
Phase-field simulation of anisotropic crack

propagation in ferroelectric single crystals: effect of

microstructure on the fracture process

Amir Abdollahi and Irene Arias
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Abstract. Crack propagation during the indentation test of a ferroelectric single
crystal is simulated using a phase-field model. This model is based on variational
formulations of brittle crack propagation and domain evolution in ferroelectric
materials. Due to the high compressive stresses near the indenter contact faces, a
modified regularized formulation of the variational brittle fracture is coupled with
the material model to prevent crack formation and interpenetration in the compressed
regions. The simulation results show that the radial cracks perpendicular to the poling
direction of the material propagate faster than the parallel ones, which is in agreement
with experimental observations. This anisotropy in the crack propagation is due to
interactions between the material microstructure and the radial cracks, as captured by
the phase-field simulation.
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1. Introduction

The unique electromechanical coupling properties of ferroelectrics make them ideal

materials for use in micro-devices as sensors, actuators and transducers. Because of

their brittleness, the design of the electromechanical devices requires the understanding

of the complex fracture behavior in these materials. Complexity stems mainly from

the nonlinear interactions of the mechanical and electrical fields in the vicinity of the

crack, with localized switching phenomena, i.e. formation and evolution of ferroelectric

domains [1–4]. Domain switching has been claimed as the main mechanism behind the

fracture behavior of ferroelectric materials, in particular fracture toughness anisotropy.

The Vickers indentation technique is commonly used to investigate this anisotropy [5–

10]. Experiments show that cracking along the poling direction of the material has a

shorter length and consequently a higher effective fracture toughness than that normal

to the poling direction.

Numerous investigations have been conducted to study the fracture of ferroelectrics

(see [11–13] for excellent theoretical and experimental reviews). The linear theory of

fracture mechanics for piezoelectric materials has been well established in the literature,

but is unable to capture the strong nonlinear effects due to domain switching in

ferroelectric ceramics. Thus, a number of approaches have been proposed to model

the nonlinear fracture response. These include models inspired in plasticity theory

and aimed at polycrystalline ferroelectric ceramics [14]. These models do not intend

to describe explicitly the domain formation, but rather the effective phenomenology

[4, 15]. An energy-based switching criterion was suggested in [16], allowing researchers to

analyze the local phase transformations near the crack tip under the assumption of small-

scale switching [17–19]. In the last years, phase-field or time-dependent Devonshire-

Ginzburg-Landau (TDGL) models have gained a growing interest since they aim at

explicitly describing the formation and evolution of individual ferroelectric domains in

the framework of continuum mechanics [20–24]. See [25] and [26] for related models

in micromagnetics. These microstructural models have specifically been applied to

fracture, in all cases with a fixed crack. The nucleation and growth of domains near

crack tips have been studied under applied electromechanical loadings, and the influence

on the stress field and the mechanical and electromechanical J−integrals have been

reported [27–29]. For completeness, we mention that cohesive theories aimed at fracture

in ferroelectric materials have been proposed [30, 31].

The main objective of this paper is to introduce a model to explain the anisotropic

crack growth under Vickers indentation loading, linking the microstructural details with

the macroscopic observable response. We have recently proposed a phase-field model for

the coupling of brittle crack propagation and microstructure evolution in ferroelectric
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single crystals [32]. The model couples a variational regularized model of brittle fracture

[33–36] with a Devonshire-Ginzburg-Landau phase-field model for the microstructure

evolution [20]. In this model, a system of partial differential equations governing the

phase-fields accomplishes at once (1) the tracking of the interfaces in a smeared way

(cracks, domain walls) and (2) the modeling of the interfacial phenomena (domain wall

energies, crack face boundary conditions). This computational approach smears both the

crack and the domain wall, and allows naturally for crack and domain nucleation, crack

branching, crack and domain wall merging, and interactions between multiple cracks and

domains. However this flexibility comes at the expense of a high computational cost,

since the width of the phase-field regularizations of the domain wall and the crack must

be resolved by the discretization. This model has been used to analyze the quasi-static

crack propagation and the ferroelectric domain formation and evolution under combined

electromechanical loading by tackling the full complexity of the phenomenon. However

the model, as presented in [32], is unable to simulate the aforementioned anisotropic

crack growth. Here we introduce a modification in the formulation of the phase-field

model endowing the model with this capability. A related approach has been proposed

for crack propagation and kinking in ferroelectrics, where the spontaneous rather than

the total polarization of the material is chosen as the primary order parameter [37].

The model proposed in [32] is modified following [38] by introducing a crack non-

interpenetration condition in the variational approach to fracture accounting for the

asymmetric behavior in tension and compression in the framework of linearized elasticity.

This condition is essential for the simulation of the Vickers indentation test since the

indentation loading induces high compressive stresses near the indenter contact faces.

Figure 1 presents the compression and tension zones around the indentation impression.

Without the crack non-interpenetration condition, the variational approach would lead

to crack propagation and interpenetration in the compression zones, along the indenter

faces. Furthermore, radial crack propagation in tension zones is only obtained when

this condition is considered in the model. For the ferroelectric response, we follow the

Devonshire-Ginzburg-Landau phase-field model presented in [20] just as in [32].

The theory of the coupled phase-field model is described in Section 2. Simulation

results indicate interactions between the material microstructure and the crack leading

to the experimentally observed fracture anisotropy. These results are presented and

discussed in Section 3. The last Section is the conclusion of this paper.

2. Phase-field Model

The proposed approach to brittle fracture in ferroelectric materials relies on the coupling

of two energetic phase-field models, that of [20] for ferroelectric domain formation and
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Figure 1. Compression (C) and Tension (T) zones due to the indentation loading.

evolution, and that presented in [38] for brittle fracture. We briefly describe here the

coupled phase-field formulation with emphasis on the modification introduced to account

for the asymmetric behavior in tension and compression. A detailed presentation of the

model (without this modification) can be found in [32], while a rigorous study of different

crack models (analogous to the sharp crack boundary conditions) is presented in [39].

Note that in the phase-field model, these boundary conditions become part of the field

equations since the crack faces are represented by an internal layer.

2.1. Electro-mechanical enthalpy

We form a total electro-mechanical enthalpy of a possibly fractured ferroelectric material

occupying a region Ω as

H[u,p, φ, v] =

∫
Ω

[We(ε(u), v) +Wf (ε(u),p, φ, v)] dΩ

+Gc

∫
Ω

[
(1− v)2

4κ
+ κ|∇v|2

]
dΩ, (1)

where body loads, volume charges, tractions and surface charges have been ignored for

simplicity. In this functional, the bulk energy (first integral) competes with the surface

energy (second integral). The constant Gc is the critical energy release rate or the surface

energy density in Griffith’s theory [40]. The scalar field v is the phase-field parameter

describing a smooth transition in space between unbroken (v = 1) and broken (v = 0)
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states of the material. When the positive regularization parameter κ tends to zero,

this transition becomes sharper. The first integral in Eq. (1) is referred to as total bulk

energy, We being the part of the bulk energy density associated with the strain ε and Wf

being the electro-mechanical energy density associated with the ferroelectric response.

To account for the quite different fracture behavior in tension and compression, the

energy density We is written in [38] as

We(ε, v) = κ0
tr−(ε)2

2
+ (v2 + ηκ)

(
κ0

tr+(ε)2

2
+ µ εD · εD

)
, (2)

where κ0 and µ are the bulk and shear modulus of the material, respectively. The

decomposition of the trace of the strain tensor ε in positive and negative parts are

tr+ = max(tr(ε), 0) and tr− = max(−tr(ε), 0) and εD are the deviatoric components of

the strain tensor. This decomposition is introduced to distinguish the contributions to

the strain energy due to compression, expansion, and shear. In contrast to [32], here

only the expansion and shear terms are multiplied by the jump set function (v2 + ηκ)

to prevent crack nucleation, propagation and interpenetration in compressed regions.

The parameter ηκ is a small (relative to κ) residual stiffness to avoid the singularity

of the bulk energy in fully fractured regions of the domain. Note that the value of v = 0

effectively reduces the stiffness of the material to zero outside of the compressed regions.

The electro-mechanical energy density Wf associated with polarization p, electric

potential φ, ε and v is formulated as

Wf (ε,p, φ, v) = (v2 + ηκ)[U(∇p) +W (p, ε)] + χ(p)− ε0

2
|∇φ|2 +∇φ · p, (3)

where U is the domain wall energy density penalizing sharp variations in the

polarization, χ is the phase separation potential, W is the electro-mechanical coupling

energy density and ε0 is the vacuum permittivity. The energy densities χ and W

penalize deviations from the spontaneous polarizations and strains of the material, hence

introducing the anisotropy and nonlinearity of ferroelectric materials.

This particular formulation of the phase-field model encodes the asymmetric

fracture response in tension and compression, as well as the assumed crack conditions.

We assume the crack to be traction-free (i.e. σ ·n = 0 on the crack faces, σ and n being

the stress tensor and the unit outward normal, respectively) and electrically permeable,

which has been checked to be a reasonable approximation when the electrical discharge

strength of the medium within the crack is small, in the order of that of air [41]. The

permeable crack conditions assume that crack faces are closed and the electric field

is not perturbed by the presence of the crack. Mathematically, these conditions lead
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to the continuity of the electric potential φ and the normal component of the electric

displacement D across the crack faces, i.e.

φ+ = φ− and D+ · n+ = D− · n−, (4)

where the superscripts + and - denote the top and bottom crack faces. In addition,

free-polarization boundary conditions [42] are commonly assumed, implying that the

gradients normal to the crack faces of the polarization components vanish at the crack

faces, i.e.

dp+
i

dn
=
dp−i
dn

= 0, (i = 1, 2). (5)

It can be seen that, in the limit of vanishingly small regularization parameter, the

proposed phase-field model recovers these conditions on the crack faces, as expected in

the sharp crack model [39]. For a finite but small value of the regularization parameter

κ, as used in practical computations, the resulting solutions satisfy the conditions in

the vicinity of the smeared crack in an approximate but accurate way. Other electro-

mechanical crack conditions can also be modeled similarly [39].

The energy terms are chosen following [43, 44] for the case of plane polarization

and plane strain as

U(pi,j) =
a0

2
(p2

1,1 + p2
1,2 + p2

2,1 + p2
2,2), (6)

W (pi, εjk) = −b1

2
(ε11p

2
1 + ε22p

2
2)− b2

2
(ε11p

2
2 + ε22p

2
1)− b3(ε21 + ε12)p1p2, (7)

χ(pi) =
a1

2
(p2

1 + p2
2) +

a2

4
(p4

1 + p4
2) +

a3

2
(p2

1p
2
2) +

a4

6
(p6

1 + p6
2) +

a5

4
(p4

1p
4
2), (8)

where a0 is the scaling parameter of the domain wall energy, ai(i = 1, .., 5) are the

constants of the phase separation energy and bi(i = 1, 2, 3) are the constants of the

electro-machanical coupling terms. The phase separation potential χ includes only an

eight-order term as proposed in [20]. This potential can be improved by adding other

high order terms to reproduce the dielectric behavior of barium titanate single crystals

in a more accurate way [45, 46]. Nevertheless, note that the role of the eighth order

cross-term p4
1p

4
2 is the most important among all high order terms for the phase-field

modeling of ferroelectric domains in the tetragonal phase. In fact, this term provides a

reasonable energy barrier for 90o domain switching, while allowing the other terms to fit

the dielectric behavior of the material [20]. The combination of the energy functions χ,

W and We is the total Landau-Devonshire energy density furnishing a multi-well energy

landscape with four minima corresponding to the four variants of the tetragonal phase.
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2.2. Evolution

The main objective of the coupled model is to capture interactions between the

microstructure formation and evolution, and the crack propagation. For this reason,

cracks should not propagate much faster than the microstructure relaxation. In the

absence of detailed experimental or fundamental information on the relative kinetics of

microstructure evolution and crack propagation, the field v and the polarization p are

selected as primary order parameters. The time evolution of the system results from

the gradient flows of the total electro-mechanical enthalpy with respect to the primary

variables, assuming that the displacement and the electric field adjust immediately to

mechanical and electrostatic equilibrium (with infinite mobility), i.e.

α

∫
Ω

ṗiδpidΩ = − δH[u,p, v, φ; δp], (9)

β

∫
Ω

v̇δvdΩ = − δH[u,p, v, φ; δv], (10)

0 = δH[u,p, v, φ; δu], (11)

0 = − δH[u,p, v, φ; δφ], (12)

for all admissible variations of the displacements, the field v, the polarization and the

electric potential, and where 1/α > 0 and 1/β > 0 are the mobilities of the processes.

The form of the variations of the electro-mechanical enthalpy is given in Appendix A.

Equations (11) and (12) under appropriate boundary conditions lead to the weak forms

of the mechanical and electrostatic equilibria, respectively.

The total electro-mechanical enthalpy in Eq. (1) is nonlinear and non-convex as

a function of six degrees of freedom u, p, φ and v but for a linear elastic body, it is

convex and quadratic in φ and v separately and it is convex and piecewise quadratic

in u. A multi-well energy landscape is also obtained with respect to p where each well

corresponds to one of the four variants of the tetragonal phases. The minimization in

Eq. (11) is non-smooth, and a quasi-Newton algorithm is applied to solve the mechanical

equilibrium problem following [38]. These equations are discretized in time with a semi-

implicit scheme.

The solution algorithm follows a straightforward staggered procedure. It is aimed

at achieving steady states for both ferroelectric domains and brittle fracture in each

load step. In what follows, superscripts refer to load steps and subscripts to iterations

within a load step. For each load step there is an internal loop to reach reasonable

tolerances for the v field and the polarization p, where δvfield and δferro are small

tolerances respectively. The functions g(w) and h(w) encode mechanical displacement

and electric potential as a function of the load step on the Dirichlet boundary of the

model. Since the crack should not be allowed to heal (irreversibility condition), when
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the value of v decreases beyond a threshold γ, it is forced to zero and kept so for the

rest of the calculation. After reaching a steady state for both the polarization and v

field, the values of vn, un, pn and φn are recorded and the algorithm is repeated for the

next load step.

Algorithm 1 for the Coupled Model
1: Let m = 0

2: Set v0 = 1, p0 = pinit, φ0 = 0 and u0 = 0 if n = 0

3: Set v0 = vn−1, p0 = pn−1, φ0 = φn−1 and ,u0 = un−1 if n > 0

4: repeat

5: m←− m+ 1

6: Compute φm in (12) using pm−1 under the constraint φm = h(wn) on ∂ΩDφ

7: Compute um in (11) using pm−1 and vm−1 under the constraint um = g(wn) on

∂ΩDu

8: Compute pm in (9) using um, pm−1, φm and vm−1

9: Compute vm in (10) using um, pm and vm−1 under the constraint vm = 0 for

vn−1 6 γ

10: until ‖pm − pm−1‖∞ 6 δferro and ‖vm − vm−1‖∞ 6 δvfield
11: Set un = um, vn = vm, pn = pm and φn = φm

3. Numerical simulation

3.1. Computational domain and parameter setting

We consider an indentation impression lying inside a ferroelectric single crystal in two

dimensions, as shown in Fig. 2. The indentation is included in the model by considering a

square inner boundary. A monotonically increasing mechanical load is applied by pulling

the indentation faces with uniform displacement such that u(w) = w n, w being the

load level in the quasi-static loading process. This type of mechanical loading is applied

to the specimen by the indenter during a small growth of the indentation. It is assumed

that the indenter faces are connected to the ground, therefore the electric potential is

fixed to φ = 0 on the indentation faces. The computational domain represents a piece of

a larger ferroelectric crystal, therefore mechanical displacement, electric potential and

polarization should be uniformly distributed across the four outer edges. The following

conditions are imposed on these boundaries: (1) σ ·n = 0, (2) ∇φ ·n = 0 and (3) free-

polarization, see Eq. (5). The initial polarization p0 = (0, 1) is assigned to the model

along the positive vertical direction, see Fig. 2. The normalized dimension of the domain
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Figure 2. A schematic of the computational domain. The initial polarization p0

is along the positive vertical direction and the mechanical loading is applied normal
to the indentation faces which are the inner square boundary of the model. Electric
potential is fixed to zero for these faces.

is 200×200 (L = 40) and it is discretisized with approximatly 330,000 triangular finite

elements of different sizes. The fine mesh with element size h ' 5 × 10−2 is generated

in rectangular areas around the radial directions, where fracture is expected, while the

rest of the domain is meshed with larger elements (of size h ' 1). A sample mesh is

presented in Fig. 3.

For convenience, dimensionless variables are selected through the following

normalizations: x′i = xi
√
c0/a0/p0, p′i = pi/p0, t′ = tc0/µp

2
0, ε′0 = ε0c0/p

2
0, φ′ = φ/

√
a0c0,

a′1 = a1p
2
0/c0, a′2 = a2p

4
0/c0, a′3 = a3p

4
0/c0, a′4 = a4p

6
0/c0, a′5 = a5p

8
0/c0, b′i = bip

2
0/c0,

µ′ = µ/c0 and κ′0 = κ0/c0, where i = 1,2,3. The equations with normalized variables

are the same as the original ones. The constants are chosen to fit the behavior of single

crystals of barium titanate (BaTiO3), taking c0 = 1 GPa and spontaneous polarization

p0=0.26 C/m2 [20]. The domain wall scaling parameter is set to a0 = 2.4×10−10 Vm3/C.

The normalized scaling parameter of the domain wall energy a′0 is used to adjust the

domain wall width in the computational domain. This parameter has to be chosen

such that the variation of the polarization can be resolved by the discretization while

domain walls remain sufficiently sharp relative to the other dimensions of the problem.
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Figure 3. Sample of the meshed model where a finer mesh is generated in rectangular
areas around the radial directions.

These conditions are met in the simulations by setting a′0 = 10−2. All of the normalized

parameters are presented in Table 1.

The intrinsic fracture toughness of BaTiO3 is obtained from experimental results of

an annealed sample as Kc = 0.49 MPa
√
m [47]. Setting Young’s modulus and Poisson’s

ratio for BaTiO3 as E = 100 GPa and ν = 0.37 respectively (consistent with the bulk and

shear modulus), the value of the critical energy release rate in plane strain is obtained

as Gc = (1−ν2)K2
c /E = 2 J/m2, and its normalized counterpart is G′c = Gc

√
1/a0c0/p0

= 15.6.

The value of the fracture regularization parameter κ is chosen based on parametric

studies of the discretized surface energy [36, 38]. For an accurate discretized surface

energy, the element size h should be much smaller than the regularization parameter κ.

In addition, an accurate approximation of the sharp-crack model of brittle fracture calls

for a sufficiently small value of κ relative to the other dimensions of the problem. This

in turn leads to extremely fine meshes with very high computational cost (the coupled

model has six degrees of freedom per node in two dimensions). Numerical experiments

indicate that setting κ ∼ h gives reasonable results, although the computed surface

energy can be expected to be slightly overestimated [36, 38]. For the simulations of this

paper, the regularization parameter is set to twice the finest element size as κ = 0.1 ,

i.e. h/κ = 0.5.

The residual stiffness ηκ must be chosen as small as possible to avoid adding too
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much artificial stiffness and permittivity to the elements in the fracture zone, while

preserving the non-singularity of the stiffness matrices used for the solution of finite

element equations. We take ηκ = 10−4 without any observed numerical instabilities in

the simulations.

The remaining constants are chosen as follows: two tolerances δferro = 10−3 and

δvfield = 5 × 10−3, the threshold to detect the fracture zone γ = 2 × 10−2 and the

inverse of the mobilities α = β = 5 × 10−2. Fifty load steps are computed (n = 50)

with load increments of ∆wn = 5× 10−2. The normalized time step ∆t′m = 10−2 leads

to convergent and accurate solutions for the time integration of gradient flow equations

in (9) and (10). The simulations are carried out on parallel processors using the finite

element library of the Kratos multi-physics package [48].

Table 1. Normalized parameters
κ′0 µ′ b′1 b′2 b′3 a′0
146 36 1.4282 -0.185 0.8066 0.01

a′1 a′2 a′3 a′4 a′5 ε′0 G′c
-0.007 -0.009 0.018 0.0261 5 0.131 15.6

3.2. Numerical results and discussion

Two snapshots of the crack propagation are presented in Fig. 4. The value of v starts to

decrease towards zero around the vertices of the indentation as the load step increases.

After reaching the zero value at load step w = 0.5, i.e. crack initiation, the fracture zone

grows along the four radial directions as shown at two sample load steps w = 1.5 and

w = 2.5 in Fig. 4(a) and Fig. 4(b) respectively.

To evaluate the radial crack growth, four equally large areas around the corners of

the indentation are considered in Fig. 4(b) and the value of surface energy (the second

integral in (1)) is obtained for each zone. Note that the surface energy is an indirect

measure of the crack length. The surface energy graphs are shown in Fig. 5. It is

obvious in this figure that surface energies of zones 1 and 3 follow nearly the same

path. This also holds for zones 2 and 4. Interestingly, the surface energies of zones

1 and 3 are larger than those of zones 2 and 4, i.e. the perpendicular cracks to the

polarization are longer than the parallel ones. This is a clear evidence of the anisotropic

crack propagation in agreement with experimental observations [5–10]. For comparison

purposes, we also compute the surface energy for an elastic single-phase material by

fixing the initial polarization to zero (p0 = 0). For this simulation, there is no need
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Figure 4. Two snapshots of the fracture evolution: contour plots of the field v at
load steps (a) w = 1.5 (b) w = 2.5. Four equally large areas around the corners of
the indentation are considered to obtain the surface energy evolution of the four radial
cracks (crack zones 1− 4) shown in Fig. 5.
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Figure 5. Evolution of the normalized surface energy of the four zones (crack zones
1 − 4) marked in Fig. 4(b) as a function of the load step w. The single-phase graph
is obtained for one of these zones considering the elastic material with zero fixed
polarization.

to solve for the polarization and the electric potential, and the unknowns reduce to u

and v (skip lines 6 and 8 in Algorithm 1). The energy graphs of all the four zones for

the single-phase material fall on top of each other, a testament of the isotropic crack

propagation. One of these graphs is presented in Fig. 5 (marked as single-phase graph).

The origin of the observed fracture toughness anisotropy can be found in the domain

switching during crack growth. Figure 6 presents two snapshots of the domain evolution

in an area around the indentation at load steps w = 1.2 and w = 1.8. Ferroelastic

domain switching occurs around the tip of the parallel cracks (cracks 2 and 4), where

the horizontal components of the polarization vectors indicate wing-shaped domains or

twins. This kind of switching is induced by the high tensile stresses near the crack tip

tending to elongate the material in the horizontal direction in front of the parallel cracks.

The elongation near the perpendicular cracks (cracks 1 and 3) in the vertical direction is

also observed without any ferroelastic domain switching since the polarization is aligned

with the tensile stresses. Due to the absence of ferroelastic domain switching, the

perpendicular cracks grow more than parallel ones and the effective fracture toughness

is lower perpendicular to the poling direction. Indeed, part of the high concentration of

stored elastic energy near the parallel crack tips can be released by aligning the longer

axis of the crystal with the tensile stresses through switching rather than by propagating
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the crack. Figures 6(a) and 6(b) show that the wing-shaped switched domains grow

gradually with the monotonically increasing load and the toughening effect becomes

progressively more pronounced for the parallel cracks, as shown in Fig. 5. The 90o

domain switching-induced toughening is also reported in other experiments of crack

propagation in BaTiO3 [47, 49, 50]. It is also obvious in Fig. 5 that the elastic single-

phase material has the lowest fracture toughness due to the absence of the microstructure

effect. The material elongation in the vertical direction in front of the perpendicular

cracks leads to a toughening enhancement with respect to the single-phase material

(compare the single-phase graph and the graphs of zones 1 and 3 in Fig. 5).

4. Conclusions

We perform, to the best of our knowledge, the first simulation of Vickers indentation

crack growth in ferroelectric single crystals with the goal of evaluating the effect of the

microstructure on the fracture process. This is done by formulating a coupled phase-

field model based on variational formulations of brittle crack propagation and domain

evolution in ferroelectric materials. The simulation results show that radial cracks

perpendicular to the poling direction of the material propagate faster than parallel

ones, which is in agreement with experimental observations. This anisotropy in the

fracture toughness follows from the fully coupled interactions between the material

microstructure and the crack propagation. 90o ferroelastic switching induced by the

intense crack-tip stress field is observed near the parallel cracks, which is believed as

the main fracture toughening mechanism in ferroelectric materials. These results prove

the potential of our coupled phase-field model to elucidate the fracture behavior of

ferroelectric ceramics, whose technological implications are very important.

We also suggest that more work is needed to produce predictive simulations of such

complex phenomena. In particular, a more precise evaluation of the microstructure

effect will be obtained by extending the proposed model to three dimensions and

running longer simulations producing more extended cracks. Also, it is widely accepted

that the crack face electro-mechanical boundary conditions strongly affect the crack

propagation in piezoelectric and ferroelectric ceramics, and thus more physically realistic

crack conditions should be analyzed. Another important issue is the quantification and

relative magnitude of the mobility parameters α and β, which can have an important

effect on the resulting response. Finally, although domain switching is claimed to be

the main source of fracture toughness anisotropy, the intrinsic anisotropy of the crystal,

i.e. the different surface energy in different cleavage planes, is bound to have an effect

as well. These topics are currently under investigation.
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Figure 6. Two snapshots of the microstructure evolution in an area near the
indentation at load steps (a) w = 1.2 and (b) w = 1.8. The left and right columns
show the horizontal and vertical components of the polarization, respectively. The
black lines in the left column indicate the position of the cracks (v = 0). The domain
orientations are indicated with white arrows.

Appendix A. Weak form of the governing equations

The weak forms of the gradient flows in (9) and (10), together with the equations for

mechanical and electrostatic equilibria in (11) and (12), follow from

α

∫
Ω

ṗiδpidΩ = − δH[u,p, v, φ; δp]
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= −
∫

Ω

[
(v2 + η)

(
∂U

∂pi,j
δpi,j +

∂W

∂pi
δpi

)
+
∂χ

∂pi
δpi + φ,iδpi

]
dΩ, (A.1)

β

∫
Ω

v̇δvdΩ = − δH[u,p, v, φ; δv]

= −
∫

Ω

∂(We +Wf )

∂v
δv dΩ− 2Gc

∫
Ω

(
v − 1

4κ
δv + κv,iδv,i

)
dΩ, (A.2)

0 = δH[u,p, v, φ; δu] =

∫
Ω

∂(We +Wf )

∂εij
δεij dΩ, (A.3)

0 = − δH[u,p, v, φ; δφ] =

∫
Ω

∂Wf

∂Ei
δEi dΩ, (A.4)

where the elastic strain εij and electric field Ei are associated with the mechanical

displacement ui and the electric potential φ, respectively, as εij = 1/2(ui,j + uj,i) and

Ei = −φ,i.
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