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Size-dependent nonlinear elastic scaling of multiwalled carbon nanotubes
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We characterize through large-scale simulations the nonlinear elastic response of multi-walled
carbon nanotubes (MWNCNTs) in torsion and bending. We identify a unified law consisting of two
distinct power-law regimes in the energy-deformation relation. This law encapsulates the complex
mechanics of rippling and is described in terms of elastic constants, a critical length-scale and an
anharmonic energy-deformation exponent. The mechanical response of MWCNTs is found to be
strongly size-dependent, in that the critical strain beyond which they behave nonlinearly scales as the
inverse of their diameter. These predictions are consistent with available experimental observations.

PACS numbers: 62.25.+g, 02.70.-c, 46.32.+x, 61.46.Fg

Due to a unique combination of dimensions, geome-
try, mechanical, electronic and chemical properties, car-
bon nanotubes appear as an attractive component in
nanoscale devices and nano-structured materials. Me-
chanically, the graphene wall of nanotubes is arguably
the stiffest and strongest material in Nature. Under
large tensile stress, CNTs fail irreversibly through plas-
ticity or brittle fracture [1]. However, their geometric
structure, the strength of carbon bonds, and a high de-
gree of crystalline uniformity confers CNTs with a very
rich nonlinearly elastic behavior over wide ranges of me-
chanical stress [2]. There is ample experimental evidence
that CNTs can sustain dramatic geometric changes re-
versibly and cyclically [3]. The use of multiwalled car-
bon nanotubes (MWCNTs) as structural components in
nano-devices has been demonstrated [3, 4]. Recent CNT-
based yarns and foam materials specifically exploit the
resilience and ability to undergo extremely large defor-
mations of MWCNTs [5, 6].

The experimentally observed deformation morpholo-
gies of CNTs have been interpreted in terms of the lin-
earized theory of thin shell buckling [2], which studies
the onset of bifurcations from homogeneous deforma-
tion states [7]. Beyond the bifurcation point, the post-
buckling fully nonlinear regime governs the CNT mechan-
ics. The rippling deformations (periodic wave-like defor-
mation patterns) observed in bent nanotubes [3, 8], which
have been shown to dramatically soften the effective re-
sponse of thick MWNCTs [3], are a genuinely nonlinear
phenomenon not explained by linearized buckling theory
[9]. Theoretically, the understanding of the post-buckling
behavior of thin elastic sheets is quite limited, and is the
topic of current research [10, 11]. The objective of the
present study is to characterize through systematic large-
scale simulations the effective mechanical behavior of re-
alistically large MWCNTs under torsion and bending, as
probed in nano-devices and materials [3–6]. See [12] for
an early related study resorting to a simplified model of
MWNCTs
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We present coarse grained static atomistic simulations
of MWCNTs. The bonded interactions are described
through the Brenner potential [13], a standard for hy-
drocarbons known to underestimate the elastic moduli of
graphene. We also use a modified version of this potential
that maintains its functional form, the ground energy and
the equilibrium bond length of graphene, and exhibits in-
plane and bending elastic moduli very close to ab initio
values [14]. The inter-wall van der Waals interactions are
modelled with a Lennard-Jones graphitic potential [15]
that produces smooth inter-wall tangential interactions,
in agreement with experimental observations [16].

The coarse-grained computational method used here
(see [17, 18] for the theory and implementation details)
reduces the computational complexity of the atomistic
models by two orders of magnitude without loss of ac-
curacy [19], allowing us to perform systematically high
fidelity simulations of realistically large MWCNTs as
found in devices. The largest system in the present
study contains about 31 million atoms, while state of the
art molecular dynamics simulations of MWCNTs con-
tain about 300,000 atoms [20]. We consider accurate
boundary conditions for uniform bending, free of spu-
rious boundary effects [21]. In torsion, the ends of all
the walls are rotated relative to each other, modeling an
effective load transfer between the walls at the ends sug-
gested by experiments [4]. In all the simulations, we con-
sider (5, 5), (10, 10), ..., (5n, 5n) MWCNTs with n = 10
to n = 40 walls, i.e. thick tubes with minimal internal
hollow space as often found in experiments.

To characterize the global mechanical response of
MWCNTs seen as nano-beams, we study the strain en-
ergy vs deformation relation. As reported in [9], we ob-
serve for all the tested tubes and for wide ranges of de-
formation two distinct and robust regimes: an harmonic
regime characterized by an energy-deformation power
law with exponent 2, and an anharmonic (post-buckling)
regime characterized by a different power-law with ex-
ponent 1 < a < 2. These two regimes can be clearly
observed in the log-log plots of Figs. 1 and 2. The latter
behavior occurs as a consequence of a non-homogeneous
deformation mode characterized by periodic ripples of the
graphene walls [3, 8, 9]. In bending, there is experimen-
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FIG. 1: Twisted MWCNTs. (a) Strain energy vs twisting angle log-log plots for various MWCNTs and (b) data collapse upon
appropriate rescaling. The power-law fits with exponents 2 (blue) and 1.63 (red) are shown for illustration. (c) Rescaled torque
vs twisting angle relation highlighting the unified law. (d) 35-walled CNT in torsion, deformed shape (top), Gaussian curvature
map (middle, green is zero, red is positive, blue is negative), and energy density map (bottom, red is high, blue is low).

tal evidence of these two energy-deformation regimes [22].
The ripples in torsion are sequences of helicoidal ridges
and furrows, while in bending the so-called Yoshimura
or diamond pattern develops in the compressed part of
the tubes. Rippling arises as an efficient mechanism to
lower the elastic energy, and can be understood mechan-
ically as distributed buckling. The van der Waals forces,
irrelevant in the harmonic regime, are responsible for the
collective buckling deformation of the walls in the post-
buckling regime. In contrast with linear elasticity, the
existence of two different power-laws breaks the scale
invariance of the energy-deformation relationship. The
cross-over buckling strain may be viewed as the criti-
cal point of a phase transition [21]. Despite the tubes
are subject to severe deformations, the reported energy-
deformation behavior is reversible and free of noticeable
hysteresis. The reversibility of the rippling deformations
has been documented experimentally [3].

We study now the systematics of this behavior. It was
hinted earlier that the anharmonic exponent showed a
slight dependence on the number of walls [9]. The present
study shows that this dependence is in fact an artifact of
the boundary conditions, carefully avoided here [21]. As
shown in Figs. 1 and 2, the anharmonic exponent is in-
dependent of the number of walls. The simulations show
that it depends on the deformation mode and on the
inter-atomic potential, as discussed later. The harmonic
scaling can be easily explained in terms of the linear the-
ory of elasticity. The stiffness of the graphene wall can be
characterized in terms of two independent in-plane mod-
uli (e.g. the Young’s modulus Ys and the shear modulus
Gs) and the bending modulus, denoted by Cb. We con-
sider here surface moduli [14]. We consider MWCNTs
of length L, with outer radius R = 15n/(2π)A0, where
A0 denotes the equilibrium bond length in graphene. In
torsion, the graphene walls are subject to pure shear.
The maximum shear occurs at the outer wall γ = ΘR/L,
where Θ denotes the applied rotation angle at the ends
of the tube. By defining the torsional spring constant
Kt = [2πGs/R2]

∑n
i=1 r3

i , where ri denote the radii of

each wall, the blue fits in Fig. 1(a) follow from the for-
mula for the strain energy E = 1/2LKtγ

2. By approx-
imating the sum in the formula for Kt by an integral,
and denoting the graphene wall spacing by t, we obtain
Kt ≈ πGsR

2/(2t), hence

Ẽ = E/(LR2) ≈ [πGs/(4t)] γ2. (1)

This is the classical scaling of linear elastic torsion of
beams, in which the deformation is characterized by a
non-dimensional strain and the relation Ẽ(γ) depends on
the geometry of the cross section and the material prop-
erties, but does not depend on the size of the beam. How-
ever, since the energy-twisting angle relation for MWC-
NTs is not linearly elastic, the rescaling in Eq. (1) does
not necessarily collapse the data for nanotubes of differ-
ent sizes. Indeed, upon this rescaling, the curves for all
MWCNTs collapse only in the harmonic regime, while
the anharmonic branches do not follow a single law. In
particular, we observe that the critical strain scales as
γcr ∝ R−1, which suggests using γR as the strain mea-
sure. The resulting rescaling for the energy-twisting an-
gle relation in the harmonic regime follows from multi-
plying Eq. (1) by R2

Ê = E/L ≈ [πGs/(4t)] (γR)2 . (2)

Figure 1(b) shows the data collapse for all the tested
nanotubes upon this rescaling, indicating that a unifying
law is operative. This law is characterized by the elastic
factor in Eq. (2), by the anharmonic exponent a, and by
the transition deformation. The measure of deformation
has dimensions of length, hence we denote the critical
point by `cr = γcrR = ΘcrR

2/L. The unified law plotted
in red and blue in Fig. 1(b) is

E/L = [πGs/(4t)]
{

(γR)2 for |γR| ≤ `cr
`2−a
cr |γR|a for |γR| > `cr

(3)

Note carefully that the measure of deformation γR hav-
ing dimensions of length, this unified law is strongly size-
dependent: the thicker the MWCNTs, the smaller the
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buckling shear strain. The above law also manifests it-
self in the data collapse for the rescaled torque-twisting
angle relation shown in Fig. 1(c), which follows from
Torque = ∂E/∂Θ.
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FIG. 2: Bent MWCNTs. (a) Strain energy vs curvature log-
log plots for various MWCNTs and (b) data collapse upon
appropriate rescaling. The power-law fits with exponents 2
(blue) and 1.42 (red) are shown for illustration. (c) 40-walled
CNT in pure bending, deformed shape (top), Gaussian cur-
vature map (middle), and energy density map (bottom). The
color scales coincide with those of Fig. 1

In bending the situation is analogous. The maximum
strain ε = κR occurs at diametrically opposed points of
the outer shell with opposite signs, where κ denotes the
curvature imposed on the tube. By defining the bend-
ing spring constant Kb = πYs/R2

∑n
i=1 r3

i , the blue fits
in Fig. 2(a) follow from E = 1/2LKbε

2. The classi-
cal size-invariant elastic scaling Ẽ(ε) does not collapse
the anharmonic branches of the data, while the size-
dependent rescaling (E/L) vs (κR2) highlights the uni-
fied energy-curvature law, see Fig. 2(b). Again, the crit-
ical bucking strain scales as εcr ∝ R−1, and the unified
law is completely described in terms of an elastic factor,
here πYs/(8t), the anharmonic exponent, and the criti-
cal length `cr = κcrR

2. These observations contrast with
the size-independent critical buckling strain reported for
graphite 2D models of MWCNTS [12, 23].

The parameters of the unified energy-deformation laws
for the Brenner potential and its modified version are are
reported in Table I. Strikingly, the critical length-scale
is quite insensitive to the potential and the deformation
mode, while the anharmonic exponent is considerably
larger for twisting than for bending. While the harmonic
response mobilizes either the Young’s modulus (bending)

TABLE I: Parameters of the scaling law

Brennera Modified Brennerb

`cr (nm) a `cr (nm) a
Torsion 0.13 1.68 0.11 1.63
Bending 0.11 1.42 0.10 1.41

aYs = 236 J/m2 , Gs = 83 J/m2, Cb = 2.2 eV Å2 / atom.
bYs = 340 J/m2 , Gs = 148 J/m2, Cb = 3.8 eV Å2 / atom.

or the shear modulus (torsion), the anharmonic regime
mixes stretch, shear, and bending of the walls. Hence the
dependence of a on the potential is not surprising.

Despite a full analytical understanding of complex
buckling phenomena such as rippling is not available,
the modern literature provides key ideas to help under-
stand qualitatively the results above, in particular the
fact that the anharmonic exponent in torsion is much
larger than that in bending. In the mechanics of thin elas-
tic sheets, isometric maps are of paramount importance
because they provide deformation mechanisms that avoid
in-plane stretching or shearing, sometimes at the expense
of sharp folds [24]. In materials that exhibit a large in-
plane rigidity as compared to the bending rigidity, e.g.
paper or graphene, localized regions of high curvature are
often energetically favorable. Folds and conical disloca-
tions with optimal balance between in-plane and bending
energies have been characterized [10]. Recent analytical
studies point out the efficiency of the Yoshimura pattern,
observed in the compressed side of bent nanotubes, in
achieving nearly isometric deformations for compressed
sheets [11]. According to Gauss’ Theorema Egregium,
the Gaussian curvature of a surface is invariant with re-
spect to isometries; since for the undeformed configura-
tion of CNTs the Gaussian curvature vanishes, it serves
as a measure of the degree of local isometry. Figure 2(c)
shows a color map of the Gaussian curvature on a bent
MWCNT. It can be observed that the curvature concen-
trates along the ridges (positive) and cones (positive and
negative), while most of the surface has very small cur-
vature. This results in a strain energy density (energy
per unit area) sharply concentrated on the folds. The
rippling pattern that develops in torsion is far less effi-
cient in approximating an isometry. Figure 1(d) shows
that these boundary conditions produce a deformation
that is nowhere close to isometric: the helicoidal ridges
have positive curvature while the furrows are negatively
curved. The morphological features are not as sharp as
for bending, but they cover a larger area of the surface of
each wall. This results in a significantly larger portion of
tube with large strain energy (note that the color scales
are identical in both figures), and explains qualitatively
the stiffer post-buckling response in torsion.

The scaling of the critical strain in bending, εcr ∝ R−1,
follows from linearized buckling analysis of cylindrical
shells under specific assumptions, as noted in [2]. This
reference finds excellent agreement between the critical
curvature found in simulations of single-walled CNTs of



4

small diameter and that predicted by the theory with
`cr = 0.039 nm. The larger critical length-scale we find is
probably due to the stabilization effect provided by inner
tubes to the outer shell that buckles first. Even if this
agreement is comforting, it should be emphasized that
these scalings of the critical strain follow from radically
different approaches: here it is obtained as the transition
between two regimes of the energy-deformation relation,
one of which is genuinely nonlinear, while linearized buck-
ling studies the very onset of the instability and uses
hypothesis of doubtful validity for MWCNTs. In tor-
sion, [2] reports γcr ∝ R−3/2 for SWCNTs, which again
follows from linearized buckling theory, in contrast with
γcr ∝ R−1 for MWCNTs found here.

We now compare the predictions of the unified law
against experiments. Given the limited amount of quan-
titative data available in the literature, we test whether
the critical length-scale characterizing the onset of rip-
pling is consistent with observations of MWCNTs sub-
ject to deformation, for which there is evidence of rip-
pling or its absence. In [3], a 45-walled CNT with
R = 15.5 nm and κ = 1/400 nm−1 was observed stat-
ically to display rippling. For the same tube in oscilla-
tory motions reaching κ = 1/1200 nm−1, indirect ev-
idence thought the resonant frequencies indicated rip-
pling. Our theory is consistent with these observations
since in the first case R2κ = 0.6 nm > `cr and in the sec-
ond R2κ = 0.2 nm > `cr. The same reference reports on
a 12-walled CNT (R = 4 nm) bent to κ = 1/300 nm−1

observed not to display rippling, in agreement with the
theory since R2κ = 0.053 nm < `cr. In torsional exper-
iments [4], shear strains between 2% and 5% for MWC-

NTs with radii in between 6 and 17.5 nm were reported,
together with indirect signs of nonlinear mechanical be-
havior. The most conservative prediction with our the-
ory, γR = 0.02 · 6 nm = 0.12 nm, suggests that indeed
torsional rippling occurred in these experiments. In [22],
a cantilevered MWCNT (R = 16.4 nm) was loaded with
an AFM at a distance of L = 813 nm from the fixed
end, and the force-displacement was recorded. The crit-
ical rippling end deflection was measured to be of about
δcr = 150 nm. The critical rippling curvature, occurring
at the fixed end, can be computed as κcr = 3δcr/L2, re-
sulting in `cr = κcrR

2 = 0.18 nm, to be compared with
the data reported in Table I. Given the uncertainties in
this experiment [22] and in the inter-atomic potentials,
we consider the agreement to be good.

We have characterized the nonlinear mechanical be-
havior of MWCNTs in pure bending and torsion through
systematic simulations of realistically large systems.
Their mechanics at the mesoscopic level are described by
a size-dependent unified law consisting of two different
power-law regimes. Size-dependence in materials science
is usually associated with irreversible processes such as
plasticity or fracture. Here, it arises as a consequence of a
reversible geometric instability. The reported results are
in agreement with available data, and can improve the
interpretation of experiments. Our predictions can be
experimentally tested, particularly if mechanical loading
is supplemented by high resolution microscopy.
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