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Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain
{yolanda.vidal,antonio.huerta}@upc.edu

Summary. A novel approach for implicit residual-type error estimation in mesh-
free methods is presented. This allows to compute upper and lower bounds of the
error in energy norm with the ultimate goal of obtaining bounds for outputs of in-
terest. The proposed approach precludes the main drawbacks of standard residual
type estimators circumventing the need of flux-equilibration and resulting in a sim-
ple implementation that avoids integrals on edges/sides of a domain decomposition
(mesh). This is especially interesting for mesh-free methods.
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1 Introduction

Assessment of functional outputs of the solution (goal-oriented error estima-
tion) in computational mechanics problems is a real need in standard engi-
neering practice. In particular, end-users of finite elements, finite differences or
mesh-free codes are interested in obtaining bounds for quantities of engineer-
ing interest. Techniques providing these bounds require using error estimators
in the energy norm of the solution. Bounds for quantities of interest (func-
tional outputs) are recovered combining upper and lower bounds of the energy
error for both the original problem (primal) and a dual problem (associated
with the selected functional output) [21, 1, 20].

It is also important to note that bounds for the energy and for quantities
of interest are usually obtained with respect to a reference solution (associated
with a much larger space of approximation). Bounds for the exact solution of
the boundary value problem as presented in [3, 26, 22] are not addressed here.

The need of obtaining reliable upper and lower bounds of the error for
quantities of interest has motivated the use of residual error estimators, which
are currently the only type of estimators ensuring bounds for the error. Classi-
cal residual type estimators, which provide upper bounds of the error, require
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flux-equilibration procedures (hybrid-flux techniques) to properly set bound-
ary conditions for local problems [14, 1]. Flux-equilibration requires a domain
decomposition, which is natural in finite elements but not in mesh-free meth-
ods. And, moreover, it is performed by a complex algorithm, strongly depen-
dent on the finite element type and requiring a data structure that is not
natural in a standard finite element code. Thus highly embedded in the finite
element domain decomposition.

The idea of using flux-free estimators, based on the partition-of-the-unity
concept and using local subdomains different than elements, has been already
proposed in [4, 16, 18, 23] for finite elements. The main advantage of the
flux-free approach is the simplicity in the implementation. Obviously, this is
especially important in the 3D case.

From the mesh-less point of view, another advantage is the fact that the lo-
cal subdomains where the error equation is solved are the support of the func-
tions characterizing the partition of unity. This is a concept that also exists
in mesh-free methods and thus the extension is possible. Moreover, boundary
conditions of the local problems are trivial and the usual data structure of a
code is directly employed.

In the last few years, some research has been devoted to develop error
estimation procedures for mesh-free methods. Duarte and Oden [7] derived
an explicit residual error estimator for the h-p cloud method. Liu et al [15]
used a wavelet solution as an error indicator in an algorithm where multiple-
scale adaptive refinement had been introduced. Chung and Belytschko [5]
adapted the FEM stress projection technique for error analysis in Element
Free Galerkin (EFG). Gavete et al [10] proposed a sort of recovery-based error
estimate, which presents the standard drawbacks of these methods. None of
these approaches was able to compute bounds of the energy error. Thus, the
assessment of bounds and functional outputs is still an open topic in mesh-free
methods.

To the authors knowledge implicit residual based estimators have not been
proposed for mesh-free methods. However, these residual based approaches are
now standard in finite elements because they are more mathematically sound,
more precise and allow to compute upper and lower bounds for energy norms
as well as functional outputs.

In this paper the implicit residual-type flux-free error estimator proposed
in [23], which has similar efficiency as standard hybrid-flux estimators, is ex-
tended to the Element Free Galerkin Method. The remainder of the paper is
structured as follows. Section 2, following [23], recalls the basics on output
oriented error estimation in finite elements and introduces a flux-free error es-
timator. Section 3 is devoted to extend step by step the previous concepts to
the Element Free Galerkin method: Dirichlet boundary conditions, definition
of the reference error, estimation of outputs of interest, numerical integration,
local domain for the error equation, and finally the solvability of the local
problems. Finally, in Section 4, some numerical examples are shown.
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2 Basics on output oriented error estimation in FEM

2.1 Model Problem

Let Ω ⊂ Rnsd be an open, bounded domain with piecewise linear boundary
∂Ω and nsd the number of spatial dimensions. The scalar strong form of the
problem is: find u such that{

−∇2u+ σu = s in Ω,
u = uD on ∂Ω.

(1)

Only Dirichlet boundary conditions are considered for simplicity. It is trivial to
extend these concepts to account also for Neumann-type boundary conditions.
The standard weak solution of this problem is u ∈ U verifying

a(u, v) = l(v) ∀v ∈ V, (2)

where
a(u, v) =

∫
Ω

∇v·∇u+ σvu dΩ, l(v) =
∫

Ω

vs dΩ.

The usual solution and test spaces are defined U = {u ∈ H1(Ω), u|∂Ω =
uD} and V0 = {v ∈ H1(Ω), v|∂Ω = 0}, whereH1 is the standard Sobolev space
of square integrable functions and first derivatives. The bilinear form a(·, ·)
induces the energy norm, which is denoted by ‖·‖, that is, ‖v‖2 = a(v, v).

The finite element interpolation spaces UH ⊂ U and VH
0 ⊂ V0 are asso-

ciated with a finite element mesh of characteristic size H and degree p for
the complete interpolation polynomial base. The geometric support of the el-
ements for a given mesh are open subdomains denoted by Ωk, k = 1 . . . nel,
where Ω =

⋃
k Ωk. It is also assumed that different elements do not overlap,

that is, Ωk ∩ Ωl = ∅ for k 6= l. Then, the finite element solution uH which is
an approximation to u, lies in the finite dimensional space UH and verifies

a(uH , v) = l(v) ∀v ∈ VH
0 .

2.2 Error equations and reference error

The goal of a posteriori error estimation is to assess the accuracy of the finite
element solution uH , that is, to evaluate and measure the error, e := u− uH ,
which belongs to V, either in the energy norm ‖e‖ or in a quantity of interest
as it will be shown next. The equation for the error is recovered from (2)
replacing the exact solution u by uH + e and using the linearity of the first
argument of a(·, ·)

a(e, v) = l(v)− a(uH , v) =: RP (v) ∀v ∈ V0, (3)

where RP (·) stands for the weak residue associated to the finite element ap-
proximation uH .
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The exact error e is replaced by a reference error, eh, lying in a finite
dimensional space Vh

0 much richer than the original finite element space VH
0 ,

i.e. VH
0 ⊂ Vh

0 ⊂ V0. That is, the exact solution u is replaced by the reference
(or truth) solution uh; consequently, u ≈ uh = uH + eh. Given this definition
of eh it is easy to verify that the reference error is the projection of the exact
error into the reference space, that is, eh ∈ Vh

0 is the solution of the problem

a(eh, v) = RP (v) ∀v ∈ Vh
0 . (4)

Direct evaluation of eh is computationally unaffordable because the size of
the system of equations is the dimension of Vh

0 . The idea behind any implicit
residual error estimator is to solve local problems instead of the global problem
(4). Each of these local problems require proper boundary conditions in order
to obtain a good approximation of the error and to ensure solvability.

2.3 Estimation of outputs of interest

The actual interest is to bound output quantities lO(u), where lO(·) is a linear
functional, see for instance [21, 17, 25, 20, 24, 29]. These strategies introduce
a dual (or adjoint) problem with respect to the selected output. The weak
form of the dual problem reads: find ψ ∈ V0 such that

a(v, ψ) = lO(v) ∀v ∈ V0.

The finite element approximation of the dual problem is ψH ∈ VH
0 such that

a(v, ψH) = lO(v) ∀v ∈ VH
0 .

Finally, the dual reference error is εh := ψh − ψH ∈ Vh
0 , such that

a(v, εh) = lO(v)− a(v, ψH) =: RD(v) ∀v ∈ Vh
0 , (5)

where RD is the weak residue associated with ψH .
If v is replaced by eh in (5), then using Galerkin orthogonality and the

parallelogram identity, the following representation of lO(eh) can be obtained

lO(eh) = a(eh, εh) =
1
4
‖κeh +

1
κ
εh‖2 − 1

4
‖κeh −

1
κ
εh‖2 (6)

for any arbitrary scalar parameter κ. To simplify the notation the arguments
in the squared norms of the r.h.s. in (6) are denoted by z±h = κeh ± 1

κεh.
In fact, in order to bound the output of the error, lO(eh), the r.h.s of (6)

indicates that it is sufficient to bound the energy norm of z+
h and z−h , (i.e. the

energy norm of linear combinations of eh and εh).
Define Eu[v] and El[v] as the upper and lower bound of ‖v‖2, respectively.

Note that Eu[v] and El[v] are not functions; instead, it is a convenient nota-
tion of the bounds. Thus, once the bounds for ‖z±h ‖2 are computed, namely
El[z±h ] ≤ ‖z±h ‖2 ≤ Eu[z±h ], the output of the error is readily bounded as
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1
4
El[z+

h ]− 1
4
Eu[z−h ] ≤ lO(eh) ≤ 1

4
Eu[z+

h ]− 1
4
El[z−h ], (7)

and, obviously, the bounds for the output of interest of the reference approx-
imation, lO(uh), are

lO(uH) +
1
4
El[z+

h ]− 1
4
Eu[z−h ] ≤ lO(uh) ≤ lO(uH) +

1
4
Eu[z+

h ]− 1
4
El[z−h ].

Next section introduces a methodology to obtain both upper and lower
bound error estimates in energy norm. This approach is then used to compute
Eu[z+

h ], Eu[z−h ], El[z+
h ] and El[z−h ].

2.4 Upper bound estimate of the reference error

Let xi, i = 1, . . . , nnp denote the vertices of the elements in the computational
mesh (thus linked to UH) and φi the corresponding linear (or bilinear or
trilinear) shape functions, which are such that φi(xj) = δij . The support of
φi is denoted by ωi and it is called the star centered in, or associated with,
vertex xi.

It is important to recall that the linear shape functions based on the ver-
tices are a partition of unity. Using this essential property and the linearity
of the weak residue RP (·), defined in (3), the residue is decomposed into local
contributions over each star

RP (v) = RP
( nnp∑

i=1

φiv
)

=
nnp∑
i=1

RP (φiv) ∀v ∈ H1(Ω).

Note that RP (φiv) vanishes if supp v ∩ ωi = ∅, since ωi is the support of φi.
The strategy to compute upper bound estimates of the reference error,

Eu[eh], consist in, first, the evaluation of the finite element solution uH , which
is necessary to compute the residue RP . And, second, the appraisal of the
local estimates ẽωi ∈ Vh

ωi , where Vh
ωi := Vh

0 ∩H1(ωi), solving problems in each
star ωi

aωi(ẽωi

, v) = RP(φiv) ∀v ∈ Vh
ωi , (8)

where aωi(·, ·) is the restriction of the bilinear form a(·, ·) to the star ωi.

Remark 1. Formally any function v ∈ Vh
ωi is not defined in the whole domain

Ω but only in the star ωi. However, here every v ∈ Vh
ωi is naturally extended

to Ω by setting its value outside ωi equal to zero. Thus, functions in Vh
ωi are

continuous in ωi but generally discontinuous across the boundary of the star.

Remark 2. The local restriction Vh
0 to the element Ωk, Vh

Ωk
:= Vh

0 ∩ H1(Ωk),
is also extended to Ω in the same way. This induces the broken space, namely

Vh
brok :=

nel⊕
k=1

Vh
Ωk
.
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Note that functions in Vh
brok may present discontinuities across the inter-

element edges (or faces) and that Vh
ωi ⊂ Vh

brok.

Remark 3. The bilinear form a(·, ·) and the energy norm are generalized to
accept broken functions in its arguments; that is, for v and w ∈ Vh

brok,

a(v, w) :=
nel∑

k=1

a
Ωk

(v, w) and ‖v‖2 :=
nel∑

k=1

‖v‖2
k,

where a
Ωk

(·, ·) is the restriction of the bilinear form a(·, ·) to the element Ωk

and ‖v‖2
k = a

Ωk
(v, v).

Finally, adding the local estimates, which have been extended into Vh
brok,

a global estimate ẽ ∈ Vh
brok is obtained,

ẽ :=
nnp∑
i=1

ẽωi

,

and the upper bound of the energy norm of the reference error is recovered
computing the norm of the estimate ẽ. See [23] for a detailed description,
development and formal analysis (viz. the proof of the next theorem) of this
estimator.

Theorem 1. The estimate ẽ =
∑nnp

i=1 ẽ
ωi

, where ẽωi

is the solution of the local
problem given in (8), is such that

Eu[eh] = ‖ẽ‖2 ≥ ‖eh‖2.

3 Extension to Element Free Galerkin

3.1 Reference error

Similarly to finite elements, in mesh-free methods a finite dimensional space
VH ⊂ H1(Ω) is associated with a particle distribution of characteristic size
H and degree p for the reproducibility imposed. Thus, the mesh-free solution
uH , which is an approximation to u, belongs to VH and verifies

a(uH , v) = l(v) ∀v ∈ VH .

However, in mesh-free methods the refined spaces are, in general, not
nested, i.e. VH 6⊂ Vh. The reference error in EFG is directly defined as the pro-
jection of the exact error into the reference space, i.e. eh ∈ Vh is the solution
of

a(eh, v) = RP (v) ∀v ∈ Vh, (9)

and, in general, eh 6= uh − uH . This weak problem is very similar to (4) and
only differs in the functional spaces because Dirichlet boundary conditions are
imposed differently. This issue will be addressed in Section 3.6. It is important
to emphasize that in mesh-free methods the reference error is not anymore
uh − uH as in finite elements but only the solution of problem (9).
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3.2 Estimation of outputs of interest

When bounds for outputs are sought, as in finite elements —recall equation
(5)—, a dual reference error is defined as εh ∈ Vh solution of

a(v, εh) = lO(v)− a(v, ψH) =: RD(v) ∀v ∈ Vh. (10)

Note again, that also in this case εh 6= ψh−ψH . If v is replaced by eh in (10),

lO(eh) = a(eh, εh) + a(eh, ψH). (11)

In finite elements Galerkin orthogonality implies a(eh, ψH) = 0 but not in
EFG. Nevertheless, the first term in the r.h.s. of (11) can be rewritten using
the parallelogram identity —as in section 2.3 and equation (6)—, namely,

lO(eh) =
1
4
‖κeh +

1
κ
εh‖2 − 1

4
‖κeh −

1
κ
εh‖2 + a(eh, ψH).

Thus in EFG the output of the error, see (7), is bounded by

1
4
El[z+

h ]−1
4
Eu[z−h ]+a(eh, ψH) ≤ lO(eh) ≤ 1

4
Eu[z+

h ]−1
4
El[z−h ]+a(eh, ψH). (12)

Several alternatives are possible to cope with the extra term, a(eh, ψH), in
EFG. The simplest one is to neglect it because intuitively it is expected to be
small. Another alternative is to compute bounds for it. Here, however, it will
be evaluated using a computable high-order approximation, thus introducing
an error which is negligible in front of the other terms.

3.3 Upper bound estimate of the reference error

In EFG the upper estimate of the reference error can also be computed with
the same rationale as in finite elements. The partition of unity is naturally
induced by the moving least squares interpolating function, which are also
denoted as φi (i now being the index of each particle). Similar restriction of
the functional spaces are defined, that is

Vh
ωi := Vh ∩H1(ωi), Vh

Ωk
:= Vh ∩H1(Ωk), and Vh

brok :=
nel⊕

k=1

Vh
Ωk
.

And the estimate also verifies equation (8), namely, find ẽωi ∈ Vh
ωi solving the

local problems in each star ωi

aωi(ẽωi

, v) = RP(φiv) ∀v ∈ Vh
ωi . (8)

Thus the estimate

ẽ :=
nnp∑
i=1

ẽωi

, (13)
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and the upper bound of the energy norm of the reference error is recovered
computing the norm of the estimate ẽ. Because theorem 1 is also applicable
here since it is based on the following lemma, which characterizes this broken
approximation.

Lemma 1. Any estimate ẽ ∈ Vh
brok verifying the weak error equation

a(ẽ, v) = RP (v) ∀v ∈ Vh, (14)

is such that the norm of ẽ is an upper bound of the energy norm of the reference
error, that is

‖ẽ‖2 ≥ ‖eh‖2.

From practical point of view, to reduce drastically the computational effort
and in order to simplify the evaluation of the local estimates, equation (8),
the definition of the star ωi is modified. Figure 1 illustrates the definition of
the star ωi. Recall that a local problem is solved in each star and that φi is
extended (equal to zero) outside of ωi.

Definition 1. A star, ωi, is the smallest integration sub-grid that includes the
support of φi.

Integration grid

Support of
shape function

Figure 1. Definition of the star ωi.

Remark 4. The solvability of the local problem, equation (8), is ensured in
scalar problems as the kernel of aωi(w, ·) for a generic function w includes
only constant functions and for v constant the r.h.s is zero by Galerkin or-
thogonality, i.e. RP

(
φiv

)
= 0 for v constant.

3.4 Evaluation of bounds for the outputs

As noted in section 3.2 the bounds for the output of interest in EFG introduce
a new term a(eh, ψH), which in principle is unknown. Here, a high-order
approximation is proposed.



Goal oriented error estimation for the Element Free Galerkin method 9

Theorem 2. The term a(ẽ, ψH), where ẽ is given by 13 and ψH is the
coarse solution of the dual (adjoint) problem, is a high-order approximation
of a(eh, ψH). In fact,

|a(eh, ψH)− a(ẽ, ψH)| ≤ C hpHp. (15)

Proof. In view of the definition of the reference error (9) and the properties
of the estimator, see equation (14), it is known that,

RP (v) = a(eh, v) = a(ẽ, v) ∀v ∈ Vh,

and therefore, a(eh − ẽ,πhψH) = 0. Where the interpolation operator of
any function in V onto the the reference space, Vh, is introduced. That is,
πh : V −→ Vh is such that πhv(xi) = v(xi) where xi denote the nodes
(particles) of the reference mesh. Thus,

a(eh − ẽ, ψH) = a(eh − ẽ, ψH −πhψH)

which induces the following bound after using Cauchy-Schwartz inequality

|a(eh − ẽ, ψH)| = |a(ẽ − eh, ψH −πhψH)| ≤ ‖eh − ẽ‖‖ψH −πhψH‖.

In order to finish the proof the standard interpolation error is employed,
i.e. ‖ψH −πhψH‖ ≤ C1h

p, and the bound ‖eh − ẽ‖ ≤ C2H
p is recalled. The

latter bound requires that the estimator is efficient (i.e. that exists a constant,
C3 ≤ 1 such that C3‖ẽ‖ ≤ ‖eh‖ ≤ ‖ẽ‖) to obtain the following bound

‖eh − ẽ‖2 = ‖eh‖2 + ‖ẽ‖2 − 2a(eh, ẽ)

= ‖eh‖2 + ‖ẽ‖2 − 2RP (eh)

= ‖eh‖2 + ‖ẽ‖2 − 2‖eh‖2

= ‖ẽ‖2 − ‖eh‖2 ≤ 1
C3
‖eh‖2 − ‖eh‖2 = (

1
C3

− 1)‖eh‖2.

Using now the standard approximation bound ‖eh‖ ≤ ‖e‖ = ‖u − uH‖ ≤
C4H

p in the previous equation the desired result ‖eh− ẽ‖ ≤ C2H
p is obtained

to end the proof.

�

Thus, in practice, the bounds for the output of the error presented in
equation (12) are computed using

1
4
El[z+

h ]− 1
4
Eu[z−h ] + a(ẽ, ψH) ≤ lO(eh) ≤ 1

4
Eu[z+

h ]− 1
4
El[z−h ] + a(ẽ, ψH),

and, obviously, the bounds for the output of interest of the reference approx-
imation, lO(uh), are

lO(uh) ≥ lO(uH) +
1
4
El[z+

h ]− 1
4
Eu[z−h ] + a(ẽ, ψH)

lO(uh) ≤ lO(uH) +
1
4
Eu[z+

h ]− 1
4
El[z−h ] + a(ẽ, ψH).
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3.5 Numerical integration

Suppose the coarse (global) problem is solved with a given numerical quadra-
ture,

aQ(uH , v) = lQ(v) ∀v ∈ VH .

Then, as expected, the residue is zero,

RP
Q(v) = lQ(v)− aQ(uH , v) = 0 ∀v ∈ VH .

But for a different quadrature,

aq(uH , v) 6= lq(v) ∀v ∈ VH ,

and, thus, Galerkin orthogonality is lost,

RP
q (v) = lq(v)− aq(uH , v) 6= 0 ∀v ∈ VH .

Therefore, the same quadrature must be used to compute on the coarse
and reference (truth) discretizations because Galerkin orthogonality is needed
both (theoretically) to proof the upper bound property and also (practically)
to ensure solvability of the local problems, see remark 4. This obviously implies
that the so-called “coarse” computation is done with the quadrature of the
reference discretization. This is obviously and extra cost which is required to
compute the error distribution. This, however, does not preclude any adaptive
refinement scheme as it will be seen in the next section.

3.6 Dirichlet boundary conditions

In the mesh-free context, shape functions usually do not verify the Kronecker
delta property. Therefore, imposing Dirichlet boundary conditions is not as
trivial as in the finite element method. In recent years, many specific tech-
niques for the implementation of essential boundary conditions in mesh-free
methods have been developed. A general overview on existing techniques is
presented in [9]. Of the different techniques discussed in [9] the continuous
blending method [12, 13, 8] (i.e. introduce standard finite elements along the
boundary and adapt the mesh-free interoplation functions to obtain complete-
ness) and Nitsche’s method [19, 27, 2] are the most suitable alternatives. Both
alternatives can be used to estimate the error. Here, for compactness of the
notation Nitsche’s method is used to define the weak form and has been used
the examples.

The weak solution of problem (1) requires to find u ∈ H1(Ω) verifying

a(u, v) = l(v) ∀v ∈ H1(Ω), (16)

where Nitsche’s method modifies the forms in the previous equation as follows:
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a(u, v) =
∫

Ω

∇v·∇u+ σvu dΩ

−
∫

∂Ω

vn·∇u dΓ −
∫

∂Ω

un·∇v dΓ + β

∫
∂Ω

vu dΓ, (17)

l(v) =
∫

Ω

vs dΩ −
∫

∂Ω

uD n·∇v dΓ + β

∫
∂Ω

vuD dΓ. (18)

Note that equation (16) is identical to (2) but the spaces for the approximation
and the test functions are different. Note also that as in finite elements, this
bilinear form a(·, ·) also induces an energy norm.

The last term in (17) is required to ensure coercivity of the bilinear form
a(·, ·) provided that β is large enough. Regarding the choice of the lower
bound of β, Nitsche proved that if β is taken as β = γ/`, where γ is a large
enough constant (independent of h) and ` denotes a characteristic measure of
the finite element discretization, then the discrete solution converges to the
exact solution with optimal order in H1 and L2 norms. Moreover, γ can be
estimated from the maximum eigenvalue of a generalized eigenvalue problem,
see [11]. Similar results are obtained for mesh-free methods and ` is related
to a measure of the support of the interpolation functions or equivalently to
the distance between particles.

Here, two characteristic sizes are used, H is associated to the coarse dis-
cretization and h characterizes the reference or truth distribution of particles.
As in the previous section only one bilinear form is used. Thus a(·, ·), and
consequently β, is the same for both the global coarse computation in VHand
the local reference evaluation in Vh. This obviously implies choosing for β
the corresponding value associated to the reference mesh (as already done in
the numerical integration). Because it will be larger than the one related to
VHand thus will ensure coercivity of (17) and obviously consistency of (16).

In summary, as for numerical integration, the parameter β used in the
coarse distribution of particles is associated to the reference distribution used
later to evaluate the error distribution. Again, this is necessary both for the-
oretical and practical considerations (Galerkin orthogonality is necessary).
Nevertheless, this does not preclude any adaptive scheme, as will be shown on
a following publication, because at each refinement step the reference distri-
bution of particles is known a priori (it is directly related to the given “coarse”
distribution of particles).

4 Numerical results

In this section, the proposed estimator is used to evaluate bounds for ther-
mal model problems. Some of the selected examples have been used by other
authors to assess the performance of similar techniques [23, 20].
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4.1 First Poisson example

The 2D Laplace problem
∇2u = 0 in (x, y) ∈ ]0, 1[×]0, 1[

u(x, 0) = sin (πx)
u(x, 1) = u(0, y) = u(1, y) = 0

with known analytical solution [28, 9],

u(x, y) =
(
cosh (πy)− coth (π) sinh (πy)

)
sin (πx),

is considered next. Figure 2 shows this analytical solution and the primal
and dual approximations using EFG with bilinear consistency and a uniform
distribution of particles of 5× 5.

Figure 2. Exact solution (left), EFG primal (center) and dual (right) approxima-
tions.

The behavior of the energy norm estimate is compared to the exact energy
error norm and the reference error energy norm, see Figure 3. The approximate
solution uH is computed using bilinear consistency and the reference space
is associated with a particle distribution h = H/4. Uniform distributions
of particles have been considered. From a qualitative viewpoint, it is worth
noting that the estimated error distribution is in good agreement with the
exact error distribution.

Figure 4 shows the spatial distribution of the local effectivity index. It is
important to notice that the effectivity index is always close to the optimum
value: one. Obviously if the index is evaluated using the reference error, eh,
which is the value actually bounded, the effectivity index is even better (closer
to one and more uniform).

Remark 5. Elements of the integration grid with very small contributions to
the errors are not considered in the previous plot (areas not plotted) because
they are not interesting from an adaptive viewpoint. Moreover, in these areas,
small roundoff errors in the error assessment lead to unreasonable effectivity
indices (very small absolute error but large relative error). An element is
considered to have a “small” contribution to the global error when ‖eh‖/4nel

(with nel being the number of elements of the integration grid). This results,
in this case, on neglecting 20% of the elements approximately.
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Remark 6. The local energy norm has been represented in the integration grid.
From now on, all local representations will be represented in this grid.
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Figure 3. Energy norm of error and estimate.
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Figure 4. Local effectivity index with respect exact error (left) and with respect
the reference error, eh, (right).

Finally, Figure 5 shows the resulting bounds and their convergence. The
lower and upper bounds for an approximation to the output of the exact solu-
tion are shown as well as the bound average, the EFG approximation and the
exact output. As expected they converge to the exact output as the number
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of particles is refined. Second order convergence is obtained as bilinear con-
sistency is used. For the initial distribution of particles (uniform distribution
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Figure 5. Resulting bounds (left) and their convergence (right).

of 5× 5 particles) the output is bounded by, lO(uh) ∈ [0.1801, 0.1932], that is

lO(uh) = 0.1866± 0.0066 = 0.1866± 3.54%

and for the final distribution (33 × 33 particles) the output is bounded by
lO(uh) ∈ [0.1858, 0.1860]

lO(uh) = 0.1859± 0.0001 = 0.1859± 0.05%.

4.2 Second Poisson example

A well-known benchmark is solved in this section, see [1, 20, 6, 23]. The
problem reads, {

−∇2u = s in Ω,
u = 0 on ∂Ω,

where the source term is chosen such that the exact solution has the following
analytical expression

u(x, y) = x2(1− x)2(e10x2
− 1)y2(1− y)2(e10y2

− 1)/2000.

Figure 6 shows this analytical solution and the primal and dual approxima-
tions using EFG with bilinear consistency and a uniform distribution of parti-
cles of 5×5. Note that the EFG primal solution verifies the Dirichlet boundary
condition weakly as expected when it is imposed by Nitsche’s method.

The behavior of the energy norm estimate is compared to the exact energy
error norm and the reference error energy norm, see Figure 7. The approximate
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Figure 6. Exact solution (left), EFG primal (center) and dual (right) approxima-
tions.

solution uH is computed using bilinear consistency and the reference space
is associated with a particle distribution h = H/4. Uniform distributions of
particles have been considered. From a qualitative viewpoint, it is worth noting
that also in this example the estimated error distribution is in good agreement
with the exact error distribution and almost identical to the reference error
distribution. In fact, this comparison is more clear in Figure 8 where the
spatial distribution of the local effectivity indexes is plotted.
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Figure 7. Energy norm of error and estimate.
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Figure 8. Local effectivity index with respect exact error (left) and with respect
eh (right).

Finally, Figure 9 shows the resulting bounds and their convergence. The
lower and upper bounds for an approximation to the output of the exact
solution are shown as well as the bound average, the EFG approximation and
the exact output. As expected the optimal rete of converge is obtained as the
number of particles is refined.
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Figure 9. Resulting bounds and their convergence.

For the initial distribution of particles (uniform distribution of 5× 5 par-
ticles) the output is bounded by, lO(uh) ∈ [−0.0097, 0.0276]

lO(uh) = 0.0090± 0.0187 = 0.0090± 207.78%

and for the final distribution (33 × 33 particles) the output is bounded by
lO(uh) ∈ [0.0138, 0.0150]

lO(uh) = 0.0144± 0.0006 = 0.0144± 4.17%.
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5 Concluding remarks

For the first time in mesh-free methods an implicit residual-based estimation
is presented. Moreover, with this strategy bounds for outputs of interest can
be computed. The resulting estimate yields upper and lower bounds for the
output of the reference error. Moreover, the distribution of local contributions
to the error are accurately estimated, both for the energy norm of the error and
for the error measured using some functional output. Therefore, this estimate
is well suited to guide goal-oriented adaptive procedures.
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