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for two main reasons. First, users are more familiar with FE methods and SPH is still seen a
research topic (although this is rapidly changing). Second, FE computations, in the absence of
large distortions (and thus in the absence of remeshing), may be very efficient and, thus, less
costly (for a given precision) than SPH. However, these advantages disappear in the presence of
intensive remeshing. In these cases SPH goes beyond FE methods. Therefore, several authors
have proposed to couple FE and SPH which seems a reasonable approach to benefit from the
advantages of both formulations see for instance [1, 2, 3, 4, 5, 6]. In any case, for very large
distortions even SPH needs to recompute the neighboring particles. This paper focusses only
on SPH and its applicability to solve extremely large distortion problems.

In its original form SPH had several weak points, described in detail in [7, 8], cf. also [9] for
a review. These problems consisted on lack of consistency, tension instability and the presence
of zero energy modes in the numeric solution.

The correction of SPH in order to reproduce polynomials in finite domains as well as passing
the patch test has been an area of intensive work. Some of these contributions, without being
exhaustive, are discussed in this paper. See [10] for a detailed discussion on reproducibility of
SPH methods or [9] for a general review of meshfree methods. Some of these techniques are the
normalized smoothing method proposed in [11, 3] for obtaining linear consistency; a corrected
kernel (invoking a Taylor series expansion) introduced in [12]; the Corrected Smooth Particle
Hydrodynamics method that allows to obtain linear consistency in the interpolation of the
function and in the interpolation of the gradient developed in [13] (consistency is achieved
introducing corrections in the kernel functions and in their derivatives); or the stabilized
conforming nodal integration [14].

The classical SPH formulation defining a fixed support in the laboratory for each particle and
thus recomputing neighbors at each time-step (i.e. updated neighbor search) that will be called
here Eulerian formulation presents tension instability, see for instance [15]. Nevertheless, Bonet
and Kulasegaram, [16], show that a (total) Lagrangian formulation removes this instability.
It is important to note however that zero energy modes still remain in the Lagrangian
formulation. Without tension instability, a SPH Lagrangian formulation presents serious
advantages compared to finite elements. For instance, the Lagrangian SPH code has been
applied successfully to high strain problems [17], the SPH algorithm has been incorporated
into a standard Lagrangian code such as EPIC [18], and it has also been used for impact
problems [19, 3]. Nevertheless, in problems with severe distortions a Lagrangian formulation
will still require updates of the reference configuration. When such updates are incorporated
zero energy modes are more likely to be activated. When few updates are performed during
the computation the induced errors may remain unnoticed. But when updates are performed
frequently the solution is completely spoilt, because zero energy modes are excited and they
produce spurious oscillations. The objective of this paper is to develop an updated Lagrangian
formulation that can carry out updates of the reference configuration without suffering from
spurious modes.

The problem of zero energy modes is still open. In the literature two types of solutions
are used: dissipation of spurious modes (conceptually similar to the techniques used in finite
elements for hourglass modes) or an alternative discretization that does not evaluate the
variables and their derivatives at the same points. For example, in [20] instability is precluded
introducing an artificial stress (but that introduces also small errors in the solution) and
in [21, 22] different sets of particles are used to interpolate different fields generating the
denominated stress points. Here, for computational efficiency, particles are the only information
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where dV 0 and dV represent the initial and current element volumes. The momentum balance
equation for the deformable body reads

∇ · σ + ζf = ζa,

where ζ is the final density of the material, a is the acceleration, f is external force for unit
deformed volume and σ is the Cauchy stress tensor. Recall that,

P = JσF–T, (3)

where P is the first Piola-Kirchhoff tensor. The equilibrium equation can also be expressed
in the reference (Lagrangian) configuration in terms of P and the density in the reference
configuration ζ0 as, see [23],

∇0·P + ζ0f0 = ζ0a.

where f0 is external force for unit undeformed volume. Alternatively, equilibrium can be
expressed by means of the principle of virtual work expressed in the reference configuration as

∫

V 0
ζ0a · δv dV 0 +

∫

V 0
P : δḞ dV 0 =

∫

V 0
f0 · δv dV 0 +

∫

∂V 0
t0 · δv dA0,

where δv denotes an arbitrary virtual velocity from the current position of the body and t0 is
the traction vector.

2.2. Corrected SPH approximation

Here some basic notions on corrected SPH will be recalled. The earliest mesh-free method is
the SPH method [24]. The method is based on a simple property of the Dirac delta function
δ(x) whereby

u(x) =
∫

δ(x− y)u(y)dy,

for any u(x) function to be approximated. The key idea is to replace the Dirac delta function
by a kernel or weight function Cρ φ

(
(x − y)/ρ

)
positive, even and with a compact support

(Figure 2),

u(x) ' ũρ(x) :=
∫

Cρφ
(x− y

ρ

)
u(y)dy, (4)

where ρ is called the dilation parameter and is usually the support radius of the kernel function.
Cρ is a normalization constant such that

∫
Cρφ

(x− y

ρ

)
dy = 1,

i.e. constant functions are exactly interpolated. Therefore, as ρ tends to zero the kernel function
approaches the Dirac delta function, and consequently,

lim
ρ→0

ũρ(x) = u(x).

In order to develop a computational technique, it is necessary to evaluate the integration in
equation (4) in a discrete manner to give

u(x) ' ũρ(x) ' uρ(x) :=
∑

i

Vi Cρφ
(x− xi

ρ

)
u(xi), (5)
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and

β(x) =
(∑

i

Vi φ
(x− xi

ρ

)
(x− xi) (x− xi)T

)−1 ∑

i

Vi(xi − x)φ
(x− xi

ρ

)
.

The use of this type of correction ensures that linear functions are perfectly interpolated and
their gradients are exactly obtained. A possible way of simplifying the calculation is by using
constant, rather than linear, correction. This is equivalent to taking β(x) = 0 in equation (7).
Nevertheless, gradient evaluation using the above expressions is expensive, both in computer
memory and time consuming.

Secondly, the gradient functions are directly amended to ensure that the gradient of a general
constant or linear function is correctly evaluated. The corrected gradient is defined as

∇̃uρ(x) =
∑

i

Vi

(
u(xi)− u(x)

)∇̃φ
(x− xi

ρ

)
,

where
∇̃φ

(x− xi

ρ

)
= L(x)∇φ

(x− xi

ρ

)
. (8)

It is clear that equation (8) will ensure that the gradient of a constant function vanishes. The
correction matrix L(x) is obtained after imposing the linear consistency condition, namely

∑

i

Vi ∇̃φ
(x− xi

ρ

)
xT

i = I.

This equation enables the explicit evaluation of the correction term as,

L(x) =
(∑

i

Vi ∇φ
(x− xi

ρ

)
(xi − x)T

)−1

.

This corrected gradient, proposed by Bonet and coworkers, is similar to the Renormalized
Meshless Derivative (RMD) proposed in [26, 27, 28].

2.3. Lagrangian corrected SPH

This section will not be devoted to develop or discuss Lagrangian corrected SPH formulation
in detail. For an excellent reference see [16]. Here some basic notions will be recalled in order
to introduce the notation and the approach employed in following sections.

Let us consider a discretized body using SPH particles. The mapping ϕ between initial and
current positions can be approximated using SPH approximation as,

xj = ϕ(Xj , t) =
∑

k

Vk Cρφ

(
Xj −Xk

ρ

)
xk.

The deformation gradient, defined in (1), can be evaluated now in a certain particle j in terms
of the current positions just taking derivatives as

Fj = ∇0ϕ =
∑

k

xk GT
k(Xj), (9)
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where ∇0 indicates the gradient respect to the initial configuration, xk is the current position
of particle k and where the functions G contain the corrected kernel gradients at the initial
configuration, that is,

Gk(Xj) = Vk∇̃0φ

(
Xj −Xk

ρ

)
,

where ∇̃0 is a “corrected” gradient to ensure linear completeness as shown in (8).
In order to find general equations for the internal forces using a Lagrangian corrected SPH

formulation, consider the equation of the internal virtual work in the reference configuration
in terms of the first Piola-Kirchhoff tensor, P,

δẇint =
∫

V 0
P : δḞdV 0 '

∑

j

V 0
j Pj : δḞj . (10)

The variation of the virtual deformation gradient emerges from equation (9) as

δḞj =
∑

k

δvk GT
k(Xj),

where after substituting into (10) leads to the expression of the internal virtual work

δẇint '
∑

j

V 0
j Pj :

(∑

k

δvk GT
k(Xj)

)
=

∑

k

δvk ·
(∑

j

V 0
j Pj Gk(Xj)

)
.

This expression allows the vector of internal forces corresponding to a certain particle i to be
identified as:

Ti =
∑

j

V 0
j Pj Gi(Xj). (11)

The equilibrium equation for each particle can now be expressed in terms of the internal forces,
Ti, the external forces, Ei, and the particle acceleration, ai in the standard form as [16],

miai = Ei −Ti with mi = ζi V 0
i .

These equations are the integrated using a standard leap-frog scheme [3].
It is important to observe that in (11) the kernel derivatives, Gi(Xj), are fixed in the

reference configuration and therefore they do not depend on the current positions of the
particles. This implies that corrections are only calculated at the beginning reducing the
computational cost.

2.4. Numerical Examples

In order to illustrate the ability and limitations of Lagrangian corrected SPH formulation some
numerical examples are solved.

2.4.1. Bending test of hyperelastic material. This example, which is very sensible to
instabilities, consists in the simulation of a three-dimensional problem with large deformations
using a hyperelastic material. This example was also solved in [16]. Consider a nearly
incompressible neo-Hookean, see [23], cylinder travelling with an initial speed of 1.88 m/s
which is suddenly fixed at its base (see Figure 3). Homogeneous Dirichlet boundary conditions
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are directly imposed to the coefficients, which is standard in SPH, because the characteristic
radius of the support of the kernel function is small. For larger values of ρ other alternatives
may be implemented [29]. The initial radius is 0.32 m and the length 3.24 m. The shear
modulus is taken as 0.3571 MN/m2 and the bulk modulus is 1.67 MN/m2.

The results obtained using a Lagrangian corrected SPH formulation can be seen in Figure
4. The bar oscillates from initial position to maximum deformation and then back to initial
position as expected. The stress component σzz is shown where z is the height component.
The cylinder deformation is simulated with good results even in the presence of high tension.

2.4.2. Rubber rings collision. This is a classical benchmark test for tension instability, see
[20]. This test consists in simulating the collision of two rubber rings coming together at a
relative speed of 1.18 m/s, and then bounce off each other without disintegration. The material
is neo-Hookean and hyperelastic as in the previous example. The exterior radius of each ring
is 4 cm and the interior radius is 3 cm. Figure 5 shows how the two rings collide, bounce and
then oscillate with no fracture. In fact, calculations were performed only with one rubber ring
and symmetry conditions. As expected, the total Lagrangian formulation performs correctly
because the relative motion between particles is moderate.

2.4.3. Punch test. Previous examples have been solved using a total Lagrangian approach
with very good results. Here an example with extremely large distortions is presented, see
[30, 31, 6]. The problem consists in a hyperelastic material equal to the one used in previous
examples with a shear modulus equal to 0.3571 MN/m2 and a bulk modulus of 1.67 MN/m2.
The body is deformed by a rigid frictionless tool with a prescribed speed. Only a quarter of
the domain is studied (a rectangular region of 3 cm by 1 cm) because two axes of symmetry
are present. A schematic statement of this problem is presented in Figure 6.

When the punch test is solved using a Lagrangian corrected SPH formulation results are
clearly not acceptable, see Figure 7. Initially, during the first time steps, the method simulates
properly the expected behavior, but as the deformation progresses the Lagrangian formulation
is not able to capture the large distortions involved. This is due to the fact that neighboring
particles in the initial configuration move far away from each other as the punch advances. In
order to circumvent this problem some updates of the reference configuration are necessary
(the neighboring particles must be recomputed). Next section presents a detailed study of such
an “updated Lagrangian” formulation.

3. STABILIZED UPDATED LAGRANGIAN FORMULATION

Before a stabilized updated Lagrangian formulation is proposed to overcome the problems of
the total Lagrangian approach the standard updated Lagrangian one is recalled.

3.1. Standard updated formulation

The updated Lagrangian formulation consists of a multiplicative incremental approach as
illustrated in Figure 8. An intermediate configuration xr will be used as the new reference
configuration for the next time steps. This means that a new neighbor search must be done in
configuration xr and that corrections of the kernel and its derivatives must be recalculated.
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3.4. Hessian’s Difference Stabilization

Clearly, it is necessary to eliminate the observed mechanisms if an updated formulation is
to be used. Next, a new stabilization technique is proposed. This method is based on the
addition of a higher order derivative term to the corrected gradient of any function, ψ, which
is approximated, see (6), with the standard expression:

ψ(x) =
∑

j

Nj(x) ψj .

The added term is the difference of two Hessians which will converge to zero as the particle
distribution is refined. Higher order derivatives have been extensively used to stabilize
numerical computations, in particular, in the framework of SPH methods [13] introduces a
Laplacian to stabilize a CSPH algorithm. In this way, the gradient of an arbitrary function ψ
is now evaluated as,

∇̃s
ψ(xr

i ) :=
∑

j

ψj gj(x
r
i ) + η

[Hψ(xr
i )−∇(∇ψ(xr

i )
)]

h (17)

where η is a dimensionless stabilization parameter, h is a vector proportional to the
interparticle distance, and Hψ(xr

i ) represents the Hessian of ψ, which in the context of
corrected SPH can be obtained as

Hψ(xr
i ) :=

∑

k

V r
k ψkH̃φk

(xr
i ), (18)

where H̃φk
is the linearly corrected Hessian kernel. To obtain linear reproducibility, H̃φk

is
corrected by means of two terms, namely a matrix B(x) and a third order tensor A(x) as,

H̃φk
(xr

i ) = Hφk
(xr

i ) + δikB(xr
i ) + A(xr

i ) ·(xr
i − xr

k),

where Hφk
(xr

i ) is the Hessian of the kernel function φ, that is,

Hφk
(x) = ∇

(
∇φ

(x− xk

ρ

))
,

which has an explicit known expression once the kernel φ is defined. Correction terms B (second
order tensor) and A (third order tensor) are determined enforcing that constant and linear
functions must have null Hessian, that is,

∑

k

V r
k H̃φk

(xr
i ) = 0 and

∑

k

V r
k H̃φk

(xr
i ) xr

k = 0.

These reproducibility conditions determine the expressions for B(x) and A(x), namely

A(x) =
[∑

k

V r
k Hφk

(x) (xr
k − x)T

]
·
[∑

k

V r
k (xr

k − x) (xr
k − x)T

]−1

(19)

B(x) =
1

V r
i

[
−

∑

k

V r
k Hφk

(x) + V r
k A(x) ·(xr

k − x)
]
. (20)
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Remark 3. The scalar parameter η controls the amount of artificial viscosity introduced. As
in other stabilization techniques a balance must be sought between the amount of stabilization
and the accuracy.

4. NUMERICAL EXAMPLES

This section is devoted to show the performance of the stabilized updated Lagrangian method
proposed. First, two large deformation benchmarks are analyzed; those where an Eulerian
formulation shows instabilities and the total Lagrangian formulation reproduces the correct
behavior. Then the punch test, where the total Lagrangian formulation presents instabilities,
is computed.

4.1. Bending test

The problem presented in section 2.4.1 is solved using an updated Lagrangian stabilized
formulation. This test is particularly demanding for both tension instability (not present
in any updated formulation) and spurious mechanisms, that must be suppressed with the
stabilization. Moreover, in order to further evaluate the performance of the stabilization,
updates are activated every three time-steps. This will ensure that updates are not activating
any mechanisms. Results for η = 1.5 can be seen in Figure 16. Time t = 0.9 s is achieved
with 8633 time steps. Thus, 2877 updates have been performed. Nevertheless, the cylinder
deformation is in good agreement with to the total Lagrangian results. Figure 17 compares the
results of the total Lagrangian and the stabilized updated formulation. It shows the maximum
displacement history of the cylinder in the movement direction. Results for the stabilized
updated formulation are almost superimposed with those of the total Lagrangian. Note that
the artificial viscosity introduced by the stabilization only produces small phase lag but no
appreciable decrease in amplitude. Figure 18 shows the stress component σzz for the point
in the bottom where tensile stresses develop first. Again, compared to the total Lagrangian
solution, only a small phase lag is introduced by the stabilization.

4.2. Rubber rings collision

The problem presented in section 2.4.2 is solved. Updates are also performed every three time-
steps. Results for η = 0.3 can be seen in Figure 19. Time t = 0.05 s is achieved with 1333
time steps. Thus, 444 updates have been performed. Again, the stabilized updated formulation
simulates the motion with no sign of fracture. Figure 20 compares the maximum displacement
of the ring in the y-direction (which is perpendicular to the direction of initial velocity) of
the total Lagrangian and the stabilized updated formulation. The results obtained using both
methods are in good agreement. Figure 21 shows the stress history of the point in the top
where tensile stresses develop first. Also in this example the artificial viscosity introduced is
negligible.

4.3. Punch test

The total Lagrangian formulation was not able to solve the problem presented in section 2.4.3.
This problem is solved again using the stabilized updated Lagrangian formulation. Updates
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