts of the forms
a(v,0),b(v,0) and £(v) in (3) as,
Ne
a(wUB,gVB) = Zae(ve,UB’ae,UB) (12a)
e=1
Ne
b(wUB,sUB) =) " pE(EUB sEUB) (12b)
£=1
NE

FUP):=)" (/Q WUB. FdQ +/

e=1 Ty

vUB -ng) . (12¢)

Here, the bilinear forms a®(v®VE,¢¢UB) and b (v&VUB, s8UB) are the internal power at each
element and internal edge, respectively, and are explicitly given by,

ae(ve,UB o,e,UB) ::/ E(De’UB) . Ge’UBdQ
§¢ (12d)

bt (v5UB, sEUB) :=/ [v8VB]®nf : s&VBAT.
ré

The value of AUB is then computed by particularising the maximisation problem in (4) to the
mentioned discrete spaces:

AYB = max A
a(vUB’aUB) + b(vUB,sUB) — )LF(vUB), VUUB c VUB
st.3 oUBeB , (13)
sUBenB

where VUB is the space of element-wise linear velocities. The notation o Y2 € B denotes that
o¢UB € B for all the elemental stresses, and s VB € B stands for the admissibility of all the nodal
stresses at the internal boundaries. In matrix form, the previous optimisation problem reads,

AUB = max A
Ae(TUB‘i‘AESUB‘*’AF =0 (14)
st.4 aUBepB,
sUB e B.

where A, and A¢ are the resulting matrices after using a numerical quadrature for the integrals and
imposing condition (13); for all the nodal velocities. We will show in Section 3.2 that this choice is
crucial for obtaining a strict upper bound.

For conic plastic criteria such as von Mises or 2D Mohr—Coulomb, and as it has been reported in
[7,10-12,17], the use of convenient linear transformations of the stress tensor allows to replace the
set B by a Lorentz cone defined by,

L:={x¢€ Rn|X1 = |{x2,. ... xn} )

This transformation has allowed to use efficient optimisation algorithms for second order program-
ming [18, 19]. We note that a non-negligible computational cost reduction is gained if instead of
the stress tensor sé’UB, we use its projection onto direction né, that is, the vector t5UB — EUBpE
as a primary variable. In this case, the admissible set 5 must be replaced by an admissible set 5;
for the vector field ¢ UBwhich preserves the strictness of the bounds. It is, however, not difficult
to find such new set for the common Coulomb or von Mises plastic criteria, as it is shown in [12],
and indeed, we have tested that the same bounds are obtained if we use either s&:UB or ¢5UB as
primary variables.

We also note that the same restrictions on the variations of the material pointed out in [8]
also apply here, that is, strict upper bounds cannot be guaranteed if the cohesion varies within
each element.
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NOTE ON UPPER BOUND FORMULATIONS 901

3.1.2. Dual optimisation problem and normality rule. Resorting to the definitions in (12), the
discrete form of the dual problem in (7) may be rewritten as,

AVB= min D®OYB)
pUB (15)
F@YB)=1
where D (vYB) is the discrete form of the dissipation power in (6):
Ne Ne
D@"P)=> "D """ + ) DFWEUP), (16a)
e=1 £=1
D¢ (v*YB) = max / e(v®UB): 6¢VBQ, (16b)
aeUBeB Jge
DE(¥YP) = max [[[vS'UB]]é)nE - s5UBAT. (16¢)
s&UBeB JT

After comparing the optimisation problems in (15) and (11), it is clear that because the value of
AUB is the result of minimising the dissipation power with respect to the velocities, strict bounds of
A are achieved if the following two conditions hold:

C1. The minimisation of the discrete dissipation powers defined in (16b) and (16¢) enforces that
the velocity field is kinematically admissible, that is, that the normality rules are satisfied
everywhere:

e(*VB) e D, (17a)
[v&YB]®nf € D. (17b)

In this case, the dissipation power is given by a discrete version of the dissipation power
in (10):

Ne Ne
D_(‘UUB) — Z D_e(ve,UB) + Z D_E(DE,UB)
e=1 £=1

D¢ (v*VP) = / k(e(v*"P)dQ
Qe

D) = [ k(@ Ppar ()
ré

C2. The numerical integration of the discrete dissipation power D (vY®) mentioned earlier yields
an exact value or an upper bound of D(v) in (6).

Whether the optimisation problem in (15)—(16) actually satisfies conditions C1 and C2 depends
on the quadrature employed to compute the dissipation power D(vYB). This aspect will be
analysed next.

3.2. Numerical integration of dissipation power

3.2.1. Elemental dissipation power. Regarding the term D¢ (v*'VB) in (16b), we will assume that
the material properties are element-wise constant. It follows that because the strain rates and stresses
are constant within each element, the elemental dissipation power in (16b) is given by,
D¢w*"B) =4 max e(@®"®):0%YB = A k(e(v*VP)), (19)
geUBep
where A is the area of the element (volume in three dimensions), and the last equality follows from

the fact that we are minimising D¢(v®YP). Consequently, D¢(v*YP) is computed exactly if just
one Gauss point quadrature is employed.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:896-908
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3.2.2. Dissipation power at edges. The edge dissipation power D¥(v¥UB) in (16c) may be
expressed as follows,

DE(®YB) = max [ VEUBLGEUB A = max sg.’Uan-/ N;[v5YBl;dl (20)
Té ré

s&UBepB sEUBep /
= max [v5YP];- M 55 UB k|
s&UBeB J
where i, j are the two nodes of the edge (three nodes of the face in 3D), and M¥ is the ijth com-
ponent of the mass matrix, which depends on the quadrature employed. By minimising DE(EUB),
we are imposing the condition,

/ N;i[v*VB]@ndl €D, i =1,..., N¢ X ngq, 1)
ré

which may be interpreted as a weak form of the normality rule. However, we note that the
implication

[v5VB];®nf € D Vx e TE = /s Ni[vVP]@ntdl € D, (22)
r

holds, but the converse is in general not true, owing to the non-linearity of the condition in the set
Dasc ([v]) given in Equation (9).

Gauss quadrature: Polynomial functions may be integrated exactly using this quadrature, but
numerical errors will be made for other integrands. Therefore, in view of the conditions in the
admissible sets in (9) and the dissipation functions in Table I, we can predict that:

G1. The velocity jumps will not be kinematically admissible for Mohr—Coulomb plasticity
because of the non-linear condition in Dysc ([v]).

G2. The dissipation power for von Mises will not be exact, and not necessarily larger than the
exact value.

The resulting load factor, which is not necessarily an upper bound, will be denoted by AEEU:

Ne Ng
ARy =) DR + 37 DE L\ (05 UB). (23)
e=1 E=1

Trapezoidal rule: We will here restrain our analysis to 2D problems, although the same derivations
and conclusions are valid in three dimensions.

In two dimensions, the trapezoidal rule (or two-point Lobatto quadrature) is equivalent to com-
pute the integral from the values at the two end-points, and to use weights equal to L /2, with L the
length of the internal edge. In this case, in view of expression (16¢), the edge dissipation power is
evaluated as follows,

& £UBY _ £UB7 . £UB
Diop@ ™) = max | [v="7]-s*"Fndl (24)
L ,UB ,UB
= max S (0050 s§ S 4 o L 55 )
L
= 3 (ka (@D + k(5 °D)) (25)

For von Mises plasticity, this expression will differ from the exact value in (16¢) owing to the
non-linearity of function k,. However, the trapezoidal rule overestimates the integral of a convex
function such as || [v&¥VB] || = /[v] - [v] (see Appendix A for a proof of its convexity). Further-
more, the weak form of the membership constraints for the velocity jumps turns, in this case, to the
nodal enforcement of the kinematic admissibility. Therefore, from the convexity of the admissible
sets, we can predict that,

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:896-908
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T1. The velocity jumps will be kinematically admissible at all points of the edges.
T2. The dissipation energy will be exactly computed for Mohr—Coulomb, and in general
overestimated for von Mises plasticity.

We point out that because of the implication in (22) and the fact that the trapezoidal quadrature
may overestimate the dissipation power, we have that,

A&Ru < ATRap (26)

with AYE 4 b, the load factor obtained using the trapezoidal rule.

It has been demonstrated in [8] that the same expression DEOB(UE -UB) is attained by approximat-
ing the edge as a rectangle with two triangles, and with a thickness § that has the limit value equal to
0. Indeed, using the nomenclature in Figure 2(a), it can be verified that by using continuous piece-
wise linear velocities and piece-wise constant stresses, by setting [v]; = vib —v{ as the velocity
jump at node 7, and the normal n pointing from a to b, the value of the dissipation power in the two
triangles ¢ and QP is given by,

L
Dgp(v) = max lim o1 :s(v)d9+/ 0,:e(v)dQ =max — (o1n-[v]; +o2n-[v]2).
Qb oeB 2

0€B §—0 JQa

Further refinements of the edge with finite width § > 0 and with more elements may be contem-
plated. For instance, by using four elements in the interface with an additional central node (see
Figure 2(b)), and making use of § — 0 would yield the following formula for the dissipation energy
at the edge:

L

b(SLB, UUB) — Z (sUB,an . IIvUB]]ZI + SUB’bn . (IIUUB]]ZS 4 IIvUB]]35)
+5UBCn  [0VB] 54 + sVB9n - ([0VB]sq + [[vUB]]Sl))

where [v];; = v; — v;. In this manner, we are increasing the accuracy of the computation of the

edge dissipation by allowing non-linear variations of the jumps. However, it requires the use of an
additional internal node 5 and two additional stress nodes.

3.2.3. Post-process: exact integration. In 2D analysis, the expressions of the exact dissipation
power in (18) give rise to the integral of the square root of a second degree polynomial. More
specifically, if the velocity jump is a linear function, it can be linearly parameterised using a local
coordinate 7 as,

[v5 VB1(n) = vo + nv1, n €0, L],

with vg, v; € R2. Therefore, the value of D¢ (v5-UP) in (18) may be computed as follows:

DE(5UB) = /s kav/c1n? + con + c3dT.
r

=0

Figure 2. Piece-wise constant shape functions as a limit of two element-wise constant shape functions when
the thickness § approaches to 0 (a). Similar construction with four elements in the interface, and an additional
centred node (b).
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with ¢; = vy - vy, o = 2v1 - v and ¢3 = vy - V. This integral has a primitive that can be used
to compute the exact value of the dissipation power for the optimal velocity field, yielding thus a
tighter bound than the trapezoidal rule. In three dimensions, we may use a composite trapezoidal
quadrature, which also overestimates the integral of a convex function. Using a large enough number
of sample points, the upper bound may be further reduced.

We remark that this post-process does not involve any changes in the upper bound formulation,
but just a post-process of the resulting optimal velocities V. Obviously, this post-process can only
be applied to the velocity field resulting from the trapezoidal rule, (the Gauss quadrature does not
necessarily satisfy the normality rule, and therefore the dissipation power cannot be exact).

3.3. Error estimates

The upper bound formulation described here can be combined with a lower bound discrete problem
in order to compute error estimates at the elements, AA¢, and at the edges (or faces), ANE [12]:
AL = / oUB<: e(@UB)dQ + / V.olB.yVBaQ — / o"Bn . vUBAT
e aQe

e

(27
AN = / sUBE [wVUBIT —/ o Bn . [wYBIT
ré ré
In [12], it was stated that these error estimates satisfy the following properties:
YA AN =AUB P (28)
e §
AX=0 , AA=0 (29)

The property in (28) is true if the underlined integral in AA% is computed using the same
quadrature as in the optimisation problem, and if the integrals in the following identity,

ALBYUB . odll = Z/ o Bn - vYBdAI + Z/ oBn - [vYB]dl
e J0Q° £ Té

are computed in the same manner for each edge, that is, if for instance Gauss quadrature is employed
in this identity, and consequently also in the last integrals of AA¢ and AAf in (27). On the other
hand, the first property in (29) relays on the fact that for a kinematically admissible velocity vYE,

the upper bound theorem on an element must hold, that is,

Iy

/ o:e(VB)aQ = ALB £ pUBAQ +/ o"Bn - vYBdI'Ve e B
Qe

Qe Qe

However, this is only true if the last integral is computed exactly, that is, if the two-point Gauss
quadrature is employed. Summarising, the two conditions, (28) and (29) are satisfied (and strict
upper bounds are obtained) if the underlined integral in (27) is computed using the trapezoidal rule,
whereas all the other integrals are computed using Gauss quadrature. We have tested for the problem
in Section 4.2 that if the trapezoidal rule is (incorrectly) used in the last integral of (27), it turns out
that AAS . =~ —0.1AA¢

min max*

4. NUMERICAL EXAMPLES

4.1. Rectangle with interfaces

We have numerically tested the problem depicted in Figure 3. A rectangle is subdivided in three
domains D1, D2 and D3. Domain D2 is subjected to a vertical tensile force A g, with g7 = {0 1},
and domain D1 has all the velocities constrained at its left boundary. The three domains are con-
nected at lines A-B and C-D, where a much more restrictive plastic criteria than the one in the
three domains is imposed, and therefore the failure mechanism is enforced along these lines. Two

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 91:896-908
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0.5 0.5 0.5

Figure 3. Geometry and boundary conditions of the rectangle problem. The dashed lines indicated the initial
mesh of the geometry.

material models have been tested, von Mises and Mohr—Coulomb. The properties of the materials
for the domains and the interfaces for the two models are given in Table II.

We have used the upper bound formulations described here, and the lower bound formulation in
[12]. By using the strategy for the adaptive remeshing process described in [7, 12], we have refined
the initial mesh depicted with dashed lines in Figure 3.

The dissipation power for the two material models are shown in Figure 4, and the evolution of
the upper and lower bounds are plotted in Figure 5. In all cases, it can be verified that the relation
A&R Gy < APE; holds, and that the exact computation of D(vY®) is lower than the upper bound
given by the trapezoidal rule.

When using the von Mises material, the differences are only detected at the coarser mesh where
the tangential velocity changes sign, and therefore the error when using the trapezoidal rule is non-
negligible. For this mesh, it can be observed that AER ; is in fact lower than A*, which shows that
for particular configurations of the velocity jumps and when the dissipation power is concentrated
at the internal boundaries, we may find that A 2%, < 1*.

Table II. Material properties for the rectangle problem in
Figure 5.

von Mises  Mohr—-Coulomb

oy c ¢
Domains D1, D2 and D3 V3 1.0 30°
Interface A— BandC —D  +/3/10 0.1 30°

() (b)

Figure 4. Contour plot of the dissipation power when using von Mises (a) and Mohr—Coulomb (b) material
models, and final meshes with 17794 and 17398 elements, respectively.
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Figure 5. Evolution of the load factors for the test problem in Figure 3, using von Mises (a) and Mohr—
Coulomb (b) material properties in Table II. The exact value of D(vYP) is computed with the velocity field
given by the formulation using trapezoidal rule.

(a) (b)

Figure 6. Geometry and boundary conditions of the vertical cut problem (a), and details of the final meshes
for von Mises (b) and Mohr—Coulomb (c).
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Figure 7. Evolution of the load factors for the vertical cut, using von Mises (a) and Mohr—Coulomb (b)
criteria. The exact value of D(vYB) is computed with the velocity field given by the formulation using
trapezoidal rule.

For the Mohr—-Coulomb material, AgEU is always above A*, but as Figure 5b shows, the exact
value of the dissipation power for the resulting velocity field using trapezoidal rule is for all
the meshes larger than Ag5,. In this case, the exact value of D(vV") and the upper bound

A8y coincide.
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4.2. Vertical cut

We have also tested the stability of the vertical cut problem, which has also been analysed for
instance in [8,9, 12]. The dimensions and boundary conditions are shown in Figure 6a, and details
of the final meshes after successive adaptive remeshing for von Mises (19177 elements) and
Mohr—Coulomb (13 070 elements) are shown in Figures 6(b,c), respectively.

Figure 7 shows the evolution of the load upper and lower bound. Whereas the differences between
the different quadratures are obvious, the difference between the values with exact dissipation power
and the trapezoidal rule is much less noticeable. We note that the exact integration reduces, in gen-
eral, the values of the upper bound by 0.01%. We have also checked that if the violation of the
constraints in the optimisation problem is smaller than 10~7, the properties of the gap contributions
in (28) and (29) are also satisfied up to the same tolerance.

5. CONCLUSIONS

We have shown that despite the similarities in the formulations in [7, 8, 12], those in [8] yield strict
upper bounds of the load factor and also velocity fields that satisfy the normality rule. In contrast,
the bounds in [7, 12] may potentially violate the strictness of the upper bound and the normality rule.
We have pinpointed the source of those differences, and interpreted them in terms of the quadrature
employed on the primal problem.

We have also analysed the quadratures that must be employed in the computation of the error
estimates introduced in [7, 12] to satisfy two desired properties: positiveness and that their addition
is exactly equal to the total gap.

Whereas in practice, the use of Gauss quadrature rarely yields load factors that are below the
exact one, they fail to provide strict bounds of the discrete problem at hand. This discrepancy has
motivated the present work. We have also suggested a post-process consisting in exactly integrat-
ing the dissipation power at the edges. In some situations, this may further reduce the upper bound
formulation reported in [8], while preserving its strictness.

APPENDIX A: PROOF OF CONVEXITY OF FUNCTION || [V&YB] |
We will first demonstrate the convexity of || [v***VB]|| for 1D edges (2D problems), and generalise

this result to 2D boundaries. Because of the linearity of the velocity field [v§'YB], a general velocity
jump at any point on an edge & with length L may be expressed as,

[v*VB1(n) = vo + nv1, n € [0, L], (A.1)

where 7 is a parameter denoting the local coordinate of the point along the edge, and vy, vy € R2.
Using this notation, our aim is to demonstrate the convexity of the following function f(n):

£ = /(w0 + no1)T (vo + 1),
After computing the second derivative of f (),

9 (||v1||2n+ v{ v ) _ loil?lvoll?> — (@] vo)?
an \ [ [o& VB ]l (N C)) R

and by resorting to Cauchy’s inequality, it is clear that " () = 0, and therefore f(n) is convex.

For 3D problems, the internal boundaries between elements are triangles. In this case, the con-
vexity of £(n, x) = |[v&VB (1, x)] || follows from the fact that the velocity jump is linear along any
line on the triangular face, and therefore may be expressed according to (A.1) on such line. Conse-
quently, because the function is convex along any line of the domain, and the domain is convex, the
function f'(n, y) is also convex.

fm =
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