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Abstract

Model reduction in computational mechanics is generally addressed with linear dimensionality reduction methods
such as Principal Components Analysis (PCA). Hypothesizing that in many applications of interest the essential
dynamics evolve on a nonlinear manifold, we explore here reduced order modeling based on nonlinear dimen-
sionality reduction methods. Such methods are gaining popularity in diverse fields of science and technology,
such as machine perception or molecular simulation. We consider finite deformation elastodynamics as a model
problem, and identify the manifold where the dynamics essentially take place –the slow manifold– by nonlinear
dimensionality reduction methods applied to a database of snapshots. Contrary to linear dimensionality reduction,
the smooth parametrization of the slow manifold needs special techniques, and we use local maximum entropy
approximants. We then formulate the Lagrangian mechanics on these data-based generalized coordinates, and de-
velop variational time-integrators. Our proof-of-concept example shows that a few nonlinear collective variables
provide similar accuracy to tens of PCA modes, suggesting that the proposed method may be very attractive in
control or optimization applications. Furthermore, the reduced number of variables brings insight into the me-
chanics of the system under scrutiny. Our simulations also highlight the need of modeling the net e↵ect of the
disregarded degrees of freedom on the reduced dynamics at long times.

Keywords: Reduced order modeling, nonlinear dimensionality reduction, finite deformation elastodynamics,
maximum entropy approximants, variational integrators

1. Introduction

The goal of model reduction is to process (simulate, control, optimize) a complex system in terms of a much
simpler description. The premise is that, with a proper selection of the reduced model, the essential features of the
original system can be preserved by a very light and e�cient model. Most often, the reduced model is constrained
to evolve in an a�ne subset of the full configuration space, for instance when a large finite element model is
reduced by means of a linear combination of modes selected by proper orthogonal decomposition (POD). Such
approaches are common in electrical engineering, molecular simulation, or mechanics [1], and recent applications
include real-time simulation [2]. The term nonlinear model reduction generally refers to the reduced modeling
of a nonlinear system, yet relying on a linear (a�ne) reduced description [3, 4]. Nevertheless, it is apparent that
many models evolve on essentially nonlinear manifolds, in particular those involving large amplitude rotations or
steric constraints. Rotations, prominent in many mechanical systems, are the paradigmatic example of a nonlinear
motion ine�ciently described by a linear geometric model. For instance, in three dimensions, nine Cartesian
components are required to describe an orthogonal matrix, while only three parameters, e.g. Euler angles, su�ce
to parametrize a rotation.

In the field of statistical learning and pattern recognition, there has been a very intense research activity over the
last decade in nonlinear dimensionality reduction (NLDR) of data sets [5]. These techniques extend the classical
ideas of multi-dimensional scaling (MDS) or principal component analysis (PCA) to detect nonlinear hidden
correlations in data lying in high dimensional spaces. These methods provide low-dimensional embeddings of the
data, often shedding light on very complex phenomena. These methods have found applications in classification,
automatic perception, climate science [6], the study of the conformation dynamics of molecules [7, 8], or galaxy
spectra classification [9]. We have exploited elsewhere these methods for the meshfree thin shell analysis [10],
and to analyze the stroke kinematics of a micro-organism [11].
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Here, we explore the application of NLDR techniques to the reduced modeling of mechanical systems. In
this first study, we restrict ourselves to conservative mechanical systems, and to the forward problem. We fol-
low the classical method of snapshots, in which a training set of simulations, representative of the behavior of
the system, is used as the basis for the reduced model. Unlike linear approaches such as the POD (a direct ap-
plication of PCA), here we consider a nonlinear reduced description, and consequently cannot parametrize the
reduced model as a linear combination of modes. We proceed in three steps. First, the snapshots are viewed as
a high-dimensional ensemble representative of the configurations of the system, the intrinsic dimensionality of
the underlying slow manifold is detected, and the snapshots are embedded in low-dimensions by NLDR. Note
that a mere low-dimensional embedding of the snapshots is not enough for our purpose, as it does not provide a
parametrization of the slow manifold. For this reason, as a second step, we construct a smooth parametrization of
the slow manifold (a map from the low-dimensional embedding to high dimensions) with local maximum-entropy
(LME) approximants [12]. A number of key features of this approximation method are essential for the generality
and success of the proposed method, namely its ability to provide smooth approximations from scattered unstruc-
tured data in any spacial dimension (a typical output of NLDR), and to filter noisy data robustly. As the third step,
the embedding dimensions are viewed as generalized coordinates of the system, in terms of which we express
the dynamics. Although the real system evolves in a high dimensional space and departs from the slow manifold
during its dynamics, we constrain the dynamics of the reduced system to the slow manifold.

There have been extensions beyond linear representations of reduced models, à la PCA, in computational
mechanics. For instance, proper generalized decomposition methods [13] address high-dimensional problems
by finding iteratively new basis functions of separated variables, resulting in a nonlinear approximation method.
Farhat and co-workers have proposed methods to interpolate parametrized reduced models, which form a nonlinear
manifold [14].

The present work is organized as follows. Section 2 describes our model system, nonlinear elastodynamics,
and succinctly its space discretization. Section 3 outlines the methodology proposed here. We formulate in Section
4 the Lagrangian mechanics of a system constrained to evolve in a manifold described by a set of generalized
coordinates. We exercise the discrete Lagrangian mechanics formalism to derive variational time-integration
schemes for systems with configuration-dependent mass. In Section 5, we develop a proof-of-concept example,
highlighting the potential and limitations of reduced order modeling based on NLDR. Finally, we put forward
some remarks and conclusions in Section 6.

2. Model system: nonlinear elastodynamics

We consider nonlinear elastodynamics as a model system to illustrate the proposed nonlinear model reduction
method. Given the undeformed elastic body ⌦0 ⇢ Rn, where n is the spatial dimension of the problem, subject to
body forces, with prescribed deformation on part of its boundary @⌦D

0 , and prescribed tractions in the rest of the
boundary of the body @⌦N

0 , the goal is to obtain the deformation mapping ' : ⌦0 �! Rn satisfying balance of
linear momentum and the boundary conditions:

⇢0 '̈ � Div P � ⇢0 b = 0 in ⌦0

' = ' on @⌦D

0

P N = t on @⌦N

0 ,

(1)

with initial conditions '|
t=0 = '̄0, and '̇|

t=0 = ˙̄'0 in ⌦0. Here Div denotes the divergence in material coordinates,
P is the first Piola-Kirchho↵ stress tensor, b the body force per unit mass, N the unit outward normal to the
boundary of the undeformed body, t is the prescribed traction per unit undeformed area, ⇢0 is the mass density in
the reference configuration, and ' is the prescribed deformation mapping in part of the boundary. These equations
need to be supplemented by the constitutive relation, which in hyper-elastic materials takes the form

P(X) =
@W

@F

�
D'(X)

�
, 8X 2 ⌦0. (2)

Here W(F) is the free energy density of the material, whose argument is the deformation gradient, i.e. the derivative
of the deformation mapping F = D'. For definiteness, we consider here a compressible neo-Hookean material
with strain-energy density

W(F) =
1
2
� ln2(J) +

1
2
µ
⇣
tr(FT

F) � n

⌘
� µ ln(J), (3)

where J = det(F), and � and µ are the Lamé coe�cients.
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The standard finite element discretization of this problem relies on the weak form of these equations and the
finite element interpolation of the deformation mapping and the test functions. Alternatively, the discrete equations
of motions can be derived following a Lagrangian formalism, by discretizing directly the kinetic and the potential
energies. The total potential energy of the system is

V['] =
Z

⌦0

W(D') dV �
Z

⌦0

⇢0 b · ' dV �
Z

@⌦N

0

t · ' dS , (4)

whereas the kinetic energy is

T ['̇] =
1
2

Z

⌦0

⇢0 '̇ · '̇ dV. (5)

In the finite element approximation, the deformation mapping is discretized as

'
h

(X, t) =
X

i

'
i

(t) N

i

(X), (6)

where '
i

denote the nodal positions and N

i

(X) are the basis functions defined in the undeformed body. Conse-
quently, the Lagrangian velocity field is

'̇
h

(X, t) =
X

i

'̇
i

(t) N

i

(X). (7)

We denote by x = ('1,'2, . . . ) 2 RD the array containing all the nodal positions. Plugging Eqs. (6,7) into the
potential and kinetic energy functionals, we obtain the discrete potential and kinetic energy functions V

h

(x) =
V['

h

] and T

h

(ẋ) = T ['̇
h

], which also involve numerical quadrature. The out-of-balance forces at node b can be
computed with the usual expression

@V
h

@'
b

=

Z

⌦0

P r0N

b

dV �
Z

⌦0

N

b

⇢0 b dV �
Z

@⌦N

0

N

b

t dS , (8)

where r0 is the gradient with respect to the reference coordinates. The kinetic energy adopts the simple expression

T

h

(ẋ) =
1
2

ẋ

T

Mẋ, (9)

where the mass matrix components are

M

aib j

= �
i j

Z

⌦0

⇢0N

a

N

b

dV. (10)

3. Point-set manifold analysis

We concisely describe here the main steps required to describe the data-driven slow manifoldM, namely (1)
the computation of a low-dimensional embedding of a training set of snapshots, and (2) the definition of a smooth
parametrization of the slow manifold embedded in high dimensions. Before performing NLDR, the training set
needs some preprocessing, described in Section 3.1, and the intrinsic dimension of the data d can be estimated by
various techniques for a better-targeted reduction, Section 3.2. Dimensionality reduction is described in Section
3.3, and the parametrization of the slow manifold in Section 3.4.

3.1. Preparing the training ensemble

We assume now that, on the basis of an o✏ine set of calculations, we have a configuration ensemble made
out of simulation snapshots. In practice, a decimation step is necessary to define a workable training set, which
we denote by X = {x1, x2, . . . , xN

} ⇢ RD. We define the ensemble such that any two snapshots are at least a
cut-o↵ distance away from each other, following a standard procedure in neural network analysis known as vector
quantization [5], although many other more sophisticated techniques are available.

Unlike PCA, which requires the snapshots to be full vectors in RD to avoid a lossy compression of the data,
see Eq. (11) below, the method presented here allows us to prune the snapshots into coarser representations which
retain the main features before applying NLDR, see Fig. 1. With the parametrization of the slow manifold de-
scribed in Section 3.4, such pruning step does not require specialized techniques for gappy data typical of linear
methods [15] to reconstruct full configurations. For instance, it is easy to simplify a large finite element mesh to
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a set of landmark points sampling the boundary, edges, or the skeleton (see [16] for a systematic method), and
thus decrease D significantly. This allows us to circumvent the manipulation and storage of large amounts of data.
For instance, with a 3D mesh with 10000 nodes and 105 snapshots, the unpruned training set requires about 22
GB of memory. We view pruning as problem-dependent, and strongly relying on experience and intuition. For
the problem at hand, we have found that the embeddings resulting from full conformations are very close to those
resulting from pruned conformations given by the boundary nodes.

Pruning Decimation

N��DN�D

D��D �N��DN� �N

Figure 1: Sketch illustrating the pruning and decimation procedures to reduce the memory requirements and computing time of NLDR. The
box in the left represents the original training set containing N full configurations of dimension D. Prior to applying NLDR to the high-
dimensional data, the dimensionality can be reduced by adopting a simplified representation of the configurations, e.g. keeping the nodes at
the boundary of the body resulting in a dimension e

D ⌧ D. We refer to this as the pruning step. Furthermore, a large training set can be
significantly reduced without loosing significant information by decimation, which retains fewer configurations representative of neighboring
states.

3.2. Intrinsic dimension

In PCA, the decay of the spectrum of the covariance matrix provides valuable information about the dimension
of the a�ne hull of the data. Nonlinear dimensionality reduction methods require guessing the intrinsic dimension
d of the underlying nonlinear manifoldM, a much more di�cult task. The notion of intrinsic dimension is not
clear-cut, and for data infected by noise, a generic situation, it depends on the scale of observation. It can be
loosely defined as the minimum number of variables needed to describe the system behavior within a confidence
level. The dimension can be estimated a priori, or the appropriateness of a guess can be assessed a posteriori.

A number of methods have been proposed to estimate d. We consider here the correlation dimension of the
full data set X, which estimates the dimension by tracking the growth of the number of samples within a ball of
increasing radius, and local PCA, in which the a�ne dimension is estimated for patches of X of a certain size
located at di↵erent positions, as locally a manifold should look linear. The interested reader is referred to [5], and
references therein. We discuss in Section 3.5 the a posteriori evaluation of the dimension.

3.3. Dimensionality reduction

We describe now how to embed the training set X ⇢ RD in dimension d, i.e. find a reduced representation of
the snapshots Q = {q1, q2, . . . , qN

} ⇢ Rd by dimensionality reduction methods. Dimensionality reduction tries to
reduce the redundancy of high-dimensional data sets by identifying correlations hidden in the data. This is done
by finding a lower d�dimensional representation, d ⌧ D, which captures the most relevant features of the data.
In other words, these methods identify the hidden variables, which best explain the behavior of a given system.
The most widely used methods seek for linear correlations between the high-dimensional coordinates, resulting
in a�ne slow manifolds. However, over the last decade, there has been an intense research activity in nonlinear
dimensionality reduction [17, 18], originating from the observation that many high-dimensional systems display
strongly nonlinear correlations, which when properly identified, lead to extremely low-dimensional representa-
tions. This research has had a profound impact in many scientific disciplines. The interested reader is refereed to
[5] and references therein.
Linear Model Reduction. PCA is a classical linear dimensionality reduction method [19], widely used in model
order reduction, e.g. by [1] in the context of nonlinear solid dynamics. First, the spectral decomposition of the
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covariance matrix, a D ⇥ D matrix, is computed, or more conveniently the singular value decomposition of the
centered snapshot matrix. Then, a matrix with the eigenvectors associated to the d largest eigenvalues, P 2 RD⇥d,
is defined. The low-dimensional embedding is computed through the projection q

a

= PT (x

a

� x̄), where x̄ =P
N

a=1 x

a

/N. Note that this projection can be applied to out-of-sample high dimensional points, i.e. points not
belonging to the training set X. Conversely, PCA provides a direct parametrization of the slow manifold (an a�ne
subset of RD) as

X(q) = Pq + x̄, 8q 2 Rd. (11)

Figure 2 illustrates how PCA approximates the data with the d�dimensional a�ne manifold that best describes
the variance. However, if the data lies on a curved manifold, PCA provides in general a poor description unless
a dimension larger than the intrinsic dimension is considered. However, if dimension is increased, the reduced
description becomes ine�cient and does not reveal the nature of the system.

Multi-dimensional scaling (MDS) provides a complementary point of view to PCA. The low-dimensional
embedding is found by minimizing the discrepancy between the distance matrix of the points in low dimensions
and the distance matrix in high-dimensional space. If the distance metric is Euclidean, this method coincides
with PCA. However, it involves the spectral decomposition of a N ⇥ N full matrix, which can be beneficial or not
depending on the application.

nonlinear slow manifold

high dimensional 
configurations

RD linear slow manifold M

M

Wednesday, 4 July 12

Figure 2: Sketch of the the slow manifold obtained with linear and nonlinear dimensionality reduction methods from a data set with low-
dimensional nonlinear correlations (dark blue points). A linear method (red line) only captures the variability if the number of dimensions is
larger than the intrinsic dimension, here d = 1, whereas the nonlinear method, at the expense of extra complexity, can describe the system
optimally in terms of dimensionality. Note that NLDR algorithms do not provide a description of the nonlinear slow manifold (purple line),
but only a low-dimensional embedding, see Fig. 4.

Nonlinear Model Reduction. Nonlinear dimensionality reduction or manifold learning methods try to identify
automatically nonlinear, low-dimensional correlations in the high-dimensional data. In this category there exists a
myriad of techniques that can be split in two major groups, as direct and iterative methods. Another way to classify
such methods is between metric and non-metric methods. Since nonlinear dimensionality reduction methods are
often used to classify or visualize high-dimensional data, preserving relative distances of the high-dimensional
points in the low-dimensional embedding is not essential. In fact, important methods in the field such as Locally
Linear Embedding [18] ignore metric information. However, in the present context we prefer to focus on methods
that try to preserve metric information. With such methods, the low-dimensional embedding of the data points
inherits to some degree the isotropy and uniformity of the original high-dimensional sampling. They also lead to
more regular parametrizations of the slow manifold, as defined in the next subsection.

One of the most popular direct methods, Isomap [17], tries to isometrically embed the high-dimensional data
inRd through MDS. The key point is that the distance matrix of the points in X is an approximation to the geodesic
distance, not the Euclidean distance. Therefore, the embedding tries to respect distances on the low-dimensional
manifold, not Euclidean distances in high-dimensions. The approximation to the geodesic distance between two
snapshots is the shortest path in a graph built from the nearest-neighbor connections between snapshots based
on their high-dimensional Euclidean distance, since locally a manifold behaves as Euclidean space. Isomap has
been shown to be robust for data polluted with noise, or for non-uniformly distributed data points. However,
even for surfaces in three dimensions, we know as a corollary of Gauss’s Theorema Egregium [20] that it is not
possible to isometrically embed in R2 a surface with non-zero Gaussian curvature. This fact leads to a frustration
in the algorithm when handling highly curved manifolds, which can lead to instabilities and generate collapsed
low-dimensional embeddings. As we shown in Section 5, this spurious behavior manifests itself in practical appli-
cations, and demands more robust methods. It can be dealt with by partitioning the training set into geometrically
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Geodesic distance
to the pole

A B

C D

Figure 3: Dimensionality reduction example from D = 3 to d = 2. (A) Scattered set of points uniformly sampling a hemisphere. Two-
dimensional embeddings obtained by (B) PCA, (C) Isomap and (D) NLIE. The metric distortions introduced by PCA and Isomap are apparent.
The colormap indicates the geodesic distance from the pole in the top of the hemisphere to a given point on the surface.

simpler pieces. Partitioning is also necessary when dealing with manifolds of complex topology. We have dis-
cussed these issues in [10], where each partition of the data corresponds to a chart of an atlas of the complete
manifold, and the di↵erent charts are stitched with a partition of unity.

To deal with the geometric frustration of Isomap in the presence of intrinsic curvature but for manifolds
homeomorphic to open sets in Rd, instead of partitioning, we iteratively refine the output of Isomap with an in-
house algorithm, Nonlinear Locally Isometric Embedding (NLIE), closely related to others in the field. In NLIE,
the low-dimensional embedding is obtained by minimizing of a cost stress energy function, which measures the
di↵erence between the distances computed in the low-dimensional embedding and in the ambient space. The
metric used to measure distances in the high-dimensional space is an approximation to the geodesic distance (the
shortest path distance on a graph built with k�nearest neighbors), as in Isomap. The main di↵erence lies in the
definition of the stress energy, which is computed taking into account only a moderate number of neighbors to
retain accuracy and sparsity (see Appendix C).

To illustrate the features of PCA, Isomap, and NLIE, we consider the simple example of finding a low-
dimensional (d = 2) embedding for an unstructured set of points sampling a hemisphere (D = 3), see Figure
3. This example shows how PCA collapses the edges of the hemisphere and strongly distorts the metric of the
manifold. Isomap does not perform well for surfaces with intrinsic (Gaussian) curvature as discussed above, and
provides a distorted embedding. Refining this result with the NLIE algorithm, we find a high-quality embedding
with minimal metric distortions.

3.4. Parametrization of the slow nonlinear manifold

In reduced order modeling, we expect the system to abide by the reduced manifold, although the trajectories
of the full system do not need to lie on it. This simplifying assumption introduces some error, compensated by
a much faster simulation time. Figure 4 illustrates this idea, and the general pipeline of the current method. It is
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slow manifold

nonlinear dimensionality
reduction

d � D

smooth mapping

configurations from
a real trajectory

x

q(x)

X(q)

RD

Rd

Sunday, 10 June 12

Figure 4: Sketch of the method to smoothly parametrize point-set manifolds. The set of high-dimensional snapshots X (dark blue points) are
embedded in low dimensions (light-blue points) by NLDR methods, possibly applied to the pruned snapshots for computational convenience.
With the low-dimensional embedding at hand, the slow manifold hidden in the training set X is represented with a smooth, data-driven
parametrization X : A ⇢ Rd �! RD. It is also possible to find the low-dimensional representation q(x) 2 Rd of a new out-of-sample
configuration x 2 RD, where q(x) is the pre-image by X of the closest-point projection of x onM, found solving a nonlinear least-squares
problem [10].

clear that the low-dimensional space where the training set is embedded serves as a convenient parametric space.
The embedded points in Q are in general unstructured, and, although we show here examples in d = 2, the method-
ology is applicable to higher-dimensional embedded manifolds. Thus, a general method to compute on point-set
manifolds demands a smooth approximation scheme for general unstructured nodes in multiple dimensions. The
need for smoothness in the present application is shown in the Section below, e.g. Eq. (27). Here, we consider the
local max-ent approximants [12], a general meshfree method satisfying these requirements.

Let p

a

(q) denote the LME basis functions associated to the node set Q, defined in a subset of the convex hull
of Q, A ⇢ Rd. We parametrize the manifold as

X : A �! RD

q 7�!
X

a

p

a

(q) x

a

, (12)

where x

a

2 RD are the full-sized snapshots, irrespective of the fact that Q may have been found on the basis of the
pruned snapshots.

3.5. Reconstruction error

With a parametrization of the slow manifold at hand, it is possible to evaluate its quality by comparing high
dimensional data with their reconstruction through the parametrization. Ideally, this is done with a test set Z =
{z1, . . . , zM

} ⇢ RD, di↵erent and possibly larger than the training set, samplingM. We can then define the relative
reconstruction error

e =
1
M

MX

a=1

kz
a

� X(q(z
a

))k
kz

a

k , (13)

where k ·k indicates the standard L2�norm computed as the Euclidian distance between two points inRD, whereas
q(x) maps high-dimensional points to low-dimensional representations, see Fig. 4 and [10]. For PCA, we have

e =
1
M

MX

a=1

���
z

a

� PPT (z
a

� x̄) � x̄

���
kz

a

k . (14)

4. Lagrangian mechanics in generalized coordinates

4.1. Constrained dynamics

Let x 2 RD denote the position in Cartesian coordinates of a mechanical system described by its Lagrangian
as follows

L(x, ẋ) = T (ẋ) � V(x) =
1
2

ẋ

T

Mẋ � V(x), (15)
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where T is the kinetic energy, V the potential energy and M is the constant mass matrix. The corresponding
Euler-Lagrange equations can be written as

Mẍ = �@V
@x

(x). (16)

We are interested in the constrained dynamics on a configuration manifoldM ⇢ RD of dimension d ⌧ D. Let
q 2 A ⇢ Rd be the generalized coordinates given by NLDR as described above. We parametrizeM in terms of
these generalized coordinates as x = X(q). By the chain rule, ẋ = DX(q) q̇, and therefore we can formulate the
constrained dynamics as

L(q, q̇) =
1
2

q̇

T e
M(q) q̇ � e

V(q), (17)

where
e
M(q) = DX(q)T

M DX(q) and e
V = V � X. (18)

Since the mass matrix is in general configuration-dependent, this is an instance of non-separable Lagrangian.
By Hamilton’s principle, the Euler-Lagrange equations of the reduced system, expressing the balance of linear
momentum in curvilinear coordinates, are

d

dt

@L

@q̇
� @L
@q
= 0. (19)

In the special case of PCA (or other linear methods), the manifold parametrization is a�ne, DX = P, and conse-
quently the reduced mass matrix is not position dependent, e

M = PT

MP.

4.2. Discrete Lagrangian mechanics

We resort to variational principles to integrate in time the Euler–Lagrange equations; full details can be
found in [21, 22] and references therein. See also [23] for variational integrators for systems with configuration-
dependent mass matrix. Starting with the action functional

S [q] =
Z

t1

t0

L(q, q̇) dt, (20)

for the system’s trajectory q(t) in A satisfying the initial conditions, variational integrators are based on Hamil-
ton’s principle, which states that the trajectories are stationary points of the action, �S [q, �q] = 0 for all admissible
�q.

In time-discrete Lagrangian mechanics (one step methods), the action integral S is replaced by an action sum

S

d

=

n�1X

j=0

L

d

(q
j

, q
j+1), (21)

where L

d

: M ⇥M ! R is the discrete Lagrangian, a function of two points q0 = q(t0), q1 = q(t1) 2 A
approximating the action in an interval as

L

d

(q0, q1) ⇡
Z

t1

t0

L(q, q̇) dt. (22)

The discrete Euler-Lagrange equations –the time-integration algorithm–, follow from making the action sum sta-
tionary, e.g. @S

d

/@q
k

= 0, and are given by

D1L

d

(q
k

, q
k+1) + D2L

d

(q
k�1, qk

) = 0. (23)

The accuracy of the variational integrator is given by the order of the quadrature in Eq. (22). Specific numer-
ical integration schemes can be obtained from this formalism. For concreteness, we derive here the discrete
Euler-Lagrange equations for the generalized midpoint rule with configuration-dependent mass. Additionally, in
Appendix A, the resulting expressions for the trapezoidal rule for a configuration-dependent mass are given. For
the generalized midpoint rule, the discrete Lagrangian approximating the action integral between q0 and q1 is
given by

L

d

(q0, q1) = �t L

✓
(1 � ↵)q0 + ↵q1,

q1 � q0

�t

◆

= �t

(
1
2

✓
q1 � q0

�t

◆
T

e
M

⇣
(1 � ↵)q0 + ↵q1

⌘ ✓
q1 � q0

�t

◆
� e

V

⇣
(1 � ↵)q0 + ↵q1

⌘)
,

(24)
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where ↵ 2 [0, 1]. From Eqs. (23,24), we obtain the following equation for q

k+1

0 =
@S

d

@q
k

= �t

(
(1 � ↵)D1L

✓
(1 � ↵)q

k

+ ↵q

k+1,
q

k+1 � q

k

�t

◆
� 1
�t

D2L

✓
(1 � ↵)q

k

+ ↵q

k+1,
q

k+1 � q

k

�t

◆)

+�t

(
↵D1L

✓
(1 � ↵)q

k�1 + ↵q

k

,
q

k

� q

k�1

�t

◆
+

1
�t

D2L

✓
(1 � ↵)q

k�1 + ↵q

k

,
q

k

� q

k�1

�t

◆)

= �t (1 � ↵)
(

1
2

✓
q

k+1 � q

k

�t

◆
T

D

e
M

⇣
(1 � ↵)q

k

+ ↵q

k+1
⌘ ✓

q

k+1 � q

k

�t

◆
� D

e
V

⇣
(1 � ↵)q

k

+ ↵q

k+1
⌘)

(25)

+�t ↵

(
1
2

✓
q

k

� q

k�1
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These calculations require the directional derivative of the reduced mass matrix, and derivative of the reduced
potential energy, computed as follows from the product and the chain rule

D

e
M(q) q̇ = YT (q, q̇) M DX(q) + DX(q)T

M Y(q, q̇), (26)

with
Y(q, q̇) = D

2X(q) q̇, (27)

and
D

e
V(q) = DV(X(q)) DX(q). (28)

It is also possible to obtain an expression for the generalized velocities associated to the Cartesian velocities at a
point inM and tangent to it

q̇ =
h
DX(q)T

DX(q)
i�1

DX(q)T

ẋ. (29)

It is clear from Eq. (27) that this formulation requires a smooth representation of the slow manifold.

4.3. Implementation and e�ciency

From a practical viewpoint, the choice ↵ = 0 is most convenient in the time-stepping algorithm since then
Eq. (25) is merely quadratic in q

k+1. Otherwise, the resulting algorithm is implicit in q

k+1 in a very nonlinear
way, requiring third order derivatives of X(q) for an iterative solution with Newton’s method. The implementation
details for ↵ = 0 in combination with Newton’s method are given in Appendix B.

It should be emphasized that the formulation presented above for the reduced dynamics involves evaluating the
full model, which is computationally expensive for nonlinear systems such as that considered here. For instance,
Eq. (28) involves computing the forces of the high-dimensional system. There has been an intense research activity
on e↵ective reduction methods for nonlinear systems in recent years, which avoid altogether calculations involving
the full model. These methods include piecewise linear approximations, or gappy reconstructions of the nonlinear
terms, e.g. here DV(x), through interpolation [24] or least squares [15]. Such methods can be integrated with
the proposed nonlinear representation of the low-dimensional configuration manifold, but are not implemented
here. In fact, given the extreme low dimensionality of the reduced models (d  3 in the examples presented
here), the full reduction of the system, without any reference to D, is very easily accomplished by interpolation of
the reduced mass e

M(q) and potential eV(q) on the parametric representation of the slow manifold, as discussed later.

5. Proof-of-concept example: a neo-Hookean oscillator

We show here the capabilities of the present method in a proof-of-concept problem, the dynamics of a hy-
perelastic neo-Hookean body undergoing large deformations. We compare the proposed nonlinearly reduced
dynamics against the standard reduced dynamics from a linear method (PCA). The geometry of the object and
mesh are shown in Fig. 5.

5.1. Training set

We simulated 35 trajectories for di↵erent initial conditions (position and velocity), with an explicit mid-point
rule integration scheme. For each trajectory, a total number of 4 · 106 time steps were computed and sampled with
a frequency of 1/1000, resulting in 4000 snapshots per trajectory. In an o✏ine process, the first 500 snapshots
were deleted to avoid poorly sampled regions arising from unlikely starting points. Further, due to the symmetry
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0.24%

0.08%

1.50%

Figure 5: Sketch for the neo-Hookean hyperelastic solid in 2D (left) and the mesh used to compute the elastodynamics (right). The object is
clamped at the bottom, and subject to gravity. The material parameters are � = 1000 and µ = 500, and the model is discretized by 9428 linear
triangular elements and 4934 nodes.

of the problem, each retained snapshot was duplicated and mirrored. As the mesh is not structured, mirroring the
snapshots requires interpolation.

As a result, a total of 245,000 full configurations in D = 9, 868 (4,934 nodes in R2) were obtained. These
snapshots were then pruned by keeping only the nodes at the boundary, resulting in simplified snapshots in di-
mension e

D = 868, approximately one tenth of D. In pruning the snapshots, one needs to balance compression and
fidelity. For instance, we found that keeping only 100 points along the skeleton resulted in a poorer description of
the dynamics. Finally, we decimated the pruned training set, down to e

N = 50, 000 configurations in e
D = 868. For

a schematic explanation we refer to Fig. 1. From now on we will refer to the size and dimension of the resulting
training set as N and D.

5.2. Intrinsic dimension

As discussed in Section 3.5, we can a priori estimate the intrinsic dimension underlying the data set. Figure
6 illustrates how the correlation dimension (A) and the cumulative variance error of local PCA (B) provide hints,
but not conclusive information for realistic training sets. These methods are blind to the origin of the data. The
intrinsic dimension appears to be between 2 and 4, depending on the scale of observation. We evaluate the
dimension a posteriori (after dimensionality reduction on the parametrization of the slow manifold) by tracking the
reconstruction error as a function of the dimension of the embedding, see Fig. 6C. With PCA, it is straightforward
to increase the dimension, while for the nonlinear methods, whose objective is to keep d as small as possible,
we have only constructed one-, two- and three-dimensional slow manifolds. As expected for data with nonlinear
correlations, it can be observed that the reconstruction error stemming from NLDR are significantly smaller than
that given by PCA for a given dimension. The dimensionality estimations are consistent with the a priori methods.
From our experience, the most practical method of dimensionality estimation is tracking the cumulative variance
error of local PCA. It is fast, easily made parallel, can be performed on pruned data, and does not need an
embedding in low-dimension of the training set.

5.3. Dimensionality reduction

Figure 7 shows the two- and three-dimensional embeddings of the training set by PCA, Isomap and NLIE. It
is obvious from the three-dimensional embeddings that the data has highly nonlinear correlations, i.e. the slow
manifold is highly curved. As a result, it is not surprising that Isomap collapses some parts of the training set. In
contrast, NLIE gently unrolls the curved manifold by introducing local distortions that minimize the global stress
energy. A close visual inspection of the three-dimensional embedding provided by PCA or NLIE suggests that the
data lies on a “thick” elongated hyper-surface.

The one-dimensional embedding of PCA can be found by projecting along q1 the two-dimensional embedding.
It is clear from the figure that this method will collapse far-away conformations, destroying the geometric struc-
ture of the slow manifold. In contrast, the one-dimensional NLIE embedding provides a coarse, yet meaningful
representation of the model.
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Figure 6: (A) The correlation dimension method considers a closed ball of radius " at the center of each data point, and counts the number of
points inside of this ball. The dimension is estimated by noting that the average number of counts C(") should grow linearly with " for 1D
objects, quadratically for 2D entities, and so on, i.e. C(") / "d . The correlation dimension is then defined as d

corr

(") = d log C(")/d log ".
It is a scale-dependent quantity that should be interpreted carefully: at very large ", d

corr

⇡ 0 as the data set looks like a single point, while
for small ", the dimension is overestimated by the presence of noise. (B) Mean of the normalized cumulative variance error from local PCA
(± 25th and 75th percentiles), 1 �

⇣P
d

i=1 �i

/
P

D

i=1 �i

⌘
, computed in small local subsets of the data where N

w

is the window size. �
i

denote the
eigenvalues of the local covariance matrix arranged in decreasing order. The intrinsic dimension d for each of these patches is selected such
that it preserves a given fraction of the variance of the original data. In contrast with the global correlation dimension, this method provides a
local estimation of the intrinsic dimension. (C) Mean of the reconstruction error as defined in Eqs. (13,14) (± 25th and 75th percentiles). The
reconstruction error is a measure of the dissimilarity between the original high-dimensional data points and their reconstruction through the
slow manifold parametrization, here M = 50, 000.

We finally note that, in principle, it is possible to define a nonlinear parametrization of the slow manifold such
as that in Eq. (12) on the basis of PCA embeddings. However, from our experience in this and other applications,
these low-dimensional embeddings introduce larger distortions (see Fig. 3B) and are not robust for significantly
curved training sets.

5.4. Parametrization of the slow manifold

We follow Eq. (12) to parametrize smoothly the slow manifold from the embedding in low-dimension, X(q),
with LME basis functions. Details about the calculation of these meshfree approximants and their spatial deriva-
tives can be found in [12, 25]. The noise filtering can be controlled with the width of the LME basis functions.
Figure 8 shows in more detail the two-dimensional embedding found with NLIE, where the red points represent
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Figure 7: Two-(left) and three-dimensional (right) embeddings obtained with PCA (top), Isomap (center) and NLIE (bottom). The colormap,
indicating the Euclidean distance to the first configuration of the training set, is only provided as visual guide.

Figure 8: Two-dimensional embedding Q obtained from the original training set X with NLIE (red points), and subsampled node set Q̂ (blue
points), over the entire low-dimensional embedding (left). For some selected q̂

b

, we depict the corresponding configuration x̂

q

obtained
from the least squares fit, and the closest conformation from the original training set. A magnification of the upper-right corner of the two-
dimensional embedding (right).

the set Q. An obvious drawback of defining X(q) =
P

N

a=1 p

a

(q)x

a

is that N can be very large, here 50,000, and
therefore the evaluation of this mapping, required at each time-step, can be quite expensive. In fact, this mapping
parametrizes a relatively simple slow manifold, and the large number of samples is only required to provide a
statistically representative low-dimensional embedding. For computational convenience, we subsample the de-
scription of the slow manifold as follows. We divide the low-dimensional embedding space in equally spaced bins
of size h

bin

= L/n
bin

, where L is the length of the low-dimensional embedding along q1 and n

bin

the number of
bins in this direction. h

bin

should be commensurate to the geometrical features of the slow manifold. This defines
a regular grid, from which we retain the points lying in well-sampled regions of the low-dimensional embedding,
the blue points in Fig. 8, that we denote by Q̂ = {q̂1, q̂2, . . . , q̂

N̂

} with N̂ ⌧ N. We then define the LME basis
functions associated to Q̂, p̂

b

(q) (here with a locality parameter � = 0.4/h2
bin

[12]), and fit the slow manifold with
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a least-squares criterion (see also [10])

min
{x̂1,...x̂

N̂

}

NX

a=1

��������
x

a

�
N̂X

b=1

p̂

b

(q
a

)x̂

b

��������

2

. (30)

In the example shown in Fig. 8, we selected n

bin

= 150, leading to a subsampling of the slow manifold from
N = 50, 000 to N̂ = 2, 115 control points. The optimal value of n

bin

is problem-dependent, and is influenced by
the sampling of the configurational space and the features of manifold.

Figure 9: (A) Reduced potential energy e
V(q). (B) Total reduced mass

P
i, j

e
M

i j

(q). (C) Reduced trajectory in the two-dimensional embedding
from NLIE, over seven large amplitude oscillations of the system. The initial, final, and selected snapshot positions are highlighted.

We can time-integrate the reduced dynamics with the methods outlined in Section 4.2 and redefine the smooth
mapping as X(q) =

P
N̂

b=1 p̂

b

(q)x̂

b

, leading to a numerical trajectory in the low-dimensional space q(t). The non-
linearly reduced dynamics are fully determined by the e↵ective potential energy e

V(q) and the reduced mass e
M(q).

Figure 9A shows the e↵ective potential, whereas Fig. 9B shows the total reduced mass in the two-dimensional
embedding. It can be observed that the reduced mass, which is in fact the square mass-weighted L2 norm of the
derivative of the slow manifold parametrization, see Eq. (18), is nearly constant except at the boundaries of the
region of interest. At the boundary, it is not surprising that the quality of the mapping X(q) is degraded. Yet, these
regions are visited seldom due to their high potential energy.

Figure 9C shows an example of reduced dynamics q(t). Visually, these dynamics retain the qualitative features
of the full, high-dimensional dynamics, with high amplitude oscillations. In the examples below, we consider both
PCA- and NLIE-reduced dynamics. We always use a midpoint rule with ↵ = 0, with a time step �t = 10�4 in the
reduced simulations (5 times larger than that of the full dynamics). For PCA, details about the time-integration
are given in Appendix A, whereas for NLIE, due to the mass position-dependency, the algorithm is nonlinear and
quasi-explicit (only the gradient of V(x) is required). We use Newton’s method, see Appendix B.
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For a more quantitative assessment of the quality of the reduced dynamics, we compare them to the full
dynamics, x(t), with the following metric

Z
t1

t0

D

�
x(t),X(q(t))

�
dt =

Z
t1

t0

 Z

⌦0

���'
h

(x(t)) � '
h

(X(q(t)))
���2

dV

!1/2

dt, (31)

where here '
h

(x) denotes the finite element deformation mapping defined from the nodal positions x. In prac-
tice, we sample the time-integral at the time-steps t

j

= j�t, and compute a non-dimensional distance between
trajectoriesD as

D =
P

n

j=0
p

(x

j

� X(q
j

))T

M (x

j

� X(q
j

))
P

n

j=0

q
x

T

j

M x

j

, (32)

where M is the mass matrix of the elastic body computed at the reference configuration.
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Figure 10: Snapshots during the time evolution of a high-dimensional trajectory x(t), and the reduced trajectories X(q(t)) obtained from PCA
and NLIE (left). The quality of the reduced dynamics is measured by the relative cumulative distance between x(t) and X(q(t)) (right).

Figure 10 compares, both visually with conformations at selected instants, and quantitatively with D, the full
dynamics with the reduced dynamics obtained either by PCA with various dimensions, or by NLIE with dimen-
sions one, two, and three. The results indicate that more than 10 PCA modes are needed to capture the dynamics
of the system. With only one nonlinear generalized coordinate, we obtain a poor description of the system, com-
parable to those observed with between 7 and 10 PCA modes. This is not surprising, since the large amplitude
oscillations lead to a highly nonlinear configuration manifold, and therefore PCA needs to properly describe its
a�ne hull for reasonable results. As the numbed of PCA modes increases, we obtain accurate dynamics. Strik-
ingly, with only two or three nonlinear dimensions, we obtain results that lie between those given by 10 and 20
PCA modes. The results suggest that in this example, the a�ne hull of the slow manifold has tens of dimensions,
highlighting the benefit of nonlinear reduced descriptions.

It is interesting that, while correct PCA-reduced dynamics require more than 10 modes, Fig. 6C suggests that,
on the basis of the reconstruction error, the slow manifold can be accurately captured by less than 10 modes. This
discrepancy highlights the limitations of statistical/geometric quantifications of the dimensionality, which ignore
the physics altogether. The section below provides more insight on a related topic.

5.5. Energy leak of the slow modes

Figure 11 shows the reduced trajectory in the three-dimensional embedding from NLIE, whereas Fig. 12
shows the energy evolution of the full (left) and the reduced (right) dynamics for d=3 (n

bin

= 60) over eighteen
oscillations. It can be observed that, when the system visits its symmetric configuration, the potential energy lies
close to its minimum while the kinetic energy is highest. Around this point, high frequency oscillations in the
energy can be observed, suggesting a transfer to high frequency modes, which is consistent with the visualization
of the dynamics. The reduced dynamics exhibit similar features, but with only two transversal dimensions to
the main nonlinear coordinate, the features are significantly blunter. This observation raises the question of the
long-time energy behavior of the reduced dynamics.

To investigate numerically this issue, we consider a very long trajectory of the full system, project the dynamics
onto the PCA modes, and then compute the energy of the projected trajectory. Note that we do not perform here
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Figure 11: Reduced trajectory in the three-dimensional embedding obtained with NLIE, over eighteen large amplitude oscillations of the
system. The initial and final embedded positions are highlighted.
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Figure 12: Energy evolution for the full system trajectory (left), and for the reduced trajectory with a three-dimensional nonlinear embedding
(right).

any PCA-reduced trajectory, but rather analyze a full trajectory from the viewpoint of the PCA-reduced model.
We also recall that the system is conservative, and therefore the total energy should remain constant.

Figure 13 shows the time-evolution of E(t) and e
E(t) for d = 20, 50, 100, 200, 500, 1000, 2000 PCA modes over

a very long simulation. Interestingly, there is a significant and monotonic flow of energy from the low modes into
the high-frequency modes. Increasing the reduced dimension, e↵ective at short times, only slightly reduces the
energy leak at long times. Once this energy is “thermalized” in the high-frequencies, it does seem to return to the
low-frequency modes. Thus, the system described by the reduced coordinates is no longer conservative. These
results suggest the need for modeling the net e↵ect of the disregarded degrees of freedom on the reduced dynamics,
as is done in the large eddy simulation of turbulence. The long experience in coarse-graining of molecular systems
and non-equilibrium statistical mechanics [26], or optimal prediction [27] could be useful in this regard.
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Figure 13: Total energy evolution of the full system and total energy projected onto the reduced models by PCA for di↵erent numbers of
eigenvectors, d = 20, 50, 100, 200, 500, 1000, 2000.

6. Concluding remarks

We have proposed a novel method for reduced order modeling and exercised it on large-deformation nonlinear
elastodynamics. In contrast with most approaches, the reduced model is not an a�ne one, as given e.g. by PCA
or POD. Instead, we use modern NLDR methods to embed an ensemble of snapshots in low-dimensions, and
then build from this low-dimensional embedding a smooth representation of the system in terms of nonlinear,
data-driven, generalized coordinates. The underlying hypothesis is that many systems evolve on a nonlinear,
low-dimensional slow manifold, and that by acknowledging the nonlinearity, it is possible to build more e�cient
and insightful reduced models. We discuss in detail the practical aspects of the methodology, which requires
extra data structures and procedures, but results in a much more compact description, which presumably leads
to more insight. For instance, the reduced dynamics of the finite element equations of elastodynamics have a
position-dependent mass, and we derive the corresponding variational time-integrators.

We have tested the method in a proof-of-concept example, a structure made out of a Neo-Hookean material
undergoing large amplitude oscillations. By comparing the nonlinearly reduced dynamics with those generated
by a linear methods, here PCA, our results suggest that nonlinearity reduces the number of dimensions required
for an accurate description: two or three nonlinear generalized coordinates are equivalent to between 10 and 20
PCA modes. Below 10 PCA modes, the linear reduced model cannot capture even qualitatively the dynamics.
Note that the PCA model is linear with regards to the structure of the reduced manifold, but fully nonlinear in that
the underlying model is nonlinear elasticity. Our analysis of the intrinsic dimension of the ensemble of snapshots
suggests that the dynamics lie on a slow manifold of dimension between 2 and 4. PCA only works if it adequately
describes the a�ne hull of the slow manifold, which is of significantly higher dimension. In contrast, two or
three nonlinear coordinates capture the essential features of the system. We have also shown that the nonlinearly
reduced description can be coarsened in many ways to speed-up the evaluation of the slow manifold. Having a fast
and optimally reduced description of the system is very attractive in some applications such as optimal control.

One of the limitations of the nonlinear reduction method is that increasing the dimension requires significantly
larger training sets, so that the low-dimensional embedding of the snapshots is not too sparse. Otherwise, the
parametrization of the slow manifold becomes problematic. In our proof-of-concept example, we attempted to
reach d = 4, but found that the mapping X(q) was of poor quality (very large derivatives) close to the boundary of
the region of interest, leading to instabilities in the time-integration. This issue can be resolved hierarchically. For
instance, the two-dimensional embedding can be used to generate new training trajectories from poorly-sampled
regions on the boundary, thereby improving the sampling of the slow manifold. According to our preliminary
calculations, a subsequent dimensionality reduction process leads to better low-dimensional embeddings, also in
higher dimensions. Our experience also suggests that, beyond mere geometric similarity, which cannot distin-
guish high-frequency but possibly highly energetic features, the dimensionality reduction could take into account
information about the mechanics of the snapshots, such as their potential energy as an extra coordinate in x

a

. We
feel this may result in low-dimensional embeddings better suited for mechanical simulations.
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Finally, we have shown that our Hamiltonian system of interest, when described in terms of a reduced model,
is no longer conservative. We find that the energy leak is significant for long times, and cannot be e↵ectively
controlled by increasing the PCA dimension to 1000’s. This suggests that reduced order simulation should be
accompanied by modeling the net e↵ect of the disregarded degrees of freedom on the reduced system.
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Appendix A. Variational integrator schemes

Appendix A.1. Midpoint rule with constant mass

We have seen that for PCA model reduction, the mass matrix is not position-dependent. The discrete La-
grangian for the generalized midpoint rule is then
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where ↵ 2 [0, 1]. By making the discrete action stationary, @S d
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which for ↵ = 0 gives the classical second-order Newmark explicit integration scheme

e
M

 
q

k+1 � 2q

k

+ q

k�1

�t

2

!
= �D

e
V(q

k

). (A.3)

For PCA, the resulting d ⇥ d linear system of equations is
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Appendix A.2. Midpoint rule with configuration-dependent mass and ↵ = 0
We consider a midpoint rule with ↵ = 0 to integrate the action between q0 and q1, which in the case of a mass

configuration-dependent system generates the following discrete Lagrangian
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The discrete Euler-Lagrange equations are then
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Appendix A.2.1. Generalized trapezoidal rule with configuration-dependent mass

The discrete Lagrangian for the generalized trapezoidal rule with configuration-dependent mass is
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The discrete Euler-Lagrange equations are then
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Appendix B. Newton’s method for the midpoint rule and ↵ = 0

We first define the residual of the discrete Euler–Lagrange equations as

r(q
k+1) =

@S
d

@q
k

, (B.1)

where @S/@q
k

is given by the Eq. (25). The first derivative of the residual is
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The derivative of the reduced mass matrix involves second order derivatives of the parametrization X(q), see
e.g. our work in thin shell analysis [10]. We numerically solve the discrete Euler-Lagrange equations in each time
step by iterating

q
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As an initial seed for Newton’s method, we take that D

e
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) = 0, and then q
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Appendix C. Nonlinear Locally Isometric Embedding

In this appendix, we describe an iterative procedure that finds a low-dimensional embedding as isometric as
possible to the high-dimensional input. This is performed by minimization of a cost or stress function E

S

, which
measures the di↵erence between the distances computed in low- and high-dimensions. This method is based on
the work by [28], but di↵ers in the way we measure distances in the ambient space, and in the stress energy. Here,
we consider geodesic instead of Euclidean distances. The geodesic distance on the manifold is approximated
as the shortest path distance in a graph made with k

G

�nearest neighbors (where subindex G refers to the graph
distance ⇡ geodesic distance), in the same way that in the Isomap method [17] but di↵ering in that Isomap needs
to compute a full distance matrix.
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We define the stress energy, to be minimized by the set of embedded configurations Q = {q1, . . . , qN

} 2 Rd, as

E

S

(Q) = ↵E1(Q) + (1 � ↵)E2(Q), (C.1)

where
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and

E2(Q) =
1
2

NX

i=1

X

j2N(i)

 |x
i j

|
|q

i j

| � 1
!2

, (C.3)

where ↵ 2 (0, 1], q

i j

= q

i

� q

j

, x

i j

= x

i

� x

j

, and N(i) contains the indices for the first k

G

�nearest neighbors of x

i

.
The second term, E2, prevents nearby points from colliding. From our experience, ↵ should be close to 1. If the
input data is very noisy in the normal direction to the manifold, a small ↵ could lead to a very slow convergence,
or even divergence. In such cases, we recommend 0.9999  ↵  1. In our experiments we commonly use
↵ = 0.99 � 0.999 for d > 1, and ↵ = 1 for d = 1.

In our definition of stress function, we take into account only a moderate number of neighboring points,
which give an accurate idea of the local geometry of the manifold. Commonly, in our experiments we use k

G

=
200� 1000. Note that in the Isomap method, k

G

= N. In the original work of Sammon [28], all the pairs distances
are needed, which implies storing and manipulating a full matrix, whereas here we handle a sparse matrix. Similar
methods have been proposed, for instance see the works [29, 30].

We numerically solve the nonlinear optimization problem of minimizing E

S

by first iterating with a limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [31] with a coarse tolerance, and then moving
to Newton’s method with a Brent’s line search with a tighter tolerance. The gradient of the stress energy is
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The dual index list eN(i) to N(i) is built in such a way that eN(i) returns the indices j containing i in theirs index
lists N( j). Finally, the Hessian of E

S

(q) is
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The first term contributes diagonal terms
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and o↵-diagonal terms when j is in N(i) or eN(i), given by
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From the second term of the stress energy, we have
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