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SUMMARY

An improvement of the classical finite element method is proposed. It is able to exactly represent
the geometry by means of the usual CAD description of the boundary with Non-Uniform Rational
B-Splines (NURBS). Here, the two-dimensional case is presented. For elements not intersecting the
boundary, a standard finite element (FE) interpolation and numerical integration is used. But elements
intersecting the NURBS boundary need a specifically designed piecewise polynomial interpolation and
numerical integration. A priori error estimates are also presented. Finally, some examples demonstrate
the applicability and benefits of the proposed methodology. NEFEM is at least one order of magnitude
more precise than the corresponding isoparametric FE in every numerical example shown. This
is the case for both continuous and discontinuous Galerkin formulations. Moreover, for a desired
precision NEFEM is also more computational efficient, as shown in the numerical examples. The use
of NEFEM is strongly recommended in the presence of curved boundaries and/or when the boundary
of the domain has complex geometric details. The possibility of computing accurate solution with
coarse meshes and high order interpolations, makes NEFEM a more efficient strategy than classical
isoparametric FE. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: NURBS; Finite Elements; CAD; Discontinuous Galerkin; exact geometry
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1. INTRODUCTION

The relevance of an accurate representation of the domain and its boundary has been pointed
out by several authors, see [1, 2, 3, 4, 5, 6] among others. In some applications, such as
compressible flow problems, if a Discontinuous Galerkin (DG) formulation is adopted, see
[7], an important loss of accuracy is observed when a linear approximation of the boundary
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is used, see [1, 2]. Bassi and Rebay [1] show that, in the presence of curved boundaries, a
meaningful high-order accurate solution can only be obtained if the corresponding high-order
approximation of the geometry is employed (i.e. isoparametric finite elements). In fact, it is
necessary to take into account the boundary curvature effect in order to have a consistent
boundary discretization, see [5]. In [6] the same problem is studied, and a new method
is proposed for computing the flux across a curved face. Using a parametrization of the
curved boundary the flux definition is modified but the resulting method is, unfortunately,
non-conservative. The importance of the geometrical model in the numerical solution of
compressible Euler equations is not exclusive of DG methods. In [2, 8] the problem is identified
in the context of Finite Volume (FV) methods, and more recent advances in this area can be
found in [9, 10].

An accurate representation of the geometry is not a prerogative of fluid mechanics. For
instance, similar conclusions are derived in [3] for linear elasticity problems: sizable errors are
present in the numerical solution when the order for the geometric approximation is lower than
the order of functional interpolation, even for geometries as simple as a sphere. Isoparametric
finite elements (FE) or superparametric FE are necessary in order to ensure an accurate
enough representation of the geometry. The relevance of an accurate geometric model for
some applications in solid mechanics is also illustrated in [11], where the use of B-Splines is
proposed for the geometric representation of the interface in frictionless contact problems.

Obviously, Maxwell equations are also very sensitive to the quality of the boundary
representation. Reference [4] studies the error induced by the approximation of curvilinear
geometries with isoparametric elements. The 3D Maxwell equations are solved in a sphere with
isoparametric FE and with an exact mapping of the geometry. The exact mapping provides
more accurate results with errors differing by an order in magnitud. Thus, in some applications,
an isoparametric representation of the geometry is far from providing an optimal numerical
solution for a given FE discretization.

Recently, [12] proposes a new methodology: the isogeometric analysis. Its goal is to consider
an exact representation of the geometry, with no dependency on the spatial discretization. In
the isogeometric analysis the solution of the boundary value problem is also approximated
with the same NURBS (Non-Uniform Rational B-Splines, [13]) basis used for the description
of the geometry. This idea was first introduced in [14] in the context of thin shell analysis, but
using subdivision surfaces instead of NURBS.

The methodology proposed in this paper has a similar goal: an exact representation of the
geometry, but it is simpler because NURBS are restricted to the boundary of the computational
domain. Only the boundary of the computational domain is directly related to a CAD. Thus,
NURBS-Enhanced Finite Element Method (NEFEM) considers the exact NURBS description
for the boundary of the computational domain while the solution is approximated with a
standard piecewise polynomial interpolation. Moreover, in the large majority of the domain
(namely in the interior, that is for elements not intersecting the boundary) a standard FE
interpolation and numerical integration is used, preserving the computational efficiency of
classical FE techniques.

The use of a piecewise polynomial approximation represents an important advantage in front
of the NURBS functional approximation used in the isogeometric analysis. NEFEM ensures
local reproducibility of polynomials and, therefore, it preserves the classical FE convergence
properties and allows a seamless coupling with the standard FE of the domain interior.

Section 2 introduces the basic concepts on NURBS. In section 3 the fundamentals of NEFEM
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are presented. Special attention is paid to the interpolation and numerical integration in those
elements affected by the NURBS description of the boundary. To simplify the presentation and
show its capabilities NEFEM is presented for 2D domains. The generalization to 3D domains
is conceptually easy but requires some extra attention to geometrical aspects and it will be
the scope of a forthcoming publication. Some comments on the implementation of NEFEM
are given and a priori error estimates are also presented in section 3. Numerical examples
are discussed in section 4. NEFEM can be implemented with a standard piecewise continuous
(standard FE) or discontinuous (DG) formulation. Thus, a Poisson problem is solved first
in a continuous framework and several electromagnetic scattering problems are solved using
DG. Application to fluid mechanics can be found in [15], where the advantages of NEFEM
for the simulation of compressible flow problems are shown for both linear and high-order
approximations.

2. BASIC CONCEPTS ON NURBS

A gth-degree NURBS curve [13] is a piecewise rational function defined in parametric form as

Cc(\) = (; v; B; Cm()\)) / (;} v, CW(A)) 0<A<1, (1)

where {B;} are the coordinates of the nc, + 1 control points (forming the control polygon),
{v;} are the control weights, and the {C; 4(\)} are the normalized B-spline basis functions of
degree ¢, which are defined recursively as

1 ifxe X, N ,
Ci,0(>\) _ [ +1[
0 elsewhere,
A— N\ Y - A
Cik(N) = Cir—1(N) + +k+—101'+1,k—1(>\),

Aitk — i Aight1 — Aig1
for Kk = 1...q, where \;, for ¢« = 0,...,ng, are the knots or breakpoints, which are assumed
ordered 0 < A\; < A1 < 1. They form the so-called knot vector

A=10,. 0 A1 Am—gets Lo 1,
N—— N——

q+1 q+1
which uniquely describes the B-spline basis functions. The multiplicity of a knot, when it is
larger than one, determines the decrease in the number of continuous derivatives. Control
points, ncp+1, and knots, ng+1, are related to the degree of the parametrization, g, by the
relation ny = ncp + g+ 1, see [13] for more details. Figure 1 shows the B-spline basis functions
for the knot vector
A ={0,0,0,0.2,0.4,0.6,0.8,0.8,1,1,1}. (2)

Note that NURBS are piecewise (rational) functions and their definition changes at knots.

An example of a NURBS curve is represented in Figure 2 with the corresponding control
polygon. The image of the breakpoints or knots by the NURBS are depicted in order to stress
the discontinuous definition of the parametrization. In practice CAD manipulators work with
trimmed NURBS, which are defined as the initial parametrization restricted to a subspace of
the parametric space. Figure 3 shows the NURBS curve of Figure 2 trimmed to the subinterval
[0.05,0.75].
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Figure 1. B-spline basis functions for the knot vector (2)
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Figure 2. NURBS curve (solid line), control points (denoted by o), control polygon (dashed line) and

breakpoints (denoted by o)

Figure 3. Trimmed NURBS curve with A € [0.05,0.75] (solid line), control points (denoted by o),
control polygon (dashed line) and breakpoints (denoted by o )

3. NURBS-ENHANCED FINITE ELEMENT METHOD (NEFEM)

Consider a physical domain @ C R? whose boundary 89, or a portion of it, is defined by
NURBS curves. Every NURBS is assumed to be parametrized by

C:[0,1] — C([0,1]) C 8Q C R%.

A regular partition of the domain Q = |J_ Q. in triangles is assumed such that every element
Q. has at most one side, I'c, on the NURBS boundary. Figure 4 shows a domain with part of
the boundary described by a NURBS curve corresponding to the NACA 0012 airfoil, and a
valid triangulation for NEFEM.

As usual in FE mesh generation codes, it is assumed that every curved boundary side belongs
to a unique NURBS, I, C C(][0,1]). That is, one element edge can not be defined by portions
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Figure 4. Physical domain with part of the boundary defined by a NURBS curve (left) and a valid
triangulation for the NEFEM (right)

of two (or more) different NURBS curves. But on the contrary, it is important to note that
breakpoints, which characterize the piecewise nature of NURBS, are independent of the mesh
discretization. Thus, the NURBS parametrization can change its definition inside one side,
that is breakpoints may belong to element sides and do not need to coincide with FE nodes.
This is another major advantage with respect to the isogeometric analysis [12].

Every interior element (i.e. elements not having an edge that coincides with the NURBS
boundary) can be defined and treated as standard FE or DG elements. Therefore, in the vast
majority of the domain, interpolation and numerical integration are standard. This section
is devoted to the definition of the interpolation and the numerical integration at an element
with one side, I'c, along the NURBS boundary. Say 2. is an element with two straight interior
edges and one side defined by a trimmed NURBS,

Fe = C([A‘IZ’ 5])7

where X§ and A§ are the parametric coordinates (in the parametric space of the NURBS) of
the end points of I'.; obviously they must verify 0 < AJ < A5 < 1.

For each element ()., a straight-sided triangle T, is defined using its vertices, see Figure
5. A linear mapping ¥ : I — T, is used, which goes from the reference triangle I to the
triangle T, see Figure 6. The inverse of this linear transformation maps the triangle 7, into
the reference triangle I and, more important, also maps the actual element (2., which is in the
physical domain, into a curved element in local coordinates with two straight sides, namely

I = ¥7(Q,),

see Figure 7. I, is called the local curved element for the actual element €2..
Note that the reference triangle I is the same for all elements 2.. However, the local curved

element I, depends on the trimmed NURBS defining the curved side I'c of €2, and therefore
it is different for every element 2. intersecting the NURBS boundary.

Remark 1. In order to simplify the presentation, it is assumed that the interior vertex of
T. is mapped to the vertex (—1,1) in I. The implementation of this condition only requires a
proper local numbering of the vertices of the element.
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Figure 5. Actual element 2. (left) and triangle T, defined using its vertices (right) in the physical
domain
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Figure 6. Mapping ¥ defined as a linear transformation from the reference triangle I to the straight-
sided triangle T, in the physical domain
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Figure 7. The linear transformation also maps the local curved element I. to the actual element (2.
in the physical domain
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3.1. FE polynomial basis

In order to work with standard FE polynomial approximations, Lagrange polynomials (that
is, standard nodal interpolation) can be considered. In fact, they can be defined on the curved
triangle, I., in the reference domain or equivalently, in the actual element in the physical
domain, Q.. The use of a linear transformation from local (reference) coordinates & = (£,7)7 in
I, to cartesian coordinates & = (,y)T in Q., ensures that a complete polynomial interpolation
of degree m in £ leads to a polynomial interpolation with the same degree in . Thus,
consistency and accuracy of the approximation is ensured even for elements (2. far from being
a straight-sided element.

To make the computation of Lagrange polynomials more systematic, for any degree and for
any distribution of nodes, the implementation proposed in [16] is adopted. A polynomial basis
{P;(&)}, with the required degree and whose definition is independent of the nodal coordinates,
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Figure 8. 5th-order nodal distributions in I.: for equally-spaced nodes in the straight-side triangle
(left) and adapted to the NURBS side (right)

Figure 9. 5th-order nodal distributions in I.: Fekete nodes in the straight-side triangle (left) and
adapted to the NURBS side (right)

is considered. Then, given a nodal distribution in I., with coordinates {£;};=,, the Lagrange
polynomial basis {L;(§)};=; can be expressed in terms of the polynomial basis {P;(£)};=, as

Den

Ln(&) = Z [V_l]j,' 13](6)1 (3)

7j=1

where n., is the number of element nodes and the multidimensional Vandermonde matrix is
defined as V;; := P;(§;), fori,j =1,... , Den.

Remark 2. Note that equation (3) holds for any polynomial basis {P;(£)}!=,. Here an
orthogonal polynomial basis {P;(&€)}!=, derived from the Jacobi polynomials is considered, to
ensure moderate condition number for the Vandermonde matriz V', see [16] and references
therein. Moreover, orthogonal polynomial basis allows analytical evaluation of some inner
products in straight-sided elements [17].

From an implementation point of view, it is worth noting that all element matrices can be
first computed for any polynomial basis, and then transformed with the Vandermonde matrix.
That is, let M? be an element matrix computed in terms of the polynomial basis {P;(&)}=,,
then M, =V TM gv-l is the corresponding element matrix for the Lagrange nodal basis
(L)Y,

Different options can be considered for the definition of a nodal distribution in I.. If low-order
elements are used, which is the standard approach in FE, equally-spaced nodal distributions
on the straight-side triangle can be implemented directly, see Figure 8. When high-order
elements are used for high-fidelity computations, as it is standard in DG methods, it is more
convenient to use special distributions of nodes in order to reduce the condition number of the
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Figure 10. Condition number of the mass matrix as a function of the interpolation degree (p), using
equally-spaced nodal distributions and Fekete points

resulting element matrices, see [18, 19] for details. Fekete points [20] are a good example of
such distributions, see Figure 9.

The definition of a nodal distribution on the straight-side triangle, see left distributions in
Figures 8 and 9, induces a marginal extra efficiency, because there is both a unique definition of
nodal coordinates and only one computation of the Vandermonde matrix (independently of the
curved element). Another alternative is to adapt the nodal distribution to the exact geometry,
see right distributions in Figures 8 and 9. This option is more reasonable when nodal values
are prescribed along the boundary. On the other hand, nodal distributions adapted to the
boundary do not represent any relevant advantage if boundary conditions are imposed in weak
form, as usual in DG formulations. Note however, the evolution of the condition number shown
in Figure 10 for the element mass matrix as a function of the interpolation degree. As expected,
Fekete points clearly decrease the condition number but adapted distributions of nodes also
have a major influence on the condition number.

3.2. Numerical integration

The weak form that must be solved requires both integrations along element edges and in the
elements interiors. All integrals in elements not having an edge along the NURBS boundary
are computed using standard procedures. The elements (2. with one side, I'c, on the NURBS
boundary require special attention. Two cases must be considered: line integrals (usually
related to the implementation of natural boundary conditions or to flux evaluation along I'. in
a DG context) or surface integrals (standard integrals in the element 2.). As discussed in the
previous section, since NEFEM uses polynomials to approximate the solution, the difficulties
in numerical integration are only restricted to the definition of a proper numerical quadrature
in the curved element I, = ¥~'(£2,) or its corresponding curved face. This, as will be observed
below, reduces the complexity in the accurate evaluation of integrals, which are not as costly
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Figure 11. Relative error for the integration of polynomials zy and z''y° along the front part of the
NACA 0012 airfoil.
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Figure 12. Trimmed NURBS curve describing the front part of the NACA 0012 airfoil (solid line),
control points (o), control polygon (dashed line) and image of the breakpoints (o)

as in standard mesh-free methods [21], or in isogeometric analysis [12].

3.2.1. Line integrals A line integral to be computed along a curved boundary side given by
a trimmed NURBS, ', = C([\{, A3]), can be written as

A5
[ £ae= [ rem) lewi o

where f is a generic function (usually polynomial), and |Jc|| denotes the norm of the
differential of the NURBS parametrization C' (which, in general, is not a polynomial). As
usual, a 1D numerical quadrature is used for the numerical computation of the integral, namely

Djp

[ parsy £(00) (ol v, @)
e =1

where A; and w; are the coordinates and weights of the n;; integration points in [A], A5].
Recall that the parametrization of a trimmed NURBS, C, is a piecewise rational function
whose definition changes at breakpoints. Thus, an independent numerical quadrature must be
considered at every interval between breakpoints (patch) to account for the discontinuous
nature of the parametrization. In [22] a detailed comparison and discussion on different
alternatives to evaluate (4) is presented. Numerical experiments reveal that Gauss-Legendre
quadratures are a competitive choice in front of other quadrature rules such as trapezoidal and
Simpson composite rules or Romberg’s integration. For instance, Figure 11 shows the evolution
of the relative error for the integration of polynomials zy and z!!y? along the trimmed NURBS
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corresponding to the front part of the NACA 0012 airfoil, see Figure 12. For Gauss-Legendre
composite rules, n denotes the number of integration points in every subinterval. Note that
a composite quadrature with two intervals and n = 8 Gauss-Legendre integration points in
each interval achieves almost machine precision. Thus, although the faster convergence is
obviously obtained for high-order simple quadratures (in each patch), the use of composite
rules is very attractive, because it allows the definition of adaptive quadratures to control the
integration error and ensure reliable computations for any NURBS and any order of polynomial
interpolation.

Remark 3. It is worth noting that in practical applications it is not necessary to compute
numerical integrals with machine precision. Numerical experiments simulating the scattering
of a planar electromagnetic wave [22] reveal that, in practice, if the NURBS is parametrized
such that velocity has smooth variations, only one extra integration point, compared to standard
isoparametric FE, is required. That is, for a given discretization with polynomials of order p,
a numerical quadrature with p + 2 Gauss-Legendre integration points in each patch provides
the mazimum accuracy.

3.2.2. Element integrals NEFEM also requires to compute integrals in an element 2, with
one side I'. on the NURBS boundary, see Figure 7. That is,

/ fdxdy=|Jqu|/ f dedn (5)
Qe I.

where |Jg| is the determinant of the Jacobian of the linear transformation ¥. Thus, a numerical
quadrature for every local curved element I, is needed. In [22] different alternatives are
presented and discussed. The best alternative, see Figure 13, is to define a transformation
from the rectangle [A§, A§] x [0,1] to the curved element I., namely,

¥ :[ T,/\S]X [071]—>Ie

co—f}- g

where ¢ = (¢1, )" := ¥ !0 C is the parametrization of the trimmed NURBS corresponding
to the curved side in I.. Note that this transformation requires that nodes are numbered
following the non restrictive assumption presented in Remark 1. Note also, that such a
parametrization is linear in ¢ and, as discussed in Remark 4, this implies important practical
advantages. Thus, using the transformations shown in Figure 13, integral (5) is computed as

Iljp ﬂlip

| pdvdy =1l [ 1 dean= 1001 303 £E) TG wim, (7)

i=1 j=1

where n;;, and m;; are the number of integration points in A and ¢ directions, respectively,
& = e(Ni; (), {Niswi} and {(j,w;} are the 1D quadrature points and weights for [Af, A9]
and [0, 1] respectively, and |J,| is the determinant of the Jacobian of the transformation ¢.
Note that to integrate a polynomial f of degree k in 2., given the transformations shown in
Figure 13, the (non polynomial) function

FOL Q) = FleN Q)6 (A, QL. (8)
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Figure 13. Transformation from [Af,A3] x [0, 1] to I. and Q.

must be integrated in [A{, A5] x [0,1]. Recall that ¢, see (6), is linear in ¢ and, therefore,
f(e(A,¢)) is a polynomial of degree k in (. Moreover, |J,(,¢)| is linear in ¢. Thus, f(),¢)
is a polynomial of degree k + 1 in ¢ and consequently a Gauss-Legendre quadrature of order
k (or k + 1 for even k) is optimal for the 1D quadrature along (.

Remark 4. When the transformation from the rectangle o is considered, the integrals involved
in the elemental matrices, for a NEFEM solution with interpolation of degree p, can be exactly
computed for one of the parameters, (, using a Gauss-Legendre quadrature with p+1 integration
points. The other dimension, A\, can be integrated using the same quadrature considered in
section 3.2.1 for line integrals over NURBS.

Note that the rational definition of application ¢ is only due to the rational definition of
the boundary. Thus, in the particular case of a geometry given by a g-th degree B-spline, i.e. a
piecewise polynomial parametrization, the elemental matrices can be exactly computed with
Gauss-Legendre quadratures with p + 1 integration points for the ¢ parameter, and g(p + 1)
integration points for the NURBS parameter \. For instance, the NACA 0012 geometry is
usually described by a B-Spline of degree ¢ = 3, and therefore element integrals can be exactly
computed with Gauss-Legendre quadratures with p+1 and 3(p+ 1) integration points in each
direction.

Remark 5. When the parametrization of the NURBS is smooth (i.e. for small variations
of the so-called velocity of the parametrization), p + 1 integration points (in each patch) for
parameter \ are only required to achieve mazimum accuracy in the quantity of interest. Thus,
for NEFEM edges not including breakpoints, the number of integration points is the same as
for standard isoparametric FE. This is illustrated in the numerical experiments simulating the
scattering of a planar electromagnetic wave in [22] and the examples in section 4.1.

Another obvious option instead of using ¢ to transform a rectangle into I, is to define
another transformation from I to a curved triangle I. and then use quadratures specifically
designed for triangles. This is also discussed in [22]. For standard FE these triangle quadratures
require less integration points than other quadrature rules to achieve the same accuracy, but
this is not the case here. The use of a transformation depending on the NURBS parametrization
(from I to a curved triangle) leads to expensive triangle quadratures. The integration strategy
proposed in this section is much more competitive due to the good behavior of parameter (
commented in Remark 4.
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Figure 14. Two numerical quadratures in a curved element for the same accuracy

The efficiency of the proposed quadrature is illustrated in Figure 14. It shows the integration
points required to integrate z over a curved triangle with an error of 0.5%, using the
transformation from a rectangle proposed in this section (with 30 integration points) and a
symmetric triangle quadrature [23] adapted to the curved element (with 54 integration points),
see [22] for details.

3.3. Some comments on the implementation of the NEFEM

The enhancement of a standard FE code with the NEFEM methodology requires little effort.
Note that the main difference of a NEFEM code with a standard FE code is at the level of
the computation of elemental matrices and vectors for curved elements and edges. In fact,
fortunately, the usual routines for the computation of elemental matrices and vectors for
straight-sided elements can be directly used, without any modification, just using a modified
definition of the reference element. That is, the integration points and the shape functions
evaluated at these points, which are usually an input of these routines, have to be particularized
for every local curved element I, or side I'.. Thus, most of the routines usual in a standard
FE code (routines for assembly, computation of elemental matrices and vectors, etc) can be
directly used.

In fact, the most crucial point in the implementation may be the inclusion of the NURBS
boundary information. The information for the evaluation of all NURBS describing the
boundary has to be stored. Moreover, for every curved side I'. = C([A§, A§]) the information of
the corresponding trimmed NURBS is also necessary, that is, the extremes of the interval A{
and A5 and a pointer to the information of the NURBS C. Nowadays this is not an information
usually provided by standard mesh generators but, it is worth noting that routines for the
evaluation of NURBS can be easily obtained or implemented [13].

On the other hand, in the context of DG formulations, NEFEM is a natural option for
the implementation of high-order approximations in domains with curved boundaries. In
DG codes it is usual to store only the vertices of a triangle mesh, and their connectivities,
usually obtained with a linear triangle mesh generator. For high-order computations with
straight-sided elements, if needed, all nodal coordinates are determined from the vertices
coordinates. Under these circumstances NEFEM allows a straightforward implementation of
curved boundaries, with no need of a high-order mesh generator, because the nodal coordinates
at elements with one side on the NURBS boundary can be easily determined from the vertices
of the triangles and the NURBS information.
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8.4. A priori error estimates

Since NEFEM considers the usual FE polynomial interpolation, see section 3.1, a priori error
estimates are exactly the same as those for standard FE. For instance, the result for the
solution of second order elliptic problems is recalled in the following theorem.

Theorem 1. Let T, a non-degenerate triangulation (i.e. there is a positive constant 3 such
that ge/he > B, for all Qe € Ty, where he and g. are the diameters of Q. and of the circle
inscribed in Q., respectively). Assuming that all boundary conditions along curved boundaries
are imposed in weak form, the following a priori estimate holds

lu — un|lc2) < KR ulpor ), 9)

where u € HPTY(Q) and uy, are the exact and the NEFEM solution respectively, K is a constant,
h is the mesh size, and p is the polynomial degree of interpolation.
Moreover, for p-refinement convergence the following estimate also holds,

lu —unl|p@) < Cexp(=kN"), (10)

where ||-|| gy is the energy norm, C and k are positive constants, N is the number of degrees
of freedom, and r 2 1/2 for 2D problems.

The same arguments used in the proof of standard FE error estimates are valid for the proof
of Theorem 1. In fact, the derivation of a priori error estimates for NEFEM is identical to FE
a priori estimates in polygonal domains, which can be found in [24, 25, 26] for h-refinement
and in [27] for p-refinement.

It is worth noting that contrary to NEFEM, the proof of a priori error estimates for
isoparametric FE in the presence of curved boundaries requires special attention. First, the use
of isoparametric FE induces geometric errors because the computational domain is, in fact, a
piecewise polynomial approximation of the physical geometry. Thus, to obtain optimal a priori
error estimates, the maximum distance between the computational and the exact boundary
should be bounded by vh?, where « is a constant, h is the mesh size and p is the polynomial
degree. Moreover, bounds of the jacobian of the isoparametric transformation and its first p
derivatives are also necessary, see [28]. Thus, an isoparametric curved element must verify two
contradictory requirements. On one hand, the computational polynomial boundary has to be
close enough to the curved boundary. And on the other hand, the discrepancy between the
curved element and the straight element given by its vertices must vanish fast enough, see
[29]. In practice, this requirements imply that specific nodal distributions on curved elements
are mandatory in order to obtain the optimal rate of convergence. For instace, with cubic
elements, small variations of the interior node cause suboptimal convergence.

With NEFEM (as well as for FE in a domain with polygonal boundary) the spatial
discretization does not introduce geometric errors. Moreover, NEFEM uses a linear mapping
to relate local and cartesian coordinates, see section 3. In fact, the linear transformation used
by NEFEM is exactly the same mapping used by standard FE on a domain with polygonal
boundaries. Consequently, all a priori error estimates demonstrated in FE for domains with
polygonal boundaries can be reproduced exactly for NEFEM, even in the presence of elements
far from having straight edges.

Theorem 1 assumes that essential boundary conditions are imposed in weak form, for
instance with numerical fluxes in a DG context, or with Nitsche’s method [30, 31] in a
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Figure 15. Coarse meshes for h-refinement test. Nested remeshing is used for refinement.

continuous formulation. If Dirichlet boundary conditions are imposed in strong form, an
additional condition is required to keep optimal convergence rates: Fekette nodal distributions
adapted to every curved element have to be considered, see right distribution in Figure 9. This
is formally stated in the next result.

Theorem 2. Under the assumptions of Theorem 1, the error bounds (9) and (10) hold
for @ NEFEM solution with a strong implementation of Dirichlet boundary conditions, if
Fekette nodal distributions adapted for every curved element along the Dirichlet boundary are
considered.

The requirement of Fekete nodal distributions is necessary for an accurate interpolation of
Dirichlet boundary conditions on curved boundaries. Due to the use of polynomial nodal basis
in cartesian coordinates, the errors in the approximation of the prescribed value along the
boundary may deteriorate the convergence of the solution. This is the case for NEFEM as
well as for other approaches considering cartesian polynomial approximations. For instance, in
[32] optimal convergence rates are proven when nodes on the boundary correspond to Lobatto
points (i.e Fekette points in 1D).

4. NUMERICAL EXAMPLES

The application of the proposed methodology is illustrated using several numerical examples.
The first example is an elliptic problem and it is solved using a continuous Galerkin formulation.
More complex problems, concerning the numerical solution of transient Maxwell’s equations,
are also considered in order to illustrate the efficiency of NEFEM in a DG framework.

4.1. Poisson problem

The following model problem is solved in two dimensions

—Au = f in Q
u = wug on Iy (11)
Vu-n = g, on I,

where  is the domain (see two NEFEM meshes in Figure 15), Ty UT,, = 9Q and n is the
outward unit normal vector on 9. The source is given by f(z,y) = z cos(y) + ysin(x), such
that the analytical solution of the problem is known and smooth,
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Figure 16. NEFEM h-convergence in the £?(2) norm for Poisson example

L% £ Energy
2.21 1.63 1.21
3.06 2.98 2.12
4.02 4.00 3.04
5.02 4.95 4.08
6.02 5.94 5.02

O W N =S

Table I. NEFEM h-refinement rates of convergence for Poisson example

u(z,y) = zcos(y) + ysin(z).

A Dirichlet boundary condition, corresponding to the analytical solution, is imposed in the
polygonal part of the boundary I'y, and a Neumann boundary condition, also corresponding
to the analytical normal flux, is imposed in the curved part of the boundary TI',,. The curved
part of the boundary, corresponding to half of a circle, is exactly described with NEFEM using
one quadratic trimmed NURBS.

In order to check the theoretical convergence rates of Theorem 1, h-refinement is first
explored. Figure 15 shows the first computational meshes, nested remeshing is used for
refinement. The £2(Q) error is plotted in Figure 16 for polynomials of degree up to p = 5.
Table I also reports the rate of convergence in the £2(£2) norm, the £>°(€2) norm and the
energy norm. As stated in Theorem 1, NEFEM provides optimal convergence rates.

In this section, numerical integration is performed with p + 1 integration points for A
parameter, see Remarks 3 and 5. Thus, the number of integration points for the computation
in a NEFEM element is the same as for a standard isoparametric FE.

Figure 17 shows a similar analysis but related to the Neumann boundary: h-convergence
in the £2(I',) norm is compared for isoparametric FE and NEFEM with a polynomial
interpolation up to degree p = 3. Optimal convergence rates, i.e p + 1, are obtained with
isoparametric FE. The interior node for isoparametric curved FE with p = 3 is located
following the algorithm in [28]. An algorithm to compute nodal coordinates for higher order
isoparametric FE, not considered here, can be found in [29]. Further numerical experiments not



16 R. SEVILLA, S. FERNANDEZ-MENDEZ AND A. HUERTA

-2 e
PR e
3 . S /_—:
_4 o = ﬁ'ﬁ._ =W
-5 -/_ -""- s 'f/
& gl... B T
= s
P =
g -
2 4 [-e-FEM p=1
-v-FEM p=2
9 T {-=-FEM p=3
L —e—NEFEM p=1
_10 | ——NEFEM p=2
" : ‘ { | -—=—NEFEMp=3
- -12 -1 08 06 04

og,4(h)

Figure 17. h-convergence in the £?(I'y) norm for the Poisson example

reported here, confirm the importance of a proper location of interior nodes for isoparametric
FE computations: clearly suboptimal rates of convergence are obtained for p > 3 if nodal
coordinates are not located following [28, 29]. This is not the case for NEFEM, where optimal
convergence rates are ensured for any interpolation degree and for any distribution of interior
nodes in curved elements, see section 3.4.

Is it probably more important to note that this numerical experiment shows that NEFEM
exhibits higher accuracy and rate of convergence for the £2(I',)) norm. For instance, similar
accuracy and convergence is obtained for quadratic isoparametric FE and for NEFEM with
linear interpolation, with a saving in the number of nodes between 25% and 35%. Analogously,
the error with cubic isoparametric FE is almost identical to the error with NEFEM using
quadratic interpolation, with a saving in the number of nodes of about 50%. Moreover, for the
same mesh and order of interpolation, NEFEM is between two and three orders of magnitude
more precise than the corresponding isoparametric FE solution. Thus, this numerical example
illustrates the efficiency of NEFEM, in front of isoparametric FE, for the computation of
quantities of interest at (or near) curved boundaries. Similar conclusions are derived from the
scattering simulations shown in section 4.2.

No significative differences between NEFEM and isoparametric FE accuracy are observed
when the error is measured on the whole domain in £2(2) norm. As expected for an elliptic
problem, the influence of the geometry of the boundary (or of boundary conditions) is
inappreciable in the interior of the domain. This is not the case for instance for wave problems,
where pollution errors may deteriorate the solution in the whole domain.

Next, a p-convergence study is performed using the computational meshes represented in
Figure 15. As usual in the context of p and hp versions of the FEM, see [27, 33], the error in
the energy norm is represented in Figure 18 as a function of the square root of the number of
degrees of freedom. NEFEM, as expected from Theorem 1, presents exponential convergence.

It is important to remark that same conclusions are derived from all numerical tests in this
section if Dirichlet boundary conditions are imposed along the curved boundary, with both a
weak imposition, see Theorem 1, or with a strong imposition using Fekette points, see Theorem
2 and Figure 9.
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Figure 18. NEFEM p-convergence in the energy norm for Poisson example

Finally, it is worth noting that in a FE adaptive process, see [34], the computational
mesh must be locally refined to properly account both for the solution and the geometry.
Whereas in a NEFEM context the adaptive process is controlled only by the complexity of the
solution, independently of the geometrical complexity of the domain, and therefore reducing
the necessary number of degrees of freedom to achieve a desired accuracy.

4.2. Electromagnetic scattering simulations

In this section a DG formulation is considered for the simulation of 2D scattering of a single
plane electromagnetic wave by a Perfect Electric Conductor (PEC) obstacle, assumed to be
surrounded by free space. For a linear isotropic material of relative permittivity £ and relative
permeability g, 2D Maxwell’s equations (which are decoupled in the Transverse Electric, TE,
and Transverse Magnetic, TM, modes) can be written in dimensionless conservative form as

U  OF(U) .
—+——=0 Q 12
ot T o, in Q, (12)
where Einstein notation is assumed. The vector of conserved quantities U and the fluxes F,
are
EEl 0 —H3
U=|¢cEy |, Fi=|Hs|, F2=| 0 |,
ILHQ E2 —E]
for TE mode, and
EEl 0 _HB
U=\|c¢Ey |, Fi1=|Hs|, Fs=| 0 |,
/,LH3 E2 —El

for TM mode, where E = (Ey, B9, E3)T and H = (Hy, Hy, H3)T are the scattered electric and
magnetic field intensity vectors. It is assumed that there are no electric sources in the material.

In the DG implementation, numerical fluxes at the interior edges are defined from the
Rankine-Hugoniot jump conditions [35], which can also be interpreted as a fluz splitting
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Figure 19. Scattering of a planar wave by a PEC cylinder: problem setup and computational mesh

technique, see [36]. Artificial absorbing boundaries are implemented with a first-order Silver-
Miiller condition, see for instance [37], and in all the examples computations are stopped before
scattered waves reach the artificial boundary. Otherwise, more accurate artificial absorbing
boundaries should be considered, see for instance [38]. At a PEC boundary, the tangential
component of the total electric field (scattered plus incident) and the normal component of
the total magnetic field vanish, that is

nxE+nxE' =0, n-H+n-H' =0,

where the superscript I refers to the incident wave. Using Rankine-Hugoniot jump conditions,
PEC boundary conditions lead to the following numerical flux

~ PEC —noHE™
F, (U)=| mHF |, where  HEEC = Ha + \/e/u (a +a').
I
—a
for TE mode, and

~PEC ny E5EC

F,  (U)=|-mEF|, where  E3 = E3 ++/p/s (B+87).
-t

for TM mode, where a := n1Fy —ngFEy = n X E and 3 := —n1Hs +noHy = —m x H. All
computations are performed using a fourth-order explicit Runge-Kutta time-marching scheme.

4.2.1. Circle: The first example considers an incident plane wave travelling in the z™*
direction and scattered by a circle, which is exactly described with a quadratic NURBS
curve, see Figure 19. The diameter of the circle is two wave lengths. A coarse mesh with
only four elements for the discretization of the NURBS boundary is considered and high-order
approximations are used to properly capture the solution. To avoid ill-conditioning for high-
order computations, all numerical solutions in this section are obtained with Fekette node
distributions on both straight-sided and curved elements.

Figure 20 shows the transverse field Hz and the Radar Cross Section (RCS) for TE mode,
after four cycles, with a NEFEM approximation of degree 7. The NEFEM solution and the
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Figure 21. Comparison of TE RCS error distribution for FE and NEFEM with p = 5,6

analytical solution [39] are overlapped; more precisely the £2([—m,]) error in the RCS is
1.6 10~2, whereas the error for isoparametric FE is 6.1 10~2. Figure 21 shows a more detailed
comparison: the RCS error distribution for isoparametric FE and for NEFEM using high-order
approximation, namely p = 5,6. In both cases, NEFEM clearly improves the solution. The
same analysis is performed for TM mode. Figyre 22 shows the F5 distribution and the RCS
for p = 7 on the coarse mesh depicted in Figure 19. Again, numerical and analytical solutions
are overlapped. Moreover, the comparison with isoparametric FE in Figure 23 demonstrates,
once more, the better performance of NEFEM.

To compare accuracy, the error evolution for increasing p is depicted in Figure 24. For the
same discretization (i.e. same degree of interpolation) NEFEM results are more accurate than
the isoparametric FE ones. For instance, NEFEM with degree p = 5, provides a RCS with an
error of about 2%, whereas isoparametric FE require p = 7 to achieve a comparable accuracy
(2.4 times more degrees of freedom than NEFEM).

As commented in section 3.4, the lower accuracy of isoparametric FE for high-order
computations is due to two main facts: the piecewise polynomial approximation of the
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boundary, and the isoparametric transformation used to map the polynomial base in the
reference element; which, for high-order approximation leads to a base in cartesian coordinates
far from being polynomial. To quantify the effect of both sources of error, cartesian FE
approximation is also considered and its accuracy depicted in Figure 24. That is, the
usual reference element is used for integration purposes, but the polynomial base for the
approximation of the solution is defined with cartesian coordinates directly in the physical
domain. This means that an approximate (piecewise polynomial) description of the boundary
is maintained, but the isoparametric transformation for the approximation is avoided. Thus,
cartesian FE exactly reproduce polynomials in the physical domain. Similar results would be
obtained using isoparametric FE with especially designed interior node coordinates instead of
Fekette nodes, see [28, 29] and Sections 3.4 and 4.1.

Thus, the difference between the cartesian FE and NEFEM results in Figure 24 corresponds
to the error due to the piecewise polynomial approximation of the boundary in a standard
FE computation; which is completely eliminated in a NEFEM solution. More precisely, with
NEFEM the outward normal vector is computed exactly in terms of the NURBS boundary
parametrization, improving the flux computation at the PEC boundary.

Finally, it is important to note that NEFEM is a more efficient strategy than cartesian FE.
The increase in the computational cost, due to the specific numerical treatment of curved
elements along the boundary, is similar in NEFEM and cartesian FE, but from an accuracy
point of view NEFEM provides much better results. For instance, the curves in Figure 24 show
that to attain an accuracy comparable to a NEFEM computation with degree p = 5 (with
an error of 2.2% in the RCS), cartesian FE require a discretization with degree p = 6 (with
an error of 3.2%). That is, NEFEM provides similar accuracy to cartesian FE with a 63%
reduction in the number of degrees of freedom.

4.2.2. NACA airfoil: The second example consists on the scattering of a planar wave by the
NACA 0012 airfoil. The NACA 0012 is a symmetric airfoil with analytical expression [40], that
can not be exactly described with a NURBS curve. As usual in the context of airfoil shape
optimization, an approximation of the upper part of the airfoil using a B-Spline with eight
control points is considered here, see for instance [22] for the B-spline data.

Figure 25 shows a detail of the computational mesh and the solution of TE mode with
degree p = 8, for an airfoil with a chord length of 2 wave lengths. The angle of incidence is 0
rad. NEFEM Fj3 distribution and the RCS are in good agreement with a reference numerical
solution, see for instance [38], with an £?([—m,]) error of 1072 in the RCS. Figure 25 also
shows the distribution of the error in the RCS for NEFEM and isoparametric FE, with Fekette
nodal distributions. Again, NEFEM provides much more accurate results than isoparametric
FE.

Next, NEFEM performance for a computation with higher frequency is tested: the NACA
0012 airfoil with a chord length of 10 wave lengths and angle of incidence of 7/2 rad is
considered, see for instance [41]. A detail of the computational mesh, and the NEFEM
solution obtained with an approximation of degree p = 13 is shown in Figure 26. The
FEs5 field and the RCS are in good agreement with a reference solution, demonstrating the
applicability of NEFEM methodology for the computation with high-degree approximation
in coarse meshes (only 8 elements for the description of the airfoil boundary). The error
distribution is also plotted in Figure 26. In this example the errors in the isoparametric FE
solution are clearly unacceptable, whereas NEFEM demonstrates its good performance for
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Figure 27. Irregular circle: detail of the computational mesh and NEFEM solution for p = 9.

high-order computations.

4.2.3. Complex scatterers: Previous examples show the advantages of the NEFEM
formulation in front of classical FE for the numerical solution of some test cases. To illustrate all
the capabilities of NEFEM, more complex scatterers are considered next. The first example is
the scattering induced by an irreqular circle with diameter of four wave lengths. The geometry
of the obstacle is described ezactly using one NURBS and a coarse mesh with only eight
elements for the representation of the boundary is considered, see Figure 27.

As noted earlier, see section 3, it is important to remark that the only restriction for a
NEFEM triangle is that the curved edge belongs to one NURBS. The computational mesh
is chosen to emphasize the possibilities of NEFEM. It is not necessary to locate nodes at
boundary corners (boundary points with C° continuity), nor to refine the mesh near the
boundary to capture the geometry (it is exactly represented in NEFEM independently of
the spatial discretization!).

Figure 27 also shows the transverse field Hs with p = 9 after four cycles. Even for elements
with corners in its NURBS edge the quality of the solution is not deteriorated. Details showing
the transverse field near the irregularities are represented in Figure 28.

The last example consists on the scattering of an electromagnetic wave by a real aircraft
profile of ten wave lengths. The geometry of the 2D section of this aircraft has several critical
zones, in particular, a small irregularity on the upper part and the rear part. Figure 29 shows
the computational mesh used for NEFEM simulation, with only 44 elements on the curved
boundary. Some details of the mesh are also represented, showing that it is not necessary to
refine the mesh to capture exactly the geometry. Figure 30 shows the transverse field Hj3 after
ten cycles and some details near the most critical zones of the aircraft.

It is worth noting that using classical isoparametric FE it is not possible to compute accurate
solutions for these problems with the computational meshes used by NEFEM, see Figures
27 and 29. To properly capture the geometry of the domain with isoparametric FE it is
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Figure 28. Irregular circle: details of NEFEM solution near some irregularities.

Figure 29. Aircraft profile: details of NEFEM computational mesh.
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Figure 30. Aircraft profile: details of NEFEM solution for p = 8 (H3 distribution).

/

necessary to discretize accounting for corners nodes (boundary points with only C° continuity).
Thus, the minimum element size is controlled by the size of these irregularities, increasing the
number of degrees of freedom in comparison with NEFEM. For instance, Figure 31 represents
a computational mesh adapted to use isoparametric FE. Detailed views near critical zones of
the aircraft show that h-refinement is mandatory to properly capture the slope discontinuities
in the aircraft profile. The minimum mesh size for the FE mesh in Figure 31 is 3 102 whereas
the minimum mes h size for NEFEM mesh in Figure 29 is 0.2. Obviously, this drastic difference
between minimum mesh sizes induces important differences in the time-step size when explicit
time integrators are used and, therefore, shows another advantage of NEFEM.

5. Concluding remarks

An improvement of standard FE is proposed in this work. The exact CAD description of the
geometrical model is considered, but only for the boundary of the computational domain. At
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Figure 31. FE mesh around the aircraft profile and detailed view near critical zones

elements intersecting the NURBS boundary specific interpolation and numerical integration
are proposed and, at elements not intersecting the boundary classical FE are used, preserving
the efficiency of the finite element method. A priori error estimates are given and comments
on the implementation of NEFEM are detailed. It is worth noting that a little effort is needed
to enhance a usual FE code with the NEFEM concept.

Numerical examples demonstrate the advantages of NEFEM in front of -classical
isoparametric and cartesian FE. A Poisson example shows the applicability of the proposed
method in a continuous Galerkin framework. Moreover, it allows to corroborate the a priori
error estimates. Some electromagnetic scattering applications are used to show the benefits of
the proposed method combined with a DG formulation. Even if the geometry of the boundary
of the domain is simple, like a circle, NEFEM is, at least, one order of magnitude more
precise than isoparametric FE. When the geometric model is complex, like and aircraft profile,
NEFEM is able to compute accurate solutions using coarse meshes. The exact representation
of the boundary allows to mesh the domain independently of the geometric complexity of
the boundary whereas classical isoparametric FE need h-refinement to properly capture the
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