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Abstract
An analytic formula is derived for the elastic bending modulus of monolayer graphene based
on an empirical potential for solid-state carbon atoms. Two physical origins are identified for
the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the
bond-angle effect and the other resulting from the bond-order term associated with the
dihedral angles. The analytical prediction compares closely with ab initio energy calculations.
Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular
mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending
modulus as the bending curvature increases. An intrinsic coupling between bending and
in-plane strain is noted for graphene monolayers rolled into carbon nanotubes.

(Some figures in this article are in colour only in the electronic version)

Theunique two-dimensional (2D) lattice structure andphysical
properties of graphene have attracted tremendous interest
recently. In particular, rippling of suspended graphene
monolayers has been observed, with mesoscopic amplitude
and wavelength [1]. Imaging of monolayer graphene sheets
on silicon dioxide has also shown structural corrugation [2, 3].
Theoretical studies [4–6] have suggested that bending stiffness
of the monolayer graphene is critical in attaining the structural
stability and morphology for both suspended and supported
graphene sheets, which in turn could have important impacts on
their electronic properties. Furthermore, single-walled carbon
nanotubes are essentially graphene monolayers subjected to
cylindrical bending along the particular chiral directions. It has
been reported that the bending curvature (inverse of the tube
radius) and bending orientation (tube chirality) have dramatic
effects on both the mechanical and electronic properties of
carbon nanotubes [7, 8]. An accurate account of the bending
modulus of graphene is thus important for understanding the
mechanics of carbon nanotubes.

While the in-planemechanical properties (elasticmodulus
and strength) of monolayer graphene have been deduced from

experiments [9, 10], direct measurement of bending stiffness
of monolayer graphene has not been reported in the literature.
The often cited experimental value of 1.2 eV (∼0.192 nN nm)
was derived from the phonon spectrum of graphite [11].
Theoretically, bending modulus of monolayer graphene has
been predicted based on empirical potentials [7, 12–14] and
ab initio calculations [15, 16]. The fact that the atomically
thin graphene monolayer has a finite bending modulus is in
contrast to classical theories for plates and shells [17]. For
example, the bending modulus of an elastic thin plate scales
with the cube of its thickness, namely,

D = dM

dκ
∼ Eh3, (1)

where M is the bending moment, κ the bending curvature,
h the plate thickness and E Young’s modulus. The linear
relationship between the bending modulus and Young’s
modulus in equation (1) is a result of the classical Kirchhoff
hypothesis [17], which assumes linear variation of the strain
and stress along the thickness of a thin elastic plate. For a
graphene monolayer, however, its physical thickness cannot
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Figure 1. (Colour online.) Illustration of bond angles and dihedral
angles in graphene lattice. Each dihedral angle is represented by
three bonds connecting four carbon atoms (e.g. i, j , k, l), and each
carbon–carbon bond is associated with four bond angles and four
dihedral angles.

be defined unambiguously in the continuum sense [14], and
the Kirchhoff hypothesis simply does not apply. Therefore,
different physical origins must be sought for the bending
moment and bending modulus in graphene monolayers.

Based on the first-generation Brenner potential [18], a
simple analytical form was derived for the bending modulus
of monolayer graphene under infinitesimal bending curvature
[13, 14], which established a clear connection between the
functional form of the empirical potential and the effective
bending modulus. The potential takes the form

Vij = VR(rij ) − b̄ijVA(rij ), (2)

where i and j are indices labelling the atoms, rij is the bond
length and b̄ij = (bij + bji)/2 is the bond-order function
describing the bonding environment. Near the ground state
of graphene, a cutoff function in the potential restricts the
repulsive and attractive interaction functions,VR(r) andVA(r),
to the nearest neighbours, while the bond-order function b̄ij

accounts for many-body interactions up to the second nearest
neighbours through its dependence on the bond angles, θijk

and θjik (k �= i, j), as illustrated in figure 1. As shown
in [13, 14], at the ground state of a planar graphene monolayer,
with rij = r0 and all the bond angles identically 2π/3, the
bending modulus derived from the empirical potential is

D =
√
3

2

(
∂Vij

∂ cos θijk

)
g

= 1

2
VA(r0)b

′(2π/3, 2π/3), (3)

where the subscript g denotes derivatives at the ground state
and b′ denotes the derivative of the function bij with respect
to either one of the two bond angles. Equation (3) reveals
that the physical origin of the bending modulus comes from
multibody interactions of the carbon atoms through the bond-
angle effect in the interatomic potential. In other words,
any empirical potential with only the nearest neighbour (two-
body) interactions would lead to zero bending modulus of the
monolayer.

Using the second set of the parameters for the Brenner
potential [18], the bending modulus predicted by equation (3)

isD = 0.133 nN nm, or equivalently, 0.83 eV. This prediction,
however, is considerably lower than that from ab initio energy
calculations with D = 3.9 eVÅ2/atom [16], or equivalently,
0.238 nN nm (1.5 eV). Applying the same equation for the
second-generation Brenner potential [19] leads to an even
lower bending modulus: D = 0.110 nN nm or 0.69 eV. The
discrepancy between the analytical prediction of equation (3)
and the ab initio calculations suggests that the bond-angle
effect in the empirical potentials does not fully account for
the bending stiffness of the monolayer graphene. In this paper
we resolve this discrepancy by showing that, in addition to the
bond-angle effect, the dihedral angle effect must be included
in the consideration of bending energetics of graphene. With
many-body interactions up to the third nearest neighbours,
the dihedral angle effect adds a significant contribution to the
bending stiffness of monolayer graphene and thus the bending
energy in carbon nanotubes.

While several empirical potentials (including Tersoff
[12] and first-generation Brenner potentials [18]) consider
multibody interactions up to the second nearest neighbours,
the second-generation Brenner potential for carbon includes
the third nearest neighbours via a bond-order term associated
with the dihedral angles [19]. Taking the same general form as
equation (2), the bond-order function for the second-generation
Brenner potential is

b̄ij = 1
2 (b

σ-π
ij + bσ-π

ji ) + bDHij +�RC
ij , (4)

where 12 (b
σ-π
ij +bσ-π

ji ) is a function of the bond angles similar to
that in the first-generation Brenner potential, bDHij is a function
of the dihedral angles and �RC

ij represents the influence of
radical energetics and π -bond conjugation on the bond energy.
For a perfect graphene lattice with no vacancy, �RC

ij = 0, and
the dihedral function takes the form

bDHij = T0

2

∑
k,l(�=i,j)

[(1− cos2 �ijkl)fc(rik)fc(rjl)], (5)

where T0 = −0.008 096 75 and fc(r) is the cutoff function that
restricts the dihedral function to the four nearest neighbours
(k and l) of the atoms i and j , as illustrated in figure 1. The
dihedral angle can be determined by

cos�ijkl = njik · nij l , (6)

where njik and nij l are the unit normal vectors to the planes of
the triangles jik and ijl, respectively, namely,

njik = rji × rik

rij rik sin θijk

and nij l = rij × rj l

rij rjl sin θjil

.

(7)

Therefore, each C–C bond in the graphene lattice is associated
with four dihedral angles, and each dihedral angle accounts for
an interaction between one atom (e.g. atom k) and one of its
third nearest neighbours (e.g. atom l). For a planar graphene
monolayer, the dihedral angles are either 0 or π , and thus
bDHij = 0. However, the dihedral term becomes non-zero upon
bending of the graphene monolayer.
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Following a similar approach as in [13], the bending
modulus of monolayer graphene is derived as follows:

D = ∂2W

∂κ2
, (8)

where W is the strain energy density function depending on
the bond lengths, bond angles, and dihedral angles in a unit
cell of graphene. Each unit cell contains two carbon atoms
and three inequivalent bonds (relabelled as q = 1–3), and
the strain energy density can be obtained by summing up the
interatomic potential energy, namely,

W = 1

S0

3∑
q=1
[VR(rq) − b̄(θq1, . . . , θq4, �q1, . . . , �q4)

×VA(rq) − V0], (9)

where S0 = 3
2

√
3r20 is the area of the unit cell at the ground

state, V0 is the ground-state bond energy and the bond-order
function has been written explicitly in terms of the four bond
angles and four dihedral angles for each bond (figure 1). In
the following derivation, it must be checked that the internal
lattice relaxationwithin the unit cell does not affect the bending
modulus, as it was done in [13] in the absence of the dihedral
terms. This has been confirmed to hold in the present setting
as well.

At the ground state of graphene, it can be shown that(
∂rq

∂κ

)
g

= 0,

(
∂θqk

∂κ

)
g

= 0 and

(
∂ cos�qk

∂κ

)
g

= 0. (10)

Therefore, the bending modulus of graphene under an
infinitesimal bending curvature from the ground state is

D =
3∑

q=1

∂W

∂rq

∂2rq

∂κ2
+

3∑
q=1

4∑
k=1

∂W

∂θqk

∂2θqk

∂κ2

+
3∑

q=1

4∑
k=1

∂W

∂ cos�qk

∂2 cos�qk

∂κ2
. (11)

Furthermore, taking derivatives of the strain energy at the
ground state, we have(

∂W

∂rq

)
g

= 0,

(
∂W

∂θqk

)
g

= −VA(r0)

2S0
(bσ−π
0 )′,

(
∂W

∂ cos�qk

)
g

= ±T0

S0
VA(r0). (12)

where (bσ−π
0 )′ denotes the derivative of the function bσ−π

ij with
respect to either one of the two bond angles at the ground state.
Thus, equation (11) becomes

D = −VA(r0)

2S0
(bσ−π
0 )′

3∑
q=1

4∑
k=1

(
∂2θqk

∂κ2

)
g

+
T0VA(r0)

S0

3∑
q=1

4∑
k=1

(
cos�qk

∂2 cos�qk

∂κ2

)
g

. (13)

As shown in [13],
∑3

q=1
∑4

k=1 (∂2θqk/∂κ2)g = −9/2√3r20 .
Using a method of asymptotic expansion, we find that

3∑
q=1

4∑
k=1

(
cos�qk

∂2 cos�qk

∂κ2

)
g

= −21r
2
0

2
. (14)

Finally, we obtain a new analytical form for the bending
modulus of monolayer graphene:

D = VA(r0)

2

(
(bσ−π
0 )′ − 14T0√

3

)
. (15)

While the first term on the right-hand side of equation (15)
is identical to equation (3), the second term results from the
effect of dihedral angles in the second-generation Brenner
potential. With the additional term, equation (15) predicts
that D = 0.225 nN nm (1.4 eV), very close to the prediction
from the ab initio calculations [16]. It is thus suggested that
the effect of dihedral angles plays an important role in bending
of graphene monolayers. This formula clearly shows how the
multibody interactions, including both the second and third
nearest neighbours, contribute to the finite bending stiffness
of the atomically thin membrane governed by a bond-order
potential. While the specific potential is used in the above
derivation, the procedure and result can be readily generalized
for other empirical potentials.

To validate the analytical expression for the bending
modulus of monolayer graphene, we carry out atomistic
simulations in which graphene monolayers are rolled into
cylindrical tubes of various diameters. The static molecular
mechanics (MM) approach is adopted to calculate the strain
energy, fromwhich the bendingmoment and bendingmodulus
are deduced. In previous studies [12, 13, 16], strain energies of
fully relaxed carbon nanotubes were calculated as a function
of the curvature (κ = 1/R). It has been noted that, relative to
the ground state of planar graphene, the deformation of a fully
relaxed carbon nanotube involves both the bending curvature
and in-plane strain [20, 21]. Consequently, the strain energy of
a fully relaxed carbon nanotubes should include contributions
from in-plane strain and thus cannot be written simply as a
quadratic function of the curvature. To achieve pure bending
(with zero in-plane strain) of the graphene monolayers, in our
simulations the total potential energy is minimized under the
constraint that the tube radius and length do not change. The
constraint on the tube length is easily applied by the periodic
boundary condition along the axial direction of the tube. To
enforce the constraint on the tube radius, the graphene is first
rolled up by mapping a 2D sheet of width a onto a cylindrical
tube of radius R = a/2π . Next, the potential energy is
minimized by internal relaxation between the two sublattices
of graphene, with one sublattice held in place and the other
allowed to relax. In this way, the overall tube radius does not
change during the energy minimization step. The resulting
tubes from these simulations are not fully relaxed; in other
words, external reaction forces are required to keep the tube
dimensions from relaxing, which include forces in both the
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Figure 2. (Colour online.) Strain energy per atom in graphene tubes
as a function of bending curvature obtained from different empirical
potentials: B1 for the first-generation Brenner potential, B2 for the
second-generation Brenner potential and B2∗ for the
second-generation Brenner potential without considering the
dihedral term. Results from molecular mechanics simulations are
shown for pure bending of monolayer graphene along the armchair
and zigzag directions, while the quadratic function,W = Dκ2/2, is
plotted as the dashed line using the analytical bending modulus for
each potential.

axial and radial directions. With the pure bending deformation,
the strain energy density of the constrained tube depends only
on the tube radius or curvature. In the linear elastic regime,
we have W = 1

2Dκ2, and the bending moment is simply,
M = dW/dκ = Dκ , with the bending modulus D as given in
equation (15).

Figure 2 plots the strain energy per atom as a function
of the curvature for graphene monolayers rolled along the
armchair and zigzag directions. For comparison, the results
from both the first and second-generation Brenner potentials
(B1 and B2) are shown. To further highlight the effect of
dihedral angles, also shown are the results from simulations
ignoring the dihedral term in the second-generation Brenner
potential (B2∗). Clearly, the strain energy for potential
B2 is systematically higher than the other two. The
dihedral term contributes significantly to the bending energy,
especially for large bending curvatures (small nanotubes). The
corresponding bending moments are obtained by numerically
differentiating the strain energy with respect to the bending
curvature, as plotted in figure 3. In all three cases, the
bending moment increases almost linearly with the curvature
up to 2 nm−1, with slight nonlinearity at large curvatures.
By further differentiating the bending moment with respect
to the curvature, we obtain the tangent bending modulus, as
plotted in figure 4. The tangent modulus at small curvatures
agrees closely with the analytical prediction by equation (15)
as indicted by the dashed lines for the three potentials. At
large curvatures (carbon nanotubes of small radii), the tangent
bending modulus deviates slightly as a result of nonlinearity.
Due to the effect of dihedral angles, the tangent modulus
obtained from the potential B2 is considerably higher than
those from B1 and B2∗. Interestingly, the tangent bending
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Figure 3. (Colour online.) Bending moment in graphene tubes
versus bending curvature along the armchair and zigzag directions,
obtained from different empirical potentials. The linear elastic
bending moment-curvature relation,M = Dκ , is plotted as the
dashed line using the analytical bending modulus for each potential.
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Figure 4. (Colour online.) Tangent bending modulus of monolayer
graphene as a function of bending curvature along the armchair and
zigzag directions, obtained from different empirical potentials. The
analytical prediction for the linear elastic bending modulus
(independent of curvature) is plotted as the dashed line for each
potential.

modulus fromB2 decreases slightly as the curvature increases,
while the trend is reversed when the dihedral term is ignored
in potentials B2∗ and B1.

Figure 4 shows that the tangent bending moduli along
the zigzag and armchair directions are essentially identical
at small curvatures, but become increasingly different as the
curvature increases. As expected, the monolayer graphene at
the ground state is elastically isotropic due to the hexagonal
symmetry of the graphene lattice, and the bending modulus
at the linear elastic regime as predicted by equation (15) is
independent of the bending direction. However, the lattice
symmetry is distorted by the cylindrical bending deformation
and the monolayer graphene becomes slightly anisotropic at
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Figure 5. (Colour online.) Relaxation of the strain energy for a
(10, 0) carbon nanotube as its radius increases. The atomistic
calculations are shown by open circles and the prediction by
equation (16) is plotted as the solid curve. The dashed line indicates
the strain energy from an atomistic simulation without imposing any
constraint on the tube radius.

the nonlinear regime. Even stronger anisotropy was predicted
for the in-plane elastic moduli of monolayer graphene under
finite stretches [20].

It is noted that, due to the constraint on the tube radius and
length, the strain energy of pure bending (figure 2) is slightly
higher than the corresponding strain energy in fully relaxed
carbon nanotubes [13]. To illustrate the effect of the constraint,
figure 5 plots the strain energy as a function of the tube radius
for a (10, 0) carbon nanotube. The tube radius R is gradually
increased in theMMsimulations, while the tube length remains
fixed. Only the second-generation Brenner potential with the
dihedral term is used here. As shown in figure 5, the strain
energy decreases until it reaches aminimum atR/R0 ∼ 1.013,
whereR0 = 0.397 nm is the tube radius before relaxation. The
minimum energy is a few percent lower than the pure bending
energy and it compares closely with the corresponding strain
energy byMMcalculationswithout imposing any constraint on
the tube radius. Therefore, relaxation of the radial constraint
alone leads to increase in the tube radius by about 1.3% or an
in-plane strain ε = 0.013 in the circumferential direction of
the tube. Further relaxation in the axial direction would result
in even lower strain energy along with slightly different tube
radius and length for a fully relaxed nanotube [21].

To understand the energy reduction and radius increase
in the relaxed tube, one may consider the total strain energy
as the sum of the bending energy and the in-plane membrane
strain energy. As the tube radius increases, the bending energy,
WB = Dκ2/2 = D/(2R2), decreases and themembrane strain
energy, WM = Cε2/2, increases, where D and C are the
elastic modulus for bending and in-plane stretch, respectively.
However, with D = 0.225 nN nm and C = 289Nm−1 for the
second-generation Brenner potential [13, 20], the competition
between the two energy terms leads to aminimumstrain energy
at ε ∼ 0.005 for the (10, 0) nanotube, much smaller than that
in figure 5. More accurately, we expand the strain energy with

respect to the bending curvature and membrane strain to the
leading orders, namely,

W(κ, ε) ≈ 1
2Dκ20 +M(κ − κ0) + σε + 1

2D(κ − κ0)
2 + 1

2Cε2,

(16)

where κ0 = 1/R0 is the curvature before relaxation, M =
(∂W/∂κ)ε=0 is the bending moment and σ = (∂W/∂ε)ε=0 is
the in-plane membrane force in the circumferential direction
for the un-relaxed tube. The strain energy then has a minimum
at ε = (Dκ20 − σ)/(C + 3Dκ20 ). For the (10, 0) nanotube,
we find that, with σ = −2.38Nm−1, equation (16) agrees
closely with the MM calculations in figure 5 for the in-plane
strain up to a few percent. Therefore, the tube is subject
to a compressive membrane force along the circumferential
direction before relaxation. The compressive membrane force
may be qualitatively understood as a result of shortening of the
bond lengths in the constrained tube, relative to the bond length
at the ground state of graphene. The imposed constraint over
the tube radius effectively applies an external pressure onto
the tube, balancing the internal membrane force. The applied
external pressure may be estimated from the Laplace–Young
equation, namely, p = σ/R0 = 6.0GPa, which compares
closely with ab initio calculations of carbon nanotubes under
hydrostatic pressure [22]. We note that the presence of the
membrane force before relaxation is in clear contrast with
the classical plate theory which predicts zero membrane force
under the pure bending condition. This suggests an intrinsic
coupling between bending and in-plane strain due to the
discrete nature of the graphene lattice.

In summary, we have shown that the non-vanishing
bending modulus of the atomically thin graphene monolayers
results from multibody atomistic interactions up to the third
nearest neighbours, as accounted for in a bond-order empirical
potential by the effects of bond angles (second nearest
neighbours) and the dihedral angles (third nearest neighbours).
A new analytical expression is derived for the elastic bending
modulus at the ground state, which compares closely with
ab initio calculations. Slight nonlinearity and anisotropy are
noted for tangent bending modulus obtained from molecular
mechanics based atomistic simulations. An intrinsic coupling
between bending and in-plane strain is suggested, which leads
to a compressive membrane force under pure bending and
reduction in the strain energy in relaxed carbon nanotubes.
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