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Abstract

Ferroelectric ceramics are susceptible to fracture under high electric fields,

which are commonly generated in the vicinity of electrodes or conducting

layers. In the present work, we extend a phase-field model of fracture in fer-

roelectric single crystals for the simulation of the propagation of conducting

cracks under purely electrical loading. This is done by introducing the elec-

trical enthalpy of a diffuse conducting layer into the phase-field formulation.

Simulation results show an oblique crack propagation and crack branching

from a conducting notch, forming a tree-like crack pattern in a ferroelectric

sample under positive and negative electric fields. Microstructure evolution

indicates the formation of tail-to-tail and head-to-head 90o domains, which

results in charge accumulation around the crack. The charge accumulation,

in turn, induces a high electric field and hence a high electrostatic energy

further driving the conducting crack. Salient features of the results are com-

pared with experiments.
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1. Introduction

Over the past decades, ferroelectric ceramics have found many applica-

tions in smart structures and adaptive systems due to their unique elec-

tromechanical properties. The use of these materials as actuators demands

a large actuation capability, often only attainable under high electric fields.

The architecture of actuators commonly involves internal electrodes or con-

ducting layers, which can intensify the applied electric fields in their vicin-

ity. The electric fields, in turn, can induce an incompatible strain field or

a high electrostatic (Columbic) force, which may cause the brittle ferroelec-

tric ceramic to crack. Therefore, it is necessary to understand the fracture

behaviour of ferroelectric ceramics under electric fields to improve the re-

liability of such systems. Experiments and studies on electric-field induced

cracking of ferroelectric ceramics can be classified into three groups. The first

group is related to the fracture of multilayer ferroelectric actuators, where

electrode edges are the main source of fracture due to the induced incom-

patible strain field [1, 2, 3, 4, 5, 6, 7]. Related theoretical models have been

proposed to understand the fracture of these actuators based on the theory

of electrostrictive ceramics [8, 9, 10, 11, 12], the linear theory of piezoelec-

tricity [13, 14, 15, 16], and nonlinear approaches taking into account the

ferroelectric and ferroelastic behaviors [17, 18, 4, 19, 7]. The second group

of experiments have reported crack initiation and propagation from insu-

lating notches, under electric fields applied perpendicularly to the notch.

[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. However, theoretical approaches

show that electric fields, perpendicular to an insulating crack, decrease the

total energy release rate, i.e. the electric fields prevent the crack propagation
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[31, 32, 33, 34, 35, 36, 37]. This discrepancy between the theoretical and

experimental results has been discussed by Park and Sun [32]. They have

concluded that the strain energy release rate is a proper fracture criterion

for insulating cracks rather than the total energy release rate. Furthermore,

there is another controversy on the different electrical boundary conditions

on insulating crack faces since they affect the predicted energy release rates

[34, 35, 37]. The third group of experiments have been performed on con-

ducting cracks, where electric fields are applied parallel to the cracks, leading

to the fracture of ferroelectric ceramics [38, 39, 40, 41, 42, 43]. It is of tech-

nical relevance to investigate the electrical crack driving force on conducting

cracks since the electrodes may naturally function as pre-conductive cracks or

notches when the Young’s modulus of the electrode is much smaller than that

of the ceramic. In addition, dielectric breakdown and partial discharge may

convert an originally insulating crack into a conducting one [36, 42]. Most of

the experimental results suggest that the major driving force to propagate a

conducting crack is the electrostatic force due to the accumulation of charges

with the same sign at the crack tip. Theoretical models have also indicated

that electric fields parallel to a conducting crack increase the total energy

release rate [31, 44, 9, 45, 36] and induce a large electrostatic driving force

[46, 42]. Therefore, in contrast to the insulating crack, both experiments and

theoretical calculations consistently show an additional crack driving force

produced by the electric field. The total energy release rate can also be

considered as an appropriate fracture criterion for the conducting crack and

the electrical boundary conditions on the crack faces are clear in compari-

son to those of an insulating crack [36]. For completeness, we mention that
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the fracture behavior of conducting cracks has been also investigated under

combined mechanical and electrical loads [47, 48].

The above mentioned models for the conducting crack are useful to analyze

the electromechanical fields near the crack tip. Nevertheless, most of these

models are based on simplified electrostrictive or linear piezoelectricity the-

ories, which do not consider the nonlinear effects of the domain switching in

ferroelectrics. Related approaches have been developed to account for these

effects and to investigate the toughening of conducting cracks due to domain

switching [49, 50, 51], relying on a simple small-scale switching criterion [52].

However, all of these models assume fixed crack configurations and they are

unable to study the crack propagation mechanisms in ferroelectric ceramics.

To tackle the full complexity of fracture in these materials, we have recently

introduced a family of phase-field models for the coupled microstructure and

fracture evolution in ferroelectric single crystals [53, 54, 55] and polycrystals

[56]. The simulations results show the potential of these phase-field models

to elucidate the fracture behavior of ferroelectric ceramics, observed in exper-

iments and applications. In particular, we have shown: (1) the slow-fast [53]

and anisotropic crack propagation in ferroelectric single crystals [54], (2) the

intergranular and transgranular modes of fracture in ferroelectric polycrys-

tals [56], and (3) crack initiation patterns at electrode edges in multilayer

actuators [57]. In all of these works we have considered insulating cracks

under different electromechanical loading conditions. In this paper, we ex-

tend the phase-field theory to conducting cracks and investigating the crack

propagation mechanisms under purely electrical loading.

The structure of the paper is as follows. In Section 2, we present a sum-
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mary of the phase-field model for the fracture of ferroelectric single crystals,

introduced in Refs. [53, 54, 55]. Then, based on this model, we propose

a phase-field formulation for conducting cracks. Numerical simulations are

presented in Section 3, along with a discussion of the observed crack propa-

gation patterns and fracture mechanisms. The last section is the conclusion

of the paper.

2. Theory

2.1. Phase-field model of fracture in ferroelectric single crystals

The total electromechanical enthalpy of a possibly fractured ferroelec-

tric single crystal occupying a region Ω can be formulated in the context of

linearized kinematics in terms of the mechanical displacement u, the polar-

ization p, the electric potential φ and the phase-field v, as [53, 54, 55]

H[u,p, φ, v] =

∫
Ω

[We(ε(u), v) +Wf (ε(u),p,E(φ), v)] dΩ

+Gc

∫
Ω

[
(1− v)2

4κ
+ κ|∇v|2

]
dΩ, (1)

where body loads, volume charges, tractions and surface charges have been

ignored for simplicity. The first integral is referred to as total bulk energy

of the material, where We is the part of the bulk energy density associated

with the strain ε and Wf is the electromechanical energy density associated

with the ferroelectric response. The second integral takes the role of the

surface energy, where Gc is the critical energy release rate or the surface

energy density in Griffith’s theory [58]. The scalar field v is the phase-field

parameter describing a smooth transition in space between unbroken (v = 1)

and broken (v = 0) states of the material. κ is a positive regularization
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constant which regulates the size of the smeared fracture zone. The energy

density We is written as

We(ε, v) = κ0
tr−(ε)2

2
+ (v2 + ηκ)

(
κ0

tr+(ε)2

2
+ µ εD · εD

)
, (2)

where κ0 and µ are the bulk and shear modulus of the material, respectively.

The trace of the strain tensor ε is decomposed in positive and negative parts

as tr+ = max(tr(ε), 0) and tr− = max(−tr(ε), 0) and εD are the deviatoric

components of the strain tensor. This decomposition is introduced to distin-

guish the contributions to the strain energy due to compression, expansion,

and shear. To prevent crack nucleation, propagation and interpenetration

in compressed regions, only the expansion and shear terms are multiplied

by the jump set function (v2 + ηκ) [59]. This condition is essential for the

simulation of the crack propagation in applications where high compressive

stresses are induced [54]. The parameter ηκ is a small (relative to κ) residual

stiffness to avoid the singularity of the bulk energy in fully fractured regions

of the domain.

The electromechanical energy density Wf associated with polarization p,

electric potential φ, ε and v is given as

Wf (ε,p, φ, v) = (v2 + ηκ)[U(∇p) +W (p, ε)] + χ(p)−E · p− ε0

2
|E|2, (3)

where E is the electric field defined as E = −∇φ, U is the domain wall

energy density penalizing sharp variations in the polarization, χ is the phase

separation potential, W is the electromechanical coupling energy density

and ε0 is the vacuum permittivity. The energy densities χ and W penalize
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deviations from the spontaneous polarizations and strains of the material,

hence introducing the anisotropy and nonlinearity of ferroelectric materials.

The combination of the energy functions χ, W and We is the total Landau-

Devonshire energy density furnishing a multi-well energy landscape with four

minima in two dimensions corresponding to the four variants of the tetragonal

phase. The detailed formulation of these energy functions and the related

material constants are presented in A.

In addition to the asymmetric fracture response in tension and compres-

sion, this particular formulation of the phase-field model encodes the follow-

ing assumed crack conditions: (1) traction-free, (2) electrically permeable,

and (3) free-polarization [54]. For a sharp crack, the traction-free condi-

tions are stated as σ · n = 0 where σ and n are the stress tensor and the

unit outward normal on the crack faces, respectively. These conditions are

encoded in the phase-field framework by multiplying the jump set function

(v2 + ηκ) by W in Eq. (3) and the expansion and shear terms in Eq. (2). As

a consequence, the energy terms associated with the strains ε vanish inside

the fracture zone (v = 0) and outside the compressed regions. The perme-

able conditions assume that crack faces are closed and the electrical fields

are not perturbed by the presence of the crack. These conditions have been

checked to be realistic for non-conducting cracks based on the observed frac-

ture behavior of ferroelectric ceramics [60, 61, 62]. To encode the permeable

conditions, the last two terms in Eq. (3), associated with the electric field E,

are not multiplied by the the jump set function.

In contrast to piezoelectrics, the modeling of cracks in ferroelectric mate-

rials requires imposing boundary conditions on the polarization on the crack
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faces. Free-polarization boundary conditions are commonly assumed, imply-

ing that the polarization distribution near each side of the crack is unaffected

by it, and hence dictated by the bulk material model [63, 64]. Mathemati-

cally, they are written as

∇p+ · n = ∇p− · n = 0, (4)

where the superscripts + and - denote the top and bottom crack faces. We

introduce these conditions in the phase-field framework by suppressing the

gradient of polarization inside the fracture zone, i.e. multiplying U by the

jump set function (v2 + ηκ) in Eq. (3).

It can be shown numerically that all of the above conditions are satisfied

in the vicinity of the smeared crack for a finite but small value of the regu-

larization parameter κ, as expected in the sharp crack model [53, 55]. Other

electromechanical conditions for insulating cracks can be modeled similarly

[55].

To capture interactions between the fracture and the microstructure pro-

cesses, the crack propagation should not be overwhelmingly faster than the

microstructure evolution, and vice versa. In practice, the relative kinet-

ics of the microstructure evolution and the crack propagation gives the two

phenomena a chance to interact. In the absence of detailed experimental

or fundamental information on these kinetics, v is selected together with the

polarization as primary order parameters and finite mobilities are introduced

for the fracture and microstructure processes. Then, the time evolution of

the system results from the gradient flows of the primary order parameters,

assuming that the displacement and the electric field adjust immediately to
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mechanical and electrostatic equilibrium (with infinite mobility), i.e.

α

∫
Ω

ṗiδpidΩ = −δH[u,p, v, φ; δp], (5)

β

∫
Ω

v̇δvdΩ = −δH[u,p, v, φ; δv], (6)

0 = δH[u,p, v, φ; δu], (7)

0 = −δH[u,p, v, φ; δφ], (8)

where 1/α > 0 and 1/β > 0 are the mobilities of the processes. The form of

the variations of the electromechanical enthalpy is given in B, along with a

simple algorithm to solve the coupled system.

Two constraints are also considered for solving the equation of the frac-

ture evolution in Eq. (6). The first constraint imposes an irreversibility con-

dition for the fracture process, namely that the field v can only decrease

at any point in space during the incremental process. When the value of v

decreases beyond a threshold γ, it is forced to zero for the rest of the calcu-

lation. The second constraint puts an upper bound for v since it is possible

in electromechanical fracture that in some regions, a non-positive crack driv-

ing force is induced by the load. It is favorable then to localize in these

regions high values of v, much above one. Such anomalous localization zones

are not physically meaningful. This issue manifests itself in sharp models of

electromechanical crack propagation, with the negative energy release rates

found at high applied electric fields [37]. Numerically, we deal with this issue

by limiting the maximum value of v to one.

2.2. Phase-field model for conducting cracks

A conducting crack is modeled by assuming that the crack faces are coated

with perfectly conducting electrodes. Therefore, the electric potential is con-
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stant along the crack and the electric field inside the crack gap is zero. Ex-

perimentally, these conditions can be implemented by filling the crack gap

with a conducting fluid or electrolyte such as NaCl solution [47, 48] or silver

paint [39, 41]. The crack-gap filling electrolyte acts as an internal conducting

layer with very large permittivity. In the context of phase-field models, this

layer can be defined in a smeared way by modifying the electromechanical

enthalpy in Eq. (3) in such a way that the permittivity reaches infinity in-

side the fractured zone (v = 0). This is done by multiplying the vacuum

permittivity ε0 by the jump set function 1/(v2 + ε−1
c ), where εc is the rela-

tive permittivity of the fractured zone. Then the electromechanical enthalpy

density in Eq. (3) is modified for a conducting crack as

Wf (ε,p, φ, v) = (v2 + ηκ)[U(∇p) +W (p, ε)] + χ(p)−E · p− 1

(v2 + ε−1
c )

ε0

2
|E|2, (9)

If εc is chosen sufficiently large, the last term in Eq. (9) will represent the elec-

trical enthalpy of a diffuse conducting layer, as shown schematically in Fig. 1.

The jump set function 1/(v2 + ε−1
c ) does not alter the vacuum permittivity

outside of the fracture zone (v = 1), ε−1
c being an infinitesimal value. On the

other hand, this function attains its maximum for v = 0, thereby encoding

the conditions of a conducting crack, with a large relative permittivity εc

inside the fractured zone. A partially conducting layer appears as a smooth

transition between the insulating vacuum and conducting layers (0 < v < 1).

When the regularization parameter κ tends to zero, this transition becomes

sharper and the semi-conducting layer tends to disappear. We show in Fig. 8

that indeed this method produces numerical solutions, satisfying the desired

conditions of a sharp conducting crack in an accurate way for a small value
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of the regularization parameter.

Note that this formulation together with the energy density We in Eq. (2)

account for the asymmetric behavior in tension and compression and encode

also the free-polarization conditions on the conducting crack, as discussed

in Section 2.1. As sustained by several investigations [47, 48], we consider

the critical energy release rate Gc as a valid fracture criterion for conducting

cracks. Therefore, the total electromechanical enthalpy in Eq. (1), with Wf

given in Eq. (9), is also valid for conducting cracks.

3. Numerical simulation

3.1. Computational domain and parameter setting

To perform numerical simulations, we consider a square domain presented

in Fig. 2 of size L1 = 10 mm. The material constants are chosen to fit the

behavior of single crystals of barium titanate (BaTiO3) at room temperature.

The initial polarization p0 is along the positive horizontal direction with a

magnitude of 0.26 Cm−2. A deep pre-notch is introduced in the model, paral-

lel to the initial polarization, to facilitate the crack initiation, while avoiding

the boundary effects on the notch tip. The notch dimensions are chosen as

Ln = 5 mm and W = 50 nm. To create a conducting notch, the electric po-

tential is fixed to zero on the notch surface. The electric potential is also set

to 0 and V on the left and right sides of the domain, respectively. Therefore,

different electric fields can be applied in the horizontal direction by giving

different values to the driving voltage V . The model is discretized with ap-

proximately 100,000 triangular finite elements of different sizes. A fine mesh
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with element size h = 2 nm is generated in a small square region of interest

of size L2 = 200 nm around the notch, presented in Fig. 2(b), where fracture

is expected. This element size is small enough relative to the ferroelectric

domain walls with a thickness of few nanometers [65, 66]. The rest of the

domain is meshed with larger elements. Note that in the phase-field model,

a domain wall scaling parameter a0 regulates the size of the domain walls.

This parameter has to be chosen such that the variation of the polarization

can be resolved by the discretization, particularly across the coarse elements

away from the notch tip, while the domain walls near the tip remain suffi-

ciently sharp in the order of their physical thickness. The adjustment of the

parameter a0 to the element size is essential to avoid domain wall pinning

at the larger elements and does not affect the results inside the region of

interest. See A for further details on setting this parameter.

An electric field E = −V/L1 of up to 1.4 KV/mm is applied incrementally

in the positive and negative directions by increasing the driving voltage V

in 75, 000 quasi-static load increments of ∆V = ±18.67× 10−2 V. A pseudo-

time step ∆t = 10−2 also leads to convergent and accurate solutions for the

explicit integration of the gradient flow equations in Eqs. (5) and (6). A

relative permittivity εc = 108 has been found large enough to accurately

reproduce the conditions of a conducting crack.

The simulations are performed following a simple algorithm presented in

B. The remaining constants are chosen as follows. The regularization param-

eter κ is set to twice the finest element size as κ = 4 nm, i.e. h/κ = 0.5,

the threshold to detect the irreversibly fractured regions to γ = 2 × 10−2,

the residual stiffness to ηκ = 10−4, the tolerances to achieve steady states for
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ferroelectric domains and fracture processes to δferro = δvfield = 10−3, and

the inverse mobilities to α = 10 and β = 45. The simulations are carried out

on parallel processors using the finite element library of the Kratos multi-

physics package [67].

3.2. Numerical results and discussion

Figure 3 presents three snapshots of the crack propagation in the small

neighborhood of the notch tip under positive applied electric fields. As the

electric field increases, the v field starts to decrease at two points of the circu-

lar tip until it reaches the threshold to be considered permanently fractured

(v < 0.02), and the cracks initiate, see Fig. 3(a). By further increasing the

load, the field v evolves along two directions from the notch tip, forming a

tree-like crack pattern. A similar crack initiation, oblique crack propagation

and branching is also observed under negative applied electric fields, as shown

in Fig. 4. The simulations are stopped at load |E| = 1.4 KV/mm because

by further increasing the load, the cracks propagate though the coarse mesh

zone, where they cannot be resolved numerically. Longer cracks can be ob-

tained by employing an adaptive mesh refinement strategy, which is beyond

the scope of the present paper.

The main difference between the results of the positive and negative elec-

tric fields is that the cracks under the positive field are more curved and tend

to branch again as the load increases. Interestingly, an oblique crack prop-

agation is also observed in experiments of conducting cracks in ferroelectric

ceramics under purely electrical loading [41], where a rough fracture surface

was observed. The crack patterns in our simulations can be conceived as the
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initial stages of the experimentally observed tree-like cracks [20]. Other ex-

periments have also reported the formation of a micro-cracks network driven

by electric fields [48]. Furthermore, our simulation results show that the

cracks are longer under the negative electric field, cf. Fig. 3 and 4. Again,

this is in agreement with experiments showing that electric fields in oppo-

site to the initial polarization strongly facilitate the conducting fracture [48].

Crack closure is also observed in the simulation under the positive electric

field. In this situation, the crack faces cease to be traction-free since the

proposed model prevents crack interpenetration in compressed regions, see

Eq. (2). This is an important aspect of electromechanical crack propagation

addressed by several studies on conducting cracks in ferroelectrics [47, 68, 48].

These studies have consistently indicated that crack closure occurs for a con-

ducting crack under an electric field applied in the poling direction, which is

in agreement with our results.

The origin of the observed crack patterns can be found in the domain

switching during crack growth. Figures 5 and 6 present snapshots of the

domain evolution under the positive and negative electric fields, respectively.

Charge accumulation occurs around the cracks through the formation of tail-

to-tail and head-to-head 90o domains in Fig. 5 and 6, respectively. This

charge accumulation with the same sign induces a high electric field at the

crack tip, which in turn leads to a high electrostatic energy (last term in

Eq. (9)) for driving the crack. The polarization components along a cross-

section of the crack under the negative electric field are presented in Fig.

7. Due to the free-polarization conditions (see Eq. (4)), the polarization

components approach with zero slope the edges of the smeared crack and
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they follow a smooth transition across the crack. This smooth transition

becomes sharper as the value of the regularization parameter κ decreases

towards zero. The same sign of the polarization components on the two sides

of the crack clearly indicates the head-to-head 90o domains and hence the

charge accumulation. For the sake of brevity, a similar figure for the positive

electric field (with the opposite sign of the polarization components) is not

shown.

Figure 8 presents the electric field magnitude during the load steps ob-

tained at a point in the path of the conducting crack under the negative

electric field. The electric field intensification is obvious when the crack

reaches this point at load step a. On the other hand, the electric field sud-

denly vanishes when the crack passes through this point at load step b, i.e.

the electric potential becomes constant in the fractured zone as expected.

This provides numerical evidence that the conditions of a conducting crack

are accurately satisfied by the proposed phase-field model. Since the cracks

are conducting and connected to the pre-notch, the electric potential inside

the fractured zone is the same as that inside the pre-notch, which is assumed

to be zero. We note that the same simulation results are obtained by fixing

the electric potential to a non-zero value on the pre-notch. In this case, the

driving voltage V should be increased by the non-zero value to produce the

same electric field. The nucleation of new twins also induces a high electric

field, which is responsible for the initiation of small crack branches under the

positive electric field, see Fig. 3(c) and 5(c). Polarization reversal in front of

the notch is obvious in Fig. 6 under the negative electric field.
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4. Conclusions

We perform, to the best of our knowledge, the first simulation of con-

ducting crack propagation in ferroelectric ceramics under purely electrical

loading. Our simulations agree qualitatively with the experimental record

and provide new insight on this complex process. For this purpose, we ex-

tend to conducting cracks, a phase-field model of fracture in ferroelectric

ceramics by introducing the electrical enthalpy of a diffuse conducting layer

into the phase-field formulation. Simulation results show an oblique crack

propagation and crack branching from a conducting notch, forming a tree-

like crack pattern in a ferroelectric sample. The origin of the observed crack

patterns have been found in the formation of tail-to-tail and head-to-head

90o domains which results in a charge accumulation around the crack. The

charge accumulation, in turn, induces a high electrostatic energy for driv-

ing the conducting cracks. A negative electric field induces a larger driving

force with respect to the positive one. All these observations agree with

experiments.

We also suggest that dielectric breakdown mechanisms can be modeled

in a similar way to that of conducting crack propagation since dielectric

breakdown occurs via the formation of conducting tubular channels under

high electric fields [44]. Dielectric breakdown has been also observed during

the propagation of conducting cracks [39, 41, 43, 69]. The formation and

propagation of the tubular channels can shield or reduce the electric field,

resulting in a decrease in the driving force of conducting cracks, and they

can also affect the microstructure of the material. Furthermore, the propa-

gation of conducting cracks under combined electro-mechanical loading can
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also be studied with the proposed model. These topics are currently under

investigation.
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A. Energy functions and material parameters

The energy functions U , W and χ in Eq. (3) are chosen following [70, 71],

adapted to a plane polarization and plane strain state:

U(pi,j) =
a0

2
(p2

1,1 + p2
1,2 + p2

2,1 + p2
2,2), (10)

W (pi, εjk) = − b1

2
(ε11p

2
1 + ε22p

2
2)− b2

2
(ε11p

2
2 + ε22p

2
1)

− b3(ε21 + ε12)p1p2, (11)

χ(pi) = α1(p2
1 + p2

2) + α11(p4
1 + p4

2) + α12(p2
1p

2
2) + α111(p6

1 + p6
2) + α112(p2

1p
4
2 + p2

2p
4
1)

+ α1111(p8
1 + p8

2) + α1112(p6
1p

2
2 + p6

2p
2
1) + α1122(p4

1p
4
2), (12)

where a0 is the scaling parameter of the domain wall energy, bi(i = 1, 2, 3)

are the constants of the coupling terms between strain and polarization and

ci(i = 1, 2, 3) are the elastic constants. The phase separation energy χ is

improved by adding the eighth-order terms with coefficients α1111, α1112 and

17



α1122 to reproduce the dielectric behavior of barium titanate (BaTiO3) sin-

gle crystals [72, 73]. The eighth-order term with coefficient α1122 enables

the model to fit the dielectric constants while retaining a reasonable energy

barrier for 900 domain switching in the tetragonal phase [74, 75]. α1 is

linearly dependent on temperature and its negative value makes the cubic

phase unstable. α111 is estimated by fitting the spontaneous polarization of

the tetragonal phase. α112 and α1112 are fitted to the dielectric permittiv-

ity perpendicular to the spontaneous polarization. α11, α12 and α1111 are

evaluated from linear and nonlinear dielectric measurements above the Curie

temperature [73]. The constants are chosen to fit the behavior of single crys-

tals of barium titanate (BaTiO3) at room temperature with a spontaneous

polarization p0=0.26 Cm−2, relative spontaneous strains εa = -0.44% along

a-axis and εc = 0.65% along c-axis [74, 73]. The domain wall scaling pa-

rameter is set as a0 = 37h Vm2C−1, where h is the element size. The 90o

domain walls width is then spanned with 3-5 elements of size h = 2 nm near

the notch tip in the simulations, corresponding to 6-10 nanometers, in the

order of experimentally measured values in tetragonal ferroelectric ceramics

[65, 66]. Furthermore, increasing a0 with the element size results in a smooth

variation of the polarization across coarse elements away from the notch tip.

Normalized parameters are presented in table 1 through the following

normalizations: x′i = xi
√
c0/l0/p0, µ′ = µ/c0, κ′0 = κ0/c0, p′i = pi/p0, ε′0 =

ε0c0/p
2
0, φ′ = φ/

√
l0c0, α′1 = α1p

2
0/c0, α′11 = α11p

4
0/c0, α′12 = α12p

4
0/c0, α′111 =

α111p
6
0/c0, α′112 = α112p

6
0/c0, α′1111 = α1111p

8
0/c0, α′1112 = α1112p

8
0/c0, α′1122 =

α1122p
8
0/c0, b′i = bip

2
0/c0 and c′i = ci/c0, where i = 1,2,3, c0 = 1 GPa and

l0 = 3.7× 10−9 Vm3C−1 . Considering Young’s modulus, Poisson’s ratio and
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fracture toughness for BaTiO3 as E = 100 GPa, ν = 0.37, and Kc = 0.49

MPa
√
m, respectively, the value of the critical energy release rate in plane

strain is obtained as Gc = (1− ν2)K2
c /E = 2 Jm−2. The value of normalized

critical energy release rate is then calculated as G′c = Gc

√
1/l0c0/p0 = 4.

B. Weak form of the governing equations and solution algorithm

The weak forms of the gradient flows in Eqs. (5) and (6), together with

the equations for mechanical and electrostatic equilibria in Eqs. (7) and (8),

follow from

α

∫
Ω

ṗiδpidΩ = −δH[u,p, v, φ; δp] (13)

= −
∫

Ω

[
(v2 + η)

(
∂U

∂pi,j
δpi,j +

∂W

∂pi
δpi

)
+
∂χ

∂pi
δpi + φ,iδpi

]
dΩ,

β

∫
Ω

v̇δvdΩ = −δH[u,p, v, φ; δv] (14)

= −
∫

Ω

∂(We +Wf )

∂v
δv dΩ− 2Gc

∫
Ω

(
v − 1

4κ
δv + κv,iδv,i

)
dΩ,

0 = δH[u,p, v, φ; δu] =

∫
Ω

∂(We +Wf )

∂εij
δεij dΩ, (15)

0 = −δH[u,p, v, φ; δφ] =

∫
Ω

∂Wf

∂Ei
δEi dΩ, (16)

where the elastic strain εij and electric field Ei are associated with the

mechanical displacement ui and the electric potential φ, respectively, as

εij = 1/2(ui,j + uj,i) and Ei = −φ,i. Equations (13) and (14) are discretized

19



in time with an explicit scheme from time tm to tm+1 = tm + ∆t. Note that

the minimization in Eq. (15) is non-smooth, and a quasi-Newton algorithm

is applied to solve the mechanical equilibrium problem following [59].

A simple algorithm to solve the coupled system in a straightforward stag-

gered approach is presented in Algorithm 1. This algorithm describes how

to advance in one load step (or pseudo-time increment), and it is meant to

achieve steady states for both ferroelectric domains and fracture processes

in each load step. The functions g(w) and f(w) encode the Dirichlet data

for the mechanical displacement and electric potential as a function of the

load step w. After reaching a steady state for both the polarization and the

phase-field v, the values for vn, un, pn and φn are recorded and the algorithm

proceeds to the next load step n+ 1.
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Figure 1: Schematic of a diffuse conducting layer.
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 ϕ = 0   
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Figure 2: (a) Schematic of the computational domain and loading conditions. A pre-notch

with the length of Ln and the tip diameter of W is considered in the model to facilitate

the crack initiation. The initial polarization p0 is along the positive horizontal direction

(b) small square area around the notch tip, where fracture is expected and (top) a finer

mesh is generated in this area. Note that a positive applied electric field is oriented in the

direction of the initial polarization
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(b)

(c)

(a)

Figure 3: Three snapshots of the fracture evolution: contour plots of the field v under

positive electric fields (a) E = 1 KV/mm (b) E = 1.12 KV/mm (c) E = 1.4 KV/mm.
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(b)

(c)

(a)

Figure 4: Three snapshots of the fracture evolution: contour plots of the field v under

negative electric fields (a) E = -0.8 KV/mm (b) E = -1.12 KV/mm (c) E = -1.4 KV/mm.
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(a)

1

(c)

(b)

p
2

p

Figure 5: Three snapshots of the microstructure evolution in an area near the notch tip

under positive electric fields (a) E = 1 KV/mm (b) E = 1.12 KV/mm (c) E = 1.4 KV/mm.

The left and right columns show the horizontal and vertical components of the normalized

polarization, respectively. The white lines indicate the position of the cracks (v = 0). The

domain orientations are indicated with white arrows.
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(a)

1

(c)

(b)

p 2
p

Figure 6: Three snapshots of the microstructure evolution in an area near the notch tip

under negative electric fields (a) E = -0.8 KV/mm (b) E = -1.12 KV/mm (c) E = -1.4

KV/mm. The left and right columns show the horizontal and vertical components of the

normalized polarization, respectively. The white lines indicate the position of the cracks

(v = 0). The domain orientations are indicated with white arrows.
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Figure 7: (Left) Vertical (p2) and horizontal (p1) components of the normalized polariza-

tion along a cross-section of the crack under the negative electric field. (Right) Field v

along the same section representing the smeared crack. The same sign of the polarization

components on the two sides of the crack indicate the charge accumulation.
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Figure 8: Electric field magnitude |E| as a function of the load step obtained at a point in

the path of the conducting crack under the negative electric field. The crack reaches this

point at load step a and passes through it at load step b.
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Table 1: Normalized parameters

κ′0 µ′ b′1 b′2 b′3 α′1 α′11

146 36 1.4282 -0.185 0.8066 -0.0023 -0.0029

α′12 α′111 α′112 α′1111 α′1112 α′1122 ε′0 G′c

-0.0011 0.003 -0.00068 0.001 0.0093 1.24 0.131 4
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Algorithm 1 for the coupled model
1: Let m = 0

2: Set v0 = 1, p0 = pinit, φ0 = 0 and u0 = 0 if n = 0

3: Set v0 = vn−1, u0 = un−1, p0 = pn−1 and φ0 = φn−1 if n > 0

4: repeat

5: m←− m+ 1

6: Compute pm in (13) using pm−1, um−1, φm−1 and vm−1

7: Compute um in (15) using pm and vm−1 under the constraint um =

g(wn) on ΓD,u

8: Compute φm in (16) using pm and vm−1 under the constraint φm =

f(wn) on ΓD,φ

9: Compute vm in (14) using pm, um, φm and vm−1 under the constraints

vm 6 1 and vm = 0 for vn−1 6 γ

10: until ‖pm − pm−1‖∞ 6 δferro and ‖vm − vm−1‖∞ 6 δvfield

11: Set un = um, vn = vm, pn = pm and φn = φm
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