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Abstract

We present a phase-field model for fracture in Kirchoff-Love thin shells using the local maximum-
entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not
require an explicit representation and tracking, which is advantage over techniques as the extended finite
element method that requires tracking of the crack paths. The geometric description of the shell is based
on statistical learning techniques that allow dealing with general point set surfaces avoiding a global
parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show
the flexibility and robustness of the present methodology for two examples: plate in tension and a set of
open connected pipes.

Keywords: phase-field model, meshfree method, thin shells, local maximum entropy, point-set surfaces,
manifold learning

1 Introduction

The prediction of fracture in thin structures is of major importance in engineering applications such as
aircraft fuselages, pressure vessels, automobile components, and castings. Since analytical solutions provide
limited information, there has been a keen interest in numerically simulating fracture in thin shells in recent
years. However, despite the advances made in modeling fracture for solid bodies [1, 2, 3, 4, 5], fracture in
thin bodies remains a challenge due to the complex interplay between cracks and the shell kinematics and
geometry.

Non-propagating cracks in plates and shells have been modeled with partition-of-unity methods [6, 7, 8].
These approaches have been restricted to simple geometries. The majority of formulations are based on
Mindlin-Reissner theory [9]. There are comparatively fewer methods considering fracture in thin shells [10].
In [11], a shell element based on discrete Kirchhoff theory was proposed assuming through-the-thickness
cracks. Later, a shell model with the phantom node method based on edge rotations was proposed [12]
for both thin and thick shells, where the crack tip can be located inside an element. A method based
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on subdivision shell elements and modeling the fracture along the element edges with a cohesive law was
proposed in [13]. In [14, 15, 16], a meshfree thin shell model for static and dynamic fracture was presented.

Most of above methods are based on discrete crack models that require explicitly (or sometimes implicitly
[17]) tracking the crack path. Furthermore, many of the approaches are applied to simple geometries such
as plates, or spherical and cylindrical geometries [18, 19, 12, 20]. Towards a general, flexible and robust
methodology to deal with fracture in Kirchhoff-Love shells, we propose here treating fracture with a phase-
field model and discretizing the coupled thin-shell/phase-field equations with a recently proposed meshfree
method for partial differential equations on manifolds of complex geometry and topology [21, 22].

Phase-field methods are widely used in science and engineering to model a variety of physics [23, 24, 25,
26]. The extension of this method for fracture in solids was introduced in [27, 28], where the brittle crack
propagation problem was regularized and recast as a minimization problem. In the phase-field approach, dis-
continuities are not introduced into the displacement field or geometrically described. Instead, a continuous
field governed by a partial differential equation models cracks and their evolution. Crack propagation does
not require evaluating stress intensity factors. This method naturally deals with crack nucleation, branching
and coalesce result in a simple implementation. Its main drawback is its high computational cost. The crack
zone is controlled by a regularization parameter. As this regularization parameter converges to zero, the
phase field model converges to a discrete crack model.

Dealing computationally with the Kirchhoff-Love theory is challenging because second derivatives of
the displacement field appear in the weak form, and therefore a Galerkin method requires C1−continuous
basis functions. This can be overcome by discretizing the director field or introducing rotational degrees
of freedom [29, 30, 31], or by considering more elaborate variational formulations such as in discontinuous
Galerkin methods [32, 33]. Instead, here we focus on methods relying on smooth basis functions. Finite
element methods with high order continuity have been proposed, either based on subdivision surfaces [13, 34]
or on isogeometric analysis [35, 36, 37]. The higher order continuity of the meshfree basis functions has also
been exploited for this purpose [14, 15], but since meshfree basis functions are defined in physical space, these
methods were applied to simple geometries with a single parametric patch. Recently, nonlinear manifold
learning techniques have been exploited to parametrize 2D sub-domains of a point-set surface, which are
then used as parametric patches and glued together with a partition of unity [38, 21]. Here, we combine
this methodology with local maximum-entropy (LME) meshfree approximants [39, 40, 5] because of their
smoothness, robustness, and relative ease of quadrature compared with other meshfree approximants.

The paper is organized as follows. Section 2 describes the representation of general surfaces represented
by a set of scattered points [21]. In Section 3, we review the Kirchhoff–Love theory of thin shells. In Section
4, we introduce a phase-field model for fracture in thin shells. The Galerkin discretization is also presented
in this section. In Section 5 we demonstrate the capabilities of the method through two numerical examples.
Some concluding remarks are given in Section 6.

2 Numerical representation of the surfaces

To illustrate the method considered here for numerically representing surfaces defined by a set of scattered
points, we refer to Fig. 1. As noted in [41], a fundamental difficulty in defining basis functions and perform-
ing calculations on a surface, as compared to open sub-sets in Euclidean space, is the absence in general of
a single parametric domain. A simple example is the sphere, which does not admit a single singularity-free
parametrization. Mesh-based methods, consisting of a collection of local parametrizations from the parent
element to the physical elements, do not have any difficulty in this respect at the expense of reduced smooth-
ness across the element boundaries or the need for special techniques to recover inter-element smoothness.
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In meshfree methods, such a natural parametric domain is not available, and the description of surfaces with
a topology different to that of an open set in R2, such as a sphere (A) or a set of connected pipes ( B), is a
challenge. Even for surfaces homeomorphic to open two-dimensional sets, such as that depicted in (C), the
geometric complexity can make it very difficult to produce well-behaved global parametrizations. For these
reasons, the method we follow here proceeds in four steps: (1) We first partition the set of scattered points
into subsets. (2) For each subset, the geometric structure of the surface is detected by dimensionality reduc-
tion methods and its points are embedded in 2D. (3) The 2D embedding then serves as a local parametric
patch, and a local parametrization of the surface using smooth meshfree LME approximants is defined. (4)
Finally, the different patches are glued together by means of a partition of unity.

A B C

Figure 1: Three point-set surfaces that require partitioning for different reasons: (A) and (B) for their
non-trivial topology, and (C) for its complex geometry.

Consider a smooth surface M embedded in R3 and represented by a set of (control) points P =
{P 1,P 2, . . . ,PN} ⊂ R3. The goal is to numerically represent M from P and make computations on
it. We consider another set Q = {Q1,Q2, . . . ,QM} ⊂ R3 with fewer point, typically a subset of P but not
necessarily. We call the points of this set geometric markers. For simplicity, we will denote the points in
P and its associated objects with a lower case subindex, e.g. P a, for a = 1, 2, . . . , N , and the geometric
markers in Q and its associated objects with an upper case subindex, e.g. QA, for A = 1, 2, . . . ,M .

We partition these geometric markers into L groups. These L groups of geometric markers can be
represented with index sets Iκ, κ = 1, . . . , L with ∪Lκ=1Iκ = {1, 2, . . . ,M} and Iκ ∩ Iι = ∅ such that κ 6= ι.
As it will become clear below, there is a one-to-one correspondence between these groups of geometric
markers and the local parameterizations of the surface, which here we refer as patches.

We consider a Shepard partition of unity associated with the geometric markers. Given a set of non-
negative reals {βA}A=1,2,...,M , we define the Shepard partition of unity with Gaussian weight associated to
the set Q as

wA(x) =
exp(−βA |x−QA|

2
)∑M

B=1 exp(−βB |x−QB |
2
)
. (1)

To obtain a coarser partition of unity representative of a partition, we aggregate the partition of unity
functions as

ψκ(x) =
∑
A∈Iκ

wA(x). (2)
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These functions form a partition of unity in RD, and consequently also in M. We consider the index sets
of all control points influencing each patch, Jκ, with ∪Lκ=1Jκ = {1, 2, . . . , N}, but now Jκ ∩ Jι 6= ∅ due to
the overlap between patch partition of unity functions. Roughly speaking, these sets are {a | P a ∈ supψκ},
slightly enlarged so that the patch parameterization is smooth on the boundary of the support of ψκ.

For each patch, through a nonlinear dimensionality reduction technique applied to the set of control
points Pκ = {P a}a∈Jκ ⊂ R3, we obtain a two-dimensional embedding of these points, represented by the set
Ξκ = {ξa}a∈Jκ ⊂ R2. The two-dimensional region defined by these points is a convenient parametric space
for the corresponding patch. It is important to note that the embedded points are in general unstructured,
and that, although here d = 2, the methodology is applicable to higher dimensional embedded manifolds
unlike mesh based techniques.

The patch parametrizations often need to be smooth, here because of the requirements of the Kirchhoff-
Love theory. We consider here LME basis functions. See [39, 40, 38] for the LME formulation, properties,
and the evaluation of the basis functions and their derivatives. Then, let pa(ξ) denote the LME approximants
associated to the point-set Ξκ on a domain Aκ ⊂ R2, a subset of the convex hull of the reduced node set
conv Ξκ. We locally parameterize the manifold in this patch as

ϕκ : Aκ −→ R3

ξ 7−→
∑
a∈Jκ

pa(ξ)P a.
(3)

Consider a function f over a surface M, f :M→ R. The integral of this function over the surface can
be split into integrals over the patches invoking the partition of unity∫

M
f(x) dM'

L∑
κ=1

∫
Aκ

ψκ(ϕκ(ξ)) f(ϕκ(ξ)) Jκ(ξ) dξ, (4)

where Jκ =
√

det [(Dϕκ)TDϕκ] is the Jacobian determinant of the parameterization. In this way, similarly
to finite element methods, we have split the integral into local contributions, which can be evaluated using
local parameterizations. Each patch integral can be approximated by numerical quadrature on the local
parametric space, for instance we resort to Gauss quadrature on a support triangulation defined over Ξκ.

3 Thin shell model

In this section, we review the mechanics of thin shells [42, 43], based on a geometrically exact formulation
presented in [30, 44]. We restrict our attention to the Kirchhoff–Love kinematical assumption of shells,
which states that the material line orthogonal to the middle surface in the undeformed configuration remains
straight, unstretched and always orthogonal to the middle surface during the deformations. Furthermore, we
follow the usual convention for Latin and Greek indices, referring to Cartesian and curvilinear coordinates,
respectively (i.e. i = 1, 2, 3; α = 1, 2). A comma denotes partial derivatives, subscripts refer to covariant
components, and superscripts denote contravariant components.

3.1 Kinematics of the shell

We consider a shell with a middle surface Ω, defined by ϕ which is a mapping from the parametric space
of R2, denoted by A , into Ω. Assume t is a field of unit vectors (a field of directors). Thus, the thin shell
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body S ⊂ in three dimension can be described by the pair (ϕ, t), see Fig. 2. Additionally, the subscript 0
denotes quantities in the reference configuration, for instance ϕ0 parametrizes the reference middle surface.
We assume the thickness t of the shell to be uniform for simplicity, and also we assume that the change in
shell thickness after deformation is negligible. Then, the thin shell body S is given by

S =

{
Φ ∈ R3| Φ = ϕ(ξ1, ξ2) + ξ t(ξ1, ξ2), − t

2
≤ ξ ≤ t

2
, (ξ1, ξ2) ∈ A

}
, (5)

where A ⊂ R2 is the parametric space for the middle surface. Hence, the configuration Φ is a mapping
from a parametric domain A × [−t/2, t/2] into R3. The coordinates {ξ1, ξ2, ξ3} (where ξ = ξ3) describe
this parametric domain, which corresponding global Cartesian basis of these coordinates is {Ek}. The area
element of the middle surface can be computed as dΩ = j̄ dξ1dξ2, where j̄ =

∣∣ϕ,1 ×ϕ,2∣∣.

ϕ

A

ξ2

ξ1

ξ}ϕ0

t0 t

Ω ΩΩ Ω0

ϕ ◦ϕ−1
0

Figure 2: Reference and the deformed configurations of the middle shell surface.

The convective basis vectors gi can be defined by the tangent map as

∇Φ =
∂Φ

∂ξi
⊗Ei = gi ⊗E

i,

with gα = ∂Φ
∂ξα = ϕ,α + ξ t,α and g3 = ∂Φ

∂ξ = t. The covariant components of the metric tensor in convected
coordinates are given by gij = gi · gj . The difference between the metric tensors of the undeformed and
deformed configurations of the shell is measured by the Green–Lagrange strain tensor, i.e.

Eij =
1

2
(gij − g0ij) =

1

2
(Φ,i ·Φ,j −Φ0,i ·Φ0,j).

According to the Kirchhoff–Love theory of thin shells, we constrain the deformed director t to coincide
with the unit normal of the deformed middle surface of the shell, i.e.

t =
ϕ,1 ×ϕ,2

j̄
, ϕ,α · t = 0, |t| = 1, t · t,α = 0.

We assume that the deformation field for the shell is restricted to account only for small displacement. For
more details, refer to [38, 21] . With the Kirchhoff–Love and the small deformation hypothesis, the only
remaining non-zero components of the Green–Lagrange strain tensor are

Eαβ = εαβ + ξ ραβ , (6)
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where εαβ = 1
2 (ϕ,α ·ϕ,β−ϕ0,α ·ϕ,β) is the membrane strain tensor and ραβ = ϕ,α ·t,β−ϕ0,α ·t0,β is a tensor

that measures the bending or change in curvature of the shell. Thus, Kirchhoff–Love kinematic assumption
leads to a formulation of the shell exclusively in terms of the middle surface.

3.2 Thin shell potential energy

The potential energy of an elastic thin shell body under Kirchhoff–Love assumptions can be expressed by
the functional

Π[u] =

∫
Ω0

W(u) dΩ0 + Πext[u], (7)

where Ω0 is the reference middle surface of the thin shell body, W is an internal energy density per unit
area, and Πext is the potential energy of the external loads.

For an isotropic Kirchhoff–St. Venant elastic material the internal energy density follows as

W =
1

2
Cαβγδ

(
t εαβεγδ +

t3

12
ραβργδ

)
,

with

Cαβγδ =
E

(1− ν2)

[
νaαβ0 aγδ0 +

1

2
(1− ν)

(
aαγ0 aβδ0 + aαδ0 aβγ0

)]
,

where we have introduced the first fundamental form aαβ = ϕ,α · ϕ,β expressed in convected components,
with aαγ0 (a0)γβ = δαβ . E is the Young’s modulus, and ν is the Poisson’s ratio [38, 21].

The external potential energy expressed in the reference middle surface states as

Πext[u] = −
∫

Ω0

q · u dΩ0 −
∫
∂Ω0

h · u dη0,

where q is the external body load per unit area, h the forces per unit length applied on the boundary of the
middle surface, and dη0 is the line element of the boundary of the middle surface.

4 Phase-field model for thin shell

Let us consider a thin shell model that assumes the phase-field to be constant across the thickness. The
total potential energy functional for a thin shell body with crack (elastic and surface energies) is given by

Π[u, υ] =

∫
Ω0

(υ2 + ε)W(u) dΩ0 +

∫
Ω0

Gc t

[
(1− υ)2

4`
+ `|∇υ|2

]
dΩ0 + Πext[u], (8)

where υ is phase-field describing uniform cracks through the thickness, Gc is the critical energy release
rate, or surface energy, in Griffith’s theory, and ` is a positive regularization constant to regulate the size
of the fracture zone. It was shown by [28] for bulk materials, that when ` tends to zero, the phase-field
approximation of the fracture energy converges to the fracture energy.

For an accurate discretized surface energy, the nodal spacing of the discretization h should be smaller
than the regularization parameter ` , i.e. h/`� 1. Moreover, the crack area, which is controlled by `, should
be smaller than the domain area, in order to approximate the sharp-interface model. Numerical experiments
illustrate that setting 2h ∼ ` still gives reasonable results. However, the computed surface energy will be
slightly overestimated [28, 45].
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In this model, the energy is released due to fracture in both tension and compression. This limits the
application of the presented model to problems with pure tensile loading. In the future, we will separate
the positive and the negative part of the stored energy based on the spectral decomposition of the strain
tensor [46].

The natural boundary conditions are used for υ. The crack is assumed to be traction-free. In order
to satisfy this condition the internal energy density W is multiplied by the jump set function (υ2 + ε).
The parameter ε � 1 is introduced to avoid the singularity of disappearing internal energy density when
the phase-field parameter is zero. In this model, cracks can propagate, branch and merge but can not
reverse, whereas the last feature is reached by imposing υi 6 υi−1, such that υi−1 and υi are the phase-field
parameters at step i− 1 and i [47].

The first variation of the functional Π[u, υ] is given by

δΠ = δΠint + δΠext = 0.

Since the variations δu and δυ are independent, the above expression leads to two decoupled equations

δΠ[u, υ, δu] =

∫
A

(υ2 + ε)Cαβγδ
(
t εγδ(u) εαβ(δu) +

t3

12
ργδ(u) ραβ(δu)

)
j̄0 dξ

1dξ2 + δΠext[δu] = 0, (9)

δΠ[u, υ, δυ] =

∫
A

2υδυW(u) j̄0 dξ
1dξ2 + 2

∫
A

tGc

(
− (1− υ)δυ

4`
+ `∇υ∇(δυ)

)
j̄0 dξ

1dξ2 = 0, (10)

with the external virtual work

δΠext[δu] = −
∫

A

q · δu j̄0 dξ
1dξ2 −

∫
∂A

h · δu
∥∥ϕ0,t

∥∥ dηξ. (11)

With the strategy presented in Section 2, we can split the expressions stated by the principle of virtual
work into partition contributions, that is

δΠ[u, υ, δu] =

L∑
κ=1

∫
Aκ

[
(υ2 + ε)Cαβγδ

(
t εγδ(u) εαβ(δu) +

t3

12
ργδ(u) ραβ(δu)

)
j̄0

]
κ

(ψκ ◦ϕ0) dξ1dξ2

−
L∑
κ=1

∫
Aκ

[q · δu j̄0]κ (ψκ ◦ϕ0) dξ1dξ2 −
L∑
κ=1

∫
∂Aκ

[
h · δu

∥∥ϕ0,t

∥∥]
κ

(ψκ ◦ϕ0) dηξ = 0,

(12)

and

δΠ[u, υ, δυ] =

L∑
κ=1

∫
Aκ

[(
2W(u) +

tGc
2`

)
υ δυ j̄0

]
κ

(ψκ ◦ϕ0) dξ1dξ2

+

L∑
κ=1

∫
Aκ

2

[
tGc `

(
∂υ

∂ξα
gαβ

∂(δυ)

∂ξβ

)
j̄0

]
κ

(ψκ ◦ϕ0) dξ1dξ2

−
L∑
κ=1

∫
Aκ

[
tGc
2`

δυ j̄0

]
κ

(ψκ ◦ϕ0) dξ1dξ2 = 0,

(13)

such that gαγgγβ = δαβ . Here, [·]κ means that the expression within the brackets is evaluated with the κ-th
partition approximation of the undeformed middle surface.
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4.1 Galerkin discretization

We consider now the discrete equilibrium equations for a shell whose middle surface in the reference
configuration is numerically represented with the procedure described before, in terms of a set of nodes
P0 = {P 01, . . . ,P 0N}, and a set of L patches. We follow a total Lagrangian approach, with the same pa-
rameter space and basis functions for the reference and deformed configurations. Let ϕ0κ be the reference
configuration mapping for the middle surface of a specific part κ, defined over the parametric space Aκ

ϕ0κ(ξ) =
∑
a∈Jκ

pa(ξ) P 0a, (14)

We represent the deformed configuration in a given partition κ as

uκ(ξ) =
∑
a∈Jκ

pa(ξ) ua, (15)

and the approximation of the phase-field parameter, υ, as

υκ(ξ) =
∑
a∈Jκ

qa(ξ) υa. (16)

Where pa(ξ) and qa(ξ) are LME basis functions. Virtual displacements and virtual phase-field parameters
are represented likewise. A simple calculation yields the Galerkin stiffness matrix. The interaction between
nodes a and b is given by

Kab
u =

L∑
κ=1

∫
Aκ

[
(υ2 + ε)

(
tMaTCM b +

t3

12
BaTCBb

)
j̄0

]
κ

(ψκ ◦ϕ0) dξ1dξ2,

Where Ma and Ba are the membrane and bending strain-displacement matrices for the a-th node. Note
that Ma,Ba ∈ R3×3, see [38] for a detailed description. The force contribution of the a-th node is

fau =

L∑
κ=1

∫
Aκ

[q pa j̄0]κ (ψκ ◦ϕ0) dξ1dξ2 +

L∑
κ=1

∫
∂Aκ

[
h pa

∥∥ϕ0,t

∥∥]
κ

(ψκ ◦ϕ0) dηξ.

Finally, the phase-field stiffness matrix is

Kab
υ =

L∑
κ=1

∫
Aκ

[(
2W(u) +

tGc
2`

)
qa qb j̄0 + 2 ` tGc qa,α qb,β g

αβ j̄0

]
κ

(ψκ ◦ϕ0) dξ1dξ2, (17)

and the right hand side for phase-field is

faυ =

L∑
κ=1

∫
Aκ

tGc
2`

[qa j̄0]κ (ψκ ◦ϕ0) dξ1dξ2. (18)

The Dirichlet displacement and rotation boundary conditions are imposed with Lagrange multipliers, the
interested reader is referred to [48, 49, 38, 50].

8



5 Numerical examples

As it was discussed in [39], the locality of the LME basis functions smoothness depends on a nondimensional
parameter γ. The large value of γ leads to sharper shape functions, while the small value results wider shape
functions. Phase field model was introduced based on standard FEM shape functions, so using smooth shape
function will not capture the discontinuity. Whereas the main idea of modeling the thin shell from scattered
points, as explained above, is to use smooth shape functions by choosing γ as a small value for thin shell, we
have smoother shape functions. Here, we first test the efficiency of the introduced method through a simple
2D example to show a suitable γ for the LME shape functions used in this model. In the second example
we consider a thin shell structure with a complex topology, in order to indicate the ability of the introduced
method in modeling fracture in complex structures.

5.1 Single edge notch tensile

To get a better understanding of the proposed methodology, we consider a well studied benchmark example of
2D solid under plane stress state [51, 52]. The plane is a square of edge length L = 1 mm, under pure tension
with initial crack (see sketch in Fig. 3). The crack is replaced at the middle of the plane edge with length

L/2 and width of 2h. The elastic constants are chosen as E = 109 N/mm
2

and ν = 0.3, the critical energy
release rate as Gc = 1 N/mm and ε = 10−6. The constant displacement increments ∆u = 0.5 × 10−6 mm,
are used for each step of computation.

The results are indicated in Figs. 4, 5, 6 and 7 for a uniform discretization with nodal spacing h = 0.005.
The crack path is illustrated in Fig. 4. As it was expected , the crack propagates in a symmetry path [46].
For fixed regularization parameter ` = 0.05 mm, the influence of the different values of γ for the LME
approximants, is analyzed. Fig. 5 depicts the load-deflection curves for FEM and LME with different values
of γ. The same results are observed for LME with γ ≥ 1.8 and FEM, while γ ≤ 0.8 gives less accurate
result, due to the wider and smoother LME shape functions. Therefore, the LME results converge to the
standard FEM results as γ increases [39]. The subsequent study analyzes the influence of the critical energy
release rate Gc. The energy release rate, G, is the rate of change in potential energy with crack area. The
crack extension occurs when G reaches a critical value Gc. Hence, as Gc decreases the material are more
brittle and reaction force is lower. Figs. 6, 7 illustrate the load-deflection curves for different values of Gc,
γ = 1.8, ` = 0.05 and ` = 0.025. It is obvious from these figures as Gc increases the area under the
load-deflection curve appends. Fig. 8 indicates load-deflection curves for different discretization with nodal
spacing h = 0.0204, 0.0101, 0.005. In this figure for fine mesh, h ≤ 0.0101, the results are mesh-independent,
which conform the results obtained by [46].

Figure 3: Square plate of side length L = 1 mm with initial crack of length L/2 under pure tension.
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Figure 4: (Left) initial phase-field parameter values with initial crack width of 2h, (right) phase-field solution
of the plate for the final state after full breaking.
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Figure 5: Load-deflection curves for FEM and LME with γ = 0.8, 1.8 and 4.8.
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Figure 6: Load-deflection curves for h = 0.005, Gc = 1.0, 1.5, 2.0 N/mm, ` = 0.05 mm and γ = 1.8.
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Figure 8: Load-deflection curves for h = 0.0204, 0.0101, 0.005, Gc = 1.0 N/mm, ` = 0.05 mm and γ = 1.8.

5.2 Connected pipes pulling

In this example we show the flexibility and robustness of the present methodology to deal with a thin shell
of complex topology and complex crack path. Figure 9 shows the surface, consisting of a set of six connected
open pipes. The boundary curve at the bottom is clamped, whereas the top boundary curve is incrementally
displaced in the upward (0, 0, 1) direction. Material parameters have been selected as E = 107 N/mm

2
and

ν = 0.3, Gc = 1 N/mm, while the thickness is t = 0.005 mm. The discretization of the geometry (geometric
markers) and the control points consists of two arrangements of 25668 and 100380 unstructured set of points
respectively. The original coarse point-set has been obtained from the MATLAB central file exchange and
subsequently subdivide it through Loop’s subdivision algorithm by using Paraview [53]. The phase field is
represented as a colormap on the reference configuration, see Figs. 10A,C. Figures 10B,D shows the physical
deformation obtained, which has been amplified by a factor of 20 to give a better idea of the resulting
displacements. Due to the nonlinearity of the model, we observe a symmetry-breaking solution.
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Figure 9: Sketch for the brittle thin shell problem. (A) Material and geometrical parameters describing
a set of six connected open pipes. (B) The prescribed boundary conditions and the applied incremental
displacement.
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Figure 10: Selected snapshots of the deformation process of a brittle thin shell with complex topology. The
boundary curve of the bottom pipe is clamped and the top boundary curve is incrementally displaced in the
upward (0, 0, 1) direction. The process has been performed without an initial crack. (A,C) Phase field as
colormap in the reference configuration for two selected imposed displacements of the top boundary curve,
just before the fracture (d = 0.0055) and for the final imposed displacement, d = 0.01. (B,D) Deformed
configurations for two selected instants, the deformation field has been magnified by 20.
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6 Conclusions

We have extended the methodology proposed in [21] to model fracture in Kirchhoff- Love thin shell bodies
described by surface of complex geometry and topology. We developed this method for brittle material and
analyzed this model for a structure with complex geometry and topology. Simulations have shown that the
onset of crack propagation in the phase-field model can be linked to the energy release rate reaching the
critical value Gc.

It is noteworthy in this work that we have used different values of the LME aspect parameter γ, for both
phase-field and thin shell model. We observe that by using similar LME approximants (equal γ) leads to less
accurate results for phase-field. Additionally, different parameters γ make impossible to obtain rights results
for mode II, due to connection between shape functions on both sides of crack. The future work is to use
equals values of the smoothness LME parameter γ for both problems by introducing a higher order phase-
field model. Our current research includes developing a fourth order phase-field model to use in conjunction
with smooth approximants as LME or Isogeometric, the aim is to increase the order of convergence, and
improve the accuracy and efficiency.
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