
Geometric derivation of the microscopic stress:

A covariant central force decomposition

Alejandro Torres-Sáncheza, Juan M. Vanegasa,1, Marino Arroyoa
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Abstract

We revisit the derivation of the microscopic stress, linking the statistical me-

chanics of particle systems and continuum mechanics. The starting point in

our geometric derivation is the Doyle-Ericksen formula, which states that the

Cauchy stress tensor is the derivative of the free-energy with respect to the

ambient metric tensor and which follows from a covariance argument. Thus,

our approach to define the microscopic stress tensor does not rely on the state-

ment of balance of linear momentum as in the classical Irving-Kirkwood-Noll

approach. Nevertheless, the resulting stress tensor satisfies balance of linear

and angular momentum. Furthermore, our approach removes the ambigu-

ity in the definition of the microscopic stress in the presence of multibody

interactions by naturally suggesting a canonical and physically motivated

force decomposition into pairwise terms, a key ingredient in this theory. As

a result, our approach provides objective expressions to compute a micro-

scopic stress for a system in equilibrium and for force-fields expanded into

multibody interactions of arbitrarily high order. We illustrate the proposed
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methodology with molecular dynamics simulations of a fibrous protein using

a force-field involving up to 5-body interactions.

Keywords: microscopic stress tensor, statistical mechanics, continuum

mechanics, Doyle-Ericksen formula

1. Introduction

The increasing power of computers enables the atomistic simulation of

material systems of growing size and complexity. However, it is difficult to

interpret the physics of these systems from bare atomistic trajectories. In

particular, there is a pressing need for coarse-grain measures of the effective

mechanical behavior underlying molecular ensembles. Continuum mechanics

has been successfully applied to understand the mechanics of a variety of sys-

tems at the nanoscale, such as carbon nanotubes (Arias and Arroyo, 2008;

Yakobson et al., 1996) or biomembranes (Hu et al., 2013; Staykova et al.,

2013), and therefore provides a natural framework to interpret molecular

simulations of materials. In particular, local stress fields are routinely com-

puted from molecular simulations to understand the mechanics of different

materials including defective crystals (Li et al., 2002; Pao et al., 2009; Song

et al., 2013; Wei et al., 2012), lipid bilayers (Lindahl and Edholm, 2000; Vane-

gas et al., 2014), membrane proteins (Ollila et al., 2009; Vanegas and Arroyo,

2014), or isolated molecules (Edwards et al., 2012; Hatch and Debenedetti,

2012).

The mapping from the classical mechanics of a system of point-particles

to a continuous stress field is usually understood in terms of the statistical

mechanics framework pioneered by Irving and Kirkwood and further sub-
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stantiated by Noll, referred to here as the IKN procedure (Admal and Tad-

mor, 2010; Irving and Kirkwood, 1950; Noll, 1955; Schofield and Henderson,

1982). However, it is well-recognized that this mapping is not unique, par-

ticularly in the presence of complex force-fields (Admal and Tadmor, 2010;

Schofield and Henderson, 1982). The major ambiguity in the theory comes

from the non-unique decomposition of the interatomic forces from multibody

potentials into pairwise terms. Different force decompositions have been pro-

posed in the literature (Admal and Tadmor, 2010; Costescu and Gräter, 2013;

Goetz and Lipowsky, 1998), which lead to stresses satisfying balance of lin-

ear momentum by construction. However, we have recently demonstrated

that different decompositions lead to significantly different stress fields when

complex interatomic potentials are used (Vanegas et al., 2014), and that

some widely used decompositions lead to stress fields that violate conserva-

tion of angular momentum as a result of molecular chirality (Torres-Sánchez

et al., 2015). Only recently has a force decomposition, the so-called central

force decomposition (CFD) (Admal and Tadmor, 2010; Tadmor and Miller,

2011), been proposed that provides symmetric stresses by construction, which

therefore satisfy balance of angular momentum. The issue is not fully set-

tled, however, because the CFD is not unique for potentials beyond 4-body

interactions (Admal and Tadmor, 2010; Murdoch, 2012; Tadmor and Miller,

2011), which are nevertheless popular to model metals or proteins (Daw and

Baskes, 1984; MacKerell et al., 2004).

Here, we propose an alternative geometric derivation of the microscopic

Irving-Kirkwood stress, rooted in the Doyle-Ericksen relation of continuum

mechanics (Doyle and Ericksen, 1956) rather than on the statement of bal-
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ance of linear momentum. See Baus and Lovett (1990, 1991); Mistura (1987)

for related work. We further show that this approach allows us to canonically

define the microscopic stress for arbitrary multibody potentials. Strikingly,

our derivation does not resort to Noll’s lemma, required in the IKN pro-

cedure, but leads to a specific instance of IKN stress corresponding to a

distinguished central force decomposition that we call covariant central force

decomposition (cCFD). This cCFD coincides with the common definition of

the CFD for potentials with 4- or fewer-body interactions, fixes the gauge

invariance of CFD for higher-order multibody potentials and provides phys-

ically meaningful stress fields (Torres-Sánchez et al., 2015).

The paper is organized as follows. First, we briefly review the definition

of the microscopic stress from the Irving-Kirkwood theory, focusing on the

lack of uniqueness, and provide the definition of a CFD. We then present

an alternative derivation of the microscopic stress based on covariance argu-

ments, which leads to the cCFD. We also show how to practically compute

the cCFD for multibody potentials. Finally, we exercise the theory on a

coiled-coil structural protein.

2. Irving-Kirkwood theory: force decomposition and indefiniteness

Let us briefly review the derivation of the stress tensor in the Irving-

Kirkwood theory. In this framework, the continuum density field is defined

as

ρ(x) =
N∑
α=1

〈mαδ(rα − x)〉 , (1)

where 〈·〉 stands for an ensemble average over a non-equilibrium statistical-

mechanics distribution, mα and rα are the mass and position of particle α,
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δ(x) is the 3D Dirac distribution centered at 0, and N is the total number of

particles in the system. Invoking the equivalence between the macroscopic

momentum ρ(x)v(x) and the microscopic momentum
∑N

α 〈mαvαδ(rα − x)〉,

the continuum velocity field is defined as

v(x) =
1

ρ(x)

N∑
α=1

〈mαvαδ(rα − x)〉 , (2)

where vα is the velocity of particle α. These two fields satisfy the continu-

ity equation ∂ρ/∂t + ρ∇ · v = 0, expressing balance of mass in continuum

mechanics, where ∇· stands for the divergence operator. In the absence of

external forces, the continuum balance of linear momentum requires that

∇ · σ(x) = ρ(x)
dv(x)

dt
. (3)

After invoking Liouville’s equation, one finds that for a system in mechanical

equilibrium (Admal and Tadmor, 2010; Tadmor and Miller, 2011)

∇ · σ(x) =−∇ ·

(
N∑
α=1

〈mαvα ⊗ vαδ(rα − x)〉

)

+
N∑
α=1

〈F αδ(rα − x)〉 ,

(4)

where F α is the force on particle α and a⊗ b denotes the dyadic product of

vectors a and b.

As discussed next, it is possible to obtain a statistical-mechanics expres-

sion of the right-hand side of Eq. (4) as the divergence of a tensor. Therefore,

this expression provides a connection between the statistical mechanics of

the particle system and the continuum stress tensor. However, this equation

clearly provides a non-unique definition of σ since given any stress σ satisfy-

ing Eq. (4), we can add any divergence-free field ω, i.e. ∇ ·ω = 0, to σ with
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the resulting field σ + ω also satisfying this equation. Therefore, with this

approach we may only hope to rationally obtain an unambiguous definition

of the stress tensor making as few arbitrary choices as possible.

An expression of σ that satisfies Eq. (4) by construction is (Irving and

Kirkwood, 1950; Noll, 1955)

σ(x) = σK(x) + σV(x),

σK(x) = −

〈
N∑
α=1

mαvα ⊗ vαδ(rα − x)

〉
,

σV(x) =

〈∑
α,β>α

fαβ ⊗ rαβB(rα, rβ;x)

〉
,

(5)

where rαβ = rβ − rα, fαβ are the terms of a force decomposition, F α =∑N
β=1 f

αβ satisfying fαβ = −fβα, and B(rα, rβ;x) =
∫ 1

0
δ[(1− s)rα + srβ −

x]ds is the bond function that spreads the contribution from the pair αβ to

the stress along the line segment joining the particles (Noll, 1955). The choice

of a bond function following the straight path partially fixes the gauge invari-

ance of σ. Recently, it has been shown that this is the only possible choice

to obtain a stress field satisfying balance of angular momentum, i.e. σij = σji

(Admal and Tadmor, 2010). The gauge is completely fixed by choosing a

force decomposition. Insisting on the symmetry of the stress field, this ref-

erence proposed the central force decomposition (CFD) as the only possible

choice to obtain a symmetric stress by construction.

To define a CFD, let us express the potential energy of the system V (r1, . . . , rN)

in terms of the set of distances defined by particles r1, . . . , rN , which we de-

note by {rαβ} where rαβ = |rαβ|. With such representation Ṽ ({rαβ}), we
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can define the corresponding CFD as

fαβCFD = ϕαβr̂
αβ, (6)

where

ϕαβ =
∂Ṽ ({rαβ})

∂rαβ
(7)

and r̂αβ = rαβ/rαβ. The representation of a potential in terms of distances

always exists as result of the invariance with respect to rigid body transfor-

mations of classical potentials (Tadmor and Miller, 2011). Note that, since

fαβ is parallel to rαβ, the symmetry of the stress is apparent recalling Eq. (5).

However, this CFD has an important limitation for systems with N > 4.

To show this, we first note that the N(N − 1)/2 interatomic distances

(r12, . . . , r(N−1)N) cannot be arbitrarily chosen in D = RN(N−1)/2
+ . There

are geometric conditions that guarantee that these distances can be realized

by a system of N particles, which define the so-called shape space S ⊂ D.

When N > 4, the dimension of the manifold S is smaller than N(N − 1)/2,

and therefore the differential calculus involved in Eq. (7) needs to be care-

fully considered (Littlejohn and Reinsch, 1997; Porta et al., 2005). Noting

this fact, it has been argued that, to be able to take the partial derivative

∂Ṽ ({rαβ})/∂rαβ in Eq. (6), the potential needs to be extended to D (Admal

and Tadmor, 2010; Tadmor and Miller, 2011). However, when N > 4, there

exists infinitely many extensions, leading to an extension-dependent force

decomposition and an ambiguous definition of the stress, all of which differ

by divergence-free fields. The lack of a rational procedure to fix this gauge

freedom has been a source of criticism (Murdoch, 2012).

A natural way to alleviate the massive non-uniqueness associated with po-

tential extensions is to perform the CFD independently on each of the terms
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of a multibody expansion of the potential energy. Suppose for instance that

V is expressed in terms of contributions involving up to four particles, as

it is often the case in classical models of biomolecules. In this case, even

though the shape space S involving all particles in the system is a complex

manifold, each potential contribution only sees n particles (n ≤ 4), which

define a trivial local shape space. Thus, each of these terms can be uniquely

expressed in terms of interatomic distances and the CFD is unique for this

potential contribution (Vanegas et al., 2014). An alternative potential exten-

sion of V will in general couple particles not interacting through the terms

of the original multibody expansion.

In fact, any potential energy function can be expressed as a multibody

expansion, in what is known as the cluster form of the potential (Fisher,

1964; Martin, 1975)

V (r1, . . . , rN) =
N∑
n=2

Mn∑
In=1

VIn(rI
1
n , rI

2
n , . . . , rI

n
n ), (8)

where each VIn is a n−body potential, Mn ≤

N
n

 is the number n−body

interactions amongst the N particles, and I1
n, I

2
n, . . . , I

n
n label the n particles

interacting through VIn . This cluster expansion can be made unique by

requiring that the potentials VIn(rI
1
n , rI

2
n , . . . , rI

n
n ) vanish whenever any of

the intervening particles is brought infinitely far away from the rest. Is

this were not true, then such a potential would not be a genuine n−body

potential, but rather n− 1 or lower (Martin, 1975). With this definition, VI2

represents the interaction of two isolated atoms, VI3 is the excess of energy of

an isolated triplet of atoms not accounted by their pair interactions, and in
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general VIn represents the part of the interaction energy of n particles minus

the interaction energy from all their n − 1, n − 2, . . . , 2-body interactions.

Within this formalism, the CFD can be written as

fαβCFD =
N∑
n=2

Mn∑
In=1

ϕInαβr̂
αβ, (9)

where ṼIn({rαβ}) is a representation of the interatomic potential VIn({rα})

and

ϕInαβ =
∂ṼIn({rαβ})

∂rαβ
. (10)

We note that if the cluster expansion has non-zero terms with n > 4, this

representation is not unique and thus, the force decomposition and the mi-

croscopic stress are not unique. Our goal in the remainder of the paper is

to provide an alternative derivation of the microscopic stress that will ra-

tionally remove this ambiguity. There are many important instances where

n > 4. For example, classical models of biomolecules include 5-body inter-

actions to improve structural accuracy compared to experimental measure-

ments (MacKerell et al., 2004). For force-fields based on functional-density

or semi-empirical formalisms, such as the embedded atom method (Daw and

Baskes, 1984), the cluster form is not explicit, but can be computed system-

atically (Fisher, 1964; Martin, 1975) and will involve higher-order terms.

3. A geometric derivation of the microscopic stress

3.1. The microscopic stress from the Doyle-Ericksen formula

We consider a system at equilibrium in a NVT ensemble enclosed by

three-dimensional volume Ω. For simplicity, we consider a periodic system
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and follow the minimum image convention, i.e. particle α interacts with the

closest image of particle β.

We define the microscopic stress as the statistical mechanics equivalent

of the so-called Doyle-Ericksen formula in continuum mechanics (Doyle and

Ericksen, 1956; Marsden and Hughes, 1983; Yavari and Marsden, 2012; Yavari

et al., 2006), in an approach similar in spirit to previous variational theories

(Baus and Lovett, 1990, 1991; Mistura, 1987). The Doyle-Ericksen formula

expresses the Cauchy stress tensor as

σij = 2
∂a

∂gij
, (11)

where a is the free energy density per unit actual volume, i.e. the total free

energy is A =
∫

Ω
a dΩ, and g is the metric tensor of the ambient space.

This formula is a consequence of requiring invariance of the energy balance

statement with respect to spatial diffeomorphisms. Here and throughout the

paper, lower and upper indices refer to covariant and contravariant compo-

nents, and gij denotes the components of the inverse of the metric tensor,

satisfying gijgjk = δik.

For our molecular system, the canonical free energy takes the form

A = −kBT logZ (12)

where kB is Boltzmann’s constant, T is the absolute temperature and Z is

the partition function

Z =

∫
e−H(r,p)/(kBT )drdp. (13)

In this equation r =
(
r1, . . . , rN

)
are the particle positions, p =

(
p1, . . . ,pN

)
are the momenta, and H = K + V is the Hamiltonian, which we assume to
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be separable. For such a particle system, the notion of free energy density

involved in the Doyle-Ericksen formula in Eq. (11) is unclear. Nevertheless, it

is straightforward to modify the derivation of the Doyle-Ericksen formula in

the continuum case to obtain a more general form not requiring the existence

of such a density in terms of a functional derivative as

σij = 2
δA

δgij
. (14)

As we show next, this equation is pertinent to molecular systems because A

is indeed a functional of g.

Being a fundamental covariance requirement of the theory of continuum

mechanics, Eq. (14) is a legitimate starting point to define the microscopic

stress, alternative to the continuum statement of linear momentum invoked

by the more standard IKN approach, c.f. Eq. (4). To exercise this idea, we

need to provide a statistical mechanics evaluation of the right-hand side of

Eq. (14). For this, one may consider from the outset a particle system defined

on a general Riemannian manifold, in which H and A will necessarily depend

on the metric tensor (Yavari and Marsden, 2009). Here, however, we focus

on particle systems evolving in Euclidean space. In this case, the dependence

on g emerges when A is expressed covariantly, i.e. for an arbitrary coordinate

system, which then allows us to take the functional derivative.

3.2. The free energy in a general coordinate system

We analyze next the dependence of the free energy on the ambient metric.

For that, we follow the passive approach of Doyle and Ericksen (1956) and

introduce an arbitrary change of variables in space, characterized by the

diffeomorphism ξ(x) from Ω onto itself. This change of variables induces a
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canonical point transformation in phase space

r̂α = ξ(rα), (15)

p̂α = (Dξ(rα))−Tpα or pαi = Diξ
j(rα) p̂αj , (16)

for each particle. Note that momenta transform like co-vectors or one-forms.

It immediately follows that dr̂ = [det (Dξ)]N dr and dp̂ = [det (Dξ)]−N dp,

and therefore this transformation leaves the phase volume element unchanged

dr̂ dp̂ = dr dp. (17)

We consider a standard form for the kinetic energy in the initial coordi-

nate system

K(r,p; g0) =
N∑
α=1

1

2mα
gij0 (rα)pαi p

α
j , (18)

where g0 the metric tensor associated to the initial coordinates {xi}. In

practice, this coordinate system is Cartesian and gij0 = δij. Inserting Eq. (16)

into Eq. (18), we obtain

K(r,p; g0) =
N∑
α=1

1

2mα
gij0 (ξ−1(r̂α))Diξ

k Djξ
l p̂αk p̂

α
l ,

=
N∑
α=1

1

2mα
gkl(r̂α)p̂αk p̂

α
l = K(r̂, p̂; g), (19)

where we have defined g as the push-forward by the mapping ξ of the original

metric tensor

g = ξ∗ g0 = Dξ−T
(
g0 ◦ ξ−1

)
Dξ−1. (20)

It is easy to see that ξ is an isometry between (Ω, g0) and (Ω, g), and therefore

if (g0)ij = δij is the standard Euclidean metric, then g = Dξ−TDξ−1 is
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the expression of the Euclidean metric in the coordinates given by ξ. In

conclusion, the kinetic energy takes the same form in the original and in the

new variables, provided the appropriate metric tensor is considered.

As for the potential energy, we consider for definiteness the cluster form

of the potential in Eq. (8) and express each cluster potential in terms of

particle distances

V =
N∑
n=2

Mn∑
In=1

ṼIn({rαβ}), (21)

where ṼIn is any extension of the potential contribution VIn . To express

V covariantly, we note that irrespective of the coordinate system, i.e. for

any metric tensor given as in Eq. (20), rαβ is the length of the geodesic curve

joining points r̂α and r̂β, which we denote by cg(λ) for λ ∈ [0, 1], emphasizing

its dependence on g (Do Carmo, 1992). Since here g is the expression of the

standard Euclidean metric in a general coordinate system, there exists a

single geodesic joining any two particles (the straight line of Euclidean space

described in the general coordinate system). Thus, the distance between two

particles can be written as

rαβ(r̂α, r̂β; g) =

∫ 1

0

√
[gs]ij (cg(λ)) ∂λcig(λ) ∂λc

j
g(λ) dλ, (22)

which clearly shows that rαβ, and hence V , H, and A, are functionals of g.

Because ξ is an isometry between (Ω, g0) and (Ω, g),

rαβ(r̂α, r̂β; g) = rαβ(rα, rβ; g0)

and cg = ξ ◦ cg0 .

Thus, if we define

H(r,p; g0) = K(r,p; g0) +
N∑
n=2

Mn∑
In=1

ṼIn({rαβ(rα, rβ; g0)}) (23)
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and

H(r̂, p̂; g) = K(r̂, p̂; g) +
N∑
n=2

Mn∑
In=1

ṼIn({rαβ(r̂α, r̂β; g)}), (24)

we have shown that H(r,p; g0) = H(r̂, p̂; g). Performing the change of

variables given by Eqs. (15,16), this fact and Eq. (17) allow us to express the

canonical free energy of the system as

A = −kBT log

∫
e−H(r,p;g0)/(kBT )drdp (25)

= −kBT log

∫
e−H(r̂,p̂;g)/(kBT )dr̂dp̂

= −kBT log

∫
e−H(r,p;g)/(kBT )drdp, (26)

where in the last step we have just changed the notation for the integration

variables. Examining the first and last lines, we observe that although the

free energy is a functional of the metric tensor A[g], it is independent of it

as long as it is induced by a change of coordinates as in Eq. (20). We can

also see that the diffeomorphism ξ in this theory is just a tool to generate an

admissible change of the ambient metric tensor, without moving or changing

the coordinates of the particles themselves. We examine next the physical

consequences of these facts.

3.3. Statistical mechanics representation of the microscopic stress and me-
chanical equilibrium

To compute the functional derivative in Eq. (14) we consider a family of

changes of coordinates ξs(x) from Ω onto itself, parametrized by s, and such

that at s = 0, ξi0(x) = xi is the identity map. The mappings ξs generate

by push-forward admissible changes of the ambient metric tensor gs as in

Eq. (20), making the free energy A effectively a function of s alone, see

Eq. (26).
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Denoting by ηi(x) = ∂sξ
i
s(x)|s=0 the rate of change of the coordinate

system at the identity, it follows that (Do Carmo, 1992; Marsden and Hughes,

1983)
d

ds

∣∣∣∣
s=0

(gs)ij = [Lη(g0)]ij =
1

2
[∇iηj +∇jηi] , (27)

where Lη(g) is the Lie derivative of the metric along the vector field η. Thus,

the metric variation is characterized by η and the functional derivative of any

functional depending on the metric tensor, F [g], is given by the relation

d

ds

∣∣∣∣
s=0

F [gs] =

∫
Ω

δF

δgij
[Lη(g0)]ij dΩ =

∫
Ω

δF

δgij
hij dΩ, (28)

where we have introduced the shorthand notation h = Lη(g0).

Recalling Doyle-Ericksen formula in Eq. (14), the form of the canonical

free energy in Eq. (12), and Eq. (28), we have∫
Ω

1

2
σ : h dΩ =

∫
Ω

δA

δg
: h dΩ =

d

ds

∣∣∣∣
s=0

A[gs] (29)

=− kBT

Z

∫
− 1

kBT

(
d

ds

∣∣∣∣
s=0

H(r,p; gs)

)
e−H(r,p;g0)/(kBT )drdp

=

〈
d

ds

∣∣∣∣
s=0

H(r,p; gs)

〉
=

〈∫
Ω

δH

δg
: h dΩ

〉
=

∫
Ω

〈
δH

δg

〉
: h dΩ.

Thus, by defining the instantaneous microscopic stress tensor as

σinst = 2
δH

δg
= 2

δK

δg︸︷︷︸
σK,inst

+ 2
δV

δg︸︷︷︸
σV,inst

, (30)

we can represent the microscopic stress tensor as σ = σK + σV , where the

kinetic and potential contributions are the ensemble averages σK = 〈σK,inst〉

and σV = 〈σV,inst〉.

This definition of the stress tensor obviously satisfies balance of angular

momentum because it is symmetric by construction. Furthermore, comparing
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Eqs. (25,26) and recalling Eq. (27), it is clear that

0 =
d

ds

∣∣∣∣
s=0

A[gs] =

∫
Ω

1

2
σ : ∇η dΩ, (31)

which should hold for any infinitesimal change of coordinates η. This is the

weak form of balance of linear momentum for the microscopic stress.

3.4. Uniqueness of the variational definition of the stress tensor

We emphasize that here we consider a system evolving in standard Eu-

clidean space but described by a general set of curvilinear coordinates. For

this reason, when computing the functional derivative of A we only consider

metric changes characterized by Eq. (27), which are not the most general

metric variations (i.e. merely symmetric tensor fields). As we discuss next,

this fact is related to the fundamental non-uniqueness of the microscopic

stress tensor, also present in the proposed formalism despite previous claims

(Mistura, 1987; Rossi and Testa, 2010). Indeed, let L2 be the completion of

the Hilbert space of symmetric tensors with the scalar product

(α,β) =

∫
Ω

αijβijdΩ. (32)

This space admits the orthogonal decomposition L2 = L‖2 ⊕ L⊥2 , where

L‖2 =

{
h | hij =

1

2
[∇iηj +∇jηi]

}
, (33)

are the metric variations induced by diffeomorphisms and

L⊥2 = {ω | ∇ · ω = 0} , (34)

are perpendicular to them (Berger and Ebin, 1969). As a direct consequence,

the functional derivative δA/δg in Eq. (29) cannot be uniquely identified
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since we can add to it any field in L⊥2 without altering the variation of the

A. Physically, adding a self-equilibrated stress field does not perform work

against an infinitesimal metric variation in L‖2.

Considering general variations of the metric would remove this indeter-

minacy, but such variations would bring the system out of the shape space,

where interatomic potentials are not intrinsically defined. In other words,

metric variations not induced by changes of coordinates would result in pair-

wise distances that cannot be embedded in Euclidean space, and thus it

would not make physical sense to evaluate Ṽ ({rαβ}) at these pairwise dis-

tances. Despite this fundamental indeterminacy also present in the IKN

procedure, we show next that the method presented here provides a ratio-

nal and unambiguous definition of the stress, and leads to a unique central

force decomposition irrespective of the number of particles intervening in the

potential.

We also see from this discussion that, since σ satisfies Eq. (31), σ ∈ L⊥2 .

In other words, σ satisfies the strong form of the balance of linear momentum

divσ = 0.

3.5. Kinetic part of the microscopic stress

We focus now on the kinetic contribution to the stress tensor

σK = 2

〈
δK

δg

〉
. (35)

As previously discussed,

K(r,p; gs) =
N∑
α=1

1

2mα
gijs (rα)pαi p

α
j , (36)
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which can be formally expressed as a functional depending on g(x) using

Dirac distributions δ(rα − x),

K(r,p; gs) =
N∑
α=1

1

2mα

∫
Ω

gijs (x)pαi p
α
j δ(x− rα) dΩ. (37)

The variation produced by a change of metric h = Lη(g) is

d

ds

∣∣∣∣
s=0

K(r,p; gs) = −
N∑
α=1

1

2mα

∫
Ω

hkl(x)pαkp
α
l δ(x− rα) dΩ, (38)

where we have used the identity

d

ds

∣∣∣∣
s=0

gijs (x) = −gik0 (x)hkl(x)glj0 (x) = −hij(x). (39)

Recalling Eq. (28), it is clear that Eq. (38) allows us to identify the functional

derivative as

δK

δgij
(x) = −

N∑
α=1

1

2mα
gki0 (x)gjl0 (x)pαkp

α
l δ(x− rα). (40)

Noting that mαvαi = gik0 (rα)pαk and taking the ensemble average, we reach

the classical Irving-Kirkwood result

σijK(x) = −
N∑
α=1

mα
〈
vαivαjδ(x− rα)

〉
. (41)

We discuss next the uniqueness of the kinetic stress. Because the kinetic

energy can be written as the integral of a kinetic energy density

K =

∫
Ω

k(x; gs(x))dΩ, (42)

which depends locally on the metric tensor,

k(x; gs(x)) =
N∑
α=1

1

2mα
gijs (x)pαi p

α
j δ(x− rα), (43)
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then the functional derivative can be localized to the partial derivative and

σK(x) = 2

〈
∂k

∂g
(x)

〉
. (44)

This formula leads directly to Eq. (41) and is devoid of ambiguity. The key

observation in this argument is the existence of a local energy density.

3.6. Potential part of the microscopic stress

We focus now on the potential contribution to the stress tensor

σV = 2

〈
δV

δg

〉
. (45)

Unfortunately, the potential energy cannot be naturally expressed as the

integral of a potential energy density, i.e. there is no canonical notion of

how to localize in space the potential energy of a set of discrete interact-

ing particles (Admal and Tadmor, 2011). However, the cluster expansion in

Eq. (8) provides a systematic way to localize as much as possible the po-

tential interactions. By computing variations for each cluster potential VIn

independently, we partially localize these variations because they are only

affected by changes of metric that alter the distances between the particles

involved, but are independent of changes of metric that alter other regions

of space.

The significance of Eq. (26) is that we can compute variations of A (or of

V ) by keeping the particle positions fixed and just changing the background

metric gs as given by Eqs. (20,27). Therefore, we can write the inter-particle

distances as

rαβ(s) =

∫ 1

0

√
[gs]ij (c(λ, s)) ∂λci(λ, s) ∂λcj(λ, s) dλ, (46)
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where now the curve c(λ, s) is the geodesic relative to gs joining two particles

with fixed coordinates, and consequently we can write the potential energy

as

V (s) =
N∑
n=2

Mn∑
In=1

ṼIn ◦RIn(s), (47)

where RIn maps the parameter s to the sets of distances {rαβ} involved in

the potential contribution ṼIn measured with metric tensor gs. Because we

only consider metric tensors defined as in Eq. (20), the distances produced by

RIn lie on the shape space SIn , i.e. the range of RIn : R+ −→ SIn is precisely

the domain of ṼIn : SIn −→ R. For this reason, potential extensions are not

necessary in the present framework.

To identify δV/δg in Eq. (45), we need to evaluate the derivative of V

with respect to s. A crucial observation is that the chain rule applied to

Eq. (47) naturally involves the tangent map of ṼIn , which being ṼIn a scalar

function is homeomorphic to the covariant derivative of ṼIn along SIn . Thus,

we obtain

d

ds

∣∣∣∣
s=0

V =
N∑
n=2

Mn∑
In=1

∑
α,β>α

ϕ
SIn
αβ

d

ds

∣∣∣∣
s=0

rαβ(s) (48)

where, in contrast to Eq. (7), here

ϕ
SIn
αβ =

(
∇SIn ṼIn

)
αβ

(49)

stands for the αβ component of the covariant derivative of the potential along

the shape space SIn expressed in the canonical basis of DIn . Because the

coordinates {rαβ} do not parametrize SIn but rather its embedding spaceDIn ,

the covariant derivative can be understood as the projection onto SIn of the

gradient of a potential extension in DIn . The result is however independent
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of the extension. From a different rationale, the projection of the CFD

onto shape space has been recently proposed in analogy with the Beltrami

decomposition of symmetric tensors (Admal, 2014).

Further elaborating on Eq. (48), we have

d

ds

∣∣∣∣
s=0

V =
N∑
n=2

Mn∑
In=1

∑
α,β>α

ϕ
SIn
αβ

∫
Ω

δrαβ

δgij
hij dΩ (50)

=

∫
Ω

N∑
n=2

Mn∑
In=1

∑
α,β>α

ϕ
SIn
αβ

δrαβ

δgij
hij dΩ, (51)

which recalling Eq. (30) leads to

σijV,inst(x) = 2
N∑
n=2

Mn∑
In=1

∑
α,β>α

ϕ
SIn
αβ

δrαβ

δgij
(x). (52)

To evaluate this expression, we use Eq. (46) to compute

d

ds

∣∣∣∣
s=0

rαβ =

∫
Ω

δrαβ

δgij
hij dΩ (53)

=

∫ 1

0

1

2 |∂λc0|g0

{
hij∂λc

i
0∂λc

j
0 +Dsgij∂λc

i
0∂λc

j
0 + 2gijDs∂λc

i
0 ∂λc

j
0

}
dλ,

where c0(λ) = c(λ, 0) and Ds denotes the covariant differentiation along the

vector field ∂sc(λ, 0) (Do Carmo, 1992). See Yavari and Marsden (2009) for

a related calculation when examining energy invariance of particle systems

in a Riemannian manifold. Here, the variation of the length does not involve

boundary terms because the end points of the geodesic do not depend on s.

The second term of the integrand vanishes because the covariant derivative

of the metric tensor is zero. To treat the last term, we first use the fact that

Ds∂λc = Dλ∂sc (Do Carmo, 1992). Then, it is easily seen that it vanishes.

Indeed, ∫ 1

0

1

|∂λc0|g0
gijDλW

i ∂λc
j
0 dλ (54)
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is the variation of the length of c0 with respect to a variation of this curve

along the vector field W . Because c0 is a geodesic, this expression vanishes

for all W vanishing at the ends of the curve, in particular ∂sc.

Thus, retaining only the first term we can express the variation of bond

lengths in terms of an integral over the whole space by resorting to a Dirac

distribution

d

ds

∣∣∣∣
s=0

rαβ(s) =

∫
Ω

∫ 1

0

δ(c0(λ)− x)
hij(x)∂λc

i
0∂λc

j
0

2
√

[g0]kl(x)∂λck0∂λc
l
0

dλdΩ, (55)

which allows us to identify the functional derivative as

δrαβ

δgij
(x) =

∫ 1

0

δ(c0(λ)− x)
∂λc

i
0∂λc

j
0

2
√

[g0]kl(x)∂λck0∂λc
l
0

dλ. (56)

Considering Cartesian coordinates ([g0]ij = δij) and parametrizing the straight

line as c0(λ) = (1− λ)rα + λrβ, this expression simplifies to

δrαβ

δg
(x) =

1

2

rαβ ⊗ rαβ

rαβ

∫ 1

0

δ
[
(1− λ)rα + λrβ − x

]
︸ ︷︷ ︸

B(rα,rβ ;x)

dλ .
(57)

Recalling Eq. (52), we obtain an expression for the potential part of the stress

tensor

σV (x) =
N∑
n=2

Mn∑
In=1

∑
α,β>α

〈
ϕ
SIn
αβ

rαβ ⊗ rαβ

rαβ
B(rα, rβ;x)

〉

=

〈∑
α,β>α

fαβ ⊗ rαβB(rα, rβ;x)

〉
,

(58)

which, remarkably, is the Irving-Kirkwood result with a force decomposition

fαβ =
N∑
n=2

Mn∑
In=1

ϕ
SIn
αβ r̂

αβ. (59)
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This last expression should be understood as a sum over all potential con-

tributions that involve particles α and β. This covariant central force de-

composition (cCFD) is a close analog of the usual CFD in Eq. (6), which

replaces the partial differentiation of ṼIn by a covariant differentiation along

the shape spaces SIn . Since SIn is an open subset of DIn for n ≤ 4, cCFD

and CFD coincide in this case. However, when n > 5, our definition resolves

the ambiguity of the usual CFD.

4. Evaluating the covariant derivative of the potential along the
shape space

Practically, the evaluation of (∇SIn ṼIn)αβ can be performed by first com-

puting the gradient of an extension of the potential in the distance space

DIn , ∇DIn ṼIn , and then projecting the result onto the tangent of the shape

space SIn .

The calculation of ∇DIn ṼIn , see Eq. (10), for an arbitrary extension can

be performed by solving the following linear system of equations

x̂12 . . . x̂1n 0 . . . 0 . . . 0

ŷ12 . . . ŷ1n 0 . . . 0 . . . 0

ẑ12 . . . ẑ1n 0 . . . 0 . . . 0

−x̂12 . . . 0 x̂23 . . . x̂2n . . . 0

−ŷ12 . . . 0 ŷ23 . . . ŷ2n . . . 0

−ẑ12 . . . 0 ẑ23 . . . ẑ2n . . . 0
...

. . .
...

...
. . .

...
. . .

...

0 . . . −ẑ1n 0 . . . −ẑ2n . . . ẑ(n−1),n


︸ ︷︷ ︸

D, dim = P × S



ϕ12
In
...

ϕ1n
In

ϕ23
In
...

ϕ2n
In
...

ϕ
(n−1),n
In


︸ ︷︷ ︸
ϕ, dim = S

=



F 1
In,x

F 1
In,y

F 1
In,z

F 2
In,x

F 2
In,y

F 2
In,z

...

F n
In,z


︸ ︷︷ ︸

F, dim = P

,

(60)
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which reflects the fact that F α
In

= −∂VIn/∂rα =
∑

β ϕ
In
αβr̂

αβ. Here, P =

3n, S = n(n − 1)/2, and the rank of D is R = 3n − 6 (the number of

degrees of freedom of a set of n particles satisfying balance of linear and

angular momentum). A particular solution of this system can be obtained,

for instance, by minimizing the norm of the solution ϕ.

We now note that the normal space to the shape space SIn is precisely

the kernel of D, i.e. it is the vector space spanned by the solutions of

DX = 0. (61)

Any component of the force decomposition on this space does not alter the

net forces on the particles, as can be checked by comparing Eqs. (60) and (61).

The solution to this problem can be computed through a QR decomposition.

Let DT be the transpose of D. Its QR decomposition exists and has the

general form

DTP = QR =
(
Q1 Q2

)R1 R2

0 0

 (62)

where Q is an orthogonal matrix of dimension S×S, Q1 is a S×R matrix with

orthonormal columns (this is uniquely defined), Q2 is a S × (S −R) matrix

with orthonormal columns, R1 is a R × R upper triangular and invertible

matrix, R2 is a R× (P −R) matrix, P is a P ×P pivoting matrix. Then we

can rewrite Eq. (61) as

DX = PRTQTX = P

RT
1 0

RT
2 0

QT
1

QT
2

X = 0. (63)

Taking into account that Q is an orthogonal matrix, its columns form an

orthonormal basis of RS. We can then define the two components of X on the
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subspaces spanned by the columns of Q1 and Q2, X1 = QT
1 X, X2 = QT

2 X.

Inserting this decomposition in Eq. (63) we obtain the equivalent systemRT
1 X1

RT
2 X1

 = 0. (64)

Since RT
1 is invertible, this results in X1 = 0, while the component X2 is

completely free. In other words, the kernel of D is the subspace formed by

the column vectors of Q2. Therefore, given a CFD ϕ, its projection onto the

shape space is simply

ϕSIn = Q1Q
T
1ϕ. (65)

An alternative method to compute the cCFD involves Caley-Menger de-

terminants. As illustration, let us examine the simplest example of the cCFD

for a 5-body potential following this methodology. In this case, DIn = R10
+

while SIn is a hypersurface with dimension (3 · 5 − 6) = 9, where 6 stands

for the rigid body degrees of freedom. It can be shown (Tadmor and Miller,

2011) that SIn can be locally characterized by the equation

χ = det



0 s12 s13 s14 s15 1

s12 0 s23 s24 s25 1

s13 s23 0 s34 s35 1

s14 s24 s34 0 s45 1

s15 s25 s35 s45 0 1

1 1 1 1 1 0


= 0, (66)

where χ is a Caley-Menger determinant and sαβ =
(
rαβ
)2

. The normal to
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SIn can then be computed as

nSIn =
[(
∇DInχ

)
αβ

]
=

(
∂χ

∂r12
, . . . ,

∂χ

∂r45

)
,

n̂SIn =
nSIn
||nSIn ||

.
(67)

Thus, we can evaluate the covariant derivative of the potential along SIn by

projecting the derivative of an extension of the potential onto the tangent

space using the normal, i.e.(
∇SIn ṼIn

)
αβ

=
∂ṼIn
∂rαβ

−
(
∇DIn ṼIn · n̂SIn

) (
n̂SIn

)
αβ

=

=
∂Vαβ
∂rαβ

−

(
n̂SIn

)
αβ

||nSIn ||2

(
∂ṼI
∂r12

, . . . ,
∂ṼI
∂r45

)
∂χ

∂r12

...
∂χ

∂r45

 .

(68)

This is equivalent to the QR method presented before (the normal in Eq. (67)

is the generator of the null space of D). To exercise this formula, we consider

the following 5-body potential

ṼIn(r12, . . . , r45) =
(
s12 + 3s13 + s14 + 2s15 + 5s23 + 2s24

+5s25 + s34 + s35 + 4s45
)1/2

. (69)

We want to evaluate the force decomposition Eq. (59) at positions

r1 = (0, 0, 0), r2 = (1, 0, 0),

r3 = (1, 0, 1), r4 = (0, 1,−2),

r5 = (−2, 1, 3).

(70)
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The normal vector to SIn at this configuration is

[nSIn ] =



−0.234

0.236

0.075

−0.125

−0.585

−0.287

0.510

0.277

−0.313

−0.090



(71)

and the gradient of the potential, if we consider its trivial extension to DIn ,

is

[
ϕInαβ
]

=

[(
∇DIn ṼIn

)
αβ

]
=



0.058

0.248

0.131

0.437

0.292

0.286

1.273

0.194

0.219

1.258



. (72)
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Therefore, we obtain the covariant derivative

[
ϕ
SIn
αβ

]
=

[(
∇SIn ṼIn

)
αβ

]
=



0.121

0.184

0.111

0.471

0.449

0.363

1.136

0.119

0.303

1.283



. (73)

Eq. (72) is used in the standard CFD, while Eq. (73) appears in the cCFD.

The two arrays are significantly different. If we now take another extension of

the potential to the distance space, summing for instance the Caley-Menger

determinant in Eq. (66) to the potential ṼIn (which does not affect the po-

tential along SIn as the Caley-Menger determinant is 0 on it), we obtain
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[
ϕInαβ
]

=

[(
∇DIn ṼIn

)
αβ

]
=



−447.942

452.796

143.239

−239.0289

−1119.708

−548.399

977.667

530.854

−598.447

−171.067



, (74)

while the cCDF result

[
ϕ
SIn
αβ

]
=

[(
∇SIn ṼIn

)
αβ

]
=



0.121

0.184

0.111

0.471

0.449

0.363

1.136

0.119

0.303

1.283



, (75)

is independent of the representation of the potential in terms of distances

between particles. Thus, this example shows that, while CFD is extension-

dependent, cCFD is uniquely defined as the covariant derivative of the po-

tential along the shape space SIn .
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5. Numerical results

In this section we exercise the theory described previously on a coiled-

coil structural protein. This protein is composed of two identical α-helical

chains that wrap around each other to form a super-helix (see Fig. 1A). The

inner core of this coiled-coil is composed of intercalating hydrophobic amino

acids, and is surrounded by opposing negatively and positively charged amino

acids. We consider an infinitely long protein, modeled with periodic bound-

ary conditions. The interatomic potential is taken from a widely used protein

force-field (CHARMM22/CMAP), which comprises 2- (bonds, Coulomb and

van der Waals interactions), 3- (angle potentials), 4- (torsional potentials)

and 5-body (cross-term energy correction map, CMAP) interactions. The

system is simulated in a NVT ensemble, with a fixed simulation box and the

temperature held constant at 298 K. More details on the simulation proce-

dure can be found in Torres-Sánchez et al. (2015).

As previously mentioned, 2-, 3- and 4-body interactions are straightfor-

ward to decompose in a CFD: once the net forces F α are computed, the

system of equations in Eq. (60) admits a unique solution for the pairwise

terms fαβ. In this case both CFD and cCFD give the same results. In con-

trast, Eq. (60) for 5-body interactions such as CMAP admits infinitely many

solutions. The CMAP interaction (MacKerell et al., 2004) is a backbone

correction that depends on two dihedral angles, φ and ψ. In the φψ-plane,

values of the potential are given on a grid, which are then interpolated. Since

dihedral angles can be expressed in terms of distances, we can give a natural

extension of the potential VCMAP

(
φ
({
rαβ
})
, ψ
({
rαβ
}))

, where φ depends

on the distances between the first four particles, while ψ depends on the
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distances between the last four particles. A natural CFD follows

ϕαβ =
∂VCMAP(φ, ψ)

∂φ

∂φ

∂rαβ
+
∂VCMAP(φ, ψ)

∂ψ

∂ψ

∂rαβ
. (76)

With the terminology of Admal and Tadmor (2010), this CFD corresponds to

a particular extension of the CMAP potential. This CFD, or any other CFD,

can then be projected onto SIn to obtain the cCFD. However, as described

in Section 4, a solution to Eq. (60) can be found without introducing an

extension by minimizing the norm of ϕ. This latter method has two major

advantages. First, it is less intrusive with respect to the MD code. This

is because it only requires the net forces acting on the particles, which are

directly provided by the MD code, rather than the partial derivatives in

Eq. (76), which would require modifying the CMAP routine. Second, this

method is completely general for any n-body potential, and does not rely on

its specific functional form.

To analyze the microscopic stress in the coiled-coil protein, we adopt the

methodology presented in Torres-Sánchez et al. (2015); Vanegas and Arroyo

(2014) and plot the traction

t = σ · n, (77)

on the external surface of the protein, where n stands for the outward normal

to the surface. This surface is determined from a level set of the mass density

of the protein. We then separate the normal traction, tn = t · n, which we

represent as a color map, and the tangential traction, τ = t− tnn, which we

represent with arrows. Both the density and the stress are ensemble averaged

and smoothed by means of a Gaussian filter.
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Figure 1: Structure of the coiled-coil protein (A) and total traction t = σ ·n on
the coiled-coil (B). The total traction is split into the normal traction tn = t · n,
which is represented as a color map, and the lateral traction τ , which we plot with
arrows.
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Figure 2: Normal traction on the surface of the coiled-coil protein for the total
stress (A) and for the stress without the contribution from the CMAP interaction
(B).

In Fig. 1B we plot the traction for a Gaussian filter of standard deviation

0.4 nm. From this Figure we can extract two major conclusions. First, we

observe that the zippered interface between the two coils produces outward

tractions (red), while the periphery of the protein is dominated by inward

tractions (blue). Regarding τ , we observe that tractions are larger at the

periphery of the protein with opposite regions where arrows go leftwards

and rightwards respectively. The total force and torque obtained as surface

integrals of the traction are negligible since the cCDF stress is in mechanical

equilibrium.

Since the CMAP interaction is a higher-body correction that complicates

the calculation of the microscopic stress, one may be tempted to simply ignore

it in the analysis of the MD trajectory. To examine this, we plot the normal

traction on the protein surface considering all interactions and following the

cCFD proposed here (Fig. 2A) and the traction obtained ignoring the CMAP

contributions to the microscopic stress Fig. 2B. The figure clearly shows
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that the CMAP contribution is very significant and cannot be ignored, since

otherwise the normal traction is only inwards. This highlights the importance

of properly dealing with higher-order interactions, as cCFD does.

We now examine the differences between cCFD and different CFDs when

analyzing the CMAP potential in the coiled-coil (Fig. 3). We first we com-

pare cCFD (A) with CFD in Eq. (76) (B) and see small, yet not negligible,

differences (C). To highlight the effect of the extension on the resulting CFD,

we examine an alternative extension of the potential of the form VCMAP +kχ,

where χ is the Caley-Menger determinant defined in Eq. (66) (D). We see that

in this case, due to the effect of the Caley-Menger determinant, contributions

of the resulting CFD along the normal to S distort the stress field, leading to

tractions that differ from those of cCFD largely. We finally compute the CFD

obtained from the solution to Eq. (60) that minimizes the norm of the CFD

(D). This CFD, which does not have a clear physical justification, results in

a very non-homogeneous stress, which lacks of a meaningful interpretation.

It is remarkable that cCFD is obtained from this CFD by projecting onto

S. Thus, selecting the extension of the potential for a CFD is a delicate

subject and can lead to very different stresses, some of which do not have

a clear physical interpretation. On the other hand, cCFD is independent of

the extension of the potential and provides physically meaningful stresses.

We next use this example to examine the interpretation of the microscopic

stress in such a nanoscale mechanical system. For this, we represent in

Fig. 4 the structure and stress field with different levels of resolution as

given by the standard deviation of the Gaussian filter. For a Gaussian filter

of standard deviation of 0.1 nm for both the stress and the density (A) we
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Figure 3: Comparison of the CMAP contribution to the stress from different
central force decompositions for a Gaussian filter of 0.2 nm. (A) cCFD, (B) CFD
from Eq. (76), (C) Difference between A and B, (D) CFD obtained from the
alternative representation VCMAP + kχ, where χ is the Caley-Menger determinant
from Eq. (66) and k = 106 nm−5, and (E) CFD obtained from Eq. (60) by finding
the solution minimizing the norm of ϕ.
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Figure 4: Normal traction tn = t · n on the coiled-coil surface for increasing
smoothness from Gaussian filters with standard deviations (A) 0.1 nm (B,C) 0.2
nm (D) 0.4 nm. In (C) we plot the traction on the surface of a single coil.
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observe highly localized tractions, which correlate with interaction sites and

molecular features. In particular, we observe high tractions in the zippered

region of the protein. As we broaden the spacial extent of the filter (0.2

nm in B and C, 0.4 nm in D), we progressively smoothen geometric and

stress features, lower the magnitudes of the tractions, and loose atomistic

details. In D, we still observe two intercalated helical bands of inward and

outward tractions that relate to hydrophobic and hydrophilic regions of the

protein. We represent in C the stress on one of the individual coils, showing

the confinement at the coil-coil interface due to the hydrophobic effect. In

summary, this example illustrates how the microscopic stress can provide

insights about the interplay between chemistry and mechanics, and how it

can provide a continuum-like picture of a nanoscale system.

6. Summary and discussion

Statistical mechanics provides the bridge between particle (microscopic)

and continuum (macroscopic) theories, and thus it is very useful to interpret

molecular dynamics trajectories from a mechanical viewpoint. However, the

mapping from the statistical mechanics of a discrete particle system to a con-

tinuum stress field is not unique and depends, for instance, on the method

employed to decompose interatomic forces into pairwise terms. We have

provided a geometric derivation of the microscopic stress alternative to the

classical Irving-Kirkwood theory but consistent with it. In our approach,

the stress tensor is defined through the Doyle-Ericksen formula of contin-

uum mechanics rather than through the continuum statement of balance of

linear momentum. This procedure naturally selects a canonical force decom-

position, irrespective of the many-body nature of the potential, and thus
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generalizes the central force decomposition (CFD) proposed by Admal and

Tadmor (2010). Our independent derivation thus supports the physical sig-

nificance of the CFD. Interestingly, our approach does not rely as the IKN

method on Noll’s lemma (Noll, 1955). In practice, our method requires com-

puting the covariant derivative of the potential along shape space, which can

be efficiently done with algebraic methods. We show here and elsewhere

(Torres-Sánchez et al., 2015) that the proposed cCFD results in physically

meaningful stress fields in complex protein systems modeled with potentials

involving up to 5-body interactions.

One advantage of the usual IKN approach is that it does not require

thermodynamic equilibrium, and it is thus more general than our derivation

based on the canonical free energy. However, a crucial observation is that

the stress tensor obtained with our approach is a particular choice amongst

the different IKN stresses resulting from different potential extensions. Thus,

because the IKN stress can also be considered in equilibrium conditions, its

consistency with the Doyle-Ericksen formula of continuum mechanics, which

results in our definition, can be seen as a selection principle amongst different

IKN stresses. Thus, taken together, the IKN method and our approach

provide a compelling definition of the microscropic stress.

A key aspect in our definition of the microscopic stress is the fact that

we consider local shape spaces SIn suggested by the multibody expansion of

the potential. Beyond a practical motivation, this choice can be physically

supported because it allows us to localize as much as possible the potential

interactions, as discussed in Section 3.6. The cluster expansion is general,

irrespective of the way the force-field is defined. Its evaluation, however,
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can become computationally intensive, particularly to fully quantum models.

Thus, it remains to be seen if our approach is computationally feasible for

such systems.

Our procedure to compute the local stress from the cCFD, along with

previous local stress definitions, has been made publicly available in our lib-

mdstress library (Vanegas et al.), which can be either used as a standalone

library or embedded in the GROMACS 4.5.5 package (Hess et al., 2008).
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