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bLaboratoire de Mécanique Roberval, UMR UTC-CNRS Université de Technologie
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Abstract

Incompressible modelling in finite elements has been a major concern since its early
developments and has been extensively studied. However, incompressibility in mesh-
free methods is still an open topic. Thus, instabilities or locking can preclude the use
of mesh-free approximations in such problems. Here, a novel mesh-free formulation
is proposed for incompressible flow. It is based on defining a pseudo-divergence-free
interpolation space. That is, the finite dimensional interpolation space approaches a
divergence-free space when the discretization is refined. Note that such an interpola-
tion does not include any overhead in the computations. The numerical evaluations
are performed using the inf-sup numerical test and two well-known benchmark ex-
amples for Stokes flow.
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1 Introduction

Accurate and efficient modeling of incompressible flows is an important issue
in finite elements. The continuity equation for an incompressible fluid takes

? Research supported by Ministerio de Ciencia y Tecnoloǵıa under grants DPI2001-
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the peculiar form. It consists of a constraint on the velocity field that must
be divergence free. Then, the pressure has to be considered as a variable not
related to any constitutive equation. Its presence in the momentum equation
has the purpose of introducing an additional degree of freedom needed to
satisfy the incompressibility constraint. The role of the pressure variable is thus
to adjust itself instantaneously in order to satisfy the condition of divergence-
free velocity. That is, the pressure is acting as a Lagrangian multiplier of the
incompressibility constraint and thus there is a coupling between the velocity
and the pressure unknowns.

Various formulations have been proposed in the literature to deal with incom-
pressible flow problems [1–8]. Mixed finite elements present numerical diffi-
culties caused by the saddle-point nature of the resulting variational problem.
Solvability of the problem depends on a proper choice of finite element spaces
for velocity and pressure. They must satisfy a compatibility condition, the so-
called LBB (or inf-sup) condition. If this is not the case, alternative formula-
tions (usually depending on a numerical parameter) are devised to circumvent
the LBB condition and enable the use of velocity–pressure pairs that are un-
stable in the standard Galerkin formulation. Finally, note that it is not trivial
to verify analytically the LBB condition for a given interpolation of velocity
and pressure, and this has spurred the use of numerical inf-sup testing [9–12].

Incompressibility in mesh-free methods is still an open topic. Even recently,
it was claimed [13] that meshless methods do not exhibit volumetric locking.
Now it is clear that this is not true. For instance, an analysis of the element
free Galerkin (EFG) method using the numerical inf-sup condition can be
found in [14]. Moreover, several authors claim that increasing the dilation
parameter locking phenomena in mesh-free methods can be suppressed, or
at least attenuated. Their argument is based on numerical examples [15,14]
or on the heuristic constraint ratio [16] proposed in [17]. In a recent paper
[18] this issue is clarified determining the influence of the dilation parameter
on the locking behavior of EFG near the incompressible limit. This is done
performing a modal analysis: studying the fundamental modes (base of the
solution space) and their corresponding energy (eigenvalue). In particular EFG
behavior is compared with standard finite elements. The major conclusion is
that an increase of the dilation parameter attenuates, but never suppresses
the volumetric locking and that, as in standard finite elements, an increase in
the order of reproducibility reduces the relative number of locking modes at a
lower rate than finite elements.

Until now remedies proposed in the literature are extensions of methods de-
veloped for finite elements. For instance, in [14] a new EFG formulation is pro-
posed using selective reduced integration and in [16] an improved Reproducing
Kernel Particle Method based on a pressure projection method is suggested.
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Here a novel approach is explored: the pseudo-divergence-free (PDF) EFG
method. It consists in using interpolation functions that verify approximately
the divergence-free constraint for a given discretization, and asymptotically
become divergence-free as the discretization is refined. This method is based
on diffuse derivatives [19], which, as proven in [20], converge to the derivatives
of the exact solution when the radius of the support goes to zero (for a fixed
dilation parameter). One of the key advantages of this approach is that the
pseudo-divergence-free (PDF) interpolation functions are computed a priori.
That is, prior to determining the specific particle distribution. Thus, there is
no extra computational cost.

Preliminary results (modal analysis) in incompressible elasticity were encour-
aging [21,22]. In this paper convergence of the approximation in incompressible
flows is studied. In particular, it is shown that the PDF EFG method passes
the numerical inf-sup test. And two well-known examples of Stokes flow are
used to compare different mixed formulations.

2 Diffuse derivatives

2.1 Preliminaries of the EFG method

This section will not be devoted to develop or discuss mesh-free methods in
detail or their relation with moving least squares (MLS) interpolants. There
are well known references with excellent presentations of mesh-free methods.
See, for instance, the papers in the special issue [23]. Here some basic notions
will be recalled in order to introduce the notation and the approach employed
in following sections.

The moving least squares approach is based on the local approximation (i.e.,
at any point z in the neighborhood of x) of the unknown scalar function u(z)
by uρ as

u(z) ' uρ(x, z) = PT(z) a(x) for z near x, (1)

where the coefficients a(x) = {a0(x), a1(x), . . . , al(x)}T are not constant, they
depend on point x, and P(z) = {p0(z), p1(z), . . . , pl(z)}T includes a complete
basis of the subspace of polynomials of degree m. In one dimension, it is
usual that pi(x) coincides with the monomials xi, and, in this particular case,
l = m. The coefficients a are obtained by minimization of the functional Jx(a)
centered in x and defined by

Jx(a) =
∑

i∈Ix

φ(x, xi)
[
u(xi)−PT(xi) a(x)

]2
, (2)

where φ(x, xi) is a weighting function (positive, even and with compact sup-
port) that characterizes the mesh-free method. For instance, if φ(x, xi) is con-
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tinuous together with its first k derivatives, the interpolation is also continuous
together with its first k derivatives. The particles cover the computational do-
main Ω, Ω ⊂ Rnsd , and, in particular, a number of particles {xi}i∈Ix belong
to the support of φ(x, xi). The minimization of Jx(a) induces the standard
normal equations in a weighted least-squares problem

M(x) a(x) =
∑

i∈Ix

φ(x, xi) P(xi) u(xi) (3)

where, as usual, the Gram matrix M(x) is the scalar product of the interpo-
lation polynomials:

M(x) =
∑

i∈Ix

φ(x, xi) P(xi) PT(xi).

That is,
〈u, v〉x =

∑

i∈Ix

φ(x,xi) u(xi) v(xi) (4)

must define a discrete scalar product. Thus, several conditions on the particle
distribution are implicitly assumed, see for instance [24,25].

Once the normal equations, Eqs (3), are solved the coefficients a are substi-
tuted in (1). Since the weighting function φ usually favors the central point x,
it seems reasonable to assume that such an approximation is more accurate
precisely at z = x and thus the approximation (1) is particularized at x, that
is,

u(x) ' uρ(x) = PT(x) a(x) = PT(x) M−1(x)
∑

i∈Ix

φ(x, xi) P(xi) u(xi). (5)

This expression can also be written in a standard interpolation form

uρ(x) =
∑

i∈Ix

Nρ
i (x) u(xi) =

∑

i∈Ix

[
φ(x, xi) PT(x) M−1(x) P(xi)

]

︸ ︷︷ ︸
Nρ

i (x)

u(xi). (6)

2.2 The diffuse derivative

The approximation of the derivative of u in each spatial direction is the cor-
responding derivative of uρ. This requires to derive (5), that is

∂u

∂x
' ∂uρ

∂x
=

∂PT

∂x
a + PT ∂a

∂x
. (7)

On one hand, the second term on the r.h.s. is not trivial. Derivatives of the
coefficients a require the resolution of a linear system of equations with the
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same matrix M. As noted in [26] this is not an expensive task. However, it
requires the knowledge of the cloud of particles surrounding each point x, and,
thus, it depends on the point where derivatives are evaluated.

On the other hand, the first term is easily evaluated. The derivative of the
polynomials in P is trivial and can be evaluated a priori, without knowledge
of the cloud of particles surrounding each point x.

The concept of diffuse derivative proposed in [20,19] consist in approximating
the derivative only with the first term on the r.h.s. of (7), namely

δuρ

δx
=

∂uρ

∂z

∣∣∣∣∣
z=x

=
∂PT

∂z

∣∣∣∣∣
z=x

a(x) =
∂PT

∂x
a(x).

From a computational cost point of view, this is an interesting alternative
to (7). Moreover, in [20] it is shown that the diffuse derivative converges at
optimal rate to the derivative of u, here the proof is developed in several
spatial dimensions.

Proposition 1 If uρ is an approximation to u with an order of consistency
m (i.e., P includes a complete basis of the subspace of polynomials of degree
m) and ρ/h is constant, then

∥∥∥∥∥
∂|k|u
∂xk

− δ|k|uρ

δxk

∥∥∥∥∥∞
≤ C(x)

ρm+1−|k|

(m + 1)!
∀|k| = 0, . . . , m. (8)

where k is a multi-index, k = (k1, k2, . . . , knsd) and |k| = k1 + k2 + · · ·+ knsd.

Proof. Lets assume u ∈ Cm+1(Ω) where Cm+1 is the space of (m + 1) times
continuously differentiable functions. Recall that Taylor’s formula of order m
can be written as:

u(x + h) =
m∑

|αα|=0

1

α!
hα ∂|αα|u

∂xαα
(x) + R?

m+1(x + θh), (9)

where θ ∈]0, 1[, R?
m+1(x + θh) is the error term and αα is a multi-index such

that,

hα := hα1
1 hα2

2 · · ·hαnsd
nsd

; αα! := α1!α2! · · ·αnsd !; |αα| = α1 + α2 + · · ·+ αnsd .

Without loss of generality, the definitions z := x + h and

Rm+1(x,z) := R?
m+1

(
x + θ(z − x)

)
(10)
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allow us to rewrite equation (9) as

u(z) =
m∑

|αα|=0

1

αα!

(
z − x

ρ

)α

ρα ∂|αα|u
∂xαα

(x) + Rm+1(x, z),

where, as usual, the dependence of θ in x and z is not explicitly stated. Thus,
Taylor’s formula can also be written as:

u(z) = PT
(

z − x

ρ

)
U(x) + Rm+1(x, z), (11)

where each component of P and U is defined, respectively, by

Pαα(ξξ) =
ξξξαα

α!
and Uααα(x) = ραα ∂|αα|u

∂xαα
for |αα| = 0, . . . , m. (12)

Observe that U(x) depends on the exact derivatives of u.

The MLS approach is based on the local approximation of the unknown scalar
function u by uρ, see equation (1). Since in equation (11) polynomials P(ξ)
are centered and scaled, the MLS interpolant is also centered and scaled,

u(z) ' uρ(x, z) = PT
(

z − x

ρ

)
a(x) for z near x.

Then the MLS approach requires the resolution of the normal equations given
by (3); here u(xi) is substituted using (11) and the scalar product defined in
(4) is employed to simplify the notation,

M(x) a(x) =
〈
P

(
z − x

ρ

)
,PT

(
z − x

ρ

)
U(x) + Rm+1(x, z)

〉

x
.

This equation can be rearranged as

M(x)[a(x)−U(x)] =
∑

j∈Ix

φ
(

xj − x

ρ

)
P

(
xj − x

ρ

)
Rm+1(x, xj) =: b. (13)

Now, lets rewrite the r.h.s. of (13) in a more convenient way. The error term
of Taylor’s formula has the form

Rm+1(x, xj) =
∑

|ααα|=m+1

(xj − x)αα

(m + 1)!

∂m+1u

∂xα
(x, xj), (14)

where, as in equation (10), the intermediate point θ is not explicitly stated
but its dependence on x and xj is reflected. Substituting (14) in the definition
of vector b, see (13), produces

b =
∑

j∈Ix

φ
(

xj − x

ρ

)
P

(
xj − x

ρ

) ∑

|αα|=m+1

(xj − x)αα

(m + 1)!

∂m+1u

∂xαα
(x, xj).
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Each component of the previously defined vector b is associated to the cor-
responding component of P, namely the polynomial of degree |k| = 0, . . . , m
defined as

ξk/k! =
(
ξk1
1 ξk2

2 · · · ξknsd
nsd

)
/
(
k1!k2! · · · knsd !

)
.

Under these circumstances, each component of b can be written as

bk =
∑

j∈Ix

φ
(

xj − x

ρ

)
(xj − x)k

ρ|k|
1

|k|!
∑

|α|=m+1

(xj − x)α

(m + 1)!

∂m+1u

∂xαα
(x, xj)

=
ρm+1

(m + 1)!

1

|k|!
∑

j∈Ix

φ
(

xj − x

ρ

) ∑

|αα|=m+1

(
xj − x

ρ

)k+αα ∂m+1u

∂xα
(x, xj)

︸ ︷︷ ︸
rk(x)

=
ρm+1

(m + 1)!
rk(x).

(15)

Thus, the r.h.s. of (13) becomes

b =
ρm+1

(m + 1)!
r(x). (16)

Substituting (16) into equation (13) and assuming that M is regular [24,25],

a(x)−U(x) =
ρm+1

(m + 1)!
M−1(x) r(x).

On one hand, rk is bounded for all |k| = 0, . . . ,m. This can be seen from the
definition of rk, see (15). Note that for a fixed x, if ρ/h is constant, rk is the
sum of products of continuous functions in Ω. Thus, it is a continuous function
in Ω. Moreover, in every product, there is the weighting function φ, which has
compact support. Since rk is a continuous function with compact support it
is bounded by a constant that only depends on x.

On the other hand, matrix M is also bounded [27,25]. Then, if both, M and
rk, are bounded, a constant C(x) can be defined as the bound of M−1(x)r(x)
and consequently

|a(x)−U(x)| ≤ ρm+1

(m + 1)!
C(x)

The previous expression can be divided by ρ|k|. Then, for each component,

∣∣∣∣∣
ak(x)

ρ|k|
− Uk(x)

ρ|k|

∣∣∣∣∣ ≤
ρm+1−|k|

(m + 1)!
C(x) ∀ |k| = 0, . . . , m, (17)

where ak and Uk are the components of a and U, respectively. Recall that
each component of U(x) depends on the corresponding exact derivatives of
u, see (12). Now, observe that each component of a(x) shall depend on the
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corresponding pseudo-derivatives; that is, for |k| = 0, ..., m

δ|k|uρ

δxk
:=

δ|k|uρ

δxk1
1 · · · δxknsdnsd

:=
∂|k|uρ

∂zk1
1 · · · ∂z

knsd
nsd

∣∣∣∣∣
z=x

=
ak(x)

ρk1 · · · ρknsd . (18)

Finally, replacing the definition of U(x) and a(x) given by (12) and (18) in
(17), one gets the final expression, which completes the proof,

∥∥∥∥∥
∂|k|u
∂xk

− δ|k|uρ

δxk

∥∥∥∥∥∞
≤ C(x)

ρm+1−|k|

(m + 1)!
∀|k| = 0, . . . , m. 2

3 A pseudo-divergence-free field

3.1 Diffuse divergence

In the previous section the diffuse derivative was introduced and its conver-
gence to the actual derivative as ρ → 0 was proven. Incompressible computa-
tions require a divergence-free approximating field. That is, the solution u(x),
now a vector u : Rnsd→ Rnsd , verifies ∇ · u = 0, and the approximation uρ(x)
should also be divergence-free. This condition however depends on the inter-
polation space. Here, instead of imposing a divergence-free interpolation, the
diffuse divergence of the approximation, uρ, is imposed equal to zero. That is,
given an interpolation defined as

uρ =




uρ
1

...

uρ
nsd




=




PTa1

...

PTansd




=
(
p0(x) Insd · · · pl(x) Insd

)



c0(x)
...

cl(x)




= QT c

impose

∇δ · uρ :=
nsd∑

i=1

δuρ

δxi

=
nsd∑

i=1

∂PT

∂xi

ai(x) =
(
∇ ·QT(x)

)
c(x) = 0. (19)

Note that Insd is the identity matrix of order nsd and the coefficients have been
rearranged as

cT =
(
a0,1 · · · a0,nsd︸ ︷︷ ︸

cT
0(x)

a1,1 · · · a1,nsd︸ ︷︷ ︸
cT
1(x)

· · · al,1 · · · al,nsd︸ ︷︷ ︸
cT

l
(x)

)
.

Equation (19) must hold at each point x and for any approximation. Thus
appropriate interpolation functions, Q, must be defined in order to verify
(19) and thus ensure asymptotically a divergence-free interpolation (i.e., the
divergence-free condition is fulfilled as ρ → 0).

8



3.2 A 2D pseudo-divergence-free interpolation

The previous concepts are particularized in a 2D case to clearly define pseudo-
divergence-free (PDF) interpolation functions. Suppose for instance that con-
sistency of order two is desired, then PT = {1, x1, x2, x

2
1/2, x1x2, x

2
2/2}, thus

QT(x) =




1 0 x1 0 x2 0 x2
1/2 0 x1x2 0 x2

2/2 0

0 1 0 x1 0 x2 0 x2
1/2 0 x1x2 0 x2

2/2


 (20)

and

cT =
(
a0,1 a0,2 a1,1 a1,2 a2,1 a2,2 a3,1 a3,2 a4,1 a4,2 a5,1 a5,2

)
. (21)

The PDF condition defined by (19) is, in this case, written as

∇δ · uρ =
∂PT

∂x1

a1 +
∂PT

∂x2

a2 = 0,

which implies: (a1,1+a2,2)+x1(a3,1+a4,2)+x2(a4,1+a5,2) = 0, and consequently,

a1,1 + a2,2 = 0, a3,1 + a4,2 = 0, and a4,1 + a5,2 = 0.

The influence of these three restrictions in the interpolation functions (20) can
be viewed as follows




1 0 x1 0 x2 0 x2
1/2 0 x1x2 0 x2

2/2 0

0 1 −x2 x1 0 0 −x1x2 x2
1/2 −x2

2/2 0 0 0


 , (22)

where one should note that the coefficients in the x1 and x2 directions are now
coupled and that the total number of degrees of freedom has decreased.

3.3 The pseudo-divergence-free EFG method

Using (22), let Qδ be the new interpolation matrix (where obviously the un-
necessary columns have been removed). The interpolation is then defined as

u(z) ' uρ(x, z) =




uρ
1(x, z)

uρ
2(x, z)


 = QT

δ(z) c(x). (23)

The MLS approximation requires to solve at each point x the normal equa-
tions, see (3),

M(x) c(x) =
∑

i∈Ix

φ(x, xi) Qδ(xi) u(xi),
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where

M(x) :=
∑

i∈Ix

φ(x, xi) Qδ(xi) QT
δ(xi).

As previously, the coefficients c are substituted in (23) and the approximation
is particularized at z = x. Then, equation (5) becomes

u(x) ' uρ(x) = QT
δ(x) c(x) = QT

δ(x) M−1(x)
∑

i∈Ix

φ(x, xi) Qδ(xi) u(xi),

and a final expression similar to (6) can be found:

uρ(x) =
∑

i∈Ix

Nρ
i (x) u(xi) =

∑

i∈Ix

[
φ(x, xi) QT

δ(x) M−1(x) Qδ(xi)
]
u(xi).

It is important to note that the matrix of interpolation functions Nρ
i is now

a full matrix, not a diagonal one as standard EFG would induce in this non
scalar problem. This is due to the fact that the two components of the solution
are linked by the incompressibility restriction.

4 Stationary Stokes problem

The model problem, steady Stokes flow, is used to analyze the performance
of the PDF EFG formulation. It is well-known that continuous and discrete
spaces for Stokes equations must verify an inf-sup condition [1]. This stability
requirement is evidenced in practical computations by the existence of spurious
pressure modes. The pseudo-divergence-free velocity field and the pressure
field employed should comply asymptotically with the LBB condition.

4.1 Statement of the problem

Let Ω denote an open bounded region of R2 with boundary ∂Ω. The 2D Stokes
problem in Ω seeks a velocity field u = (u1, u2) and a pressure field p such
that: 




−ν∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

(24)

where ν is the viscosity of the fluid and f is the body force.
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4.2 Weak form

Taking g = 0, the weak form of the Stokes problem defined in (24) is: find
(u, p) ∈ V ×Q, where V := [H1(Ω)]2 and Q := L2(Ω), such that

a(u, v) + b(v, p) + b(u, q) = (f ,v) ∀(v, q) ∈ V ×Q

and u = g on ∂Ω, where the bilinear forms a(·, ·) and b(·, ·) are defined as

a(u, v) :=
∫

Ω
∇v : ν∇u dΩ = ν(∇u,∇v), and

b(v, p) := −
∫

Ω
p∇ · v dΩ = −(p,∇ · v).

Note that (·, ·) denotes the standard L2(Ω)-scalar product.

In order to impose the Dirichlet boundary conditions Nitsche’s method [28–32]
is used because it produces reasonable results in mesh-free methods and it is
more stable than Lagrange multipliers or penalty methods without introducing
another discretization on the boundary, see [32] in this same volume for a
discussion on imposing Dirichlet boundary conditions in mesh-free methods.
Under this circumstances, the weak form becomes

a(u, v) + b(v, p) + b(u, q)

− (ν∂nu− pn,v)∂Ω − (u, ν∂nv − q n)∂Ω + νγ̂(u, v)∂Ω

= (f , v)− (g, ν∂nv − q n)∂Ω + νγ̂(g, v)∂Ω, (25)

where γ̂ is not a penalty parameter, but must be large enough to ensure
stability. In fact, it is an “arbitrary” (for the convergence analysis point of
view) positive value.

We now turn to the consideration of an approximate discrete solution of the
problem. Let Vρ and Qρ denote finite dimensional subspaces of V and Q re-
spectively. The index ρ refers to a characteristic measure of the support of the
interpolation functions. It is related to the characteristic measure between par-
ticles, h (recall, ρ/h is assumed constant). The discrete version of the problem
reads: find uρ ∈ Vρ and pρ ∈ Qρ such that, ∀(vρ, qρ) ∈ Vρ ×Qρ,

a(uρ,vρ) + b(vρ, pρ) + b(uρ, qρ)

− (ν∂nuρ − pρn, vρ)∂Ω − (uρ, ν∂nvρ − qρn)∂Ω + ν
γ

ρ
(uρ,vρ)∂Ω

= (f ,vρ)− (g, ν∂nvρ − qρn)∂Ω + ν
γ

ρ
(g,vρ)∂Ω.

Now, (·, ·)∂Ω denotes the L2(∂Ω)-scalar product. Note that the scalar γ̂ is
replaced by γ̂ = γ/ρ because the threshold of this parameter is inversely
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proportional to ρ. To guarantee that γ is large enough an eigenvalue problem
is solved, see [33].

5 The PDF formulation and the inf-sup compatibility condition

5.1 The inf-sup condition

The previous problem, see (25), can be written in the following form: find
(u, p) ∈ V ×Q such that

{
A(u, v) + B(v, p) = F (v) ∀v ∈ V ,

B(u, q) = G(q) ∀q ∈ Q,
(26)

where the new forms are defined as

A(u, v) := a(u, v)− (ν∂nu, v)∂Ω − (u, ν∂nv)∂Ω + νγ̂(u, v)∂Ω,

B(v, p) := b(v, p) + (p n,v)∂Ω,

F (v) := (f , v)− (g, ν∂nv)∂Ω + νγ̂(g,v)∂Ω,

G(q) := (g, q n)∂Ω.

The variational problem defined by (26) is well-posed if the following condi-
tions are verified [10]:

i) A(·, ·) and B(·, ·) are continuous, i.e.,

∃M1 such that ∀u ∈ V , ∀v ∈ V A(u, v) ≤ M1‖u‖‖v‖,
∃M2 such that ∀u ∈ V , ∀q ∈ Q B(v, q) ≤ M2‖v‖‖q‖.

ii) A(·, ·) is coercive, i.e.,

∃α such that ∀v ∈ V A(v,v) ≥ α‖v‖2.

iii) B(·, ·) satisfies:

inf
q∈Q

sup
v∈V

B(v, q)

‖v‖ ‖q‖ ≥ β > 0.

Here consideration is given to the discrete problem arising when (26) is dis-
cretized using Vρ and Qρ finite dimensional subspaces of V and Q, respec-
tively. The index ρ refers to a characteristic measure of the support of the
interpolation functions and it is related to the characteristic measure between
particles, h, because, as usual, we assume ρ/h constant. Conditions i) and ii)
carry over to the discrete model and condition iii) becomes:

inf
qρ∈Qρ

sup
vρ∈Vρ

B(vρ, qρ)

‖vρ‖ ‖qρ‖ =: kρ > 0. (27)

12



The stability condition needed for the convergence of the discrete model is:

lim
ρ→0

kρ ≥ β > 0.

To verify analytically (27) for a given pair (Qρ,Vρ) is not trivial. For this
reason the numerical inf-sup test allows, with relatively little effort, to indicate
whether the inf-sup condition is passed or not.

5.2 The numerical inf-sup test

First, in order to introduce the matrix notation, the discretized problem is
recalled: find uρ ∈ Vρ and pρ ∈ Qρ such that

{
A(uρ,vρ) + B(vρ, pρ) = F (vρ) ∀vρ ∈ Vρ,

B(uρ, qρ) = G(qρ) ∀qρ ∈ Qρ.

After discretization, the matrix form is obtained,



A BT

B 0






u

p


 =




F

G




where A and B are the matrices associated to the bilinear forms A(·, ·) and
B(·, ·) respectively.

The numerical inf-sup test is based in the next theorem.

Proposition 2 Let Mv and Mq be the mass matrices associated to the scalar
products of Vρ and Qρ respectively and let µmin be the smallest non zero
eigenvalue defined by the following eigenproblem:

BTM−1
q Bv = µ2Mvv

then the value of kρ is simply µmin.

The proof can be found in [9] or [10]. The numerical test proposed in [11]
consists in testing a particular formulation by calculating kρ using meshes of
increasing refinement. On the basis of three or four results it can be predicted
whether the inf-sup value is probably bounded from underneath or, on the
contrary, goes down to zero when the mesh is refined. The good behavior of this
test is demonstrated on several examples of elements for the incompressible
elasticity problem in [11]. In the following section this test is used to check
the behavior of the proposed PDF EFG method.
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5.3 Numerical test of the PDF EFG method

In order to perform the numerical inf-sup test a sequence of four successive
refined meshes is considered (uniform distributions of 11 × 11, 21 × 21, . . . ,
81× 81 particles). The objective is to monitor the inf-sup values, kρ, when h
decreases. Remember that the dilation parameter, ρ/h, is kept constant, and
thus, if h decreases ρ also decreases.

If a steady decrease in log(kρ) is observed when h goes to zero, the element is
predicted to violate the inf-sup condition and said to fail the numerical test.
But, if the log(kρ) stabilizes as the number of particles (or elements) increases,
the test is passed.

Figure 1 shows numerical tests comparing the finite element method (FEM),
the standard element free Galerkin method (EFG) and the pseudo-divergence-
free (PDF) EFG method. For each case different mixed interpolations have
been employed and compared. Note that some curves present rate of decrease
close 1 in the log/log graph, clearly indicating that the numerical inf-sup
condition fails. As expected, the finite element interpolations indicate that
Q1P0, Q1Q1 and Q2Q2 elements do not verify the inf-sup condition and the
Q2Q1 element (biquadratic interpolation for velocity and bilinear for pressure)
is LBB compliant. Standard EFG method does not improve the finite element
results, in fact, the Q2Q1 also fails to pass the inf-sup condition. Finally, for
the PDF EFG method log(kρ) appears to be bounded in every case.

6 Numerical examples

6.1 Analytical test

In order to illustrate the behavior of the PDF EFG interpolation in the solution
of stationary Stokes flow we consider a two-dimensional problem in the square
domain Ω = ]0, 1[×]0, 1[, which possesses a closed-form analytical solution [34].
The problem consists of determining the velocity field u = (u1, u2) and the
pressure p such that





−ν∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,
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