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is used, see [1, 2]. Bassi and Rebay [1] show that, in the presence of curved boundaries, a
meaningful high-order accurate solution can only be obtained if the corresponding high-order
approximation of the geometry is employed (i.e. isoparametric finite elements). In fact, it is
necessary to take into account the boundary curvature effect in order to have a consistent
boundary discretization, see [5]. In [6] the same problem is studied, and a new method
is proposed for computing the flux across a curved face. Using a parametrization of the
curved boundary the flux definition is modified but the resulting method is, unfortunately,
non-conservative. The importance of the geometrical model in the numerical solution of
compressible Euler equations is not exclusive of DG methods. In [2, 8] the problem is identified
in the context of Finite Volume (FV) methods, and more recent advances in this area can be
found in [9, 10].

An accurate representation of the geometry is not a prerogative of fluid mechanics. For
instance, similar conclusions are derived in [3] for linear elasticity problems: sizable errors are
present in the numerical solution when the order for the geometric approximation is lower than
the order of functional interpolation, even for geometries as simple as a sphere. Isoparametric
finite elements (FE) or superparametric FE are necessary in order to ensure an accurate
enough representation of the geometry. The relevance of an accurate geometric model for
some applications in solid mechanics is also illustrated in [11], where the use of B-Splines is
proposed for the geometric representation of the interface in frictionless contact problems.

Obviously, Maxwell equations are also very sensitive to the quality of the boundary
representation. Reference [4] studies the error induced by the approximation of curvilinear
geometries with isoparametric elements. The 3D Maxwell equations are solved in a sphere with
isoparametric FE and with an exact mapping of the geometry. The exact mapping provides
more accurate results with errors differing by an order in magnitud. Thus, in some applications,
an isoparametric representation of the geometry is far from providing an optimal numerical
solution for a given FE discretization.

Recently, [12] proposes a new methodology: the isogeometric analysis. Its goal is to consider
an exact representation of the geometry, with no dependency on the spatial discretization. In
the isogeometric analysis the solution of the boundary value problem is also approximated
with the same NURBS (Non-Uniform Rational B-Splines, [13]) basis used for the description
of the geometry. This idea was first introduced in [14] in the context of thin shell analysis, but
using subdivision surfaces instead of NURBS.

The methodology proposed in this paper has a similar goal: an exact representation of the
geometry, but it is simpler because NURBS are restricted to the boundary of the computational
domain. Only the boundary of the computational domain is directly related to a CAD. Thus,
NURBS-Enhanced Finite Element Method (NEFEM) considers the exact NURBS description
for the boundary of the computational domain while the solution is approximated with a
standard piecewise polynomial interpolation. Moreover, in the large majority of the domain
(namely in the interior, that is for elements not intersecting the boundary) a standard FE
interpolation and numerical integration is used, preserving the computational efficiency of
classical FE techniques.

The use of a piecewise polynomial approximation represents an important advantage in front
of the NURBS functional approximation used in the isogeometric analysis. NEFEM ensures
local reproducibility of polynomials and, therefore, it preserves the classical FE convergence
properties and allows a seamless coupling with the standard FE of the domain interior.

Section 2 introduces the basic concepts on NURBS. In section 3 the fundamentals of NEFEM
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are presented. Special attention is paid to the interpolation and numerical integration in those
elements affected by the NURBS description of the boundary. To simplify the presentation and
show its capabilities NEFEM is presented for 2D domains. The generalization to 3D domains
is conceptually easy but requires some extra attention to geometrical aspects and it will be
the scope of a forthcoming publication. Some comments on the implementation of NEFEM
are given and a priori error estimates are also presented in section 3. Numerical examples
are discussed in section 4. NEFEM can be implemented with a standard piecewise continuous
(standard FE) or discontinuous (DG) formulation. Thus, a Poisson problem is solved first
in a continuous framework and several electromagnetic scattering problems are solved using
DG. Application to fluid mechanics can be found in [15], where the advantages of NEFEM
for the simulation of compressible flow problems are shown for both linear and high-order
approximations.

2. BASIC CONCEPTS ON NURBS

A qth-degree NURBS curve [13] is a piecewise rational function defined in parametric form as

C(λ) =
( ncp∑

i=0

νi Bi Ci,q(λ)
) / ( ncp∑

i=0

νi Ci,q(λ)
)

0 ≤ λ ≤ 1, (1)

where {Bi} are the coordinates of the ncp + 1 control points (forming the control polygon),
{νi} are the control weights, and the {Ci,q(λ)} are the normalized B-spline basis functions of
degree q, which are defined recursively as

Ci,0(λ) =

{
1 if λ ∈ [λi, λi+1[,
0 elsewhere,

Ci,k(λ) =
λ− λi

λi+k − λi
Ci,k−1(λ) +

λi+k+1 − λ

λi+k+1 − λi+1
Ci+1,k−1(λ),

for k = 1 . . . q, where λi, for i = 0, . . . , nk, are the knots or breakpoints, which are assumed
ordered 0 ≤ λi ≤ λi+1 ≤ 1. They form the so-called knot vector

Λ = {0, . . . , 0︸ ︷︷ ︸
q+1

, λq+1, . . . , λnk−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

},

which uniquely describes the B-spline basis functions. The multiplicity of a knot, when it is
larger than one, determines the decrease in the number of continuous derivatives. Control
points, ncp+1, and knots, nk+1, are related to the degree of the parametrization, q, by the
relation nk = ncp + q + 1, see [13] for more details. Figure 1 shows the B-spline basis functions
for the knot vector

Λ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1}. (2)
Note that NURBS are piecewise (rational) functions and their definition changes at knots.

An example of a NURBS curve is represented in Figure 2 with the corresponding control
polygon. The image of the breakpoints or knots by the NURBS are depicted in order to stress
the discontinuous definition of the parametrization. In practice CAD manipulators work with
trimmed NURBS, which are defined as the initial parametrization restricted to a subspace of
the parametric space. Figure 3 shows the NURBS curve of Figure 2 trimmed to the subinterval
[0.05, 0.75].
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corresponding to the front part of the NACA 0012 airfoil, see Figure 12. For Gauss-Legendre
composite rules, n denotes the number of integration points in every subinterval. Note that
a composite quadrature with two intervals and n = 8 Gauss-Legendre integration points in
each interval achieves almost machine precision. Thus, although the faster convergence is
obviously obtained for high-order simple quadratures (in each patch), the use of composite
rules is very attractive, because it allows the definition of adaptive quadratures to control the
integration error and ensure reliable computations for any NURBS and any order of polynomial
interpolation.

Remark 3. It is worth noting that in practical applications it is not necessary to compute
numerical integrals with machine precision. Numerical experiments simulating the scattering
of a planar electromagnetic wave [22] reveal that, in practice, if the NURBS is parametrized
such that velocity has smooth variations, only one extra integration point, compared to standard
isoparametric FE, is required. That is, for a given discretization with polynomials of order p,
a numerical quadrature with p + 2 Gauss-Legendre integration points in each patch provides
the maximum accuracy.

3.2.2. Element integrals NEFEM also requires to compute integrals in an element Ωe with
one side Γe on the NURBS boundary, see Figure 7. That is,

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη (5)

where |JΨ| is the determinant of the Jacobian of the linear transformation Ψ. Thus, a numerical
quadrature for every local curved element Ie is needed. In [22] different alternatives are
presented and discussed. The best alternative, see Figure 13, is to define a transformation
from the rectangle [λe

1, λ
e
2]× [0, 1] to the curved element Ie, namely,

ϕ : [λe
1, λ

e
2]× [0, 1] −→ Ie

(λ, ζ) 7−→
{

ϕ1

ϕ2

}
:=

{
φ1(λ)(1− ζ)− ζ
φ2(λ)(1− ζ) + ζ

} (6)

where φ = (φ1, φ2)T := Ψ−1 ◦C is the parametrization of the trimmed NURBS corresponding
to the curved side in Ie. Note that this transformation requires that nodes are numbered
following the non restrictive assumption presented in Remark 1. Note also, that such a
parametrization is linear in ζ and, as discussed in Remark 4, this implies important practical
advantages. Thus, using the transformations shown in Figure 13, integral (5) is computed as

∫

Ωe

f dx dy = |JΨ|
∫

Ie

f dξ dη ' |JΨ|
nip∑

i=1

mip∑

j=1

f(ξij)|Jϕ(λi, ζj)|ωi$j (7)

where nip and mip are the number of integration points in λ and ζ directions, respectively,
ξij := ϕ(λi, ζj), {λi, ωi} and {ζj , $j} are the 1D quadrature points and weights for [λe

1, λ
e
2]

and [0, 1] respectively, and |Jϕ| is the determinant of the Jacobian of the transformation ϕ.
Note that to integrate a polynomial f of degree k in Ωe, given the transformations shown in
Figure 13, the (non polynomial) function

f̃(λ, ζ) = f
(
ϕ(λ, ζ)

)|Jϕ(λ, ζ)|. (8)
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3.4. A priori error estimates

Since NEFEM considers the usual FE polynomial interpolation, see section 3.1, a priori error
estimates are exactly the same as those for standard FE. For instance, the result for the
solution of second order elliptic problems is recalled in the following theorem.

Theorem 1. Let Th a non-degenerate triangulation (i.e. there is a positive constant β such
that %e/he ≥ β, for all Ωe ∈ Th, where he and %e are the diameters of Ωe and of the circle
inscribed in Ωe, respectively). Assuming that all boundary conditions along curved boundaries
are imposed in weak form, the following a priori estimate holds

‖u− uh‖L2(Ω) ≤ Khp+1|u|Hp+1(Ω), (9)

where u ∈ Hp+1(Ω) and uh are the exact and the NEFEM solution respectively, K is a constant,
h is the mesh size, and p is the polynomial degree of interpolation.

Moreover, for p-refinement convergence the following estimate also holds,

‖u− uh‖E(Ω) ≤ C exp(−kNr), (10)

where ‖·‖E(Ω) is the energy norm, C and k are positive constants, N is the number of degrees
of freedom, and r & 1/2 for 2D problems.

The same arguments used in the proof of standard FE error estimates are valid for the proof
of Theorem 1. In fact, the derivation of a priori error estimates for NEFEM is identical to FE
a priori estimates in polygonal domains, which can be found in [24, 25, 26] for h-refinement
and in [27] for p-refinement.

It is worth noting that contrary to NEFEM, the proof of a priori error estimates for
isoparametric FE in the presence of curved boundaries requires special attention. First, the use
of isoparametric FE induces geometric errors because the computational domain is, in fact, a
piecewise polynomial approximation of the physical geometry. Thus, to obtain optimal a priori
error estimates, the maximum distance between the computational and the exact boundary
should be bounded by γhp, where γ is a constant, h is the mesh size and p is the polynomial
degree. Moreover, bounds of the jacobian of the isoparametric transformation and its first p
derivatives are also necessary, see [28]. Thus, an isoparametric curved element must verify two
contradictory requirements. On one hand, the computational polynomial boundary has to be
close enough to the curved boundary. And on the other hand, the discrepancy between the
curved element and the straight element given by its vertices must vanish fast enough, see
[29]. In practice, this requirements imply that specific nodal distributions on curved elements
are mandatory in order to obtain the optimal rate of convergence. For instace, with cubic
elements, small variations of the interior node cause suboptimal convergence.

With NEFEM (as well as for FE in a domain with polygonal boundary) the spatial
discretization does not introduce geometric errors. Moreover, NEFEM uses a linear mapping
to relate local and cartesian coordinates, see section 3. In fact, the linear transformation used
by NEFEM is exactly the same mapping used by standard FE on a domain with polygonal
boundaries. Consequently, all a priori error estimates demonstrated in FE for domains with
polygonal boundaries can be reproduced exactly for NEFEM, even in the presence of elements
far from having straight edges.

Theorem 1 assumes that essential boundary conditions are imposed in weak form, for
instance with numerical fluxes in a DG context, or with Nitsche’s method [30, 31] in a
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Figure 15. Coarse meshes for h-refinement test. Nested remeshing is used for refinement.

continuous formulation. If Dirichlet boundary conditions are imposed in strong form, an
additional condition is required to keep optimal convergence rates: Fekette nodal distributions
adapted to every curved element have to be considered, see right distribution in Figure 9. This
is formally stated in the next result.

Theorem 2. Under the assumptions of Theorem 1, the error bounds (9) and (10) hold
for a NEFEM solution with a strong implementation of Dirichlet boundary conditions, if
Fekette nodal distributions adapted for every curved element along the Dirichlet boundary are
considered.

The requirement of Fekete nodal distributions is necessary for an accurate interpolation of
Dirichlet boundary conditions on curved boundaries. Due to the use of polynomial nodal basis
in cartesian coordinates, the errors in the approximation of the prescribed value along the
boundary may deteriorate the convergence of the solution. This is the case for NEFEM as
well as for other approaches considering cartesian polynomial approximations. For instance, in
[32] optimal convergence rates are proven when nodes on the boundary correspond to Lobatto
points (i.e Fekette points in 1D).

4. NUMERICAL EXAMPLES

The application of the proposed methodology is illustrated using several numerical examples.
The first example is an elliptic problem and it is solved using a continuous Galerkin formulation.
More complex problems, concerning the numerical solution of transient Maxwell’s equations,
are also considered in order to illustrate the efficiency of NEFEM in a DG framework.

4.1. Poisson problem

The following model problem is solved in two dimensions




−∆u = f in Ω
u = ud on Γd

∇u · n = gn on Γn

(11)

where Ω is the domain (see two NEFEM meshes in Figure 15), Γd ∪ Γn = ∂Ω and n is the
outward unit normal vector on ∂Ω. The source is given by f(x, y) = x cos(y) + y sin(x), such
that the analytical solution of the problem is known and smooth,
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boundary, and the isoparametric transformation used to map the polynomial base in the
reference element; which, for high-order approximation leads to a base in cartesian coordinates
far from being polynomial. To quantify the effect of both sources of error, cartesian FE
approximation is also considered and its accuracy depicted in Figure 24. That is, the
usual reference element is used for integration purposes, but the polynomial base for the
approximation of the solution is defined with cartesian coordinates directly in the physical
domain. This means that an approximate (piecewise polynomial) description of the boundary
is maintained, but the isoparametric transformation for the approximation is avoided. Thus,
cartesian FE exactly reproduce polynomials in the physical domain. Similar results would be
obtained using isoparametric FE with especially designed interior node coordinates instead of
Fekette nodes, see [28, 29] and Sections 3.4 and 4.1.

Thus, the difference between the cartesian FE and NEFEM results in Figure 24 corresponds
to the error due to the piecewise polynomial approximation of the boundary in a standard
FE computation; which is completely eliminated in a NEFEM solution. More precisely, with
NEFEM the outward normal vector is computed exactly in terms of the NURBS boundary
parametrization, improving the flux computation at the PEC boundary.

Finally, it is important to note that NEFEM is a more efficient strategy than cartesian FE.
The increase in the computational cost, due to the specific numerical treatment of curved
elements along the boundary, is similar in NEFEM and cartesian FE, but from an accuracy
point of view NEFEM provides much better results. For instance, the curves in Figure 24 show
that to attain an accuracy comparable to a NEFEM computation with degree p = 5 (with
an error of 2.2% in the RCS), cartesian FE require a discretization with degree p = 6 (with
an error of 3.2%). That is, NEFEM provides similar accuracy to cartesian FE with a 63%
reduction in the number of degrees of freedom.

4.2.2. NACA airfoil: The second example consists on the scattering of a planar wave by the
NACA 0012 airfoil. The NACA 0012 is a symmetric airfoil with analytical expression [40], that
can not be exactly described with a NURBS curve. As usual in the context of airfoil shape
optimization, an approximation of the upper part of the airfoil using a B-Spline with eight
control points is considered here, see for instance [22] for the B-spline data.

Figure 25 shows a detail of the computational mesh and the solution of TE mode with
degree p = 8, for an airfoil with a chord length of 2 wave lengths. The angle of incidence is 0
rad. NEFEM E3 distribution and the RCS are in good agreement with a reference numerical
solution, see for instance [38], with an L2([−π, π]) error of 10−2 in the RCS. Figure 25 also
shows the distribution of the error in the RCS for NEFEM and isoparametric FE, with Fekette
nodal distributions. Again, NEFEM provides much more accurate results than isoparametric
FE.

Next, NEFEM performance for a computation with higher frequency is tested: the NACA
0012 airfoil with a chord length of 10 wave lengths and angle of incidence of π/2 rad is
considered, see for instance [41]. A detail of the computational mesh, and the NEFEM
solution obtained with an approximation of degree p = 13 is shown in Figure 26. The
E3 field and the RCS are in good agreement with a reference solution, demonstrating the
applicability of NEFEM methodology for the computation with high-degree approximation
in coarse meshes (only 8 elements for the description of the airfoil boundary). The error
distribution is also plotted in Figure 26. In this example the errors in the isoparametric FE
solution are clearly unacceptable, whereas NEFEM demonstrates its good performance for
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Figure 27. Irregular circle: detail of the computational mesh and NEFEM solution for p = 9.

high-order computations.

4.2.3. Complex scatterers: Previous examples show the advantages of the NEFEM
formulation in front of classical FE for the numerical solution of some test cases. To illustrate all
the capabilities of NEFEM, more complex scatterers are considered next. The first example is
the scattering induced by an irregular circle with diameter of four wave lengths. The geometry
of the obstacle is described exactly using one NURBS and a coarse mesh with only eight
elements for the representation of the boundary is considered, see Figure 27.

As noted earlier, see section 3, it is important to remark that the only restriction for a
NEFEM triangle is that the curved edge belongs to one NURBS. The computational mesh
is chosen to emphasize the possibilities of NEFEM. It is not necessary to locate nodes at
boundary corners (boundary points with C0 continuity), nor to refine the mesh near the
boundary to capture the geometry (it is exactly represented in NEFEM independently of
the spatial discretization!).

Figure 27 also shows the transverse field H3 with p = 9 after four cycles. Even for elements
with corners in its NURBS edge the quality of the solution is not deteriorated. Details showing
the transverse field near the irregularities are represented in Figure 28.

The last example consists on the scattering of an electromagnetic wave by a real aircraft
profile of ten wave lengths. The geometry of the 2D section of this aircraft has several critical
zones, in particular, a small irregularity on the upper part and the rear part. Figure 29 shows
the computational mesh used for NEFEM simulation, with only 44 elements on the curved
boundary. Some details of the mesh are also represented, showing that it is not necessary to
refine the mesh to capture exactly the geometry. Figure 30 shows the transverse field H3 after
ten cycles and some details near the most critical zones of the aircraft.

It is worth noting that using classical isoparametric FE it is not possible to compute accurate
solutions for these problems with the computational meshes used by NEFEM, see Figures
27 and 29. To properly capture the geometry of the domain with isoparametric FE it is
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Figure 30. Aircraft profile: details of NEFEM solution for p = 8 (H3 distribution).

necessary to discretize accounting for corners nodes (boundary points with only C0 continuity).
Thus, the minimum element size is controlled by the size of these irregularities, increasing the
number of degrees of freedom in comparison with NEFEM. For instance, Figure 31 represents
a computational mesh adapted to use isoparametric FE. Detailed views near critical zones of
the aircraft show that h-refinement is mandatory to properly capture the slope discontinuities
in the aircraft profile. The minimum mesh size for the FE mesh in Figure 31 is 3 10−3 whereas
the minimum mesh size for NEFEM mesh in Figure 29 is 0.2. Obviously, this drastic difference
between minimum mesh sizes induces important differences in the time-step size when explicit
time integrators are used and, therefore, shows another advantage of NEFEM.

5. Concluding remarks

An improvement of standard FE is proposed in this work. The exact CAD description of the
geometrical model is considered, but only for the boundary of the computational domain. At
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Figure 31. FE mesh around the aircraft profile and detailed view near critical zones

elements intersecting the NURBS boundary specific interpolation and numerical integration
are proposed and, at elements not intersecting the boundary classical FE are used, preserving
the efficiency of the finite element method. A priori error estimates are given and comments
on the implementation of NEFEM are detailed. It is worth noting that a little effort is needed
to enhance a usual FE code with the NEFEM concept.

Numerical examples demonstrate the advantages of NEFEM in front of classical
isoparametric and cartesian FE. A Poisson example shows the applicability of the proposed
method in a continuous Galerkin framework. Moreover, it allows to corroborate the a priori
error estimates. Some electromagnetic scattering applications are used to show the benefits of
the proposed method combined with a DG formulation. Even if the geometry of the boundary
of the domain is simple, like a circle, NEFEM is, at least, one order of magnitude more
precise than isoparametric FE. When the geometric model is complex, like and aircraft profile,
NEFEM is able to compute accurate solutions using coarse meshes. The exact representation
of the boundary allows to mesh the domain independently of the geometric complexity of
the boundary whereas classical isoparametric FE need h-refinement to properly capture the
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geometry.
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