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Nonlinear dimensionality reduction (NLDR) techniques are increasingly used to visualize molecular trajecto-
ries and to create data-driven collective variables for enhanced sampling simulations. The success of these
methods relies on their ability to identify the essential degrees of freedom characterizing conformational
changes. Here, we show that NLDR methods face serious obstacles when the underlying collective variables
present periodicities, e.g. arising from proper dihedral angles. As a result, NLDR methods collapse very
distant configurations, thus leading to misinterpretations and inefficiencies in enhanced sampling. Here, we
identify this largely overlooked problem and discuss possible approaches to overcome it. We also characterize
the geometry and topology of conformational changes of alanine dipeptide, a benchmark system for testing
new methods to identify collective variables.

PACS numbers: 87.10.Tf, 87.15.A-, 87.15.hp

Thanks to enhanced sampling techniques, it is pos-
sible to connect molecular conformations separated by
high energy barriers, and accurately compute free ener-
gies in systems exhibiting metastability. The success of
these techniques relies on a good set of collective variables
(CVs), capturing the metastability of the system with a
few degrees of freedom. CVs are commonly chosen out of
experience or physical intuition. As increasingly complex
systems become accessible computationally,1 the task of
selecting appropriate CVs becomes highly nontrivial.2

This situation has motivated in recent years intense re-
search aimed at systematic and data-driven approaches
to select CVs, often relying on statistical learning meth-
ods. In particular, dimensionality reduction techniques
automatically identify a reduced set of coordinates cap-
turing the essential behavior of a complex system, start-
ing from a pre-existing ensemble of molecular configura-
tions, called training set.

The most widespread dimensionality reduction method
is principal component analysis (PCA).3 PCA is a lin-
ear method, which selects mutually orthogonal direc-
tions such that, by projecting the data onto a few of
them, the variance of the projected data is maximized.
PCA has been widely applied to characterize the essen-
tial dynamics,4–8 understand molecular flexibility9 and
enhance sampling in molecular dynamics.10,11 PCA and
in general linear dimensionality reduction methods are
very popular because of their simplicity. However, they
fail to identify nonlinear correlations in the data, which
are often present in molecular systems, e.g. as a result of
bond rotations or steric interactions.12–14

Advances in the field of statistical learning, no-
tably in nonlinear dimensionality reduction (NLDR)
techniques,15–17 were quickly embraced by the molecu-
lar simulation community to visualize trajectories, re-
alizing that conformations often evolve close to a non-
linear manifold often called intrinsic manifold,18–22 al-
though some systems evolve on non-manifold sets.23 Dif-
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ferent NLDR techniques have been applied to molecular
systems, including Isomap,15 locally linear embedding,16

autoencoder networks,17 diffusion map24 or LSDMap.25

Building on these techniques, a number of methods have
been developed to systematically define differentiable
and nonlinear CVs, to be used in enhanced sampling
simulations.26–29

Given an ensemble of molecular conformations, it is
straightforward to obtain a low-dimensional representa-
tion through linear or nonlinear dimensionality reduc-
tion techniques. However, such an embedding will only
be useful if the low-dimensional representation captures
the essential features of the original dataset. If the low-
dimensional representation collapses conformations that
are distant in high-dimensions, these algorithms may in-
duce misinterpretations or non-convergence in enhanced
sampling simulations. Similar problems arise if the
low-dimensional representation is not low-dimensional
enough, i.e. matching the intrinsic dimension.30 In this
case, the conformations sparsely populate the reduced
space.

Here, we point out a major obstacle when applying di-
mensionality reduction techniques to molecular simula-
tions: topological obstructions of the intrinsic manifold.
This issue has not been acknowledged in the literature,
but is affecting the performance of NLDR methods in
a number of recent studies.21,25,26,31,32 We conceptually
identify this problem, and illustrate its impact using a
training set for alanine dipeptide, a benchmark in the
field. We also take a close look at the geometry of the
intrinsic manifold of this molecule. This understanding
may contribute to orient the future research on system-
atic data-driven CVs. Finally, we suggest possible di-
rections to overcome topological obstructions in defining
adequate data-driven CVs.

DIMENSIONALITY REDUCTION AND TOPOLOGICAL
OBSTRUCTIONS

A manifold of dimension d is an object that locally
looks like Euclidean space Rd. Two manifolds are said to
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have the same topology if one can be transformed into
the other with a continuous deformation such as bending
and stretching, but not tearing or gluing. The properties
that are preserved under such deformations are called
topological properties, and include connectedness, conti-
nuity and boundary.

Dimensionality reduction techniques try to find a re-
duced space representation in such a way that topo-
logical properties of objects in high-dimensional space
preserved.30 However, depending on the topology of the
high-dimensional manifold, it may not be possible to em-
bed it in Rd. For instance, consider a circle (d = 1), which
can be trivially described by a single parameter, the po-
lar angle. Dimensionality reduction techniques will try
to represent the circle as an open set in the real line,
thus collapsing distant points and destroying the under-
lying structure, see Figure 1(a). This example illustrates
Whitney’s embedding theorem,33 which states that the
embedding (without self-intersection) of a d-dimensional
manifold may require up to 2d+ 1 dimensions. This the-
ory guarantees that any one-dimensional manifold can be
embedded in R3, but the minimal dimension where the
manifold can be embedded will depend on the topology
of the manifold. A circle requires two dimensions, while
a knot requires three dimensions.

(a) (b)

FIG. 1. Due to their different topology, it is impossible to
embed a circle into a line (a); however, by tearing the circle
at one point, this topological obstacle can be circumvented
(b).

Thus, topology is an obstacle to embed a manifold into
a space of its intrinsic dimension. However, if we change
the topology of the circle by cutting it at one point, then
the resulting curved segment can be easily unbent and
embedded into the real line, as illustrated in Figure 1(b).

Figure 2(a,b) shows a torus and a sphere, which are
two-dimensional nonlinear manifolds that cannot be em-
bedded in less than three dimensions. As a result, NLDR
methods in general will destroy their structure if they
attempt to represent these surfaces in two-dimensions.
In fact, NLDR methods can only embed d−dimensional
manifolds in Rd if they have the topology of open sets in
Rd, thus necessarily with boundary, such as that shown
in Figure 2(c).

Similar topological obstructions are encountered when
examining molecular systems with dimensionality reduc-
tion methods. A notable example is alanine dipeptide.
This small molecule is known to be well-described by
two dihedral angles. As a result of their periodicity,
the underlying intrinsic manifold has the topology of

(a) (b) (c)

FIG. 2. Surfaces (d = 2) of different topology. Confor-
mational changes of molecules with two significant dihedral
angles evolve around a torus (a), while six-membered rings
carbohydrates, like β-D-Glucopyranose,34 have a sphere-like
intrinsic manifold (b).

a torus, which has been exploited to visualize its free-
energy landscape.35 The consequences of this fact have
not been fully acknowledged. As a result, low dimen-
sional embeddings appear highly distorted, present loops,
and partially collapse information.21,25,31 Furthermore,
because of this topological obstruction, NLDR techniques
suggest an excessive number of CVs relative to the intrin-
sic dimension.26

To illustrate this fact, we analyze a configurational en-
semble of alanine dipeptide obtained from multiple short-
run simulations, and shown in dihedral space in Fig-
ure 3(a). The color represents one of the dihedral angles.
Because, the intrinsic dimension is 2, we try to embed
the full ensemble in two dimensions using different di-
mensionality reduction methods, see Figure 3(c-f), top.
As expected, PCA and a variety of NLDR methods fail
to embed the ensemble without collapsing distant con-
formations. We have chosen in this comparison a non-
metric NLDR method (Locally linear embedding16), and
two distance-preserving methods that use different no-
tions of distance (Diffusion map24 and Isomap15). Thus,
in the presence of topological obstructions, the ability of
NLDR methods in general to unfold nonlinear manifolds
is not exploited, and there is no clear advantage relative
to PCA.32 A straightforward way to remove the topo-
logical obstructions is to consider a trimmed ensemble of
conformations, which lies within the dashed rectangle in
Figure 3(a), at the expense of throwing away a significant
number of conformations. As shown in Figure 3(d-f),
bottom, all nonlinear methods correctly embed the data
in 2D, without data collapse (color mixing). The differ-
ent metric criteria underlying Diffusion map and Isomap
are evident in this figure. In contrast, PCA fails to re-
cover the 2D manifold structure, even for the trimmed
ensemble, Figure 3(c) bottom. As in the example of the
circle, it is possible to elegantly tear the manifold by dis-
connecting the connectivity structure underlying NLDR
algorithms, rather than by shrinking the conformational
ensemble, see Figure 3(b) for Isomap. Thus, by appropri-
ately removing topological obstructions, the benefits of
NLDR as compared to PCA become available. We fur-
ther discuss systematic methods to overcome topological
obstructions later in the paper.
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FIG. 3. Dimensionality reduction of an ensemble of molecular configurations of alanine dipeptide, obtained from multiple
short-run simulations and visulized in dihedral space, Φ and Ψ (a). A trimmed ensemble delimited by the dashed rectangle is
also considered to avoid topological obstructions. Dimensionality reduction methods such as PCA (c), locally linear embedding
(with k = 10 nearest-neighbors) (d), diffusion map (with ε2 = 0.5 as the bandwidth of the kernel and k = 10 nearest-neighbors)
(e), and Isomap (with k = 10 nearest-neighbors) (f), failed to provide a two-dimensional embedding of the full ensemble without
self-intersection (mixing colors representing the backbone dihedral Ψ). In contrast, the NLDR methods successfully embedded
the trimmed ensemble, (d-f) bottom. Manual tearing of the full ensemble modifying the connectivity graph of Isomap also lead
to a successful embedding in two-dimensions (b).

A CLOSE LOOK AT ALANINE DIPEPTIDE
CONFORMATIONAL FLEXIBILITY

We closely examine next the geometry of the intrin-
sic manifold underlying the conformational changes of
alanine dipeptide. Because our goal here is to examine
closely metric information about the intrinsic manifold,
we focus now on Isomap, which tries to preserve isometry
in the embeddings. We start from a well-sampled trajec-
tory resulting from enhanced sampling.29 After removing
hydrogen atoms and alignment, we embed the molecu-
lar ensemble in three-dimensions, see Figure 4(a). This
embedding strikingly resembles a torus. PCA produces
very similar three-dimensional embeddings. By coloring

the points representing conformations with the backbone
dihedrals Φ and Ψ, the correlation between this embed-
ding and dihedral space becomes clear, see Figure 4(a,b).
However, a closer inspection reveals self-intersection of
the embedded surface, with the associated collapse of
conformations. To examine this, we consider two adja-
cent strip regions in dihedral space, and color-code them
in green and red, see Figure 4(c). Figure 4(d) clearly
shows that these strips cross each other in two regions,
confirming the self-intersection of reduced representation.

This finding is surprising because there should not be a
topological obstruction when embedding a torus in three
dimensions, suggesting that the issue is not topological
but rather geometrical. Indeed, dimensionality reduction
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methods such as PCA or Isomap try to preserve high-
dimensional distances in the low-dimensional embedding.
Because manifolds cannot be isometrically embedded in
general, the resulting embeddings can be distorted. If
this geometric distortion is large, it could lead to (topo-
logically avoidable) collapse of information. We further
scrutinize this idea next.

(a)

(c) (d)

(e) (f)

(b)
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FIG. 4. Topology and geometry of molecular fexiblity of ala-
nine dipeptide. A well-sampled molecular ensemble is pro-
cessed by Isomap to obtain a three-dimensional representa-
tion of the conformational changes, where the colormap is the
value of the backbone dihedral angles, Φ (a) and Ψ (b). Two
adjacent strips of Φ values (c) show the self intersection of this
3D embedding (d), while in the 3D representation of a torus,
there is not any self intersection(e). A three-dimensional pro-
jection of a flat torus (f) suggests the conformational changes
of alanine dipetide is geometrically similar to a flat torus.

If dihedral space was an accurate representation of the
molecule’s flexibility, not only in terms of topology, but
also in terms of geometry, then the intrinsic manifold
would be a flat torus. A flat torus is a topological torus
with the metric induced by the Euclidean distance in di-
hedral space extended by periodicity. It is known that
the flat torus can only be embedded isometrically (pre-
serving distances) in four dimensions or more.36 A conse-
quence of this fact is that any three-dimensional embed-
ding will distort the metric, as illustrated by the grid in
Figure 4(e). Interestingly, the three-dimensional projec-

tion of the four-dimensional isometric embedding of the
flat torus shown in Figure 4(f) is very similar to the em-
bedding provided by Isomap, see Figure 4(d). As shown
by the grid, this self-intersecting representation of the
surface induces a much smaller distortion of the metric.
Taken together, these observations strongly suggest that
self intersections in low-dimensional embeddings can not
only be the result of topological obstructions, but also
the result of geometrical requirements implicit in NLDR
methods.

SUMMARY AND DISCUSSION

We have shown that topological obstructions of the in-
trinsic manifold underlying molecular flexibility can be a
serious obstacle in the systematic determination of col-
lective variables using data-driven statistical learning ap-
proaches. Focusing on the benchmark molecule alanine
dipeptide, we have shown that these obstructions make
it impossible to find global low-dimensional representa-
tions with minimal dimension (2 for this system) devoid
of data collapse. If the embedding dimension is increased
to avoid data collapse, then the reduced description be-
comes dimensionally inefficient and sparsely populated.
We have further shown that the intrinsic manifold of ala-
nine dipeptide metrically resembles a flat torus. When
dimensionality reduction methods that try to preserve
distances, such as Isomap, embed this manifold in 3D,
we also observe data collapse, which this time does not
have a topological origin.

The most straightforward remedy to topological ob-
structions is to change the topology of the intrinsic man-
ifold by tearing, as we have illustrated in Figures 1 and
3. Tearing can be easily implemented in NLDR meth-
ods that rely on connectivity graphs by disconnecting
appropriate vertices in this graph. Such an approach
may be guided by data visualization,29 if the systems
is low-dimensional enough, or by more systematic algo-
rithms that find essential loops and disconnect them.37

This latter method does not work if the intrinsic mani-
fold has the topology of the sphere. It should be noted
that tearing the manifold may introduce artificial bound-
aries in CV space, which need to be dealt with compu-
tationally. Corral potentials may be used to prevent tra-
jectories from hitting this boundary,29 and modifications
of metadynamics to avoid artifacts at boundaries in CV
space have been developed.38

A different possibility is using NLDR methods that can
be fed with a predefined topology for the low-dimensional
representation, such as Self Organizing Maps39,40 or Gen-
erative Topographic Mapping.41 However, for complex
systems, the topology may not be known a priori. Fi-
nally, a more general approach is to split systematically
the high-dimensional manifold into different patches with
the topology of an open set in Rd, and then apply di-
mensionality reduction on each patch separately. This
method, which we are currently working on, also reduces
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the metric-induced distortions of the low-dimensional
embeddings. Furthermore, systematic partitioning may
enable the analysis of systems exhibiting non-manifold
behavior.42 In fact, this Reference shows how, by parti-
tioning the intrinsic manifold, one can use the systematic
tools of algebraic topology to characterize the structure
of a molecule’s conformational space. A prerequisite of
algebraic topology analysis, though, is a low-dimensional
embedding devoid data collapse.

An important question concerns the applicability of
data-driven CVs to complex molecules such as proteins.
Interestingly, it has been suggested that increasing the
size of peptides makes the effective dimensionality of the
molecule smaller.14 Thus, one can expect that statisti-
cal learning methods applied to proteins may help un-
derstand these complex systems with a few collective
variables.43 Once freed from topological obstructions and
geometrical distortion, data-driven strategies to define
CVs may deliver their full potential.
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