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SUMMARY

Several finite element techniques used in domains with curved boundaries are discussed and compared,
with particular emphasis in two issues: the exact boundary representation of the domain and the consistency
of the approximation. The influence of the number of integration points on the accuracy of the computation
is also studied. Two-dimensional numerical examples, solved with continuous and discontinuous Galerkin
formulations, are used to test and compare all these methodologies. In every example shown, the recently
proposed NURBS-enhanced finite element method (NEFEM) provides the maximum accuracy for a
given spatial discretization, at least one order of magnitude more accurate than classical isoparametric
finite element method (FEM). Moreover, NEFEM outperforms Cartesian FEM and p-FEM, stressing the
importance of the geometrical model as well as the relevance of a consistent approximation in finite
element simulations. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An accurate geometric description of a domain with curved boundaries is critical in the so-called
p extensions of the finite element method (FEM), see [1]. In this approach the mesh remains
unchanged (usually containing elements with a large aspect ratio) and the polynomial order of the
approximation is increased in order to properly approximate the solution. In some applications,
geometric errors induced by the isoparametric mapping deteriorate the accuracy of the numerical
solution, see [1–3]. Therefore, an accurate description of the geometry is mandatory in order to
obtain maximum accuracy for a given spatial discretization. Thus, in the so-called p-version of
FEM (p-FEM, see [4]) the blending function method [5] is usually considered to define an exact
mapping relating local and Cartesian coordinates. This mapping offers advantages compared to
classical isoparametric mapping, see for instance [2].

Non-uniform rational B-splines (NURBS, see [6]) are widely used for geometry description
in computer-aided design (CAD). Other popular options for geometric description in CAD are
polynomial B-splines (a particular case of NURBS) and subdivision surfaces, see [7]. This fact has
motivated novel numerical methodologies considering exact CAD descriptions of the computational
domain. Numerical methods using an exact geometric model can be classified into two categories.

The first category considers methods with an exact CAD description of the entire computational
domain and approximation functions defined with the same basis used for the CAD representation
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of the geometry, instead of the classical piecewise polynomial approximation. They are referred
as isogeometric methods. For instance, in [8] polynomial B-splines are used both to describe
the geometric model and to approximate the solution. In [9] the same idea is implemented with
subdivision surfaces, and further applied to thin shell analysis. More recently, the method proposed
in [10] and the isogeometric analysis [11] follow the same rationale, considering NURBS for the
geometric description as well as for the analysis.

The second category also considers an exact geometric model. The boundaries of the compu-
tational domain are exactly represented and a standard finite element (FE) rationale is used. That
is, a standard piecewise polynomial approximation of the solution is considered. First attempts
to combine NURBS and p-FEM can be found in the context of shape optimization, see [12]
and references therein. The recently proposed NURBS-enhanced finite element method (NEFEM),
see [3, 13], also lies in this category. NEFEM uses NURBS to exactly describe the boundary of
the computational domain. In a sense, it is similar to p-FEM using NURBS to exactly capture
the boundary. More precisely, the main difference between NEFEM and p-FEM is that NEFEM
approximates the solution directly with Cartesian coordinates (not in a reference element), ensuring
reproducibility of polynomials in the physical space. Moreover, from a practical point of view,
efficient strategies are proposed in NEFEM for the numerical integration on elements affected by
the NURBS boundary representation.

This paper is restricted to methods falling in the second category. Such methods are simpler and
more efficient because of two crucial aspects. First, NURBS functions are only used to describe
the geometry of curved boundaries, which is the geometry description provided by commercial
CAD software, whereas isogeometric methods require a NURBS solid for three-dimensional (3D)
simulations. Second, methods such as NEFEM or p-FEM use standard FE polynomial interpolation
and numerical integration. Thus, in the large majority of the domain (namely in the interior, that
is, for elements not intersecting the curved boundary) standard FE are considered, preserving the
computational efficiency of the classical FEM. This is not the case in isogeometric analysis, where
NURBS are used also for approximating the solution. Those methods require integrating NURBS
functions over NURBS domains, being more expensive than the numerical integration in NEFEM
or p-FEM, which requires integrating polynomial functions over domains with NURBS boundaries.
Moreover, it is worth mentioning that the tensor product nature of isogeometric methods allow an
efficient implementation but it does not allow the use of tetrahedral meshes. In fact, for complex
geometries a block decomposition in hexahedrons is needed and only C0 continuity is obtained
between blocks, whereas with NEFEM standard tetrahedral meshes can be considered. Finally,
isogeometric analysis requires a specific treatment of trimmed NURBS surfaces, see [14], whereas
trimmed NURBS are easily handled in the NEFEM context, see [15].

Several FE methodologies for the treatment of curved boundaries are considered and compared;
namely, classical isoparametric FEM and Cartesian FEM with an approximated boundary repre-
sentation, and p-FEM and NEFEM with an exact description of boundary. In Section 2 the basis
of each methodology is recalled. Special attention is paid to numerical integration for methods that
consider an exact description of the geometry with NURBS. A critical comparison between these
methods is also presented. Section 3 presents two numerical examples in two dimensions, which
are solved with continuous and discontinuous Galerkin (DG) formulations. The performance and
benefits of each FE methodology are compared and discussed.

2. FE METHODS IN DOMAINS WITH CURVED BOUNDARIES

Let �⊂R2 be an open bounded domain whose boundary ��, or a portion of it, is curved. A
regular partition of the domain �=⋃

e �e in subdomains, triangles in this work, is assumed, such
that �i ∩� j =∅, for i �= j . For instance, Figure 1 shows a domain with part of the boundary
described by a NURBS curve corresponding to a circle, and a triangulation of the domain with
curved FEs. It is important to remark that, in the following, �e denotes the element with an exact
description of the curved boundary, also referred as physical subdomain. This is not the case of
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Figure 1. Physical domain � with a curved boundary (left) and a triangulation of the
domain with curved FEs (right).

Figure 2. Isoparametric mapping between the reference element I , with local coordinates n, and an
approximation of the physical subdomain in Cartesian coordinates x, namely �h

e =u(I ).

classical isoparametric FEs, where the computational element, �h
e , corresponds to a polynomial

approximation of the curved boundary.
In this section the different methodologies used and compared for the treatment of curved

boundaries are recalled.

2.1. Approximated boundary representation

The standard FE technique used in the presence of curved boundaries is the isoparametric FEM,
see [16, 17]. A nodal interpolation of the solution, u, is considered in the reference element I with
local coordinates n= (�,�), see Figure 2,

u(n)�uh(n)=
nen∑
i=1

ui Ni (n), (1)

where ui are nodal values, Ni are polynomial shape functions of order p in n, and nen is the
number of element nodes. The isoparametric transformation is used to relate local and Cartesian
coordinates

u : I −→ �h
e

n 	−→ u(n) :=
nen∑
i=1

xi Ni (n),
(2)

where xi are the nodal coordinates of the computational element �h
e . Note that �h

e is a polynomial
approximation of the physical subdomain �e, in particular, of its boundary, see Figure 2. In
fact, the term isoparametric stands for the use of the same polynomial shape functions to define
the functional approximation uh , and to describe the geometry of the computational element in
Cartesian coordinates, see Equation (2).
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Numerical integration in the computational element �h
e (approximation of �e) is performed

using the isoparametric transformation given in Equation (2), with a numerical quadrature in the
reference element I . For instance, a stiffness elemental matrix coefficient is computed as

K e
i j =

∫
�h

e

∇x Ni (n(x)) ·∇x Ni (n(x))d�=
∫

I
(J−1
u ∇nNi (n)) ·(J−1

u ∇nN j (n))|Ju|dn, (3)

where Ju is the Jacobian of the isoparametric transformation, see Equation (2). For curved elements
the isoparametric mapping is non-linear. Therefore, the inverse of the Jacobian, J−1

u , is not a
polynomial function, and no exact integration is feasible with standard quadrature rules. In practice,
a symmetric triangle quadrature [18] on I , with a sufficiently large number of integration points, is
usually employed to compute (3). In fact, a quadrature of order 2p−1 provides optimal convergence
of the isoparametric FEM, see [19].

There are two sources of error in isoparametric FEM. First, the isoparametric mapping in
Equation (2) introduces geometric errors, due to the approximation of the physical subdomain
�e by the computational element �h

e . In fact, the boundary of the computational domain ��h
is a piecewise polynomial approximation of the exact boundary ��, see Figure 2. Second, for
high-order approximations on curved elements, the definition of the polynomial interpolation in
Equation (1) in local coordinates, n, implies a loss of consistency: a polynomial interpolation of
degree p>1 in n does not correspond to a polynomial interpolation of degree p in x. This implies
that the approximation is able to reproduce linear functions but it is not able to reproduce higher
order polynomials in Cartesian coordinates. In other words, curved isoparametric FEs pass the
patch test but they fail to pass the so-called higher order patch tests, see [19] for further details.

Remark 1
Optimal convergence of isoparametric FEs is obtained under some smoothness assumptions on the
isoparametric mapping. In practice, a specific node placement of interior nodes in curved elements
of order p>2 is mandatory to guarantee optimal rates of h and p convergence, see [20, 21].

An alternative to ensure consistency of the approximation, and optimal convergence for any
nodal distribution, is the so-called Cartesian FEM. This approach defines the polynomial basis for
the approximation of the solution directly in the physical space, with Cartesian coordinates x,

u(x)�uh(x)=
nen∑
i=1

ui Ni (x). (4)

Nevertheless, the isoparametric transformation in Equation (2) and the computational element �h
e

are still considered for integration purposes. For instance, a stiffness elemental matrix coefficient
is computed as

K e
i j =

∫
�h

e

∇x Ni (x) ·∇x N j (x)d�=
∫

I
∇x Ni (x(n)) ·∇x N j (x(n))|Ju|dn. (5)

The definition of the approximation with Cartesian coordinates, x, ensures reproducibility of
polynomials (i.e. consistency of order p). Moreover, exact integration is feasible because shape
functions and their derivatives are polynomials, not only with Cartesian coordinates x, but also
with local coordinates n. More precisely, for a degree of interpolation p, Ni (x(n)) and ∇x Ni (x(n))
are polynomials of degree p and p−1, respectively. Therefore, the function to be integrated,
f (n)=∇x Ni (x(n)) ·∇x N j (x(n))|Ju|, is a polynomial of degree p(4p−3) in n. The evaluation of
integral in Equation (5) can be exact with a triangle quadrature of order p(4p−3) on the reference
element I .

It is worth noting that Cartesian approximation can be considered with Lagrangian, Eulerian,
arbitrary Lagrangian–Eulerian, or updated Lagrangian formulations. Obviously, Cartesian approx-
imation introduces an overhead with respect to isoparametric FEs because it requires a specific
definition of the approximation for each curved element. When the mesh is fixed, this overhead is
restricted to elements affected by the curved boundary description, usually a very small portion of
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the total number of elements. For meshes evolving with the simulation, this overhead is repeated
each time step, and internal curved edges must be considered. The definition of Cartesian approx-
imations for elements with internal curved edges does not represent an excessive difficulty and it
follows the ideas presented in the extension of NEFEM to 3D domains [22], where internal curved
faces have to be considered. It is worth remarking that the extra cost introduced by Cartesian FEM
is justified by the improved accuracy with respect to isoparametric FEs. In addition, Cartesian
approximation allows to ensure optimal convergence with no dependence on the node placement
for curved elements, see Remark 1 and Section 2.4.

Although Cartesian FEM ensures reproducibility of polynomials in the physical space, the
numerical integration in Cartesian FEM is still done in the (approximated) computational element
�h

e . Thus, Cartesian FEM precludes the lack consistency of isoparametric FEM, but it still suffers
from geometric error. This is not the case for p-FEM and NEFEM formulations, with the exact
boundary representation, described next.

2.2. Exact boundary representation

This section recalls the basics of two formulations considering an exact boundary representation,
p-FEM [1, 4] and NEFEM [3]. In order to simplify the presentation and without loss of generality,
curved physical subdomains, �e, are assumed to be triangles with one curved edge.

Nodal interpolation in p-FEM is defined in the reference element using local coordinates n, see
Equation (1), but an exact mapping is employed between the reference element I and the physical
subdomain �e. For instance, assuming a NURBS parametrization C(�) of the curved edge of �e,
a simple p-FEM mapping may be

/ : I −→ �e,

n 	−→ /(n) := 1−�−�

1−�
C(�)+ ��

1−�
x2 +�x3,

(6)

where x1 =C(0) and x2 =C(1) are the vertices of �e on the curved boundary, and x3 is the internal
vertex, see Figure 3. Other options are possible in order to define an exact mapping from I to �e,
see for instance [23]. However, no relevant differences, depending on the particular mapping /,
are observed in the numerical tests discussed in Section 3.

In p-FEM, a stiffness elemental matrix coefficient is computed as

K e
i j =

∫
�e

∇x Ni (n(x)) ·∇x Ni (n(x))d�=
∫

I
(J−1
/

∇nNi (n)) ·(J−1
/

∇nN j (n))|J/|dn,

integrating over the physical subdomain �e, with an exact description of the geometry. Note that,
the inverse of the Jacobian, J−1

/
is not a polynomial function and, as for the isoparametric FEM, no

exact integration is feasible with standard quadrature rules. Nevertheless, under some smoothness
requirements on the parametrization C(�), the same quadrature order used in the isoparametric
FEM, that is 2p−1, guarantees optimal convergence for p-FEM, see [24].

Note that p-FEM presents a major advantage, compared to isoparametric or Cartesian FEM,
which is the exact boundary representation. Nevertheless, p-FEM still suffers the same lack of

Figure 3. Exact mapping between the reference element I with local coordinates n, and the physical
subdomain �e with Cartesian coordinates x.
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Figure 4. Transformation from R = [�e
1,�

e
2]×[0,1] to �e for numerical integration in the 2D NEFEM.

consistency as isoparametric FEM, due to the definition of the polynomial shape functions in
the reference element I , with local coordinates n. This is not the case for the recently proposed
NEFEM [3].

NEFEM considers the exact geometry description by means of the usual CAD boundary repre-
sentation of the computational domain with NURBS. The polynomial approximation in Equation
(4) is defined with Cartesian coordinates x, ensuring reproducibility of polynomials in the physical
space for any order of approximation p. The exact description of the boundary is used to perform
the numerical integration on the physical subdomain �e. In NEFEM, a stiffness elemental matrix
coefficient is computed as

K e
i j =

∫
�e

∇x Ni (x) ·∇x N j (x)d�=
∫

R
∇x Ni (x(k)) ·∇x N j (x(k))|Jw|dk,

using the transformation

w : R = [�e
1,�

e
2]×[0,1] −→ �e,

k= (�,ϑ) 	−→ w(k) := (1−ϑ)C(�)+ϑx3,
(7)

where x1 =C(�e
1) and x2 =C(�e

2) are the vertices on the NURBS boundary, and x3 is the internal
vertex of the physical subdomain �e, see Figure 4.

It is worth noting that the transformation w is linear in the parameter ϑ. Thus, for a degree of inter-
polation p, the function to be integrated in the rectangle R, f (k)=∇x Ni (w(k)) ·∇x N j (w(k))|Jw(k)|,
is a polynomial of degree 2p−1 in ϑ. Therefore, exact numerical integration in ϑ direction is
feasible with p Gauss–Legendre integration points. For the other direction, �, no exact integration
is feasible with standard quadratures due to the rational definition of the NURBS boundary. Numer-
ical experiments reveal that Gauss–Legendre quadratures are a competitive choice in front of other
quadrature rules such as trapezoidal and Simpson composite rules or Romberg’s integration, see
[3]. Numerical examples in Section 3.1 show the influence of the number of integration points on
the accuracy of NEFEM computations.

It is worth mentioning that NURBS are piecewise rational functions defined in parametric form,
see [6]. Therefore, numerical integration for p-FEM and NEFEM must be designed to account for
changes of NURBS definition along the curved edge of the physical subdomain �e. This issue is
addressed in the next section.

2.3. Numerical integration for p-FEM and NEFEM

This section discusses the numerical integration for p-FEM and NEFEM when changes of NURBS
parametrization are considered inside the curved boundary edge of a physical subdomain �e in
2D. Key ideas for an extension to 3D domains are also discussed.

For illustration purposes the triangle with a curved edge represented in Figure 5 is considered
first. The curved edge is described with a piecewise parametrization C, whose definition changes
in two points on the curved edge, marked with �. The parametric coordinates of these points are
called the breakpoints or knots of the NURBS parametrization, see [6].

In p-FEM, the piecewise definition of the boundary induces a piecewise definition of the
mapping /, see Equation (6). Therefore, a specifically designed numerical quadrature should be
defined in the reference element I . For the triangle represented in Figure 5, with two changes of
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Figure 5. Triangle with a curved edge containing changes of NURBS definition (marked with �).

Figure 6. Numerical integration for 2D p-FEM: subdivision of the reference element I
to design a numerical quadrature taking into account changes of NURBS parametriza-

tion C(�) at points marked with �.

Figure 7. Numerical integration for 2D NEFEM: subdivision of the rectangle
R = [�e

1,�
e
2]×[0,1] to design a numerical quadrature taking into account changes of NURBS

parametrization C(�) at points marked with �.

NURBS definition, the reference element should be partitioned as represented in Figure 6, where
the discontinuous lines show the changes of definition of the mapping /. Note that these lines
originate at the breakpoints of the NURBS parametrization in the � axis, and are extended inside
the reference element. A composite numerical quadrature on I should be defined by using different
numerical quadratures in each region.

In NEFEM, changes of NURBS definition are easily accommodated using application w, see
Equation (7). The piecewise definition of the boundary also induces a piecewise definition of the
element mapping w. The rectangle R is subdivided using the breakpoints, as represented in Figure 7,
and a numerical quadrature in R is defined only in terms of 1D quadratures. A composite 1D
Gauss–Legendre quadrature is used in parameter � to take into account the discontinuous nature of
the NURBS parametrization. In the other parameter, ϑ, exact integration is feasible, as discussed
in Section 2.2.

The proposed strategy to perform the numerical integration in 2D NEFEM can be easily extended
to 3D domains, see [22]. For instance, let �e be a tetrahedral element with a face on the curved
boundary, and S its NURBS parametrization. The curved tetrahedral face is defined as the image of
a straight-sided triangle �e (in the parametric space of the NURBS) by the NURBS parametrization
S. Then, the following mapping is considered

h :�e ×[0,1] −→ �e

(�,�,ϑ) 	−→ h(�,�,ϑ) := (1−ϑ)S(�,�)+ϑx4,
(8)

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:719–734
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Figure 8. Transformation from �e ×[0,1] to �e for numerical integration in the 3D NEFEM.

Figure 9. Subdivisions to design a numerical quadrature taking into account changes of NURBS definition.
On the prism �e ×[0,1] for 3D NEFEM (left) and on the reference tetrahedral for 3D p-FEM (right).

where x4 is the internal vertex of �e. Transformation h maps the prism �e ×[0,1] to the physical
subdomain �e, see Figure 8. A numerical quadrature can be defined on �e ×[0,1] as a tensor
product of a triangle quadrature on �e, with a 1D Gauss quadrature on [0,1], as illustrated in
Figure 8. Changes of NURBS parametrization inside a curved face are easily treated in 3D NEFEM
following the same rationale of 2D. The parametric triangle �e is subdivided according to the
changes of NURBS parametrization, and numerical quadratures are defined in each subregion, see
an example in the left plot of Figure 9.

Remark 2
Usually �e is a triangle with straight edges, but other situations are also possible. For instance,
if the boundary representation involves trimmed NURBS, then the parametric triangle �e may
have curved edges. Moreover, if singular NURBS are present in the boundary description (that is,
a NURBS containing a point where a directional derivative in the parametric space is zero, and
therefore knot lines converge toward a so-called singular point), �e may be a quadrilateral in the
parametric space of the NURBS. In such situations, the mapping of Equation (8) is also valid, and
it is only necessary to modify the quadrature of �e, see [22].

In the 3D p-FEM context, the definition of a numerical quadrature on the reference tetrahedral
accounting changes of NURBS parametrization is more complicated. The generalization of the
2D strategy requires subdivision of the reference tetrahedral element to account for changes of
NURBS surface parametrization, see an example in the right plot of Figure 9. In general, different
subregions are possible after subdivision. Thus, a simple option to define a quadrature on the
reference element is to use further subdivision to obtain only tetrahedral subregions. Then, a
composite quadrature may be defined on the reference element based on standard tetrahedral
quadratures. In fact, a usual practice to facilitate the implementation of the 3D p-FEM is to consider
a polynomial approximation of the boundary. For instance, in [25] a least-squares approximation
of the exact boundary is considered in a p-FEM context. Although the polynomial approximation
of the boundary can be selected to satisfy continuity requirements across element interfaces [26],
the exact boundary representation is lost in order to simplify the computational implementation.

To conclude, the design of a numerical quadrature accounting for changes of NURBS definition
requires specific strategies. For NEFEM, the complexity of the numerical integration in 3D domains
is reduced to the design of a 2D numerical quadrature on the parametric triangle �e, and exact
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Table I. Comparison of FE techniques used in domains with curved boundaries.

Exact geometry Consistency

Isoparametric FEM NO NO
Cartesian FEM NO YES
p-FEM YES NO
NEFEM YES YES

integration is feasible in the third direction, see Figures 8 and 9. In contrast, the design of a
numerical quadrature in the 3D p-FEM requires careful attention. The reference element must be
partitioned and 3D quadratures must be considered to define a suitable quadrature in the reference
element accounting for changes of NURBS definition, see right plot in Figure 9.

2.4. Critical comparison

The main differences between all the FE techniques considered in this work are summarized
in Table I. On one hand, the use of a non-linear mapping relating local and Cartesian coordi-
nates (mapping of Equation (2) in the isoparametric FEM and the exact mapping of Equation
(6) in the p-FEM) induces a loss of consistency. That is, a polynomial interpolation of degree
p>1 in local coordinates, n, does not correspond to a polynomial interpolation of degree p in
Cartesian coordinates x. On the other hand, the use of the isoparametric mapping to perform the
numerical integration (as done in the isoparametric FEM and in the Cartesian FEM) introduces
geometric errors, i.e. the boundary of the computational domain, ��h , is a piecewise polynomial
approximation of the exact boundary, ��. The only method ensuring both consistency of the
approximation (for any p) and an exact boundary representation of the domain is NEFEM, see
Table I.

It is worth mentioning that, from a computational point of view, the definition of the polynomial
basis in local coordinates n, as done in the isoparametric FEM and in p-FEM, induces a marginal
extra efficiency. In this case the polynomial basis is defined once in the reference element and used
to define the approximation in each curved element, whereas a Cartesian approximation requires a
specific definition of the polynomial basis for each curved element. The use of the isoparametric
transformation to perform the numerical integration, as done in the isoparametric FEM and in
the Cartesian FEM, also induces another marginal extra efficiency. A numerical quadrature is
defined in the reference element I and used for each curved element. Whereas methods with an
exact boundary representation require specific strategies for curved elements. Nevertheless, it is
important to recall that this extra cost is restricted to elements affected by the NURBS boundary
representation, in most applications a very small portion of the total number of elements, those in
contact with non polynomial boundaries.

A priori error estimates for the FE methodologies considered in this work have similar expres-
sions, with optimal convergence in all cases. However, the hypotheses to obtain these estimates
are different, depending on the definition of the approximation, in local or Cartesian coordinates,
and on the boundary representation, that is, approximated or exact.

The influence of the definition of the polynomial basis on local or Cartesian coordinates is
discussed first. When the polynomial basis is defined with local coordinates n, the mapping relating
local and Cartesian coordinates must be smooth enough to guarantee optimal convergence. In
practice, for the isoparametric FEM specific nodal distributions on curved elements are necessary
to obtain optimal convergence rates with p>2, see Remark 1 and [20, 21]. For p-FEM, the
NURBS parametrization of the curved boundary must be smooth enough to guarantee the necessary
smoothness of the p-FEM mapping relating local and Cartesian coordinates, see [27]. In contrast,
when the polynomial basis is defined with Cartesian coordinates x, the derivation of a priori
error estimates is very close to FE a priori error estimates in polygonal domains, which can
be found in [28, 29]. For Cartesian FEM and NEFEM, no specific nodal distributions in curved
elements are necessary to achieve optimal convergence. Moreover, smooth variations of the NURBS
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parametrization are not required to obtain the optimal convergence rates with NEFEM, see [3].
Nevertheless, optimal a priori error estimates for FE methods with a Cartesian approximation
require extra attention if a standard (continuous) Galerkin formulation is considered. If a strong
imposition of Dirichlet boundary conditions is considered, or if curved internal edges/faces are
present in the mesh, optimal nodal distributions in curved elements are necessary in order to
guarantee optimal rates of convergence, see [3, 15] and references therein. The key issue is that
test functions do not vanish over the curved boundary, even if the test function is associated with a
node that is not located on the boundary. With specific nodal distributions, such as Fekette points,
the error induced by this lack of consistency is lower than the approximation error and the optimal
convergence is guaranteed. Obviously, this is not the case for weakly imposed Dirichlet boundary
conditions, where optimal convergence is obtained irrespective of the node placement. Recall that
in a DG framework boundary conditions are usually imposed in a weak sense, and recent studies
also suggest advantages of imposing boundary conditions weakly in a standard continuous Galerkin
framework, see [30].

The influence of the boundary representation on the convergence properties of the approximation
is discussed next. For FE methods with an approximate boundary representation (isoparametric
FEM and Cartesian FEM), optimal convergence is provided under the assumption that geometric
errors are lower than the discretization error. The difference between the computational element
�h

e and the physical subdomain �e must be bounded by �h p, where � is a constant, h is the
characteristic mesh size, and p is the interpolation degree. Moreover, bounds of the Jacobian of
the isoparametric transformation and its first p derivatives are also necessary, see [20].

Thus, a curved element with an approximated boundary representation must verify two contra-
dictory requirements. On one hand, the computational (polynomial) boundary ��h has to be close
enough to the exact boundary ��. And, on the other hand, the discrepancy between the computa-
tional element and the straight-sided element given by its vertices must vanish fast enough, see [21].

3. NUMERICAL EXAMPLES

Two numerical examples are considered in order to compare the FE methodologies discussed in
this work. First, a Poisson problem is solved using a continuous Galerkin formulation. The second
example involves a more complex application, the scattering of an electromagnetic plane wave by
a perfectly conducting obstacle, which is solved using a DG formulation.

3.1. Poisson problem

The following model problem is considered:

−�u = f in �,

u = ud on �d ,

∇u ·n = gn on �n,

where � is the domain (see two computational meshes with curved FEs in Figure 10), �d ∪�n =��
and n is the outward unit normal vector on ��. A Dirichlet boundary condition, corresponding to
the analytical solution, is imposed in strong form on the polygonal part of the boundary �d , and
a Neumann boundary condition, also corresponding to the analytical normal flux, is imposed on
the curved part of the boundary �n . If desired, Dirichlet boundary conditions could be imposed
in a strong sense over the curved boundary by considering Fekette nodal distributions on curved
boundary edges, see Section 2.4. The curved part of the boundary is given by the usual quadratic
NURBS that describes a circle, see [6], trimmed to represent half a circle.

A polynomial source term is considered first, f (x, y)=−(32x3y2 +6xy4+2x5 +42y5), in order
to illustrate both the relevance of an accurate boundary representation of the domain and the issue
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Figure 10. Coarse meshes for the Poisson problem. Nested remeshing is used for refinement.

Figure 11. Poisson problem with polynomial analytical solution: p-convergence in the
energy norm in the coarse mesh of Figure 10.

of consistency. The analytical solution of the problem is a polynomial function of degree 7, namely

u(x, y)= x5 y2 +x3 y4 + y7.

Figure 11 shows a p-convergence comparison in the coarse mesh of Figure 10. The energy
error is represented as a function of the square root of the number of degrees of freedom (ndof)
when the polynomial order of the approximation is uniformly increased, starting with p=1. In
NEFEM, the boundary of the domain is exactly represented and the polynomial basis for the
approximation is defined in Cartesian coordinates. Therefore, with a polynomial approximation of
degree p=7 the solution provided by NEFEM is the exact solution (except from rounding errors).
With Cartesian FEs, the basis is also defined in Cartesian coordinates, but the computational
boundary is a piecewise polynomial approximation of the circle. Thus, the difference between
NEFEM and Cartesian FEM is only due to geometric errors. Although isoparametric FE and the
p-FEM show the expected (exponential) convergence, the effect of a non-consistent approximation
is clearly observed. The function to be approximated is a polynomial in Cartesian coordinates u(x),
but it is far from being a polynomial function in local coordinates u(n(x)). In this example, errors
introduced by a non-consistent approximation are higher than geometric errors. Thus, isoparametric
FEM and p-FEM provide the same performance.

Next, the same Poisson problem is solved with a non-polynomial source term, f (x, y)=
x cos(y)+ y sin(x), such that the analytical solution of the problem is

u(x, y)= x cos(y)+ y sin(x).

Convergence under h-refinement is first explored. Figure 10 shows the first two computational
meshes; nested remeshing is used for refinement. The number of integration points is sufficiently
large in order to ensure that no errors due to numerical integration are present. Energy error is

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:719–734
DOI: 10.1002/nme



730 R. SEVILLA, S. FERNÁNDEZ-MÉNDEZ AND A. HUERTA

Figure 12. Poisson problem: h-convergence in the energy norm for p=5 (left) and p=6 (right).

Figure 13. Poisson problem: p-convergence in the energy norm for the computational
meshes represented in Figure 10.

depicted in Figure 12 for a polynomial approximation of degree p=5 and p=6. The optimal rate
of h-convergence is exhibited by every FE technique considered, but some differences in accuracy
are observed. In this example the use of a Cartesian approximation (Cartesian FEs and NEFEM)
provides more accurate results than defining the approximation with local coordinates. NEFEM
always provides the most accurate results due to the combined effect of the Cartesian approximation
and exact boundary representation. With p=6, NEFEM is one order of magnitude more accurate
than Cartesian FEs and two orders of magnitude more accurate than isoparametric FEs and p-FEM.
In this example, p-FEM does not represent an advantage with respect to isoparametric FEs. The
error induced by the geometric approximation of the boundary is lower than the error introduced
by the definition of the polynomial basis in local coordinates.

As shown in the h-convergence study, NEFEM is advantageous for high-order approximations.
Next, convergence under p-refinement is explored and compared. Figure 13 represents the evolution
of the energy error as a function of the square root of the ndof. The polynomial degree of the
approximation is uniformly increased starting with p=1 and for the discretizations shown in
Figure 10. As the order of the polynomial approximation is increased, NEFEM offers the best
performance. In fact, the desired error is attained with the minimum ndof. Figure 13 shows that,
for a given accuracy and the coarsest mesh in Figure 10, NEFEM allows to reduce drastically the
ndof. In particular, a reduction of 40% compared to Cartesian FEM and up to 50% compared to
isoparametric FEM or p-FEM.

Finally, the influence of the number of integration points nip on the accuracy is studied.
The coarsest mesh in Figure 10 with a polynomial approximation of degree p=6 and p=8 is
used. To study quadrature accuracy, Figure 14 shows the evolution of the energy error versus the
number of Gauss integration points for every curved boundary edge. When the polynomial basis
is defined in Cartesian coordinates (Cartesian FEM and NEFEM), numerical integration requires
more integration points to reach its maximum accuracy, compared to the other methods. For a
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Figure 14. Poisson problem: energy norm of the error as the number of integration points (nip) along
the curved boundary edge is increased. Coarse mesh of Figure 10 with p=6 (left) and p=8 (right).

given degree of interpolation, NEFEM is able to reach the same accuracy of isoparametric FEs
with only one extra integration point. Moreover, with three or four integration points more than
isoparametric FEM, NEFEM reaches its maximum accuracy. For a degree of interpolation p=8,
NEFEM is four orders of magnitude more precise than isoparametric FEM and p-FEM, and three
orders of magnitude more precise than Cartesian FEM.

Comparing left and right plots in Figure 14 it is important to note that NEFEM with p=6
and 9 Gauss integration points along curved boundary edges achieves comparable accuracy to
isoparametric FEM with p=8 and 9 Gauss integration points. This means that NEFEM is able
to reach the same accuracy than isoparametric FEs using the same number of integration points
for boundary integrals but with a lower degree of approximation. Figure 15 shows the evolution
of the energy error versus the total number of integration points for interior integrals as the
degree of approximation p is increased. For each point of this figure, the minimum number of
integration points to achieve maximum accuracy for a given p is used. Owing to the lower degree
of approximation required by NEFEM, it achieves the same accuracy than isoparametric FEM
with an important reduction in the total number of integration points. Therefore, although NEFEM
requires more computational effort per integration point due to the Cartesian approximation and the
NURBS boundary representation, this comparison shows that NEFEM is competitive because the
required number of integration points is substantially reduced to achieve a desired accuracy. Figure
15 also shows that Cartesian FEs are not competitive because the necessary number of integration
points to achieve a comparable accuracy is much greater than using NEFEM or isoparametric FEM.
Finally, note that the results using p-FEM are not displayed because in this problem it behaves as
isoparametric FEM, see Figure 14.

3.2. Electromagnetic scattering problem

The second example considers the scattering of an electromagnetic plane wave, traveling in the x+
direction, by a perfect electric conducting circular cylinder. The wavelength of the incident field is
denoted by � and the diameter of the circle is 4�. The problem is solved in the time domain using
a DG formulation, see [31, 32]. A coarse mesh with only four elements for the discretization of
the curved boundary is considered, and high-order approximations are used to properly capture the
solution. Figure 16 shows the computational mesh, the transverse scattered field computed with
NEFEM and p=10, and the radar cross section (RCS, see [33]). A perfectly matched layer (PML)
is introduced in order to absorb outgoing waves. Note that a 2� thick PML is considered, which
is enough to ensure that the accuracy comparison is not affected by the PML.

The RCS error evolution for increasing p is depicted in Figure 17. For the same discretization (i.e.
same degree of interpolation), NEFEM results are more accurate than isoparametric or Cartesian
FEs, with an approximate boundary description, and also more accurate than p-FEM, with an exact
boundary representation. For instance, NEFEM with p=10 produces a RCS error in L2([−�,�])
norm of about 10−2, whereas isoparametric or Cartesian FEs require p=12 to achieve a comparable
accuracy, and p-FEM requires p=11. Thus, NEFEM is able to reach the desired accuracy with a
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Figure 15. Poisson problem: energy norm of the error versus number of integration points (nip) for
interior integrals as p increases using the coarse mesh of Figure 10.

(a) (b) (c)

Figure 16. Scattering by a perfect conductor circle: (a) computational mesh with a 2� thick PML; (b)
transverse scattered field for a NEFEM solution with p=10; and (c) RCS.

Figure 17. Scattering by a perfect conductor circle: RCS error in L2(−�,�) norm as the polynomial order
of the approximation is increased.
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reduction in ndof of about 30% compared to isoparametric or Cartesian FEs, and of 15% compared
to p-FEM (also with an exact boundary representation). This difference in number of degrees of
freedom implies important differences in computational cost. NEFEM computation requires 2585
time steps to reach the time-harmonic steady state, whereas isoparametric and Cartesian FEs employ
3692 time steps and p-FEM requires 3114 time steps. In addition, each time step with NEFEM
requires less computational cost due to the lower p needed to achieve the desired accuracy.

The difference between isoparametric FEs and Cartesian FEs is indistinguishable, showing
that a Cartesian approximation of the solution does not offer any advantage if an approximated
boundary representation is considered. The difference between isoparametric FEs and p-FEM is
only due to geometric errors, and relevant differences in accuracy are observed. Finally, NEFEM
also considers the exact boundary representation as p-FEM and outperforms it. The Cartesian
approximation combined with an exact boundary representation (i.e. NEFEM) provides in this
example the maximum accuracy for a given spatial discretization. Finally, note that with an
approximate boundary representation the exponential convergence is exhibited for p>8, whereas
with an exact boundary representation the exponential convergence is achieved for p>5.

To conclude, it is worth remarking that only one element per two wavelengths is considered
in this example and a RCS error below 10−2 is obtained with p=11, that is, using 6 nodes
per wavelength. Thus, the exact geometry considered in NEFEM combined with the Cartesian
approximation allow to compute accurate solutions with the minimum ndof, compared to other
curved FEs and other techniques used by the computational electromagnetics community. For
instance, Vinh et al. [34] use 22 nodes per wavelength and low-order finite differences, El Hachemi
et al. [35] use 20 nodes per wavelength and linear FEs, and Cioni et al. [36] use 20 nodes per
wavelength and finite volumes.

4. CONCLUDING REMARKS

This paper presents a comparison between several FE methodologies for the treatment of curved
boundaries: classical isoparametric FEM and Cartesian FEM with an approximated boundary
representation, and p-FEM and NEFEM with an exact description of the boundary. A critical
comparison of these methods is presented, with particular emphasis on two issues: consistency
of the approximation and exact geometric description. Special attention is paid to the numerical
integration for FE methods with an exact boundary representation with NURBS. In this case,
numerical integration must be designed to take into account the piecewise nature of the NURBS
parametrization. The strategy to perform the numerical integration in p-FEM and NEFEM is
discussed for both 2D and 3D domains.

2Dnumericalexamplesarepresented,usingcontinuousandDGformulations, inorder to investigate
the performance and benefits of each methodology. The main conclusion of this study is that NEFEM
provides maximum accuracy for a given spatial discretization, showing the importance of a consistent
approximation and exact boundary representation. For a Poisson problem, NEFEM provides results
at least two orders of magnitude more accurate than the other FE methods studied here. Ensuring
consistency is an important issue in this example, and Cartesian FEM performs better than classical
isoparametric FEM or p-FEM. The second example considers an electromagnetic scattering applica-
tion in which the quantity of interest is defined along the curved boundary. In this case, the use of an
exact representation of the geometry is crucial. Again, NEFEM provides the most accurate results for a
given spatial discretization, one order of magnitude more precise than classical isoparametric FEM or
Cartesian FEM, and also more accurate than methods considering an exact boundary representation,
such as p-FEM.
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