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Abstract

We develop a phenomenological model of electro-mechanical ferroelectric fatigue based on a ferroelectric cohesive law that cou-
ples mechanical displacement and electric-potential discontinuity to mechanical tractions and surface-charge density. The ferroelectric
cohesive law exhibits a monotonic envelope and loading–unloading hysteresis. The model is applicable whenever the changes in prop-
erties leading to fatigue are localized in one or more planar-like regions, modeled by the cohesive surfaces. We validate the model
against experimental data for a simple test configuration consisting of an infinite slab acted upon by an oscillatory voltage differential
across the slab and otherwise stress free. The model captures salient features of the experimental record including: the existence of a
threshold nominal field for the onset of fatigue; the dependence of the threshold on the applied-field frequency; the dependence of
fatigue life on the amplitude of the nominal field; and the dependence of the coercive field on the size of the component, or size

effect. Our results, although not conclusive, indicate that planar-like regions affected by cycling may lead to the observed fatigue
in tetragonal PZT.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric materials are extensively used in a variety
of sensor and actuator applications, where the coupling
between mechanical and electrical fields is of primary
interest. They are also a promising set of materials for
improved dynamic as well as non-volatile memory devices,
where only the electrical properties are directly exploited.
However, ferroelectrics are brittle, and their low fracture
toughness (in the order of 1 MPa m1/2) makes them sus-
ceptible to cracking. In addition, ferroelectric materials
exhibit electrical fatigue (loss of switchable polarization)
under cyclic electrical loading and, due to the strong elec-
tro-mechanical coupling, sometimes mechanical fatigue as
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well. Conversely, the propagation of fatigue cracks hin-
ders the performance of the devices and raises serious
reliability concerns.

Ferroelectric fatigue is caused by a combination of
electrical, mechanical and electro-chemical processes,
each of which has been claimed to be responsible for
fatigue [1]. Several electro-chemical mechanisms have
been posited as the likely cause of polarization fatigue
[2], but no general consensus appears to have emerged
as yet. Fatigue mechanisms variously include processes
of distributed damage over the bulk (see, e.g., Refs.
[3,4]) and processes of localized damage, including micro-
cracks and ferroelectric–electrode interfaces (see, e.g.,
Refs. [5–7]). The proposed mechanisms include domain-
wall pinning and inhibition of reversed domain nucle-
ation [8,9,2]. The former mechanism is thought to play
a dominant role in the bulk, whereas the latter mecha-
nism is thought to operate primarily at or near electrode
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interfaces [10]. The relative roles of these and other
mechanisms may depend on the frequency of the applied
field [10]. At the atomic level, oxygen vacancies are likely
to promote fatigue, e.g., by migrating under the action of
the electric field to form extended defects that pin
domain walls [11–13]. Purely mechanical mechanisms,
such as microcracking, are also likely to play some role.
Thus, fatigued ceramic specimens often contain scattered
microcracks of size comparable to that of the grains
[14,15]. Profuse microcrack clouds have been observed
at the specimen edges and surrounding macroscopic
cracks [16]. Macroscopic crack patterns are present in
some fatigued ceramic specimens [17]. Severe cracking
was also observed in barium titanate single crystals sub-
jected to cyclic bipolar electric load [18]. Modeling work
suggests that microcracking is indeed a cause of loss of
polarization [6].

Experiments on crack propagation have been reported
for samples loaded electrically, mechanically, or under
combined loading, cyclic or static [19–22]. It is not
uncommon for different experiments to lead to appar-
ently contradictory conclusions [23], a testament to the
complexity of the phenomenon of ferroelectric fatigue.
On the other hand, a large body of experimental data
concerns smooth samples, or samples without an initial
pre-crack. In these experiments, the main property of
interest is the evolution of polarization, and often no
special attention is given to the mechanical integrity of
the sample. Epitaxially grown thin films constitute a
common configuration for tests involving smooth
samples [24].

Despite these recent experimental and modeling
advances, the precise nature of the interactions between
fracture, deformation and defect structures underlying
ferroelectric fatigue is in need of further elucidation,
and a physics-based multiscale model enabling the predic-
tion of the fatigue life of ferroelectric devices is yet to
emerge. Therefore, there remains a need for phenomeno-
logical and empirical models that can be experimentally
validated and used in engineering design. In this vein,
cohesive theories provide an effective means of modeling
fatigue-crack nucleation and growth for arbitrary crack
and specimen geometries and loading histories [25,26].
As noted by Nguyen et al. [25], the essential feature that
a cohesive law must possess in order to model fatigue
crack growth is loading–unloading hysteresis. By this sim-
ple but essential device, cohesive models of mechanical
fatigue have been shown to account for deviations from
Paris’s law in metals such as are observed for short
cracks and overloads [25]; and to predict fatigue-crack
nucleation in smooth-surface metallic specimens [26].
The appealing feature of cohesive models of fatigue is
that a single mechanistic, albeit empirical, model applies
to nucleation and propagation, short and long cracks,
and arbitrary loading histories.

Conventional cohesive models of fracture seek to
describe the relation between cohesive tractions and open-
ing displacements at the tip of a crack. Working by anal-
ogy, Gao et al. [27–29] have proposed the use of
Dugdale-like models for the electric displacement in fer-
roelectric materials. In this paper, we further extend the
concept of cohesive surface to ferroelectric materials by
understanding it to be a surface of both mechanical open-
ing displacement and electric-potential discontinuity. Corre-
spondingly, we extend the concept of cohesive law to
mean a general relation between the work-conjugate
pairs: mechanical displacement and electric-potential dis-
continuity; and mechanical tractions and surface-charge
density. Following Nguyen et al. [25], in order to model
ferroelectric fatigue we endow the ferroelectric cohesive
law with loading–unloading hysteresis. In order to sim-
plify modeling, following [30] we make the additional
assumption that the cohesive law derives from a potential
that depends on a scalar effective electro-mechanical
jump, which is a weighted norm of mechanical opening
displacements and electric-potential jump.

Using a simple Smith–Ferrante monotonic envelope
and an exponential-decay law of loading–unloading hys-
teresis, we show that the model is able to qualitatively
capture salient features of the experimental record includ-
ing: the existence of a threshold nominal field for the
onset of fatigue; the dependence of the threshold on the
applied-field frequency; the dependence of fatigue life
on the amplitude of the nominal field; and the depen-
dence of the coercive field on the size of the component,
or size effect.

2. Electro-mechanical cohesive laws

The essential structure of cohesive laws in ferroelectrics
may be elucidated by recourse to a conventional Coleman–
Noll argument (cf., [30] for an application to mechanical
decohesion). In particular, the pairing between stress-like
and deformation-like variables is determined by the inter-
nal-power identity or, equivalently, by the virtual-work
identity. For a dielectric solid, this identity is [31–33]Z

X
ðr : d��D � dEÞ dV

¼
Z
X
ðb � du� qd/Þ dV þ

Z
oX
ðt � du� xfd/Þ dS; ð1Þ

where X is the spatial domain occupied by the solid and oX
is its boundary; r is the stress;

� ¼ 1
2
ðruþruTÞ ð2Þ

is the strain; D is the electric displacement;

E ¼ �r/ ð3Þ

is the electric field; b is the body force; u is the displace-
ment; q is the free charge density; / is the electric potential;
t = r Æ n is the surface traction; and xf = �D Æ n is the free

surface charge per unit area. For a solid with a surface of
discontinuity C, or cohesive surface, we have
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dW ext ¼
Z
X
ðb � du� qd/Þ dV þ

Z
oX
ðt � du� xfd/Þ dS

¼
Z
X
ðb � du� qd/Þ dV þ

Z
oX
½ðn � rÞ � duþ ðn �DÞd/� dS

¼
Z
X
ðb � du� qd/Þ dV þ

Z
X�
½r � ðr � duÞ

þ r � ðDd/Þ� dV þ
Z
C
½ðn � rÞ � sdutþ ðn �DÞsd/t� dS

ð4Þ

and consequently

dW int ¼
Z
X�
ðr : d��D � dEÞ dV þ

Z
C
½ðn � rÞ � dsut

þ ðn �DÞds/t� dS. ð5Þ

For monotonic loading of the cohesive surface, these work-
conjugacy relations naturally suggest a free energy per unit
surface, or cohesive potential, of the form U(sub,s/b,q)
such that

t ¼ oU
osut

; ð6aÞ

� xf ¼
oU
os/t

; ð6bÞ

where q is some suitable set of internal variables. A possible
additional dependence of U on temperature is omitted for
notational convenience. Thus, U depends both on the dis-
placement and electric potential jumps across C and acts
as a potential jointly for the mechanical tractions and the
surface-charge density.

It bears emphasis that the ferroelectric cohesive law
((6a) and (6b)) allows for an arbitrary coupling of the
mechanical and electrical fields. It should also be care-
fully noted that the ferroelectric cohesive law describes
the physics of mechanical or electrical decohesion and
does not presume a particular form of the constitutive
law governing the behavior in the bulk. In particular, it
is possible to apply the ferroelectric cohesive law ((6a)
and (6b)) in conjunction with Landau–Ginzburg–Devon-
shire models of domain switching (cf., e.g., Ref. [34]).
The detailed boundary conditions on the crack faces are
thought to greatly affect the fracture behavior of electri-
cally driven crack growth [35]. For instance, partial dis-
charge or charge separation effects have been suggested
to play an important role in the vicinity of the crack
tip [36]. The ferroelectric cohesive law ((6a) and (6b)) pro-
vides a useful framework for modeling those phenomena
as well. Moreover, the ferroelectric cohesive law encodes
the physics of decohesion, and thus can be tailored to
represent any of the localized mechanisms of ferroelectric
fatigue.

2.1. Ferroelectric fatigue cohesive law

As noted by Nguyen et al. [25], reversible cohesive laws
do not predict crack advance under cyclic loading and,
therefore, are insufficient for modeling fatigue. Instead,
for a cohesive law to predict fatigue it must be irreversible
and account for loading–unloading hysteresis. Loading–
unloading irreversibility may be built into a cohesive law
by means of the internal variable formalism (cf., e.g.,
Ref. [30]). The loading–unloading hysteresis model
developed subsequently extends that of Nguyen et al. [25]
to ferroelectric fatigue.

The modeling process is greatly simplified by the
assumption that the cohesive potential U depends on the
displacement and electric-potential jumps only through
the effective electro-mechanical jump [37,30]

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2n þ b2d2s þ c2w2

q
; ð7Þ

i.e., by assuming

U ¼ Uðd; qÞ; ð8Þ
where we write

d ¼ sut; ð9aÞ
dn ¼ d � n; ð9bÞ
dn ¼ dnn; ð9cÞ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d2n

q
; ð9dÞ

ds ¼ d� dn ¼ dss; ð9eÞ
w ¼ s/t; ð9fÞ

for the normal and tangential components of the opening
displacement and the electric potential jump, respectively.
The parameters b and c assign different relative weights
to normal and tangential opening displacements, thus dif-
ferentiating between mode I and modes II and III of frac-
ture; and to opening displacements and the electric
potential jump, thus differentiating between mechanical
and electrical fatigue.

An effective electro-mechanical flux may also be defined
as

r ¼ oU
od

. ð10Þ

Using the chain rule, (6a) and (6b) evaluate to

s ¼ r
d
½ð1� b2Þdnnþ b2d� ¼ r

d
ðdnnþ b2dssÞ ¼ snnþ sss;

ð11aÞ

� xf ¼
r
d
c2w. ð11bÞ

We also note that

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2n þ s2s=b

2 þ x2
f =c

2

q
. ð12Þ

Next we further specialize the preceding framework along
the lines of the cohesive model of fatigue crack nucleation
and growth proposed by Serebrinsky and Ortiz [26] and by
Nguyen et al. [25]. The essential feature to include in the
model is loading–unloading hysteresis. The specific scheme
chosen to build hysteresis into the model is illustrated in
Fig. 1. Monotonic loading is characterized by a cohesive



cohesive
envelope

4

3

nucleation×

+

Λ-

-

Λ+

Λ = δ/δc

Σ
=

σ/
σ c

0 1 2 3 4 5 6
0

1

Σmin

Σmax

Fig. 1. Cyclic behavior predicted by the model and conventional
definition of fatigue initiation.
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law r(d), referred to as the monotonic envelope, which is
characterized by the critical electro-mechanical flux rc
and the critical electro-mechanical jump dc, and possibly
an initial threshold rth. In contrast, cyclic loading is hyster-
etic and governed by the loading–unloading law:

_r ¼ Ku
_d if _d < 0;

K l
_d if _d > 0;

(
ð13Þ

where Kl and Ku are the loading and unloading incremental
stiffnesses, respectively. Equivalently, we may write

_r ¼ f1ð _d;K l;KuÞ _d ð14Þ
with

f1ð _d;K l;KuÞ ¼ hð _dÞK l þ hð� _dÞKu; ð15Þ
where h is the Heaviside step function. For definiteness, we
assume unloading to take place towards the origin and Ku

to be constant during unloading, Fig. 1. The value of Ku

during an unloading event is determined by the values of
r and d at the unloading point. Upon reloading, we addi-
tionally suppose that the reloading slope Kl = dr/dd de-
creases with increasing electro-mechanical jump as a
result of interfacial degradation mechanisms occurring at
the microscale. During unloading, a partial recovery of
Kl is also allowed for. For definiteness, we take

_K l ¼
ðK l � KuÞ _d=da if _d < 0;

�K l
_d=da if _d > 0;

(
ð16Þ

where da is an intrinsic length of the material. Equivalently,
we may write

_K l ¼ f2ð _d;K l;KuÞ _d=da ð17Þ

with

f2ð _d;K l;KuÞ ¼ �hð _dÞK l þ hð� _dÞðK l � KuÞ. ð18Þ

Thus, q = (Ku,Kl) may be regarded as the internal variables
of the model. An appealing feature of the model is the
small number of parameters, namely: the constants defin-
ing the monotonic envelope, such as tensile strength and
toughness; the coupling constants b and c; and the intrinsic
length da.

The cyclic behavior predicted by the model just outlined
is shown schematically in Fig. 1 for cycling between con-
stant maximum and minimum effective electro-mechanical
fluxes. Thus, for monotonic loading the cohesive surface
follows the monotonic envelope. Upon cyclic loading, the
cohesive stiffness of the surface degrades steadily and, after
a certain number of cycles, the (r(t),d(t)) curve meets the
monotonic envelope. We identify this event with the end
of the fatigue life of the material. Indeed, once the curve
(r(t),d(t)) meets the monotonic envelope, the material can
no longer sustain a loading cycle of the same amplitude
and, consequently, fails catastrophically under load control.

2.2. Bulk behavior

A closed set of governing equations may be obtained by
appending a suitable bulk energy density to the cohesive
model just described and considering the corresponding
gradient flow. Following Zhang and Bhattacharya [38],
we assume a bulk energy density of the form

W ðP; �Þ ¼ W 1ðPÞ þ W 2ð�Þ þ W 3ðP; �Þ; ð19Þ

where the polarization energy density W1(P) is polynomial
of degree eight in the polarization P, with multiple wells
corresponding to the different variants of the material, and

W 2ð�Þ ¼ 1
2
� : C : �; ð20aÞ

W 3ðP; �Þ ¼ �1
2
� : ðP � B � PÞ; ð20bÞ

are the strain and mixed energy densities, respectively. Fol-
lowing Shu and Bhattacharya [34], we additionally assume
the total energy of the body to be of the form

E½P; u;/� ¼
Z
X

W ðP; �Þ þ �0
2
jr/j2

� �
dX; ð21Þ

where W is the bulk energy density and �0 = 8.854 ·
10�12 F/m is the permeability of vacuum and the energy
of domain walls is neglected for simplicity. A gradient flow
of this energy results in the time-dependent Ginzburg–
Landau equations

l _P ¼ � oW
oP

ðP; �Þ þ E; ð22Þ

r � ðP þ �0EÞ ¼ 0; ð23Þ

r � oW
o�

ðP; �Þ ¼ 0; ð24Þ

where 1/l is the mobility. In these equations, we recognize
an equation of evolution for the polarization P, Gauss’s
law, and the equation of mechanical equilibrium, respec-
tively. At equilibrium _P ¼ 0 and Eq. (22) reduces to

� oW
oP

ðP; �Þ þ E ¼ 0; ð25Þ

which is also obtained in the formal limit of l ! 0. Eqs.
(22)–(24), in conjunction with (3) and (2), define a closed
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initial-boundary-value problem for the polarization P, the
electro-static potential / and the mechanical displacement
u.

3. Experimental validation

In order to make contact with experiment and assess the
validity of the model, we consider a simple test configura-
tion consisting of an infinite slab of thickness u acted upon
by an oscillatory voltage differential D/T across the slab
and otherwise stress free. The mid plane of the slab is a
weak interface governed by the cohesive model proposed
in Section 2. In order to simplify the analysis, we assume
all fields to be uniform outside the cohesive interface. This
assumption has the effect of reducing the initial-boundary-
value problem (22)–(24) to a simple set of ordinary differen-
tial equations in time. Taking the cohesive plane to coincide
with the (x1,x2)-coordinate plane and assuming uniaxial
strain conditions, �11 = �22 = �12 = �13 = �23 = 0, the vari-
ous bulk energy densities reduce to

W 1ðP 3Þ ¼
a1
2
P 2
3 þ

a2
4
P 4
3 þ

a3
6
P 6
3; ð26aÞ

W 2ð�33Þ ¼
c1
2
�233; ð26bÞ

W 3ðP 3; �33Þ ¼ � b1
2
�33P 2

3; ð26cÞ

where a1, a2, a3, c1 and b1 are empirical constants. The
transverse stress follows from these expressions as:

r33 ¼ c1�33 �
b1
2
P 2
3. ð27Þ

The stress-free condition r33 = 0 then gives the transverse
strain as

�33 ¼
b1
2c1

P 2
3. ð28Þ

Using this identity, (22) reduces to

l _P 3 þ a1P 3 þ a2 �
b21
2c1

� �
P 3
3 þ a3P 5

3 ¼ E3. ð29Þ

From Eq. (23) and the boundary conditions, at the cohe-
sive interface, we additionally have

� xf ¼ P 3 þ �0E3; ð30aÞ
w ¼ E3uþ D/T . ð30bÞ

Finally, the coupled electro-mechanical cohesive law spe-
cializes to

_r ¼ f1ð _d;K l; r=dÞ _d; ð31aÞ
_K l ¼ f2ð _d;K l; r=dÞ _d; ð31bÞ

c2
P 3u� �0D/T

ruc2 � �0d

� �2

¼ 1; ð31cÞ
where

d ¼ cjwj; ð32aÞ

r ¼ 1

c
jxj. ð32bÞ

In calculations, we enforce the constraint (31c) in differen-
tial form and solve the resulting system of ordinary differ-
ential equations in time by means of a fourth-order
Runge–Kutta algorithm. In implementing this algorithm,
care must be exercised in order to resolve ambiguities in
the selection of branches and the handling of singularities
in the response functions as d tends to zero. In the sequel,
P = P3 and similarly for other vector quantities, and
� = �33.

For sufficiently high applied field, the calculated response
exhibits characteristic hysteresis loops in a P–E plot, and
butterfly loops in a �–E plot. These loops are shown in
Fig. 2 for several values of the peak electric field Ep and
the applied-field frequency f. Several aspects of the bulk
response are noteworthy. Thus, below a minimum value
of Ep no switching occurs, and the sign of the polarization
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remains constant in time. The rate-dependency introduced
by the time-dependent Ginzburg–Landau equation is evi-
dent in Fig. 2. In the limit of l = 0 or, equivalently, of a
small frequency of the applied field, this rate dependency
is removed and an equilibrium loop is obtained. For non-
zero l, the bulk response depends on the applied-field
frequency.

The predictions of the model in the example just
described can now be compared with experimental data
by way of validation. In order to facilitate comparisons
for different materials, we introduce the following normal-
ization constants for the variables: polarization, Pref; stress,
elastic constants, cref; permittivity, �0ref ¼ P 2

ref=cref ; electric
field, Eref ¼ P ref=�0ref ; thickness, displacements, Lref = da;
potential, /ref = ErefLref; time tref ¼ lP 2

ref=cref ; energy den-
sity coefficients, bref ¼ a1ref ¼ cref=P ref , a2ref ¼ a1ref=P

2
ref ,

a3ref ¼ a1ref=P
4
ref ; coefficient cref = Pref/cref; cohesive stiff-

ness Kref = cref/Lref. Dimensionless variables are used in
the calculations, and the parameters and material constants
are summarized in Table 1. We have selected material con-
stants for the bulk model readily available from the litera-
ture [38], which correspond to BaTiO3. The initial
conditions are P30 = 1, K l0 ¼ 2311, and d0 and r0 are cho-
sen to give a ratio K l0=Ku0 ¼ 0:99.

Typical experimental data are given in the form

Px ¼ PxðE�
p;N ; uÞ; ð33Þ

where E�
p ¼ �D/p=u is the peak nominal electric field,

which should be carefully differentiated from the peak ac-

tual field Ep in the material, N is the cycle number, and
Px is a measure of the polarization state of the material,
typically the remanent polarization Pr but also sometimes
Psw, the switching polarization. From these data, a relation
E�
f ðN ; uÞ, or the inverse relation N fðE�

p; uÞ, can be derived
by solving the equation

PxðE�
p;N ; uÞ

PxðE�
p; 1; uÞ

¼ 1� C; ð34Þ

where C is the loss of polarization due to fatigue. We shall
take these fatigue maps as the basis for the validation of the
model.

As expected, the predicted fatigue behavior depends crit-
ically on whether switching occurs. In the presence of
switching, the interface degrades upon cycling and the peak
value of d increases monotonically with the number of
cycles, Fig. 3. The increase in d is initially slow and accel-
erates markedly in the last stages of the fatigue life of the
material. The rate of damage accumulation increases with
the amplitude of the nominal field. Correspondingly, as
the interface degrades the switching capability and the
actuation strain are impaired.
Table 1
Values of the model parameters

a1 a2 a3 b1 c1 �0 c l

�0.007 �0.009 0.0261 1.4282 185 0.131 800 1
The calculated fatigue map, for small frequencies for
which rate-dependency is negligible, is shown in Fig. 4(a).
It is immediately apparent from this map that for each
thickness u there is a threshold amplitude E�

f;th below which
fatigue does not occur. Specifically, fatigue occurs if the
nominal field E�

p is sufficiently strong to cause switching,
and fatigue does not occur otherwise. Thus, the fatigue
threshold E�

f ;th coincides with the nominal coercive field
E�
cv for the virgin material. For nominal fields above the

fatigue threshold E�
f ;th, the model predicts the fatigue life

Nf to shorten with increasing nominal field amplitude E�
p.

This dependency is well approximated by the power law

N f ¼ AE�
p
n; ð35Þ

with exponent �n � 2.8.
For bulk-like samples and high frequencies, the fatigue

life has a steeper dependency on the applied field, as shown
in Fig. 5(a). It is readily verified that the transition from
non-switching to switching bulk behavior, as the applied
field increases, appears smoother as the field frequency
increases, thus leading to the calculated fatigue behavior.
In addition, E�

f ;th can be greatly in excess of E�
cv, as

Fig. 5(b) shows. It also indicates that the low frequency
limit is attained for the lowest frequency used.

Corresponding experimental data for smooth tetrago-
nal PZT samples [39,1,40] are shown in Fig. 4(b) for pur-
poses of comparison. Evidently, the predicted existence of
a fatigue threshold and the reduction in fatigue life with
nominal field amplitude are consistent with the data.
The nominal fatigue threshold E�

f;th is indeed observed
to be greater than or equal to the nominal coercive field
E�
cv, as obtained from the respective hysteresis loops.

Besides these experiments where no microcracking was
observed or analyzed, the relation between switching
and fatigue has also been established on indented and pre-
cracked samples by the experiments of Zhu et al. [22].
Thus, switching appears as a necessary (though not suffi-
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cient) condition for electrical fatigue, regardless of the
fatigue mechanism operating. It should be noted that
there are other methods, alternative to electric fatigue,
to suppress polarization (e.g., [41]). The experimental data
shown in Fig. 4(b) is also suggestive of power-law behav-
ior (see Eq. (35)) with exponents in the range �n � 0.16–
0.24. The difference with the predicted value is due to the
choice bulk behavior, which has no dependence of the
actual coercive field on actual field amplitude for Ep > Ec,
and not to the cohesive model. The dependence of the
fatigue threshold on the applied-field frequency, with high
frequencies delaying the onset of fatigue, was established
by Grossmann et al. [39].

It is worth mentioning that some alternatives were
developed to suppress polarization fatigue, including using
conducting oxide electrodes [42]. Such devices can be mod-
eled by an interface with a large value of da, which would
lead to a minor fatigue effect. In the limit of da ! 1, fati-
gue would be completely absent.

In order to exhibit the size effect predicted by the model,
Fig. 6(a) plots specimen thickness against the minimum
F
li
n

value of E�
p for which switching occurs, and the maximum

value of E�
p for which switching does not occur. Insight into

this dependence may be derived by analyzing the equilib-
rium case of _P ¼ 0 in Eq. (22). In this case, the governing
equations reduce to

E ¼ a1P þ a2 �
b21
2c1

� �
P 3 þ a3P 5; ð36aÞ

P ¼ EðKuc
2u� �0Þ þ Kuc

2D/T . ð36bÞ

For a virgin material, i.e., a material with high Ku, it is
readily shown that the nominal coercive field E�

cv required
for switching is of the form

E�
cvðuÞ ¼ D/cðuÞ=u � Eceq þ ðP ceq þ �0EceqÞ=ðKuc

2uÞ. ð37Þ

where Eceq = 0.007129. This relation is plotted in Fig. 6(a)
along with the exact calculated values of E�

cvðuÞ from
Eq. (36a). It is noteworthy that E�

cv decreases monotoni-
cally with size u to a limiting value Eceq characteristic of
large components. Conversely, E�

cv increases as u�1 for a
small component thickness. This prediction of the model
is born out by the experimental data, Fig. 6, which is
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consistent with the E�
cv � u�1 scaling behavior. By contrast,

the size effect above the nominal fatigue threshold E�
f ;th is

negligible, Fig. 4(a). This lack of sensitivity to the compo-
nent size is also visible in the evolution of dp, Fig. 3. Thus,
the main effect of component size is on the ability of the
material to switch and, by extension, on the nominal fati-
gue threshold E�

f;th. It should be noted that alternative
explanations for the size effect have been proposed, includ-
ing depolarization fields [47,48], epitaxial stress effects
[49,45] and variants of a conductive layer next to the ferro-
electric–electrode interface [50,51].

4. Summary and concluding remarks

We have presented a model of electro-mechanical fer-
roelectric fatigue based on the postulate of a ferroelectric
cohesive law that: couples mechanical displacement and
electric-potential discontinuity to mechanical tractions
and surface-charge density; and exhibits a monotonic
envelope and loading–unloading hysteresis. In conjunc-
tion with a constitutive model accounting for domain
switching, the electro-mechanical cohesive fatigue law is
able to induce ferroelectric fatigue by the following mech-
anism: as degradation proceeds, the surface of electro-
mechanical discontinuity absorbs an increasingly large
amount of the displacement and/or electric potential dif-
ference, thereby unloading the bulk and hindering switch-
ing. We identify the end of the fatigue life with the time
at which the material loses its ability to sustain loading/
applied field cycles of a certain constant amplitude. We
have compared selected predictions of the model with
experimental data for a simple test configuration consist-
ing of an infinite slab acted upon by an oscillatory volt-
age differential across the slab and otherwise stress free.
The model captures salient features of the experimental
record including: the existence of a threshold nominal
field for the onset of fatigue; the dependence of the
threshold on the applied-field frequency; the dependence
of fatigue life on the amplitude of the nominal field;
and the dependence of the coercive field, and thus of
the fatigue threshold, on the size of the component, or
size effect. Our results seem to indicate that planar-like
regions affected by cycling may lead to the observed fati-
gue in tetragonal PZT.

The ability of the model to predict the observed size
effect stems directly from the fact that cohesive laws intro-
duce a characteristic or intrinsic material length scale.
Hence, in the present model the size effect is a material
property and a direct consequence of material behavior.
This is in contrast to other explanations of the size effect
found in the literature (e.g., [50,51,49]), where the length
scale is often structural.

In closing, we emphasize that the primary focus of this
study has been to investigate qualitative trends and no sys-
tematic attempt has been made to optimize fit to the exper-
imental data. It is conceivable that good quantitative
agreement with the data could be obtained by some exten-
sions and careful calibration of the model, including full
finite element calculations; the use of more accurate bulk
constitutive relations; and a systematic identification of
aspects of the cohesive law such as the precise shape of
the monotonic envelope and of the loading–unloading law.
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