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Adhesion and friction control localized folding in supported graphene
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Graphene deposited on planar surfaces often exhibits sharp and localized folds de-

limiting seemingly planar regions, as a result of compressive stresses transmitted by

the substrate. Such folds alter the electronic and chemical properties of graphene,

and therefore it is important to understand their emergence, to either suppress them

or control their morphology. Here, we study the emergence of out-of-plane deforma-

tions in supported and laterally strained graphene with high-fidelity simulations and

a simpler theoretical model. We characterize the onset of buckling and the nonlinear

behavior after the instability in terms of the adhesion and frictional material param-

eters of the graphene-substrate interface. We find that localized folds evolve from a

distributed wrinkling linear instability due to the nonlinearity in the van der Waals

graphene-substrate interactions. We identify friction as a selection mechanism for

the separation between folds, as the formation of far apart folds is penalized by the

work of friction. Our systematic analysis is a first step towards strain engineering of

supported graphene, and is applicable to other compressed thin elastic films weakly

coupled to a substrate.
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I. INTRODUCTION

Graphene is a single layer of carbon atoms densely packed in a two-dimensional hexagonal

lattice. It has attracted considerable attention due to its exceptional structure, mechanical,

chemical and electronic properties, which offer unique possibilities in nanostructured ma-

terials and devices.1–3 Deviations from a perfectly planar state are pervasive in supported

and free-standing graphene. Indeed, at length-scales ` > 100 h ∼ 10 nm, significantly

larger than the nominal mechanical thickness,4 graphene is very easily bendable, conforms

to a wavy substrate,5,6 and is prone to relaxing in-plane deformations by buckling out-

of-plane. Such deformations in turn strongly influence the electronic properties7–10 and

the chemical reactivity,11 opening new possibilities for engineering such properties through

strain.12,13 Massive crumpling of few-layer graphene can also be controlled to tune the coat-

ing hydrophobicity.14 The emergence of ripples in free-standing graphene has been modeled

under different conditions, such as in-plane shear15 or indentation.16,17 When supported on

a substrate, graphene generally adheres through non-covalent forces, resulting in an effective

adhesion energy that has been measured on different substrates.6,18–20 Here, we characterize

the emergence and evolution of out-of-plane deviations in supported and laterally strained

single layer graphene.

Folds are commonly observed in single or few-layer graphene grown by chemical vapor

deposition (CVD),21–23 although they can also be present in exfoliated graphene.10 In CVD-

grown graphene, the folds often form networks with a typical spacing between hundreds of

nanometers and microns, and are attributed to the compressive stress arising upon cooling

due to the differential thermal expansion between graphene and the metal substrate.24 There

is evidence that new folds arise during transfer of CVD-grown graphene to a different sub-

strate, that these folds strongly depend on the topography and polycrystalline structure of

the growth substrate, and that depending on the transfer procedure folds can be either pre-

served or released.25 The network of folds has been controlled by patterning the topography

of the growth substrate,22,26 by tuning the transfer method,27 or by straining the substrate.14

A number of laterally compressed systems consisting of an elastic film coupled to a sub-

strate develop distributed sinusoidal wrinkles, which evolve upon further compression either

by coarsening28,29 or by forming localized folds.30,31 Interestingly, creasing is a distinct local-

ized surface instability in soft elastic solids that nucleates from a uniform state and precedes
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distributed wrinkling,32,33 although in the presence of a thin stiffer crust the wrinkle-to-fold

sequence of events is recovered.34 Uniaxially compressed elastic films floating on a fluid have

also been examined,35 reporting a curvature localization after a delocalized periodic wrin-

kling with a characteristic wavelength. In this system, the wrinkle-to-fold transition occurs

when the film is compressed beyond a third of its initial wrinkle wavelength, and has been

attributed to geometric nonlinearity. In a different context, a wrinkle-to-fold transition has

been explained by the nonlinearity of a deformable substrate.36 Under biaxial compression, it

has been demonstrated that the geometry and topology of the fold network can be controlled

by the strain anisotropy and magnitude.34

When deposited on a soft substrate and compressed, graphene has been shown to deform

together with the substrate surface to develop distributed wrinkling.37 Here we focus on

stiffer substrates, whose surface is assumed to remain planar. Consequently, any out-of-

plane deformation of graphene such as wrinkling involves delamination, mobilizing different

physics. In this situation, distributed wrinkles associated to compression have not been

reported. As discussed before by analogy to similar systems, localized folds are presumably

preceded by such wrinkles. Our goal is to understand the emergence of folds, to characterize

their spacing, and to examine quantitatively the effect of the mechanical coupling between

graphene and the substrate. Contrary to other systems, graphene interacts weakly with the

substrate through non-bonded interactions, and therefore the spacing between folds cannot

be explained by nonlocal elastic fields in the substrate.36 Instead, we hypothesize that friction

is responsible for the relatively uniform fold separation observed in experiments, and include

this effect in our model.

The rest of the paper is organized as follows. Section II describes the simulation method-

ology and provides a simple example of wrinkling and folding in supported graphene. Section

III outlines the theoretical model for the emergence of wrinkling, the wrinkle-to-fold tran-

sition, and the selection principle for the separation between folds. The results and the

summary and conclusions are given in Sections IV and V respectively.

II. SIMULATION METHODOLOGY AND TYPICAL RESULT

Over the last decade, it has been demonstrated that the mechanics of graphene and

carbon nanotubes can be accurately described by continuum models in the full nonlinear
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regime in the absence of defects.38–42 A number of atomistic-based continuum approaches

have been proposed. Here, we model graphene as a continuous surface without thickness,

whose internal energy per unit underformed surface is given by a hyper-elastic potential

W (C,K) that depends on the in-plane stretch (the metric tensor) of the surface C and its

curvature (the second fundamental form) K.43 The potential W is systematically derived

from the atomistic interactions describing the bonding energy and forces using a kinematic

rule linking continuum and lattice deformations, the exponential Cauchy-Born rule, and

averaging the atomistic energy in one unit cell of the lattice. This continuum model retains

the crystal symmetry of the underlying graphene sheet. This model has been shown to

very accurately mimic all-atom simulations exhibiting very large deformations and buckling

instabilities.44 When this model is linearized around the planar ground state of graphene,

the in-plane and bending elasticities are isotropic, and can be characterized by a surface

Young’s modulus Ys (with units of line tension), a Poisson ratio ν, and a bending modulus

D.38,45 For the model used here, we have Ys = 336 N m−1, ν = 0.165, D = 0.238 nN nm,

consistent with experimental and ab initio calculations.38,45,46

To model the non-bonded interaction between graphene and the substrate, we adopt a

simple and generic Lennard-Jones potential.47 The pair-wise Lennard-Jones 6-12 potential

between a graphene and a substrate atom a distance r apart is

V (r) = 4ε

[
−
(σ
r

)6

+
(σ
r

)12
]
, (1)

where x = 6
√

2σ is the equilibrium distance at which the potential attains its minimum, and ε

is the energy at the equilibrium distance. These atom-atom interactions result in an effective

point-half space interaction energy (per unit surface area) of the form48

V(h) = −γ
[

3

2

(
h0

h

)3

− 1

2

(
h0

h

)9
]
, (2)

where h is the separation between a given point and the planar substrate, h0 is the equilib-

rium separation between the elastic sheet and a half-space, and γ denotes the well depth or

adhesion energy.

Denoting by x a parametrization of the graphene sheet and orienting x3 perpendicular

to the substrate, the bonded and non-bonded energy of the graphene sheet adhered to the

substrate can be written as

U [x] =

∫
Ω0

W (C,K) dS0 +

∫
Ω0

V(x3) dS0, (3)
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where Ω0 is the reference domain of the graphene film, containing nominally a fixed number

of atoms. Hence, we adopt a total Lagrangian formulation.44 Numerically, x is discretized

with subdivision finite elements,49 which provide a smooth parametrization with square

integrable curvature. The resulting energy function, depending on the coordinates of the

finite element nodes, is minimized numerically with a quasi-Newton BFGS algorithm.44 We

implement periodic boundary conditions, and strain the sample by modifying the actual

size of the periodic box, while the mass of material (the area of the reference domain Ω0)

remains fixed.

FIG. 1. Representative simulation of a wrinkle-to-fold transition (a,b) of monolayer graphene upon

uniaxial compression. The length of the domain along the uniaxial compression is 200 nm, the

adhesion energy is 0.45 J/m2, and equilibrium separation of the potential is 6 nm. A lateral view

of the fold is given in (c), to be compared with the fold morphology obtained with a smaller

equilibrium separation (h0 = 0.6 nm) shown in (d).

Figure 1 shows a typical numerical simulation exhibiting wrinkling and folding. A periodic

graphene slab with length L0 = 200 nm is uniaxially compressed by incrementally decreasing

the periodic length along one coordinate by a factor, Ln = fnL0 with 0 < f < 1, where in

practice f is close to one. Initially, the graphene slab stays planar until, beyond a threshold,

it develops periodic, small amplitude wrinkles, Fig. 1(a). As in similar systems,35,50 the finite

wavelength is set by a competition between bending energy, which penalizes high frequency

undulations, and the interaction with the substrate, which penalizes large amplitude and

low frequency out-of-plane deviations. By further compressing the sample, the out-of-plane

deformation localizes into a single, sharp fold, Fig. 1(b). The details of this generic process,
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e.g. the critical strain or the wrinkling and folding morphology, strongly depend on the

parameters of the adhesion potential, h0 and γ. For instance, for large values of h0, the folds

are surrounded by regions of negative out-of-plane displacement, Fig. 1(c), absent for small

h0, Fig. 1(d).

III. THEORETICAL MODEL

A. Emergence of wrinkling

To understand the emergence of wrinkling and folding in supported graphene, we develop

next a simple analytical model, largely following previous works on compressed thin films.51,52

We consider a rectangular graphene film under uniaxial compression. We denote by u(x)

and w(x) the in-plane and the out-of-plane displacements of the film, and by ε the uniaxial

in-plane strain. The stretching and bending energies of the film can be computed as

Us =
Ȳ

2

∫
Ω

ε2 dS, Ub =
D

2

∫
Ω

w′′
2
dS, (4)

where we introduce Ȳ = Ys/(1 − ν2) to simplify the expressions. To understand small

amplitude wrinkling deformations, we linearize the van der Waals energy as

Uv =
27γ

2h2
0

∫
Ω

w2 dS. (5)

Adopting a von Karman nonlinear plate theory,53 the membrane strain of the film can

be approximated as

ε = ε0 + u′ +
1

2
w′

2
, (6)

where ε0 represents the globally applied lateral strain on the film. We consider the ansatz

w(x) = A cos(kx) for the out-of-plane displacement. By requiring the uniformity of the

in-plane tension or strain, see Eq. (6), the in-plane displacements should obey u(x) =

(1/8)k2A2 sin(2kx), and the constant strain becomes ε = ε0 + (1/4)k2A2.52 We note that

the applied strain on the system, here ε0 < 0, differs from the film membrane strain ε < 0,

which is partially relaxed by the positive term (1/4)k2A2. The stretching energy difference

per unit area takes the form

∆Ūs(A, k) =
Ȳ

2

(
ε2 − ε2

0

)
=
T0

4
k2A2 +

Ȳ

32
k4A4, (7)
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where T0 = Ȳ ε0 is a reference surface tension (it is only the actual surface tension for a

uniform planar state). The total energy difference per unit area then becomes

∆Ū(A, k) =

(
T0

4
k2 +

D

4
k4 +

27γ

4h2
0

)
A2 +

Ȳ

32
k4A4, (8)

where the last term accounts for the stretching induced by wrinkling, and has a stabilizing

effect.

The onset of wrinkling from the planar state (A = 0) can be established by the loss of

stability condition ∂2∆Ū/∂A2(0, k) ≤ 0, which leads to

T0 ≤ −Dk2 − 27γ

h2
0k

2
. (9)

The wavenumber of the most unstable mode can be found by maximizing the expression

above (recall T0 is negative) with respect to k2, yielding

k =

(
27γ

h2
0D

)1/4

. (10)

This expression shows that the finite wave number is set by a competition between bending,

which favors long wavelength out-of-plane disturbances, and interaction energy, which favors

short wavelength disturbances. Replacing Eq. (10) and into Eq. (9), we obtain the critical

tension and strain for buckling

Tcr = − 2

h0

√
27γD, εcr = − 2

h0Ȳ

√
27γD. (11)

Minimizing the total energy density in Eq. (8) with respect to A, we find

A = 2

√
− 1

Ȳ

(
T0k−2 +D +

27γ

h2
0

k−4

)
. (12)

The expression under the square root is positive beyond the stability point, c.f. Eq. (9).

Replacing the expression above in ∆Ū(A, k) results in

∆Ū(k) = − 1

2Ȳ

(
T0 +Dk2 +

27γ

h2
0

k−2

)2

. (13)

Minimizing the energy with respect to the wave number, we recover Eq. (10) even beyond

the critical strain, and obtain

∆Ūmin = − 1

2Ȳ

(
T0 + 2

√
27γD

h2
0

)2

. (14)
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Replacing Eq. (10) into Eq. (12), we find

A =
λ

π

√
(Tcr − T0)/Ȳ =

λ

π

√
εcr − ε0, (15)

where λ = 2π/k is the wavelength. We shall compare later these estimates with our fully

nonlinear simulations.

B. Wrinkle to fold transition

Similarly to the previous treatment of wrinkling, we adopt the von Karman theory with

an ansatz for the folding geometry in agreement with our simulations. We consider

w(x) = A cos
πx

l
+B cos

2πx

l
+ A−B (16)

for x ∈ [−l, l] and w(x) = 0 otherwise, for x ∈ (−L/2,−l) ∪ (l, L/2). Here, A and B are

amplitudes, l is half of the fold length, and L is the length of the graphene film. The term

multiplied by A describes the main feature of the fold, while that multiplied by B models

the lateral depressions observed in folds with soft interaction potentials. As the fold breaks

the translational symmetry, the length of the domain plays a role now. We demand that the

membrane tension (strain) be uniform, see Eq. (6), and solve for the in-plane displacement

from u′′ = −w′w′′. After imposing symmetry, we obtain u(x) = û(x) + ε̄x, where

û(x) =
π

l

(
A2

8
sin

2πx

l
+
AB

3
sin

3πx

l
− AB sin

πx

l

+
B2

4
sin

4πx

l
− πA

2 + 4B2

4

x

l

) (17)

in the interval [−l, l]. It is easy to see from Eq. (6) that in this interval ε = ε0 + ε̄. Outside

this interval, graphene remains planar with the same constant strain ε. To find ε̄, we impose

continuity of the in-plane displacement at x = ±l, i.e.

u(±l) = ∓(L/2− l)ε̄, (18)

from which we obtain

ε̄ =
π2

2Ll
(A2 + 4B2). (19)

Thus, the stretching energy difference per unit area becomes

∆Ūs(A,B, l) = T0ε̄+
Ȳ

2
ε̄2. (20)
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A simple calculation shows that the bending energy density can be computed as

Ūb(A,B, l) =
Dπ4

2Ll3
(A2 + 16B2) (21)

We turn now to the graphene-substrate interaction. A harmonic approximation disregards

the physics of folding, which is promoted by decohesion for large amplitude out-of-plane

displacements of the film, beyond the inflection point of the potential. Also, the folding

geometry is strongly affected by the stiffening of the interaction as the film is brought

closer to the substrate. With a harmonic approximation, folding is never energetically

preferable to wrinkling, from which we conclude that the nonlinearity of the graphene-

substrate interaction is crucial to explain the wrinkle-to-fold transition in this system. We

find that the qualitative features of the wrinkle-to-fold transition can be captured with a

third order expansion of the interaction potential. However, for accurate predictions of the

model, we approximate the interaction potential with a five term expansion

V(w) =γ

(
− 1 +

27w2

2h2
0

− 135w3

2h3
0

+ 225
w4

h4
0

− 612
w5

h5
0

+ 957.96
w6

h6
0

)
,

(22)

where the last term is modified to match the inflection point of the original potential. The

corresponding energy density after integration is

Ūv(A,B, l) =
27γl

2h2
0L

(3A2 − 4AB + 3B2)− 135γl

4h3
0L

(10A3−

15A2B + 18AB2 − 10B3) +
225γl

4h4
0L

(35A4−

56A3B + 84A2B2 − 80AB3 + 35B4)−
153γl

h5
0L

(63A5 − 105A4B + 180A3B2−

225A2B3 + 175AB4 − 63B5) +
59.87γl

h6
0L

(462A6 − 792A5B + 1485A4B2−

2200A3B3 + 2310A2B4 − 1512AB5 + 462B6).

(23)

The total energy density relative to a planar state under a strain ε0 is

∆Ū(A,B, l) = ∆Ūs + Ūb + Ūv. (24)
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We find candidate equilibrium states by minimizing the total energy with respect to A, B,

and l numerically. Depending on the applied strain, ε0, we estimate the wrinkle-to-fold

transition by comparing the energies of the optimal wrinkling pattern and of the optimal

fold, as reported in the results section.

C. Separation between folds: the role of friction

In the previous model for folding, the length of the graphene film L, which can be

interpreted as the separation between folds, has been kept fixed. It is not possible to

consider it as an unknown and minimize the total energy density with respect to L as well

because it appears in the denominator of all the terms, see Eqs. (20,21,23), and therefore

the optimal separation tends to infinity. Physically, we hypothesize that the separation is

set by frictional forces between graphene and its substrate. Frictional forces in graphene

and carbon nanotubes have been measured in other contexts.54,55

In the simulations, we model this effect as dry friction, although in very fast molecular dy-

namics simulations on small samples, the frictional forces are found to be rate-dependent.56

The emergence of effective rate-independent behavior from microscopic rate-dependent ki-

netics on complex energy landscapes has been studied theoretically in related contexts.57

We assume that the normal traction exerted by the graphene sheet on the substrate is

constant and given by the attractive adhesion forces. With this hypothesis, the tangential

traction exerted by the substrate on the graphene sheet and opposing sliding is bounded

by a constant traction τ0, which we view as a material parameter. Let us discuss now the

treatment of friction in the analytical model. Since folding requires significant sliding of the

graphene sheet relative to the substrate in a large fraction of the sample, see Figure 3(a)

for an illustration, we assume that the whole surface undergoes sliding, which results in a

simple expression for the work of dry friction

Wf =

∫
Ω

τ0|u| dS =
1

4
τ0ε0L

2H, (25)

where H is the width of the sample. To systematically explore the separation, we consider

a single fold in a sample of length L, and minimize the energy deviation per unit surface

∆Ū(A,B, l, L) = ∆Ūs + Ūb + Ūv +
1

4
τ0ε0L (26)
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with respect to all its arguments. Since the last term is an increasing function of L while the

other terms are decreasing functions of L, this energy leads to a finite separation between

folds.

IV. RESULTS AND DISCUSSION

To check the consistency between the simulations and the theoretical model, we compare

the results reported in Fig. 1(a-c) with the theoretical predictions (here, γ = 0.45 J/m2

and h0 = 6 nm). At a nominal strain of ε0 = (L − L0)/L0 = −0.4 %, wrinkling is the

observed state for both models. In the simulations, the amplitude and wavelength of the

wrinkles are A ∼ 0.09 nm and λ ∼ 5.5 nm, to be compared with the theoretical model

predictions, A = 0.090 nm and λ = 5.75 nm. At a strain of -0.7 %, the folding parameters

measured from the simulation are A ∼ 0.65 nm, B ∼ 0.48 nm and l ∼ 5.2 nm, while the

corresponding analytical predictions are A = 0.678 nm, B = 0.423 nm and l = 5.14 nm.

Thus, the agreement between theory and simulations is excellent.

We consider now the behavior of graphene deposited on silicon oxide, as substrate with

a well-characterized interaction potential. Reports indicate that the adhesion energy is on

the order of γ = 0.45 J/m2, and the equilibrium separation h0 = 0.6 nm.18,58 Unlike the

response reported in Fig. 1(a-c) for a significantly larger equilibrium separation, wrinkling is

not expected to be observable for graphene on SiO2. Indeed, the critical strain for wrinkling

is estimated as -1.64 % by Eq. (11), while the wrinkle-to-fold strain is found to be -1.71%.

Thus, the wrinkling regime is very narrow. At the wrinkle-to-fold strain, the amplitude of

the wrinkles is, according to Eq. (15), A = 0.015 nm. Such a small amplitude may explain

why wrinkling morphologies have not been reported in supported graphene. It should be

noted that, while the wrinkling strain is independent of the sample size L, the wrinkle-to-

fold strain is not. In fact, as the sample size (or separation between folds) becomes larger,

the wrinkle-to-fold strain becomes closer to the critical wrinkling strain, further emphasizing

our argument.

The adhesion energy between graphene and different substrates has been shown to signif-

icantly vary, from 0.72 J/m2 for copper,19 to 0.07 for Polydimethylsiloxane (PDMS).6 More

detailed features about the precise nature of the interaction potential between graphene and

different substrates, such as the equilibrium separation or the inflection point, are not fully
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FIG. 2. Critical strains for the onset of wrinkling and the wrinkle-to-fold transition under uniaxial

compression, for different van der Waals parameters and for a graphene film of length L = 200

nm. Comparisons between analytical model (lines) and numerical simulations (symbols) for both

wrinkling (dashed lines, triangles) and wrinkle-to-fold (solid lines, squares) strains as a function

of the equilibrium spacing of the interaction potential h0, and the adhesion energy γ (different

colors). The inset shows the features of the interaction potential.

characterized. It should also be noted that, in the presence of surface roughness, the effective

interaction may differ from the intrinsic interaction.20 This suggests that parameters such

as γ and h0 can vary significantly depending on the nature of the substrate, including its

chemistry, its topography, or the environment conditions. Since transfer methods make it

possible to deposit graphene on virtually any substrate, the graphene-substrate interaction

potential may be tuned to a large degree with proper characterization. We examine in Fig. 2

the systematic dependence of wrinkling and folding on the interaction parameters γ and h0.

Here, we fix L and leave the effect of friction for later. The wrinkling strain is estimated by

Eq. (11) and the wrinkle-to-fold strain by energy comparison with the wrinkled state. The

theoretical model predictions (solid and dashed lines) are compared with simulations (sym-

bols), obtaining an excellent agreement throughout the parameter space. In the simulations,

we observe that folding is always preceded by wrinkling. For small values of h0, the gap
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between these two strains becomes very small, and therefore, folding appears to bifurcate

directly from the planar state. The theoretical model for folding is not very accurate for

small h0. In this regime, even at the onset of folding, the film deviation is significant and

reaches beyond the point where the Taylor series expansion of the potential is accurate.

While the critical wrinkling strain exhibits a monotonic decrease as a function of h0, the

wrinkle-to-fold strain attains a minimum for a finite equilibrium separation, which results in

a broader wrinkling regime as h0 becomes larger. As mentioned previously, the strain gap

between the onset of wrinkling and the wrinkle-to-fold transition decreases as L increases.

Not surprisingly, the critical strains increase with adhesion energy.
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FIG. 3. Illustration of the sliding of graphene as the system transits from wrinkling, with distributed

excess graphene area relative to substrate area, to folding, with localized excess area (a). Critical

strain for wrinkling and for the transition from wrinkling to multiple folds as a function of the

frictional parameter τ0, for a uniaxially compressed graphene sheet of length L = 1 µm (b).

As introduced in Section III C, friction between graphene and the substrate can provide

a selection principle for the fold separation. Indeed, as illustrated in Fig. 3(a), transitioning

from a wrinkled state to a folded state requires sliding of the graphene sheet relative to the

substrate, as the uniformly distributed excess area of a wrinkled configuration is brought to a

localized fold. For a given applied strain, folds separated by a large distance are energetically

favorable as compared to smaller folds closer to each other, but dissipate a larger frictional

work. Thus, a competition between potential energy (elastic and adhesion) and frictional

work is established. Although the tribological properties of supported graphene have been
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examined experimentally with AFM,55 no studies to our knowledge have characterized di-

rectly the graphene-substrate tribology. However, the frictional traction between different

shells in multi-walled carbon nanotubes has been reported to be in the range τ0 = 0.2 to

0.85 MPa.54,59,60 These experiments probe a similar situation as that studied here, where

the normal force confining the sliding surfaces is not externally applied but rather due to

their cohesion. As mentioned earlier for the adhesion parameters, friction can be presumably

controlled by the chemistry and topography of the substrate surface.

Figure 3(b) shows the critical wrinkling strain together with the critical strain for forming

one, two, or three folds, as a function of the frictional parameter τ0 (the maximum shear

traction that the substrate can exert on the graphene sheet) for a sheet of length L =

1 µm. The adhesion parameters are γ = 0.45 J/m2 and h0 = 4.5 nm. We assume that

wrinkling results in negligibly small tangental displacement, and thus the wrinkling strain

is independent of τ0. In the absence of friction, the figure shows that configurations with a

single fold are preferred. However, the work of friction affects in a different way the uni-,

bi-, and tri-folding configurations, and for larger τ0, two or three folds become favorable.

We examine the systematic dependence of the fold separation as a function of frictional

coefficient τ0 in Fig. 4, where we minimize the potential energy and frictional work in Eq. (26)

with respect to L as well. We test the theoretical model predictions against simulations for

four selected values of τ0, for which 1, 2, 3 and 7 folds are theoretically expected for a slab of

length 1 µm. We find a very good agreement, although for the higher friction the simulation

produces 6 folds instead of 7. In fact, we find that for high friction, the number of fold can

vary depending on the simulation details, e.g. numerical tolerance or size of the load steps,

but always close to the number predicted by the theory. For such a nonlinear system with

many metastable equilibria, this variability is not surprising. We also observe that the folds

have uneven sizes (color indicates height, w(x)). Although Eq. (26) predicts that the fold

separation decreases with the applied strain ε0, the simulations show that the location of the

folds is determined at the wrinkle-to-fold transition. As strain is further increased, the folds

grow but stay laterally immobile, and we occasionally observe the disappearance of a smaller

fold. The figure shows a sharp decrease in the fold separation as friction increases, which

does not follow a power-law (inset). This non-trivial behavior is partially due to the fact

that friction retards the wrinkle-to-fold transition strain in a complex way, Fig. 3(b). We

find that the τ0−L relationship weakly depends on the adhesion energy γ as L ∝ γa, where
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FIG. 4. Separation between folds L as a function of the friction parameter τ0 predicted by the

theoretical model (top), checked against the simulations for four selected frictional coefficients

(bottom). The color represents the out-of-plane deviation w(x). The inset shows L as a function

of τ0 in a log-log scale, to highlight the fact that the relation is not a power-law.

0.2 < a < 0.43 depends on τ0. The equilibrium separation h0 plays a significant role for

very small τ0. As noted earlier, in graphene samples grown by CVD the typical separation

between the folds generated upon cooling is between hundreds of nanometers and microns,

suggesting small frictional coefficients in the order of τ0 ≈ 0.1 MPa. However, it should be

noted that folding in CVD-grown graphene may take place at high temperatures, which in

turn may decrease τ0 relative to the value at room temperature.

V. SUMMARY AND OUTLOOK

Inspired by observations of CVD-grown graphene and an increasing interest in controlling

experimentally the out-of-plane morphology of supported graphene, we have examined by

fully nonlinear simulations and by a theoretical model the mechanics of out-of-plane relax-

ation of graphene adhered to a rigid substrate and subjected to lateral uniaxial strain. We
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FIG. 5. Different stages during the wrinkle-to-fold transition of supported graphene upon biaxial

compression for a 500 nm × 500 nm sample. (a) Randomly distributed labyrinth wrinkles; (b)

nucleation of short folds; (c) extension of folds at the expense of wrinkles; (d) network of folds.

The areal strain ∆A/A0 is -0.01 in (a) and -0.04 in (d).

show that localized folds are preceded by wrinkling, although its small amplitude makes its

experimental observation very difficult for common graphene-substrate interaction parame-

ters, e.g. those in silicon oxide. While wrinkling is a rather generic process for many different

systems, the transition to folding is a nonlinear phenomenon with different physical origins

depending on the system. For supported graphene, folding results from the nonlinear nature

of the interaction with the substrate, which softens and looses cohesion at large separations,

thus promoting the emergence of large localized folds. We have analyzed the systematic

dependence of the onset of wrinkling and of the wrinkle-to-fold transition on the adhesion

energy and the equilibrium separation between graphene and the substrate. In the absence

of nonlocal elastic fields in the substrate coupling different folds,36 we show that friction

opposing sliding between graphene and the substrate selects the separation between folds.

We have found that the onset of folding and the fold spacing can be controlled by the

adhesion and frictional properties between graphene and the substrate. It has been estab-

lished experimentally that some of these properties can present large variations depending

on the substrate material, e.g. silicon oxide, copper, or PDMS. Presumably, the chemistry

and roughness of the surface of the substrate offer significant flexibility to tune these param-

eters. As illustrated in Fig. 5, the physics of wrinkling and folding under biaxial compression

are more complex, as found in related systems.34 Domains with different wrinkling orienta-

tions initially form (a). Then, short folds nucleate throughout the domain, which partially

release parallel wrinkles in their vicinity (b). These folds then grow (c) at the expense

of wrinkles, and connect forming a network that delimits cells devoid of noticeable wrin-
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kles (d). Upon further compression, the network progressively reorganizes by simplifying

the fold junctions. The resulting network closely resembles the fold morphologies observed

experimentally. We are currently studying the control of these networks by the adhesion

and tribological properties of the graphene-substrate interface and by the anisotropy of the

strain. Thus, our findings and further work on biaxially strained graphene could provide

guidance for strain-based engineering of graphene fold networks.
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