Vidal, Y., Bonet, J. and Huerta, A., Stabilized updated Lagrangian corrected SPH for
explicit dynamic problems, International Journal for Numerical Methods in Engineering,
Vol. 69, Issue 13, pp. 2687-2710, 2007

Stabilized updated Lagrangian corrected SPH for explicit
dynamic problems

Y. Vidall, J. Bonet? and A. Huertal"*

! Departament de Matematica Aplicada III, Laboratori de Calcul Numéric (LaCaN), Universitat Politécnica
de Catalunya, Jordi Girona 1, E-0803} Barcelona, Spain
e-mail: {yolanda.vidal,antonio.huerta} @upc.es, web hitp://www-lacan.upc.es

2 Civil and Computational Engineering Center (C2EC ), University of Wales Swansea
Singleton Park, Swansea, SA2 8PP, United Kingdom
e-mail: j.bonet@swansea.ac.uk

SUMMARY

Smooth Particle Hydrodynamics with a total Lagrangian formulation are, in general, more robust
than finite elements for large distortion problems. Nevertheless, updating the reference configuration
may still be necessary in some problems involving extremely large distortions. However, as discussed
here a standard updated formulation suffers the presence of zero energy modes that are activated
and may spoil completely the solution. It is important to note that, unlike an Eulerian formulation,
the updated Lagrangian does not present tension instability but only zero energy modes. Here an
stabilization technique is incorporated to the updated formulation to obtain an improved method
without mechanisms and capable to solve problems with extremely large distortions.

KEY WORDS: corrected smooth particle hydrodynamics; SPH; meshfree methods; updated Lagrangian
formulation; large distortions.

1. INTRODUCTION

Corrected Smooth Particle Hydrodynamics (SPH) techniques are nowadays commonly used in
some fast-transient dynamics problems. In fact, SPH may be competitive compared to finite
elements (FE) because of its low computational cost, its reasonable precision and stability
compared with classical methods and, more importantly, its ability to handle large distortions.
Nevertheless in the absence of large distortions FE computations are preferred by practitioners
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for two main reasons. First, users are more familiar with FE methods and SPH is still seen a
research topic (although this is rapidly changing). Second, FE computations, in the absence of
large distortions (and thus in the absence of remeshing), may be very efficient and, thus, less
costly (for a given precision) than SPH. However, these advantages disappear in the presence of
intensive remeshing. In these cases SPH goes beyond FE methods. Therefore, several authors
have proposed to couple FE and SPH which seems a reasonable approach to benefit from the
advantages of both formulations see for instance [1, 2, 3, 4, 5, 6]. In any case, for very large
distortions even SPH needs to recompute the neighboring particles. This paper focusses only
on SPH and its applicability to solve extremely large distortion problems.

In its original form SPH had several weak points, described in detail in [7, 8], cf. also [9] for
a review. These problems consisted on lack of consistency, tension instability and the presence
of zero energy modes in the numeric solution.

The correction of SPH in order to reproduce polynomials in finite domains as well as passing
the patch test has been an area of intensive work. Some of these contributions, without being
exhaustive, are discussed in this paper. See [10] for a detailed discussion on reproducibility of
SPH methods or [9] for a general review of meshfree methods. Some of these techniques are the
normalized smoothing method proposed in [11, 3] for obtaining linear consistency; a corrected
kernel (invoking a Taylor series expansion) introduced in [12]; the Corrected Smooth Particle
Hydrodynamics method that allows to obtain linear consistency in the interpolation of the
function and in the interpolation of the gradient developed in [13] (consistency is achieved
introducing corrections in the kernel functions and in their derivatives); or the stabilized
conforming nodal integration [14].

The classical SPH formulation defining a fixed support in the laboratory for each particle and
thus recomputing neighbors at each time-step (i.e. updated neighbor search) that will be called
here Eulerian formulation presents tension instability, see for instance [15]. Nevertheless, Bonet
and Kulasegaram, [16], show that a (total) Lagrangian formulation removes this instability.
It is important to note however that zero energy modes still remain in the Lagrangian
formulation. Without tension instability, a SPH Lagrangian formulation presents serious
advantages compared to finite elements. For instance, the Lagrangian SPH code has been
applied successfully to high strain problems [17], the SPH algorithm has been incorporated
into a standard Lagrangian code such as FPIC [18], and it has also been used for impact
problems [19, 3]. Nevertheless, in problems with severe distortions a Lagrangian formulation
will still require updates of the reference configuration. When such updates are incorporated
zero energy modes are more likely to be activated. When few updates are performed during
the computation the induced errors may remain unnoticed. But when updates are performed
frequently the solution is completely spoilt, because zero energy modes are excited and they
produce spurious oscillations. The objective of this paper is to develop an updated Lagrangian
formulation that can carry out updates of the reference configuration without suffering from
spurious modes.

The problem of zero energy modes is still open. In the literature two types of solutions
are used: dissipation of spurious modes (conceptually similar to the techniques used in finite
elements for hourglass modes) or an alternative discretization that does not evaluate the
variables and their derivatives at the same points. For example, in [20] instability is precluded
introducing an artificial stress (but that introduces also small errors in the solution) and
in [21, 22] different sets of particles are used to interpolate different fields generating the
denominated stress points. Here, for computational efficiency, particles are the only information
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Figure 1. Movement of a deformable body.

carrying points.

The paper is organized as follows. Firstly, the total Lagrangian corrected SPH formulation
is revised for large strains dynamic problems and some numerical examples are performed.
These numerical examples will show the abilities and also the limitations of the Lagrangian
formulation. Next, in section 3, a stabilized updated Lagrangian formulation is proposed to
overcome the problems of the total Lagrangian approach. The improved performance of the
proposed method will be shown via some numerical examples in section 4. These performance
will be maintained in problems involving large distortions. Finally, the main noteworthy results
are summarized.

2. TOTAL LAGRANGIAN CORRECTED SPH

2.1. Continuum equations

Consider the three-dimensional continuum shown in Figure 1 undergoing a given motion
defined by a mapping % between initial and current positions as,

z = p(X,1).
The deformation gradient F, defined as

ox

is a quantity of interest in the study of large deformations because it is present in all those
equations that relate magnitudes in the initial configuration with their corresponding ones in
the final configuration. The volume change of the continuum can be obtained in terms of the
Jacobian

F

dav
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where dV? and dV represent the initial and current element volumes. The momentum balance
equation for the deformable body reads

V.o +(f=(a,

where ( is the final density of the material, a is the acceleration, f is external force for unit
deformed volume and o is the Cauchy stress tensor. Recall that,

P=JoF (3)

where P is the first Piola-Kirchhoff tensor. The equilibrium equation can also be expressed
in the reference (Lagrangian) configuration in terms of P and the density in the reference
configuration (y as, see [23],

VoP + (o fo = Coa.

where f, is external force for unit undeformed volume. Alternatively, equilibrium can be
expressed by means of the principle of virtual work expressed in the reference configuration as

fo-ovav® +/ to-ovdA®,

/goa-avdvo+/ P:5Fdv° =
Vo Vo ovo

VO
where dv denotes an arbitrary virtual velocity from the current position of the body and tq is
the traction vector.

2.2. Corrected SPH approximation

Here some basic notions on corrected SPH will be recalled. The earliest mesh-free method is
the SPH method [24]. The method is based on a simple property of the Dirac delta function
0(z) whereby

u(z) = / 5@ — y)u(y)dy,

for any u(x) function to be approximated. The key idea is to replace the Dirac delta function
by a kernel or weight function Cp¢>((a: -v)/ ,0) positive, even and with a compact support
(Figure 2),

T —

u(w) = @(a) = [ Co (=Y )u(w)ay. (4)

where p is called the dilation parameter and is usually the support radius of the kernel function.
C, is a normalization constant such that

fan(z52)an=1

i.e. constant functions are exactly interpolated. Therefore, as p tends to zero the kernel function
approaches the Dirac delta function, and consequently,

gii% u’ (x) = u(x).

In order to develop a computational technique, it is necessary to evaluate the integration in
equation (4) in a discrete manner to give

u(@) = (@) = w'(@) = Y Vi Gt (

r — I;
P

Ju(.). (5)
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P((x-x;)/p)

Figure 2. Reproducing kernel.

where x; and V; are the points and weights of the numerical quadrature. Usually the quadrature
points are called particles and the weights are the volumes associated to each particle.
It is possible to re-write equation (5) in terms of standard shape function as

u(@) = v(2) = Y Ni(@)u(@), Ni(x)= ViGoo( = ;"’"”). 6)

As a result of point integration in equation (5), the consistency conditions are no longer
satisfied exactly. Reference [13] presents a corrected SPH approximation to preclude these
difficulties. The foregoing is a brief review of the two main corrections introduced by Bonet
and coworkers.

Firstly, the aforementioned discrepancy is eliminated by a kernel correction. As proposed
in [25], C, is selected by enforcing linear consistency conditions now given by a point-wise
integration as,

ZV,-cpqs("" ;"”') -1, Y Vilx- 2:)Cp( = ;“3") -

These equations lead to,
Gy = a(2)(1+B() (@ — 2.) (7)

where

_ —1
a(@) = (L Vo) (14 bla) e - 2) )
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and

) = (S vio(* %) w2 <$—wi>T>1Z_Vi<mi—m)¢(w_w").

p p

The use of this type of correction ensures that linear functions are perfectly interpolated and
their gradients are exactly obtained. A possible way of simplifying the calculation is by using
constant, rather than linear, correction. This is equivalent to taking B(x) = 0 in equation (7).
Nevertheless, gradient evaluation using the above expressions is expensive, both in computer
memory and time consuming.

Secondly, the gradient functions are directly amended to ensure that the gradient of a general
constant or linear function is correctly evaluated. The corrected gradient is defined as

ﬁup(m) = Z Vi(u(azi) — u(m))e¢<%),

where
L — I;

%( ) :L(w)w(‘”;‘”i). ®)

It is clear that equation (8) will ensure that the gradient of a constant function vanishes. The
correction matrix L(z) is obtained after imposing the linear consistency condition, namely

Zviﬁﬁ(w_pw”) 2] = 1.

This equation enables the explicit evaluation of the correction term as,

L) = (S v vo(", ) @ar)

p

This corrected gradient, proposed by Bonet and coworkers, is similar to the Renormalized
Meshless Derivative (RMD) proposed in [26, 27, 28].

2.8. Lagrangian corrected SPH

This section will not be devoted to develop or discuss Lagrangian corrected SPH formulation
in detail. For an excellent reference see [16]. Here some basic notions will be recalled in order
to introduce the notation and the approach employed in following sections.

Let us consider a discretized body using SPH particles. The mapping ¢ between initial and
current positions can be approximated using SPH approximation as,

X;—-X
T; = Lp(XjJ) = ZVk Cp¢(]pk>wk
k

The deformation gradient, defined in (1), can be evaluated now in a certain particle j in terms
of the current positions just taking derivatives as

F; =Vop= chk Gi(X), (9)
k
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where V indicates the gradient respect to the initial configuration, xy is the current position
of particle k and where the functions G contain the corrected kernel gradients at the initial
configuration, that is,

)

Gr(X;) = Vk60¢(Xj_Xk>

where V is a “corrected” gradient to ensure linear completeness as shown in (8).

In order to find general equations for the internal forces using a Lagrangian corrected SPH
formulation, consider the equation of the internal virtual work in the reference configuration
in terms of the first Piola-Kirchhoff tensor, P,

Sing :/ P:0FdV® ~ ) V) P;:0F;. (10)
Vo -
J

The variation of the virtual deformation gradient emerges from equation (9) as
5Fj = Z 5Vk GZ(X]),
k

where after substituting into (10) leads to the expression of the internal virtual work

Subing = 3 VPP :(Z 5V G;(Xj)) =Y 6w (Z VOP Gk.(Xj)).

J

This expression allows the vector of internal forces corresponding to a certain particle ¢ to be
identified as:

T =Y V)P Gi(X)). (11)

The equilibrium equation for each particle can now be expressed in terms of the internal forces,
T;, the external forces, E;, and the particle acceleration, a; in the standard form as [16],

mia; = E; — T; with m; = ¢ V.

These equations are the integrated using a standard leap-frog scheme [3].

It is important to observe that in (11) the kernel derivatives, G;(X;), are fixed in the
reference configuration and therefore they do not depend on the current positions of the
particles. This implies that corrections are only calculated at the beginning reducing the
computational cost.

2.4. Numerical Examples

In order to illustrate the ability and limitations of Lagrangian corrected SPH formulation some
numerical examples are solved.

2.4.1. Bending test of hyperelastic material. This example, which is very sensible to
instabilities, consists in the simulation of a three-dimensional problem with large deformations
using a hyperelastic material. This example was also solved in [16]. Consider a nearly
incompressible neo-Hookean, see [23], cylinder travelling with an initial speed of 1.88 m/s
which is suddenly fixed at its base (see Figure 3). Homogeneous Dirichlet boundary conditions
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are directly imposed to the coefficients, which is standard in SPH, because the characteristic
radius of the support of the kernel function is small. For larger values of p other alternatives
may be implemented [29]. The initial radius is 0.32 m and the length 3.24 m. The shear
modulus is taken as 0.3571 MN/m? and the bulk modulus is 1.67 MN/m?.

The results obtained using a Lagrangian corrected SPH formulation can be seen in Figure
4. The bar oscillates from initial position to maximum deformation and then back to initial
position as expected. The stress component o, is shown where z is the height component.
The cylinder deformation is simulated with good results even in the presence of high tension.

2.4.2. Rubber rings collision. This is a classical benchmark test for tension instability, see
[20]. This test consists in simulating the collision of two rubber rings coming together at a
relative speed of 1.18 m/s, and then bounce off each other without disintegration. The material
is neo-Hookean and hyperelastic as in the previous example. The exterior radius of each ring
is 4 cm and the interior radius is 3 cm. Figure 5 shows how the two rings collide, bounce and
then oscillate with no fracture. In fact, calculations were performed only with one rubber ring
and symmetry conditions. As expected, the total Lagrangian formulation performs correctly
because the relative motion between particles is moderate.

2.4.3. Punch test. Previous examples have been solved using a total Lagrangian approach
with very good results. Here an example with extremely large distortions is presented, see
[30, 31, 6]. The problem consists in a hyperelastic material equal to the one used in previous
examples with a shear modulus equal to 0.3571 MN/m? and a bulk modulus of 1.67 MN/m?.
The body is deformed by a rigid frictionless tool with a prescribed speed. Only a quarter of
the domain is studied (a rectangular region of 3 cm by 1 cm) because two axes of symmetry
are present. A schematic statement of this problem is presented in Figure 6.

When the punch test is solved using a Lagrangian corrected SPH formulation results are
clearly not acceptable, see Figure 7. Initially, during the first time steps, the method simulates
properly the expected behavior, but as the deformation progresses the Lagrangian formulation
is not able to capture the large distortions involved. This is due to the fact that neighboring
particles in the initial configuration move far away from each other as the punch advances. In
order to circumvent this problem some updates of the reference configuration are necessary
(the neighboring particles must be recomputed). Next section presents a detailed study of such
an “updated Lagrangian” formulation.

3. STABILIZED UPDATED LAGRANGIAN FORMULATION

Before a stabilized updated Lagrangian formulation is proposed to overcome the problems of
the total Lagrangian approach the standard updated Lagrangian one is recalled.

3.1. Standard updated formulation

The updated Lagrangian formulation consists of a multiplicative incremental approach as
illustrated in Figure 8. An intermediate configuration «” will be used as the new reference
configuration for the next time steps. This means that a new neighbor search must be done in
configuration " and that corrections of the kernel and its derivatives must be recalculated.



STABILIZED UPDATED LAGRANGIAN SPH

v=1.88 m/s

3.24m
D
e

0.32m

Figure 3. Cylinder travelling with an initial speed of 1.88 m/s.
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Figure 4. Total Lagrangian formulation: cylinder bending test. Stress component o, (z is the height
component) is shown.
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Time=0.01s
e

2e4

Figure 5. Total Lagrangian formulation: collision of two rubber rings. Stress component oz, (z is the
movement direction) is shown.

It is important to observe that the deformation gradient F” is stored as an internal state
variable and only the incremental deformation gradient, f, (i.e. the deformation gradient
between the new reference configuration and the final one) is calculated each time step. This
update induces minor modification for the evaluation of the internal forces calculation.

The incremental deformation gradient and its variation are written as

aa:n n : o P :
v ka gz(mj): and of; = Eévk QI(‘BJ')7 (12)
J k k
where the corrected kernel gradients in the new reference configuration can be defined as
™ ._ T | :L'; _ wz
gi(zj) ==V [Vr¢(—p )] (13)

Thus, the variation of internal virtual work expressed in the initial configuration is

St = | P HOFndVO = ) VPR R = 3 VPP (6 F).
J J
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Figure 6. Schematic statement of the punch test.

Time =2.5¢ 005 s Time =0.0001 s Time =0.000175 s

an>

e —— ‘i. 'i -

Time =0.00025 s Time =0.000325 s Time =0.0004 s

4e5
2e5
Time =0.000475 s Time =0.000625 s 0
o AL -2e5
?’,3’;‘7_' . 5“:3 4e5
-6e5
-8e5

Figure 7. Total Lagrangian formulation: punch test. Stress component o, (z is the height component)
is represented.
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Figure 8. Updated Lagrangian.

Recalling the identity A : B = tr(ABT), which implies that
P :(of; F5) = tr(P7 [F}]of] ) = (P7 [F5]7) : of;
the internal virtual work can be expressed as
Siiae = 3 V2 (PR [FIT) : 685 = S V2 (P7[F3]T) (Z v gk(m'))
J J

which can be further simplified using A :(uv') =u-Av as
Siine = Y 6vie- (VY (P [F51")gi(=5))
K j

and therefore at the current configuration, ™, the internal forces vector at a given particle 7
can be easily evaluated using a reference configuration =" as

TP =Y V) (P} [F5]7)g;(}). (14)

J
Remark 1. When an update is performed the mass and the density conservation are imposed
and the weights of the numerical quadrature (also called volumes) are changed. In practice, the
volume change is computed using the Jacobian J, see (2), as V = JV°. Then, the element
mass can be related to the volume element in terms of the initial and current densities as
dm = (odV°® = ¢dV. Thus, conservation of mass is ensured and can be expressed as (o = J.

3.2. 1D analytical stability analysis

An analytical stability analysis for the updated Lagrangian formulation is presented in
this section. Consider a 1D bar discretized by a given number of particles which deforms
from reference to final configurations as shown in Figure 9. Note that in the case of an
updated Lagrangian corrected SPH formulation, the kernel functions are fixed at the reference
configuration, ”. For simplicity particle spacing will be assumed to be uniform precisely at
the reference configuration and only immediate neighbors of a given particle will contribute to
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Figure 9. 1D Updated Lagrangian corrected SPH.

the internal force evaluation at this particle; that is, following reference [7] the kernel function
centered at a given particle ¢ vanishes for any particle other than the next neighbors.

Given the one-dimensional nature of the problem, and imposing the area as a constant equal
to one (in the reference configuration), the deformation gradient is simply given as

Fi = £Ff = (E z; g,-(z;))F;. (15)

For the simple uniformly spaced reference configuration considered, the linearly corrected
gradient terms g are simply

1
gi—l( r) = 2h’ gz(l' ) =0, and g'z+1( ) 2h’ (16)
which upon substitution into (15) leads to

Titl —Ti-1
B # FT.
Consider now the internal force equation in the current 1D context

T27 =3 VPP F; (a3),
J
which using equation (3) gives

" = Z Vi o; gi(=5) /f;.
J

The internal force at point ¢ is further developed substituting in the previous equation the
gradient functions defined in (16), namely

™ — (Vizf‘ . *+11+°1‘+1) / 2h.

i
i—1

Using the linear constitutive relationship, o; = k(J; — 1) where J; is the Jacobian, see (2), at
z;, which in the one dimensional case is simply J; = det f; = {;, the internal force vector can
be written as,

Vitik —Vitik " Vias  Vik

T = .
: 2h (zizo — i) (zi —zi2)
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0.1333m
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Figure 10. 1D bar problem statement.

Consequently, the tangent stiffness matrix terms are readily evaluated as

n n
V%K ViiE

Ki P ’
(11' — Ti—2)2 (Ii+2 — -Ti)z
Kiis1=K;; 1=0,
VI .k —Vr.k
itl i—1
Ki,i+2 — and Ki,i—2 =

I S
T
(Ziy2 — =) (zi—zia)

Finally, a simple calculation shows that the alternating eigenvector (—1)7 has an eigenvalue
associated equal to zero, that is
> Ki(-1) =o.
J

The above equation implies that this alternating mode is a mechanism instead of a mode with
a possible negative eigenvalue as is the case in the Eulerian formulation, see [16]. Consequently,
the algorithm should be stable but, in the absence of artificial viscosity (that may be easily
introduced by time integrators), undamped oscillations may emerge during the computations.

3.3. Numerical examples

3.3.1. 1D numerical tests The previous section has proven the existence of mechanisms in
the updated Lagrangian formulation (as well as it was proven for the total Lagrangian in [16]).
Next, a simple 1D numerical test is performed in order to verify whether the mechanisms are
activated or not in a standard updated Lagrangian formulation.

The total Lagrangian and the updated Lagrangian formulations will be used to solve the
elastic 1D bar problem described in Figure 10, see also [32]. The bar is fixed at the left end
A, free at the right end B and the right quarter of the bar is given an initial velocity of
vp = 5m/s (as an initial condition) thus putting the bar in tension initially. Standard SPH
methods cannot solve this problem due to tension instability that immediately develops.

The problem is solved using a uniform distribution of particles. As shown in Figure 10 the
corrected SPH particle distribution is very coarse with only 40 uniform particles. Figure 11
presents the displacement time history of the right end B for the total Lagrangian formulation
and the updated Lagrangian one with updates every 3 time steps. No artificial viscosity of
any type is used. Figure 12 compares the predicted time history for the velocity of the right
end B for the total and standard updated formulations. It becomes clear from Figures 11 and
12 that in the updated Lagrangian formulation the mechanisms are activated and they spoil
the solution. It is clear that performing updates may activate the mechanisms, which spoil the
solution.
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Figure 11. Displacement history for the right end of the bar (point B). Total Lagrangian (left) and
updated Lagrangian (right) formulations.
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Figure 12. Velocity history for the right end of the bar (point B). Total Lagrangian (left) and updated
Lagrangian (right) formulations.

3.3.2. Bending test and rubber rings collision The same behavior (zero energy modes
activated by reevaluation of neighbors particles) can also be observed in the examples proposed
in section 2.4.1 and 2.4.2. The standard updated Lagrangian formulation, with updates
performed every three time-steps, activates the mechanisms as shown in Figures 13 and 14. It
is important to note that such results are very similar to the well-known tension instabilities
that appear in these examples if an Eulerian formulation is employed, cf. [20, 33]. However,
the stability analysis showed that the updated formulation has zero-energy mechanisms but
does not present modes with negative eigenvalues (as is the case in the Eulerian formulation).

It seems that these mechanisms are excited in the case of an updated Lagrangian formulation
but not in the total Lagrangian case. This is possibly due to the fact that the modes associated
to these mechanisms change with the update of reference configuration and it is no longer
possible to ensure that the velocity field in the body is orthogonal to this modes.
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Figure 13. Standard updated Lagrangian formulation: cylinder bending test.
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Standard updated Lagrangian formulation: rubber rings collision.
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8.4. Hessian’s Difference Stabilization

Clearly, it is necessary to eliminate the observed mechanisms if an updated formulation is
to be used. Next, a new stabilization technique is proposed. This method is based on the
addition of a higher order derivative term to the corrected gradient of any function, v, which
is approximated, see (6), with the standard expression:

Y(x) = ZNJ($)¢1~

The added term is the difference of two Hessians which will converge to zero as the particle
distribution is refined. Higher order derivatives have been extensively used to stabilize
numerical computations, in particular, in the framework of SPH methods [13] introduces a
Laplacian to stabilize a CSPH algorithm. In this way, the gradient of an arbitrary function
is now evaluated as,

Vi) = Y g,(w) + n[Hy (@) = V (V)] h (17)

where 7 is a dimensionless stabilization parameter, h is a vector proportional to the
interparticle distance, and H,(x]) represents the Hessian of 1, which in the context of
corrected SPH can be obtained as

My (@]) =Y Vi oy, (@), (18)
k
where ﬂq&k is the linearly corrected Hessian kernel. To obtain linear reproducibility, 7Tt¢,€ is
corrected by means of two terms, namely a matrix B(x) and a third order tensor A(x) as,
Ho, (27) = Ho, (x7) + 0inB(x}) + Alzi) -(z — x}),

where Hy, (2]) is the Hessian of the kernel function ¢, that is,

Mo () = v(vo( =),

which has an explicit known expression once the kernel ¢ is defined. Correction terms B (second
order tensor) and A (third order tensor) are determined enforcing that constant and linear
functions must have null Hessian, that is,

ZV{ ’ftm (z7)=0 and ZV,: 7t(¢k (z]) zf, = 0.
k k

These reproducibility conditions determine the expressions for B(x) and A(x), namely
—1
Alw) = | S Vi Houla) (o 2)7| | S () (af - ) (19
k k

Bla) = g [ 30 Vi Mo (o) + Vi Alw) (o — )| (20
i k
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Figure 15. Displacement (left) and velocity (right) history for the right end of the bar using Hessian’s
difference stabilization.

Where in equation (19) the product of a third order tensor (in the first bracket) by a second
order tensor (second bracket) is understood as

[Alags = [Clagy [P ']s

where a, 3, v and § indicate spatial components. Equation (17) can be rewritten using the
definition of the Hessian, equation (18), and the gradient, equation (13), as

50 (@) = X b 0u(e) + 13 Vi @)~ 3 v s(e) - al(@)
k k k k )
Hence g (x) can be written as:
9i(@) = 9x(@) +n[ViHo (@) — (3 9x(ai) gi(@)) | o, (21)
l

which is the expression that must be introduced, for instance, in (14) to evaluate the internal
forces. Equation (21) represents the complete form for the corrected gradient of the kernel, it
includes the correction (for reproducibility in the discrete setting —nodal integration—) and
stabilization.

When this stabilization is introduced in the updated Lagrangian formulation the results for
the one-dimensional bar problem presented in section 3.3.1 change drastically. In this case,
the parameter 7 is taken equal to 0.3. Figure 15 shows both displacements and velocities for
the right end of the bar, which now agree with the total Lagrangian results. It is important to
observe that in order to check the performance of this approach an update is done every three
time-steps, which is obviously unnecessary but has been done to trigger possible instabilities.

Remark 2. Vector h” = {h,, hy, h.} is proportional to the interparticle distance because its
components hg, hy, h, are precisely the smoothing lengths of the kernel function along the
cartesian directions. Here in the examples shown h, = h, = h, and are constat during the
simulation.
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Remark 3. The scalar parameter n controls the amount of artificial viscosity introduced. As
in other stabilization techniques a balance must be sought between the amount of stabilization
and the accuracy.

4. NUMERICAL EXAMPLES

This section is devoted to show the performance of the stabilized updated Lagrangian method
proposed. First, two large deformation benchmarks are analyzed; those where an Eulerian
formulation shows instabilities and the total Lagrangian formulation reproduces the correct
behavior. Then the punch test, where the total Lagrangian formulation presents instabilities,
is computed.

4.1. Bending test

The problem presented in section 2.4.1 is solved using an updated Lagrangian stabilized
formulation. This test is particularly demanding for both tension instability (not present
in any updated formulation) and spurious mechanisms, that must be suppressed with the
stabilization. Moreover, in order to further evaluate the performance of the stabilization,
updates are activated every three time-steps. This will ensure that updates are not activating
any mechanisms. Results for n = 1.5 can be seen in Figure 16. Time ¢ = 0.9 s is achieved
with 8633 time steps. Thus, 2877 updates have been performed. Nevertheless, the cylinder
deformation is in good agreement with to the total Lagrangian results. Figure 17 compares the
results of the total Lagrangian and the stabilized updated formulation. It shows the maximum
displacement history of the cylinder in the movement direction. Results for the stabilized
updated formulation are almost superimposed with those of the total Lagrangian. Note that
the artificial viscosity introduced by the stabilization only produces small phase lag but no
appreciable decrease in amplitude. Figure 18 shows the stress component o,, for the point
in the bottom where tensile stresses develop first. Again, compared to the total Lagrangian
solution, only a small phase lag is introduced by the stabilization.

4.2. Rubber rings collision

The problem presented in section 2.4.2 is solved. Updates are also performed every three time-
steps. Results for n = 0.3 can be seen in Figure 19. Time ¢ = 0.05 s is achieved with 1333
time steps. Thus, 444 updates have been performed. Again, the stabilized updated formulation
simulates the motion with no sign of fracture. Figure 20 compares the maximum displacement
of the ring in the y-direction (which is perpendicular to the direction of initial velocity) of
the total Lagrangian and the stabilized updated formulation. The results obtained using both
methods are in good agreement. Figure 21 shows the stress history of the point in the top
where tensile stresses develop first. Also in this example the artificial viscosity introduced is
negligible.

4.8. Punch test

The total Lagrangian formulation was not able to solve the problem presented in section 2.4.3.
This problem is solved again using the stabilized updated Lagrangian formulation. Updates
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Figure 16. Stabilized updated Lagrangian formulation: cylinder bending test.

are also performed every three time-steps. Results for 7 = 1.4 can be seen in Figure 22. The
improved method is capable of solving this problem which involves extremely large distortions.

Obviously more updates than necessary are performed. In fact, in this example numerical
experiments have shown that it is possible to decrease the number of updates to one every 10
steps without qualitative deterioration of the results. But, if an update is performed every 20
steps oscillations similar those observed with a total Lagrangian formulation are also obtained.

An adaptive procedure that activates updates when large distortions are present is probably
the best solution in this case to optimize the computational cost. Further research is needed

in this area.

5. CONCLUSIONS

In this paper updated Lagrangian formulations in the SPH context have been studied. When
large distortions are present the total Lagrangian formulation induces unacceptable results.
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Figure 17. Maximum displacement history of the cylinder in the z-direction.
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Figure 18. Stress history of the point in the bottom where tensile stresses develop first.

An updated Lagrangian formulation is then needed. That is, at some instances the neighboring
particles should be recomputed.

Nevertheless, it is shown here that the standard updated formulation suffers the presence
of zero energy modes. This formulation does not suffer from tensile instability. However, as
shown in the examples these zero energy modes may be activated when updates are performed
and the solution is then completely spoiled. Obviously, these mode may remain unnoticed if
uncontrolled artificial viscosity is introduced by time integration for instance.

Here a consistent stabilized updated Lagrangian formulation has been proposed. Its behavior
has been tested in benchmark tests for tensile instability, for zero energy modes and also for
large distortions problems. The stabilized updated Lagrangian formulation behaves similarly
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Figure 19. Stabilized updated Lagrangian formulation: collision of two rubber rings.

to the total Lagrangian formulation but can encompass problems involving large distortions
using updates for the neighbors. Updates are only performed when needed; thus, in practice,
the updated formulation has a low computational cost compared to the total Lagrangian
one. Moreover, numerical examples show that even for an unreasonable number of updates
—inducing, in practice, to a formulation where neighbors are recomputed almost at each time-
step— zero (or negative) energy modes are precluded.
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