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2 M. ARROYO AND M. ORTIZ

and interpolate affine functions exactly. An important property of convex approximation
schemes is that they have a weak Kronecker-delta property at the boundary. This property
greatly facilitates the imposition of essential boundary conditions and can also be exploited in
order to glue together domain patches in a fully conforming way. The positivity of the shape
functions endows the approximation schemes with useful properties and structure derived
from convex geometry, but makes the construction of high order approximants more involved.
Extensions beyond first order methods will be pursued in subsequent work. Another avenue
for defining higher-order approximation schemes is to combine the present approach with the
partition of unity method [5, 6].

The specific convex approximation schemes that we investigate represent a compromise—in
the sense of Pareto optimality—between two competing objectives:

i) Unbiased statistical inference based on the nodal data;
ii) The definition of local shape functions of least width.

Objective (i) is classical in information theory and leads to Jaynes’ principle of maximum
entropy [7]. In the present context the least biased shape functions, which we call global max-
ent approximants, are those that maximize a suitably defined entropy of the approximation
scheme. By way of contrast, the most local shape functions, in a sense to be made
mathematically precise, are found to be affine shape functions supported on a Delaunay
triangulation of the node set. Specifically, we define a one-parameter family of smooth convex
approximation schemes, which we refer to as local max-ent schemes, which have global max-
ent and Delaunay schemes as limiting cases. In particular, local max-ent approximation
schemes subsume simplicial finite elements and the Delaunay triangulation as a special
case. Conversely, local max-ent approximation may be regarded as a regularization, or—in
analogy to statistical mechanics—a thermalization, of Delaunay interpolation. The level of
thermalization is smoothly controlled by a non-negative parameter that can be a function
of position. This spatial dependence enables a seamless transition from meshfree-type
approximants to finite elements. An important feature of this regularization is that it effectively
resolves the degenerate cases resulting from the lack or uniqueness of Delaunay triangulation.
Thus, for node sets for which the Delaunay triangulation is not unique our regularization
selects a unique generalized Delaunay approximant in the limit, namely, that which maximizes
the approximation entropy.

The local max-ent shape functions follow from an unconstrained convex optimization
problem at each evaluation point. The size of this problem equals the spatial dimension. In
addition, this problem is guaranteed to be solvable on the convex hull of the node set, and its
solution is very robust and efficient. Approximants derived from minimization problems have
a long tradition and include cubic splines, thin plate splines, MLS approximants and natural
neighbor approximants, to name a few.

Local max-ent approximation schemes can be taken as a convenient basis for the numerical
solution of PDEs in the style of meshfree Galerkin methods (cf, e. g., [4] for a recent review of
Galerkin meshfree methods) or, in problems governed by a minimum principle, by constrained,
or Rayleigh-Ritz, minimization. We illustrate the performance of local max-ent approximation
schemes in this type of applications by means of a patch test and two test cases: the standard
benchmark problem of a linear elastic built-in cantilever beam loaded at the tip; and the
upsetting and extension of a block of compressible neo-Hookean rubber. In both examples we
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LOCAL MAX-ENT APPROXIMATION SCHEMES 3

find that the accuracy of local max-ent approximation schemes is vastly superior to that of
finite elements, even when the solution cost is carefully factored in.

The structure of the paper is as follows. In § 2 we begin by establishing the properties
of general convex approximation schemes, including a weak Kronecker-delta property at the
boundary. In § 3 we adopt an information-theoretical viewpoint and introduce the notions
of entropy of an approximation scheme and global max-ent approximation. The resulting
shape functions are of global support and non-interpolating in general. In order to bring these
properties under control, in § 4 we introduce the concept of width of a shape function. The
sum of the widths of the shape functions supplies a measure of the degree of locality of the
approximation. We then proceed to introduce the local max-ent approximation schemes by
recourse to Pareto optimality. A method for the calculation of the shape functions and some
properties of the approximation scheme are presented in this section. Applications to the
numerical solution of PDEs are presented in § 5. Some concluding remarks are finally collected
in § 6.

2. CONVEX APPROXIMATION SCHEMES

All approximation schemes considered in this paper fall within a class that we shall term the
class of convex approximation schemes. These convex approximation schemes are characterized
by the positivity of the shape functions and by being exact on affine functions. These conditions
alone do not determine a unique convex approximation scheme, and most of this paper is
devoted to the selection of convex approximation schemes that are optimal according to certain
ancillary criteria. However, there are a number of desirable properties that are shared by all
convex approximation schemes. In this section we proceed to enumerate these properties.

2.1. Approximants as coefficients of convex combinations

Consider a set of distinct nodes X = {xa, a = 1, . . . , N} ⊂ Rd, to be referred to as the node
set. Recall [8] that the convex hull of X is the set

convX =
{
x ∈ Rd | x = Xλ, λ ∈ RN

+ , 1 · λ = 1
}

(1)

where RN
+ is the non-negative orthant, 1 denotes the vector of RN whose entries are one, and

X is the d×N matrix whose columns are the coordinates of the position vectors of the nodes
in the node set X. Since X is finite, it follows that convX is a compact convex polyhedron,
or polytope. Let u : convX → R be a function whose values {ua; a = 1, . . . , N} are known on
the node set. We wish to construct approximations to u of the form

uh(x) =
N∑

a=1

pa(x)ua (2)

where the functions pa : convX → R will be referred to as shape functions. A particular choice
of shape functions defines an approximation scheme. We shall require the shape functions to
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4 M. ARROYO AND M. ORTIZ

satisfy the zeroth and first-order consistency conditions:

N∑
a=1

pa(x) = 1, ∀x ∈ convX, (3a)

N∑
a=1

pa(x) xa = x, ∀x ∈ convX. (3b)

These conditions guarantee that affine functions are exactly reproduced by the approximation
scheme. We note that if N = d + 1 and the point set is affinely independent, the consistency
conditions uniquely determine the shape functions over the corresponding d−simplex. By way
of contrast, the shape functions are not uniquely determined by the consistency conditions in
general when N > d + 1. In addition, we shall require the shape functions be non-negative,
i. e.,

pa(x) ≥ 0, ∀x ∈ convX, a = 1, . . . , N. (4)

The positivity of the shape functions, together with the partition of unity property, allow us
to interpret the shape functions as the coefficients of convex combinations. This viewpoint is
common in geometric modelling, e.g., in Bézier and B-Spline techniques [9]. Positive linearly
consistent approximants have long been studied in the literature [10]. Recent examples include
the Natural Element Method shape functions [11] and subdivision schemes [12]. These methods
often present a number of attractive features, such as the related properties of monotonicity,
the variation diminishing property (the approximation is not more “wiggly” than the data),
or smoothness preservation [13], of particular interest in the presence of shocks. Furthermore,
they lead to well behaved mass matrices. The positivity restriction is natural in problems
where a maximum principle is in force, such as in the heat conduction problem. In the present
context, the non-negativity requirement is introduced primarily to enable the interpretation
of shape functions as probability distributions. It follows from (3a), (3b) and (4) that the
shape functions at x ∈ convX define a convex combination of vertices which evaluates to x. In
view of this property we shall refer to non-negative and first-order consistent approximation
schemes as convex approximation schemes.

Let p(x) denote the vector of RN whose components are {p1(x), . . . , pN (x)}. Then, by virtue
of the consistency and non-negativity constraints the domain of p(x), or feasible set, is

Px(X) =
{
p ∈ RN

+ | Xp = x, 1 · p = 1
}

, (5)

Evidently, this set is convex. A first question of interest is whether Px(X) is non-empty, i. e.,
whether there exist shape functions consistent with the constraints. The following proposition
follows directly by comparison of (1) and (5).

Proposition 2.1. The feasible set Px(X) is non-empty if and only if x ∈ convX.

It follows from the preceding observations that non-negative and linearly consistent
approximation schemes can only be defined on convX. If the node set is large enough,
Carathéodory’s theorem states that at least N − d− 1 points in X are not necessary in order
to express x ∈ convX as a convex combination of points in X. Thus, as expected, convex
approximation schemes are not uniquely determined by the node set in general. It is possible
to consider domains Ω which are subsets of convX. However, for simplicity in the present work
we will assume that Ω = convX throughout.
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LOCAL MAX-ENT APPROXIMATION SCHEMES 5

2.2. Behavior at the boundary

In interpolating schemes such as Lagrangian finite elements the shape functions satisfy the
so-called Kronecker-delta property, i. e., pa(xb) = δab. This property is particularly useful
when solving partial-differential equations numerically, since it renders the imposition of
essential boundary conditions straightforward. Most meshfree methods, in particular those
based on the MLS approximation, lack the Kronecker-delta property, and, consequently, the
approximation on the boundary of the domain may depend on the nodal data of interior
nodes. These methods experience difficulty in enforcing essential boundary conditions (cf,
e. g., [14]). In this section we study the behavior of general convex approximation schemes
at the relative boundary of convX, rbd(convX), i. e., the boundary of convX regarded as
a subset of its affine hull. The relative boundary of convX coincides with the boundary of
convX when aff(convX) = Rd. Here aff denotes the affine hull. In particular, we show that all
convex approximation schemes possess a weak Kronecker-delta property at the boundary. This
Kronecker-delta property greatly facilitates the imposition of essential boundary conditions,
which confers convex approximation schemes a distinct advantage over MLS and other meshfree
approximation schemes.

We begin by reviewing a few elementary facts concerning the boundary of polytopes. The
faces of the polytope P = convX can be characterized as the intersections of P with its
supporting hyperplanes, in addition to P itself and ∅, and are themselves polytopes. An
equivalent definition of a face of P is a convex subset F of P such that every closed line
segment in P with a relative interior point in F has both endpoints (and hence the entire
segment) in F [8]. A proper face of P is one that is neither P nor ∅. The dimension of a face is
the dimension of its affine hull. In particular, the 0-dimensional faces of P are called vertices,
coincide with its extreme points, and belong to X. We shall denote by vertP the collection of
vertices of the polytope. In addition, P = conv(vertP ) and, if F is a face of P , it follows that
vertF = vertP ∩F . The relative interiors of the proper faces of P are a partition of rbdP , i. e.,
they are disjoint and their union is rbdP . The smallest face of P to which x belongs is the
contact set of x, C(x), and is formally defined as the intersection of P with the intersection
of all supporting hyperplanes to P at x. Its affine dimension is the facial dimension of x. The
facial dimension of points interior to convX is d, while the facial dimension of extreme points
is 0. If x ∈ rbdP , then C(x) is a proper face of P .

Proposition 2.2. Let p(x) define a convex approximation scheme with node set X. Let F be
a face of convX and xa /∈ F . Then pa = 0 on F .

Proof. Suppose otherwise, i. e., suppose that there is a point x ∈ F and a convex approximation
scheme p(x) such that pa(x) 6= 0. Since

x =
∑

b

pb(x)xb =
∑
b6=a

pb(x)xb + pa(x)xa (6)

and x 6= xa, it follows that
∑

b6=a pb(x) 6= 0. Consider the closed line segment

[0, 1] 3 t 7−→ ty + (1− t)xa ∈ convX, (7)

where
y =

1∑
b6=a pb(x)

∑
b6=a

pb(x)xb. (8)
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6 M. ARROYO AND M. ORTIZ

Then x ∈ F is a relative interior point of the segment, corresponding to t = 1 − pa(x),
and hence the entire segment, including xa, must be contained in F , which contradicts the
assumption. 2

Remarks:

1. If E is the union of an arbitrary collection of faces of convX and xa /∈ E, then it follows
that pa = 0 on E.

2. The shape functions corresponding to nodes that belong to relint(convX) vanish in
rbd(convX).

3. When approximating a function as in Eq. (2), the value of uh at a face F depends only
on the nodal values corresponding to nodes in X∩F . Let X and Y be two node sets such
that convX ∩ convY is a face of both convX and convY . Then, given a method to select
convex approximants, the approximation schemes based on X and Y are conforming
(conforming patches).

4. Suppose that a function u defined over convX is affine on a face F . Then u = uh over F
provided ua = u(xa) ∀xa ∈ F ∩X (exact interpolation of affine functions on faces).

5. If xa is an extreme point or vertex of convX, then pb(xa) = δba, and consequently,
ua = uh(xa) (interpolation at extreme points).

6. Let x ∈ rbd(convX) with contact set C(x). If xa /∈ C(x), then pa(x) = 0. Thus,
choosing a convex approximation scheme in Px(X) is equivalent to choosing a convex
approximation scheme in Px(X ∩C(x)). Note that the latter problem can be formulated
in affC(x) − x, the subspace of Rd parallel to C(x), whose dimension is the facial
dimension of x, and involves a reduced node set (reduced face problem).

7. If a n−dimensional face contains exactly n + 1 nodes, then the shape functions on that
face are the affine shape functions of the simplex defined by those nodes.

Some of these observations are known in different contexts. For instance, the fact that Bézier
curves pass through the end control points is a direct consequence of Proposition 2.2.

2.3. Higher-order consistency

A seemingly natural extension of the convex approximation schemes described in the foregoing
would be to impose second and higher-order consistency conditions on the shape functions.
However, these extensions are not straightforward. In order to demonstrate the source of
the difficulty we may simply consider the one-dimensional case. The second-order consistency
condition then takes the form

N∑
a=1

pa(x)x2
a = x2. (9)

Defining an extended point set Y =
{
(xa, x2

a); a = 1, . . . , N
}
⊂ R2, it follows that finding non-

negative and second-order consistent approximation schemes amounts to defining a convex
approximation scheme on the set P(x,x2)(Y ). We have seen that this set is nonempty iff (x, x2)
belongs to the set conv

{
(xa, x2

a); a = 1, . . . , N
}
. In the context of the classical problem of

moments, namely, the problem of finding a probability distribution given its first moments
[15, 16], that set is known as the moment space. However, due to the strict convexity of
the function f(x) = x2, the condition that (x, x2) be in the set conv

{
(xa, x2

a); a = 1, . . . , N
}
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8 M. ARROYO AND M. ORTIZ

are jointly called a finite scheme. We now introduce the concept of entropy—uncertainty—
of a given finite scheme, following the introductory text by Khinchin [17]. Consider two finite
schemes (

A1 A2

0.5 0.5

)
, and

(
A1 A2

0.99 0.01

)
.

Evidently, the first scheme carries more uncertainty than the second, for which the outcome is
almost certainly A1. The uncertainty associated with a finite scheme can also be interpreted as
the amount of information gained by realizing the random variable, thus eliminating completely
the uncertainty. Shannon [18] introduced the following measure of uncertainty, or information
entropy,

H(A) = H(p1, . . . , pn) = −
n∑

a=1

pa log pa (10)

with the extension by continuity: 0 log 0 = 0. The function H(A) is non-negative, symmetric,
continuous, and strictly concave, and possesses a number of properties that are expected of a
measure of uncertainty. In particular, H(p) = 0 iff one of the probabilities is one and all
the others are zero, and attains its maximum for the probabilities {1/n, . . . , 1/n}, which
may intuitively be regarded as the most uncertain or random distribution. Furthermore,
H(1/n, . . . , 1/n) = log n, which is an increasing function of n. Consequently, adding events
adds uncertainty to this most uncertain distribution. However, adding an impossible event
does not alter the level of uncertainty, i. e., H(p1, . . . , pn, 0) = H(p1, . . . , pn). Suppose that we
are given two finite schemes,

A =
(

A1 A2 . . . An

p1 p2 . . . pn

)
, and B =

(
B1 B2 . . . Am

q1 q2 . . . qm

)
.

The set of events AiBj , i = 1, . . . , n, j = 1, . . . ,m defines a new finite scheme, called product
scheme AB. If A and B are independent, we have that H(AB) = H(A)+H(B), whereas if the
schemes are dependent, the H(AB) = H(A)+HA(B) ≤ H(A)+H(B), where HA(B) denotes
the expectation of H(B) in scheme A (cf [17] for details). The inequality HA(B) ≤ H(B) can
be interpreted by saying that the realization of the scheme A can only decrease the uncertainty
of another scheme B. The axiomatic basis of Shannon’s information entropy is well-established
in information theory (cf, e. g., [17]).

Within the framework just outlined, the entropy of a convex approximation scheme may be
defined as follows. Let X be a node set with N nodes, let x ∈ convX, and let p(x) define a
convex approximation scheme. Regard the index set I = {1, . . . , N} as a complete system of
events. Since the approximation scheme is non-negative and the shape functions add to one,
we may regard {p1(x), . . . , pN (x)} as the corresponding probabilities and H(p1(x), . . . , pN (x))
as the entropy of the corresponding finite scheme.

3.2. Least-biased approximation scheme

An information-theoretical approach to approximation theory can be devised as follows.
Equation (3b) is regarded as additional information on the discrete probability distribution
p(x), namely that the statistical expectation or average of the random variable X : I → Rd,
which assigns to each index the position vector of the corresponding node X(a) = xa, is
x. Consistent with this constraint, there are in general multiple probability distributions
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LOCAL MAX-ENT APPROXIMATION SCHEMES 9

{p1(x), . . . , pN (x)}. The problem of approximating a function from scattered data may now
be regarded as a problem of statistical inference. From this standpoint, Eq. (2) expresses the
expected value uh(x) of a random variable U : I → R defined by U(a) = ua as determined by
the probabilities {p1(x), . . . , pN (x)}.

Suppose that we require that this process of inference be unbiased, i. e., that it be based
solely on the a priori knowledge of the function and free of artifacts or hidden assumptions.
According to Jaynes’ principle of maximum entropy [7], the least biased probability distribution
is that which maximizes entropy subject to all known constraints. Thus, Jaynes states that
the maximum entropy distribution is ”. . . uniquely determined as the one which is maximally
noncommittal with regard to missing information, in that it agrees with what is known, but
expresses maximum uncertainty with respect to all other matters”. Thus, from a purely
information -theoretical viewpoint, the optimal, or least biased, convex approximation schemes
are solutions of the program:

(ME) maximize H(p) = −
N∑

a=1

pa log pa

subject to pa ≥ 0, a = 1, . . . , N
N∑

a=1

pa = 1

N∑
a=1

paxa = x

It is interesting to note that in the one-dimensional case this problem gives the max-ent solution
of the classical problem of moments [19]. Since the information entropy function is strictly
concave in its domain RN

+ , the non-negative orthant, and the constraints are affine, (ME)
defines a convex optimization problem. The existence and uniqueness of the solution of this
program are established by the following proposition.

Proposition 3.1. The program (ME) has a solution iff x ∈ convX, in which case the solution
is unique.

Proof. If x ∈ convX, then by proposition 2.1 Px(X) 6= ∅. In addition, Px(X) is a closed
and bounded subset of RN and, therefore, compact. Hence, by the Weierstrass extreme value
theorem −H attains its minimum in Px(X). Since −H is strictly convex in Px(X) (the
restriction of a strictly convex function to a convex subset) the minimum is unique. 2

Since program (ME) depends parametrically on x, its unique solution p0(x) is also a
function of x. We shall refer to the convex approximation scheme defined by p0(x) as the max-
ent approximation scheme. The smoothness of p0(x) follows as a corollary to proposition 4.2.

3.3. Examples

Given a point set X, the construction of a shape function p0a(x) requires solving the problem
(ME) for every point x ∈ convX. Examples of max-ent schemes in the plane are shown in
Fig. 2. Figure 2a shows a max-ent shape function for a point set consisting of the vertices
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10 M. ARROYO AND M. ORTIZ

(a) (b) (c)

Figure 2. Examples of max-ent approximation schemes in the plane. a) Shape function for the vertex
of a pentagon; b) shape function for an interior node, illustrating the global character of max-
ent approximation shemes; and c) max-ent approximation, or inference, of a function from scattered

data, illustrating the non-interpolating character of max-ent approximation schemes.

of a convex pentagon. This example illustrates the delta Kroneker property of the max-
ent shape functions, and the property that the restriction of the max-ent shape functions
to the edges of the pentagon is linear. Thus, max-ent approximation schemes provide a
basis for constructing conforming elements in the shape of arbitrary convex polyhedra (cf
[20] and [21] for recent alternative methods to construct generalized barycentric coordinates
for polyhedra). In recent independent work, maximum entropy methods have been used to
construct barycentric coordinates for convex polyhedra, thus defining C0 approximants on
polygonal tesselations [22]. The max-ent shape function of an interior node for a larger node
set is shown in Fig. 2b. As expected, the shape function vanishes at the boundary. The support
of the shape function is highly non-local and extends to the entire convex hull of the node
set. In addition, the value of the shape function at its corresponding node differs greatly from
unity. Consequently, the max-ent approximation is far from interpolating in the interior, and
results in a very poor fit to the data as illustrated in Fig. 2c.

This example serves to illustrate some of the limitations of global max-ent as a candidate
approximation scheme for partial differential equations, namely, its non-local and non-
interpolating character. An extension of the max-ent concept that provides control over the
degree of locality of the shape functions is developed next.

4. LOCAL MAX-ENT APPROXIMANTS

As observed in the preceding section, global max-ent approximation schemes, while optimal
in an information-theoretical sense, are non-local and non-interpolating, which limits their
usefulness as approximation schemes for partial differential equations. Control over the degree
of locality of max-ent approximation schemes can be achieved by adding spatial correlation
information in the (ME) program (11). In particular, we wish to control the degree to which
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LOCAL MAX-ENT APPROXIMATION SCHEMES 11

the value of a function at x is correlated to nearby nodal values. Correspondingly, we wish
to control the width of the shape functions and their decay with distance away from their
corresponding nodes. In this section we extend the max-ent framework introduced in the
foregoing and build into the approximation scheme these notions of locality.

Define the width of shape function pa as

w[pa] =
∫

Ω

pa(x)|x− xa|2 dx. (11)

where we write Ω = convX. Thus, w[pa] is simply the second moment of pa about xa. Evidently,
other measures of the width of a function can be used instead in order to define alternative
approximation schemes. Some alternative measures are briefly discussed in § 4.6. The most
local approximation scheme is now that which minimizes the total width

W [p] =
N∑

a=1

w[pa] =
∫

Ω

N∑
a=1

pa(x) |x− xa|2 dx, (12)

subject to the constraints (3a), (3b) and (4). Since the functional (12) does not involve shape
function derivatives its minimization can be performed pointwise. This results in the linear
program:

(RAJ) For fixed x minimize U(x,p) ≡
N∑

a=1

pa|x− xa|2

subject to pa ≥ 0, a = 1, . . . , N
N∑

a=1

pa = 1

N∑
a=1

paxa = x

An argument identical to that in the proof of Proposition 3.1 shows that the program (RAJ)
has solutions if and only if x ∈ convX. However, the function U(x, ·) is not strictly convex (it
is linear) and the solution is not unique in general.

Rajan [23] showed that if the nodes are in general positions (no (d + 1) nodes in X are
cospherical), then (RAJ) has a unique solution, corresponding to the piecewise affine shape
functions supported by the unique Delaunay triangulation associated with the node set X
(a Delaunay triangulation verifies that the circumsphere of every simplex contains no point
from X in its interior). We shall refer to the convex approximation schemes defined by the
solutions p∞(x) of (RAJ) as Rajan convex approximation schemes, and to the approximants
corresponding to the piecewise affine shape functions supported by a Delaunay triangulation
as Delaunay convex approximants. Thus, Rajan’s result states that for nodes in general
positions, the Delaunay convex approximation scheme coincides with the unique Rajan convex
approximation scheme, that is optimal in the sense of the width (11).

When the nodes are not in general positions, the Delaunay triangulation is not unique
and the Delaunay approximation schemes are likewise not unique. Since every Delaunay
approximation scheme is a Rajan approximation scheme [23], it follows that the latter are
likewise not unique. Furthermore, it is readily verified that a convex combination of solutions
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of (RAJ) is also a solution. Therefore, the set of solutions SRAJ
x (X) of (RAJ), i. e., the

set of Rajan convex interpolation schemes, is a convex subset of Px(X). Thus, there are
Rajan approximation schemes that are not Delaunay approximation schemes and are not
associated with a triangulation of the node set. We shall see in Example 4.1 that some Rajan
approximation schemes are not even convex combinations of Delaunay approximation schemes.
A simple example of non-uniqueness is provided by a node set consisting of four nodes at the
corners of a square. Then, the two triangulations corresponding to the two diagonals of the
square are Delaunay triangulations and supply solutions of (RAJ). In addition all convex
combinations of these solutions are in SRAJ

x (X). This example is further analyzed in Section
4.4. It should be carefully noted that since the approximants are characterized pointwise, their
continuity does not follow automatically in the case of non-uniqueness.

4.1. Local max-ent approximation schemes as a Pareto set

Thus far we have defined two criteria for selecting convex approximation schemes: maximum
entropy and maximum locality, which result in max-ent and Delaunay (or Rajan for degenerate
node sets) convex approximation schemes, respectively. In general, it is not possible to find
convex approximation schemes that maximize both entropy and locality simultaneously, i. e.,
unbiased estimation and locality are competing objective functions. A standard device for
harmonizing such competing objectives is to seek Pareto optima, i. e., convex approximation
schemes such that there is none better. Specifically, a convex approximation scheme q is
better than, or dominates, p iff −H(q) ≤ −H(p), U(x, q) ≤ U(x,p) and at least one of the
inequalities is strict. The set of Pareto optima is called the Pareto set. For convex multicriterion
optimization, the scalarization of the problem provides a means to find the Pareto set [24]; on
the one hand, each solution of the problem:

(LME)β For fixed x minimize fβ(x,p) ≡ βU(x,p)−H(p)
subject to pa ≥ 0, a = 1, . . . , N

N∑
a=1

pa = 1

N∑
a=1

paxa = x

for β ∈ (0,+∞) is Pareto optimal. Conversely, each element of the Pareto set is a solution of
(LME)β for some β ∈ (0,+∞)∪ {0,+∞}. Note carefully that in general not all the solutions
for the values {0,+∞} of β are Pareto optimal. For β = 0, the uniqueness of the solutions
of (ME) guarantees that p0 is Pareto optimal. For β = +∞, the linear program (RAJ)
is recovered. As already noted, this problem admits multiple solutions in general. From the
definition of Pareto optimality, only the element of SRAJ

x (X) with maximum entropy is in
the Pareto set. Since H(p) is strictly concave in SRAJ

x (X), the Pareto-optimal element for
β = +∞ is unique and given by:

pPareto
∞ (x) = arg max

p∈SRAJ
x (X)

H(p). (13)

Since for β ∈ [0,+∞) the function fβ(x, ·) is continuous and strictly convex in Px(X), an
argument identical to that in the proof of proposition 3.1 shows that (LME)β has a unique
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LOCAL MAX-ENT APPROXIMATION SCHEMES 13

solution pβ(x) if and only if x ∈ convX. We shall refer the convex approximation schemes
defined by pβ(x) as local max-ent convex approximation schemes. These convex approximation
schemes can be viewed as optimal trade-offs or compromises between information-theoretical
optimality and locality.

4.2. Dual problem and exponential form of the shape functions

The problem (LME)β defining the local max-ent convex approximations is amenable to
analysis by standard duality methods, which also provide a method for the practical calculation
of the local max-ent approximants. These methods have been extensively applied to max-
ent problems (cf, e. g., [24]). For simplicity and without loss of generality, throughout
this section we shall assume that affX = Rd. Under these conditions, the relative interior
relint(convX) of convX coincides with its interior int(convX). Using the 0th-order consistency
condition (3a) it is possible to re-write the 1st-order consistency condition (3b) as∑

a

pa(xa − x) ≡ Y p = 0 (14)

where Y is the N × d matrix whose columns are xa − x. The form (14) of the 1st-order
condition is preferable to (3b) as it results in better conditioning of the calculations.

Dropping the parametric dependence on x for notational simplicity, the Lagrangian
associated with the (LME)β is

L(p, λ0,λ) = fβ(p) + λ0 (1 · p− 1) + λ · Y p, (15)

where λ0 ∈ R and λ ∈ Rd are Lagrange multipliers. Therefore, the domain of definition of the
Lagrangian is RN

+ × R × Rd and its range is R. Since ∀x ∈ convX, β ∈ [0,∞), (LME)β has
a unique solution pβ , by the Kuhn-Tucker theorem there exist Lagrange multipliers λ∗0 and
λ∗ such that

{
pβ , λ∗0,λ

∗} is a saddle point of the Lagrangian and verifies the Kuhn-Tucker
conditions [8].

In order to analyze the saddle-point problem associated with the Lagrangian (15) it proves
convenient to differentiate between interior points, x ∈ int(convX), and points on the
boundary, x ∈ bd(convX). The interior point case corresponds to Slater’s condition that
there exist p ∈ RN

++ such that x = Xp (cf Theorem 6.9 in [8]), and, consequently, in this case
strong duality holds. We proceed to analyze these two cases in turn.

4.2.1. Interior points Let x ∈ int(convX) be an interior point. Define the partition function
Z : Rd × Rd → R associated with the node set X as

Z(x,λ) ≡
N∑

a=1

exp
[
−β|x− xa|2 + λ · (x− xa)

]
. (16)

Proposition 4.1. Suppose affX = Rd and x ∈ int(convX) and let β ∈ [0,∞). Then, the
unique solution of the local max-ent problem (LME)β is

pβa(x) =
1

Z(x,λ∗(x))
exp

[
−β|x− xa|2 + λ∗(x) · (x− xa)

]
, a = 1, ..., N, (17)

where
λ∗(x) = arg min

λ∈Rd
log Z(x,λ). (18)
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14 M. ARROYO AND M. ORTIZ

Furthermore, the minimizer λ∗(x) is unique.

Proof. The first N Kuhn-Tucker conditions are

0 = β|x− xa|2 + log pβa + 1 + λ∗0 + λ∗ · (xa − x), a = 1, ..., N

whence we obtain

pβa =
exp

[
−β|x− xa|2 + λ∗ · (x− xa)

]
exp(λ∗0 + 1)

,

for all x ∈ int(convX). The optimal Lagrange multipliers λ∗0 and λ∗ are the maximizers of the
Lagrange dual function

g(λ0,λ) = inf
p∈RN

+

L(p, λ0,λ) = −λ0 − f∗β(−λ01− Y T λ),

where

f∗β(q) =
N∑

a=1

exp
(
qa − β|x− xa|2 − 1

)
.

is the function conjugate to fβ(p) [24]. The Lagrange dual function can be maximized explicitly
with respect to λ0, with the result

λ∗0 = arg max
λ0∈R

{
−λ0 − exp(−λ0 − 1)

N∑
a=1

exp
[
−β|x− xa|2 + λ · (x− xa)

]}

which in turn yields the identity

Z(x,λ) = exp(λ∗0 + 1)

Inserting this expression into the Lagrange dual function, the reduced Lagrange dual function

ĝ(λ) = − log Z(x,λ)

is obtained. Thus it follows that if x ∈ int(convX), then the local max-ent shape functions
are given by eqs. (17) and (18). The existence of the minimizer of −ĝ, λ∗(x), is guaranteed by
the Kuhn-Tucker theorem. Next we show that this minimizer is unique. The gradient of the
objective function is

r(x,λ) ≡ ∂λ log Z(x,λ) =
N∑

a=1

pa(x,λ)(x− xa), (19)

where pa(x,λ) denotes the evaluation of (17) at an arbitrary value λ of the Lagrange multiplier.
As expected, the first order optimality condition results in the 1st order consistency condition.
The Hessian of the objective function is

J(x,λ) ≡ ∂λ∂λ log Z(x,λ) =
N∑

a=1

pa(x,λ)(x− xa)⊗ (x− xa)− r(x,λ)⊗ r(x,λ). (20)

©



LOCAL MAX-ENT APPROXIMATION SCHEMES 15

Consider now a non-zero vector u ∈ Rd and, let ua = u · (x − xa). Since by assumption
affX = Rd it follows that not all ua are identical. In addition, it follows from (17) that
pa(x,λ) > 0. Hence, by the strict convexity of the square function, we have

u · J(x,λ)u =
∑

a

pa(x,λ)u2
a −

(∑
a

pa(x,λ)ua

)2

> 0.

Consequently, J(x,λ) is positive definite for all λ ∈ Rd and therefore log Z is strictly convex
and the minimizer of (18) is unique. 2

Note that, in the absence of the first order consistency conditions, the resulting approximants
are Shepard’s functions with Gaussian weight.

4.2.2. Boundary points The treatment of boundary points x ∈ bd(convX) can be reduced to
the problem analyzed in the preceding section by exploiting the reduced face problem property
of convex approximation schemes (cf § 2.2). Recall that the contact set C(x) of the point x
with respect to convX is the smallest face of convX that contains x. The dimension of C(x)
is the face dimension of x. The local max-ent shape functions then follow from the translation
and restriction of problem (LME)β to the node set X ′ = X ∩ C(x) − x and the subspace
L = affX ′, whose dimension is the face dimension of x. If the face dimension is zero, then the
problem is trivial. Otherwise, x − x belongs to the interior of convX ′ = C(x) − x ⊂ L, and
proposition 4.1 applies.

4.3. Spacial smoothness of the shape functions

The smoothness of the local max-ent approximants pβ(x) is not guaranteed a priori, since they
are characterized pointwise by a convex program. We next establish the differentiability of the
shape functions with respect to x, which ultimately depends on the smoothness of λ∗(x). As
before, we assume affX = Rd for simplicity and without loss of generality.

Proposition 4.2. Suppose affX = Rd and let β : convX → [0,∞) be Cr in int(convX). Then
the local max-ent shape functions are of class Cr in int(convX).

Proof. Consider the function from Rd × Rd to Rd given by

F (x,λ) =
∑

a

pa(x,λ)(x− xa)

If β ∈ Cr, then it follows from (16) and (17) that F is likewise is Cr. In the proof
of proposition 4.1 we have verified that F (x,λ∗) = 0 and det ∂λF (x,λ∗) 6= 0 for all
x ∈ int(convX). Consequently, by the implicit function theorem, λ∗(x) is a Cr function
in int(convX), and the theorem follows from (16) and (17). 2

Computing the derivatives of the shape functions with respect to x is not altogether
straightforward because the derivatives of the Lagrange multiplier λ∗(x) are involved in the
calculation. In Appendix II, the explicit form of the derivatives of the shape functions with
respect to x is given for a general function β(x). If β is constant, the remarkably simple
expression

∇pβa(x) = −pβa(x)J(x,λ∗(x))−1 (x− xa). (21)
is obtained as a special case.

©



16 M. ARROYO AND M. ORTIZ

4.4. Smoothness and limits with respect to the thermalization

We next study the dependence of the local max-ent approximants on the thermalization
parameter β. We first establish that pβ is a continuous function of β in [0,+∞) and smooth
in (0,+∞). We next analyze the more interesting athermal limit, as β → +∞.

4.4.1. Continuity and differentiability properties

Proposition 4.3. Let x ∈ convX. Let pβ(x) be the unique minimizer of the problem
(LME)β. Then, pβ(x) is a continuous function of β in [0,+∞).

Proof. Let β0 ∈ [0,+∞). We first show that

fβ(x, ·)−→fβ0(x, ·) as β −→ β0 uniformly on Px(X). (22)

We fix x and omit it from all expressions in the proof. Equation (22) simply follows from the
fact that for any given ε > 0, |fβ0(p)− fβ(p)| ≤ ε,∀β ∈ [0,+∞) ∩ [β0 − δ, β0 + δ] with

δ = ε/(N diam2X), (23)

and ∀p ∈ P(X). Here diamX denotes the diameter of convX. Then, by uniform convergence
and recalling that (LME)β and (LME)β0 have unique minimizers, we have

lim
β→β0

fβ(pβ) = lim
β→β0

min
p∈P(X)

fβ(p) = min
p∈P(X)

fβ0(p) = fβ0(pβ0
).

We now consider a sequence {βk}k∈N ⊂ [0,+∞) converging to β0, and the associated sequence
of minimizers of (LME)βk

, {pβk
}k∈N ⊂ P(X). Since P(X) is compact, this sequence has at

least a convergent subsequence {pβkj
}j∈N converging to q ∈ P(X). By uniform convergence

and the continuity of fβ0 in P(X), it easily follows that

lim
j→∞

fβkj
(pβkj

) = fβ0(q).

From the arguments above, it follows that fβ0(pβ0
) = fβ0(q), and consequently q = pβ0

, by the
uniqueness of the minimizer of fβ0 . Thus, any convergent subsequence of {pβk

}k∈N converges
to pβ0

, and, invoking the compactness of P(X), we conclude that

lim
k→∞

pβk
= pβ0

.

Since the sequence {βk}k∈N converging to β0 is arbitrary, the continuity of the minimizer as a
function of β at any point β0 ∈ [0,+∞) immediately follows. 2

It follows as an immediate corollary that for x ∈ convX,

lim
β→0

pβ(x) = p0(x),

and thus the max-ent convex approximation schemes are recovered from their local
counterparts in the limit β → 0. Furthermore, since δ in Eq. (23) is independent of x, it
follows that if β → β0 uniformly on convX (for instance if the thermalization parameter is
uniform in convX), then pβ → pβ0

uniformly on convX.
Finally, we note the following smoothness property pβ :

©
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Proposition 4.4. Let x ∈ convX. Then, pβ(x) is a C∞ function of β in (0,∞).

Proof. The proof is identical to that of proposition 4.2 with F regarded as a function of β
and λ. 2

4.4.2. Athermal limit The limit β → +∞ is better analyzed by considering the problem
equivalent to (LME)β of minimizing the function

f̂β(x,p) = U(x,p)− β−1H(p)

in Px(X). The case β = +∞ coincides with Rajan’s program (RAJ). The methods used in
proposition 4.3 only provide a definite answer about the limit of pβ as β → +∞ when the
points are in general positions:

Proposition 4.5. Let x ∈ convX. Consider a sequence of nonnegative reals {βk}k∈N diverging
to +∞ as k → +∞. Then, every convergent subsequence of {pβk

(x)}k∈N converges to a
solution of (RAJ). Furthermore, if the nodes of X are in general positions, then pβ(x)
converges to the unique solution of (RAJ), the Delaunay convex approximants, as β →∞.

Proof. The proof is analogous to that of Proposition 4.3. The last argument requires the
uniqueness of the limit problem. One simply needs to verify that f̂β → U uniformly as β →∞.
Indeed, since

∑
a pa log pa ≤ log N for all p ∈ RN

+ such that 1 · p = 1, it immediately follows
that |f̂β(x,p)− U(x,p)| ≤ (log N)/β, ∀x ∈ convX, ∀p ∈ Px(X). 2

We next show that regardless of the uniqueness of the minimizers of the athermal problem
(RAJ), the limit of the minimizers of (LME)β exists as β → +∞. Thus, the max-
ent regularization of Rajan’s program selects a distinguished element of the set of solutions of
(RAJ), that which is Pareto optimal, which is unique by virtue of the strict concavity of the
entropy in the convex set SRAJ

x (X).

Proposition 4.6. Let x ∈ convX, and consider the solution of (RAJ) with maximum
entropy:

pPareto
∞ (x) = arg max

p∈SRAJ
x (X)

H(p).

Then,
lim

β→+∞
pβ(x) = pPareto

∞ (x).

Proof. We fix x and omit it from the proof. Let p∞ be an arbitrary element of SRAJ(X) so that
U(p∞) = m∞, the minimum value of U in P(X). Let {βk}k∈N be a sequence of nonnegative
reals diverging to +∞ as k → +∞, and {pβk

}k∈N the associated sequence of solutions of
(LME)βk

. Let {pβkj
}j∈N be a convergent subsequence converging to p̂∞ ∈ SRAJ(X) according

to the preceding proposition. For j large enough, βkj
> 1, and consequently, by the convexity

of SRAJ(X), we have

p∞j ≡
(

1− 1
βkj

)
p∞ +

1
βkj

p̂∞ ∈ SRAJ(X).

©



18 M. ARROYO AND M. ORTIZ

Consider also the sequence in P(X) defined by

pj ≡
(

1− 1
βkj

)
p∞j +

1
βkj

pβkj
.

It is clear that limj→∞ pj = p∞. By optimality, we have

U(pβkj
)− 1

βkj

H(pβkj
) ≤ U(pj)−

1
βkj

H(pj),

and since

U(pj) =
(

1− 1
βkj

)
m∞ +

1
βkj

U(pβkj
),

it follows that

βkj

(
U(pβkj

)−m∞

)
−H(pβkj

) ≤
(
U(pβkj

)−m∞

)
−H

(
pj

)
. (24)

By the continuity of U , limj→∞

(
U(pβkj

)−m∞

)
= 0. On the other hand, noting that

f̂βkj
≥ U , we have

0 ≤ f̂βkj
(pβkj

)− U(p̂∞) ≤ f̂βkj
(p̂∞)− U(p̂∞) = −H(p̂∞)

βkj

,

and consequently

0 ≤ βkj

(
U(pβkj

)−m∞

)
≤ H(pβkj

)−H(p̂∞),

which by virtue of the continuity of H implies that limj→∞ βkj

(
U(pβkj

)−m∞

)
= 0. Thus,

taking limits at both sides of Eq. (24), we conclude that

−H(p̂∞) ≤ −H(p∞).

Since p∞ is an arbitrary element of SRAJ(X), we conclude that p̂∞ = pPareto
∞ . Thus, every

convergent subsequence of {pβk
}k∈N has pPareto

∞ as its limit and, by the compactness of P(X),
we conclude that

lim
k→∞

pβk
= pPareto

∞ .

Since the sequence {βk}k∈N diverging to +∞ is arbitrary, the proposition follows. 2

Example 4.1. Consider a node set consisting of the four corners of the square Ω = [0, 1] ×
[0, 1] ⊂ R2

X = { (0, 0), (1, 0), (1, 1), (0, 1) }.

For this node set, the Delaunay triangulation is not unique and (RAJ) has multiple solutions.
Let us define the bilinear shape functions

pbil
1 (x, y) = (1− x)(1− y), pbil

2 (x, y) = x(1− y), pbil
3 (x, y) = xy, pbil

4 (x, y) = (1− x)y,
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and note that pbil(x, y) ∈ P(x,y)(X), ∀(x, y) ∈ Ω. It is readily verified that in this particular
case (actually for any rectangular configuration) pbil = pβ irrespective of the value of β.
Indeed, from the first three Kuhn-Tucker conditions

0 = β[(x− xa)2 + (y − ya)2] + log pbil
a + 1 + λ∗0 + λ∗x(xa − x) + λ∗y(ya − y), a = 1, 2, 3

we can obtain explicitly

λ∗0 = 1 + βx(x− 1) + βy(y − 1) + x log
1− x

x
+ y log

1− y

y

λ∗x = β(2x− 1) + log
1− x

x

λ∗y = β(2y − 1) + log
1− y

y
.

With these Lagrange multiplier values, the fourth Kuhn-Tucker condition is identically
satisfied.

Thus, for the square the Pareto set collapses to a single point and, consequently, its pPareto
∞ =

pbil, which, according to the propositions above, is the solution of (RAJ) of maximum
entropy. This simple examples thus shows that, in addition to the Rajan convex approximants
corresponding to the two Delaunay triangulations and their convex combinations, the bilinear
shape functions are also a Rajan convex scheme, and in fact the distinguished one. A simple
calculation shows that indeed U = x(1 − x) + y(1 − y) for the bilinear shape functions and
for both sets of shape functions associated with the Delaunay triangulations. It is also easy
to verify explicitly that the entropy of the bilinear shape functions is greater. This example
illustrates how the local max-ent approximants eliminate the degeneracy of the Delaunay
triangulation.

This example also illustrates the lower semi-continuity of the minimum negative entropy
of all the Rajan approximants when seen as a function of the node positions, i. e., of
−Hm(X, x) ≡ −H

(
pPareto
∞ (x)

)
. Here, pPareto

∞ corresponds to the node set X. Thus, at
degenerate configurations Hm(X, x) fails to be continuous with respect to the first argument in
general, but is lower-semicontinuous. Consider for instance the following one-parameter family
of node sets:

Xs = { (−s,−s), (1, 0), (1 + s, 1 + s), (0, 1) },

and consider the average value of the negative entropy of the distinguished Rajan approximant
(for s 6= 0 there is only one Rajan approximant, the Delaunay approximant) in convXs:

h(s) =

∫
convXs

−Hm(Xs,x) dx

volume(convXs)
.

It is readily verified that

h(s) =
{
−1 for s = 0
−5/6 otherwise

which demonstrates the lower-semicontinuity of −Hm(Xs,x) at s = 0. �

Example 4.2. To illustrate the selection of a distinguished Rajan convex approximant by
the max-ent regularization in degenerate cases, we consider a node set in R2 containing four
co-spherical nodes. The local max-ent shape function corresponding to one of the co-spherical
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20 M. ARROYO AND M. ORTIZ

Figure 3. Illustration of the thermal regularization in degenerate cases for β = 10h−2, where h is the
nodal spacing. The nodal set contains four co-spherical nodes that are connected by bilinear shape
functions. The remaining nodes are in general positions and are connected by ostensibly affine shape

functions

nodes is depicted in Fig. 3 for a value of β = 10h−2 close to the athermal limit, where h is a
representative nodal spacing. It is verified from the figure that the regularization connects the
co-spherical nodes with bilinear shape functions, whereas the nodes in general positions are
connected by means of ostensibly affine shape functions. �

4.5. Alternative interpretations of the local max-ent program

The following interpretations of the local max-ent program provide useful insights into the
nature of the resulting approximation schemes.

4.5.1. Regularization of the Delaunay program The local max-ent program may be regarded
as a perturbation of Rajan’s program (RAJ). The perturbation regularizes that linear program,
possibly having multiple optima, into a one-parameter family of better-behaved smooth
and strictly convex programs. The last proposition shows that local max-ent approximation
effectively removes the degeneracy of the Delaunay triangulation. Thus, when the Delaunay
triangulation is not unique the optimal path of local max-ent approximants converges to a
unique distinguished set of Rajan shape functions in the limit. This distinguished shape
functions are those of maximum entropy and are Pareto optimal. Thus, the proposed
regularization is in analogy to barrier and penalty methods in linear and convex programming,
and viscosity solutions of variational problems [25, 26].

4.5.2. A dual regularization of the Delaunay program Alternatively, one can start from the
dual (RAJ) problem, an unconstrained non-smooth piecewise-linear convex program (the
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minimization of a polyhedral convex function), and approximate it by a one-parameter family
of smooth, strictly convex programs. The dual (RAJ) program is

min
µ∈Rd

max
a=1,...,N

(
µ · (x− xa)− |x− xa|2

)
, (25)

Indeed, equivalent forms of this problem are [24]

minimize t

subject to µ · (x− xa)− |x− xa|2 ≤ t a = 1, . . . , N

and

maximize −b · ν
subject to AT ν + c � 0

where we write

ν =
{

t
µ

}
, A =

[
1T

Y

]
, b =

{
1
0

}
, c =

{
|x− x1|2, . . . , |x− xN |2

}T
. (26)

The dual is this program is

minimize c · p
subject to Ap = b

p � 0

which is a restatement of (RAJ), as expected. Now consider the log-sum-exp function

lse(z1, . . . , zN ) = log

(
N∑

a=1

exp za

)
, (27)

and the one-parameter family of analytic functions

hβ(z1, . . . , zN ) =
1
β

lse(βz1, . . . , βzN ). (28)

which, in view of the estimates,

0 ≤ hβ(z1, . . . , zN )− max
a=1,...,N

za ≤
log N

β
. (29)

approximate uniformly the max function as β → ∞ [24]. Replacing the max function in
Eq. (25) by this approximation gives

min
µ∈Rd

1
β

log

{
N∑

a=1

exp
[
βµ · (x− xa)− β|x− xa|2

]}
, (30)

which is a statement of the dual program of (LME)β .
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4.5.3. Statistical mechanics interpretation The parallel between the local max-ent program
and statistical mechanics is apparent in the preceding developments and can be further
formalized as follows. Consider a system whose configuration space is the index set I =
{1, . . . , N}, and we wish to describe the statistics of this system, i. e. its probability distribution
p. The energy of configuration a ∈ I is

Ea = |xa − x|2 (31)

where x is a controllable parameter. Its statistical expectation is the internal energy of the
system U(x,p) =

∑N
a=1 paEa. The canonical distribution of the system then follows as the

solution to the variational problem

inf
p∈Px(X)

{
U(x,p)− β−1H(p)

}
(32)

where β = 1/kBT , kB is Bolzmann’s constant and T is the absolute temperature. Evidently,
(32) is just a re-statement of the problem (LME)β . The value of the infimum F (x, β) in (32)
is the free energy of the system. From this perspective, the local max-ent problem (LME)β

may be regarded as a thermalization of the Rajan problem (RAJ). Conversely, the Rajan
problem, may be regarded as the zero temperature limit of the thermalized problem. Thus,
thermalization replaces a problem of energy minimization at zero temperature, namely the
Rajan problem (RAJ), by the problem of computing the partition function (16) at finite
temperature. Since the configuration space is the index set I, the evaluation of the partition
function reduces to the computation of a finite sum. In this manner, the solution of the
linear programming problem (RAJ) is replaced by an explicit calculation. This connection
between the computation of partition functions and energy minimization in the limit of zero
temperature indeed was the original insight that led to the present work.

4.6. Examples

Figure 4 shows the local max-ent shape function and its partial derivatives for a node in a
two-dimensional node set as a function of the dimensionless parameter γ = βh2, where h
is a measure of the nodal spacing and β is constant over the domain. It can be seen from
this figure that the shape functions are smooth and their degree of locality is controlled by
the parameter γ. For the maximum value of γ = 6.8 shown in the figure the shape function
ostensibly coincides with the Delaunay shape function.

The parameter β can be allowed to depend on position and that dependence can be adjusted
adaptively in order to achieve varying degrees of locality. Figure 5 shows an illustration of this
type of adaptivity. In this example, the function β(x) is chosen such that the finite element
limit is attained at the left and center nodes of the node set, with increasing thermalization
away from these nodes. In applications, the question of the optimal distribution of β over the
domain of analysis arises naturally. In problems whose solutions minimize a certain functional,
a natural strategy is to select β(x) variationally, i. e., to let β(x) be such function as minimizes
the functional. However, this enhancement of the method will not be pursued in this paper.

Figure 6(a) illustrates the behavior of the local max-ent shape functions at the boundary
of the domain. In particular it should be noted that the shape functions of interior nodes
vanish at the boundary, and that the shape functions of extreme nodes equal one at their
corresponding node.
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γ = 0.8 γ = 1.8 γ = 2.8 γ = 6.8

Figure 4. Local max-ent shape functions for a two dimensional arrangement of nodes, and spacial
derivatives (arbitrary scale) for several values of γ = βh2.

0 5 10 15 20
0

0.5

1

Figure 5. One dimensional example of seamless transition to finite elements achieved by tuning the
function β(x).
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(a) (b)

Figure 6. (a) Illustration of the behavior of the local max-ent shape functions at the boundary of the
domain. (b) Example of anisotropic local max-ent shape function.

Finally, we briefly discuss measures of locality other than (11). For instance, suppose that
we adopt a general distance d in place of the standard Euclidean distance employed in (11).
The width of shape function pa is then

w[pa] =
∫

Ω

pa(x)d2(x,xa) dx. (33)

In this case, the local max-ent shape functions become

pa(x) =
1

Z(x,λ∗(x))
exp

[
−β(x)d2(x,xa) + λ∗(x) · (x− xa)

]
with the partition function appropriately modified. In particular, this extension can be useful
for purposes of defining anisotropic shape functions, e. g., in problems involving localization.
For instance, Fig. 6(b) shows a shape function defined using an Euclidian distance of the form
d(x, y) =

√
(x− y) ·G(x− y), for a constant metric tensor G. The localization of the shape

function to a plane is noteworthy in the figure.
Another variation of the standard local max-ent program is to consider measures of locality

that are not quadratic in the distance. In this manner, shape functions with different decay
behavior may be obtained. For instance, consider width of the form

w[pa] =
∫

Ω

pa(x)|x− xa|p dx. (34)

where 1 ≤ p ≤ ∞. Fig. 7(a)-(c) shows the resulting shape functions for p = 1, 3, 6 and
γ = 2.8, 1.4, 1.0, respectively. It is interesting to note that the l1-shape functions are not
differentiable at their corresponding nodes. Fig. 7(d) shows the function resulting from the
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(a) (b)

(c) (d)

Figure 7. Local max-ent shape functions for lp-distances. a) p = 1 and γ = 2.8; b) p = 3 and γ = 1.4;
c) p = 6 and γ = 1.0; d) log function and γ = 2.0.

function log |x − xa| with γ = 2, which leads to a decay of the form ∼ r−2 with distance r.
Interestingly, shape functions constructed from this locality measure verify the Kronecker-delta
property.

4.7. Practical evaluation of the shape functions

In practice, the evaluation of the local max-ent approximants at a given point x ∈ convX
does not require the solution of the (LME)β as a constrained convex program involving N
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Table I. Average number of Newton-Raphson iterations per sample point.

γ TolNR

10−5 10−10 machine precision
0.8 2.7 3.6 4.2
1.8 2.4 3.5 4.3
2.8 3.0 4.0 5.0
6.8 4.0 5.0 6.0

unknowns. Instead, as shown in § 4.2, it is sufficient to solve an unconstrained minimization
problem, Eq. (18), involving at most d unknowns, namely, the face dimension of x. This
problem is smooth, strictly convex and, by virtue of the Kuhn-Tucker theorem, is guaranteed
to have a unique solution. This fact confers efficiency and robustness to the calculation of the
local max-ent approximants. The resulting set of nonlinear equations

r(x,λ) = 0 (35)

for λ∗, where r(x,λ) is given by Eq. (19), can be solved numerically, e. g., by means of a few
Newton-Raphson interation. The requisite Hessian matrix is given by Eq. (20).

To illustrate the effectiveness of the Newton-Raphson method to solve Eq. (35), the average
number of iterations required for convergence with the criterion |r(x,λk)| ≤ TolNR is presented
in Table I for different values of γ and different tolerances. The node set of Fig. 4 is used
in this example, and the fine grid of sample points used to generate these plots is used to
compute the average. It is observed that, for a tolerance of 10−5, between 2 and 3 iterations
are sufficient over a broad range of values of the thermalization parameter. It is also observed
that, as the athermal limit is reached (for large values of γ), the Newton-Raphson method
needs more iterations for convergence. This slowdown in convergence is expected since the
objective function tends to a faceted polyhedral convex function as β → +∞ (cf §4.5.2).

It is evident from Eq. (17) that the support of the shape functions is the entire domain
convX, i. e., the local max-ent shape functions have global support. However, the shape
functions decay as exp(−β r2) with distance r to the corresponding node, and can thus
be truncated at distances greater than a small multiple of β−1/2. This decay property
establishes a connection with Gaussian radial basis functions (cf, e. g., [4]) and has the
important consequence that only a small number of nodes contribute ostensibly to the partition
function, which greatly reduces the computational cost of the solution of problem (18). For
practical purposes, a tolerance Tol0 is set below which we set the shape functions to zero.
Therefore, owing to the Gaussian decay, the numerically effective support of the shape function
corresponding to node xa is the ball centered at this point of radius Ra =

√
− log(Tol0)/β =

h
√
− log(Tol0)/γ. By way of illustration, if the tolerance is the double precision machine

precision (∼ 10−16) and γ = 1.8, then the radius is below 4.5 times the nodal spacing. The
fast decay of the shape functions can be observed in the first three columns of Fig. 4, where
the support has been determined for a tolerance of Tol0 = 10−6.

Once the shape functions have been evaluated, the calculation of the derivatives of the shape
functions is explicit by means of Eq. (21).
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5. APPLICATION TO LINEAR AND NONLINEAR ELASTICITY

Local max-ent approximation schemes provide a convenient choice of basis to use in conjunction
with the Rayleigh-Ritz—or constrained energy minimization—approach to elasticity problems.
In this section, we first present a displacement patch-test, and then proceed to demonstrate
the accuracy and convergence characteristics of the local max-ent solutions by means of two
examples of application: the standard benchmark problem of a linear elastic built-in cantilever
beam loaded at the tip; and the upsetting and extension of a block of compressible neo-Hookean
rubber. In all calculations we confine our attention to uniformly distributed node sets and the
parameter β is taken to be uniform. In addition, all numerical integrals are carried out using
standard quadrature rules based on the limiting Delaunay triangulation. For large values of β,
the local max-ent approximation scheme differs little from simplicial interpolation and a one-
point quadrature rule is found to suffice. For lower values of β a three point rule for triangles
and a four point rule for tetrahedra are used. The accuracy of the local max-ent solutions is
compared to that of the Delaunay linear finite elements. This comparison is natural in the
present context since linear finite elements arise in the athermal limit.

5.1. Patch test

In the displacement patch test, the boundary of the computational domain is subjected to an
affine transformation. For the numerical method to pass the test, the numerical solution in
the interior of the domain must reproduce this affine transformation exactly. Since the local
max-ent approximants satisfy the first order reproducing condition, the patch test is passed to
machine precision if exact integration is used. Thus, the test assesses the numerical quadrature
and the accuracy in the calculation of the shape functions.

Consider the square [0, 1]× [0, 1] of a linear isotropic elastic material characterized by Young
modulus E = 1 and Poisson’s ratio ν = 0.3. The boundary of the square is subjected to a
linear transformation characterized by the matrix(

1 −
√

3/2√
3 1/2

)
.

The two node sets depicted in Fig. 8 are considered. The figure also shows a typical quadrature
rule, based on the underlying Delaunay triangulation. Symmetric rules ranging form 1 to 175
points per triangle are considered in the calculations [27].

Table II reports the relative L2 errors for two different node sets, for two values of γ,
and for nine different quadrature rules. To specifically investigate the influence of numerical
quadrature, we have assigned TolNR and Tol0 to machine precision in this table. It can be
observed that for the structured node set, it is possible to pass the patch test ostensibly within
machine precision with 175 integration points per triangle. However, for an unstructured node
set the errors reduce more slowly as the number of quadrature points is increased, and a
maximum precision of 3 × 10−6 is achieved. These results conform to previous experience
for other meshfree methods, special quadrature rules notwithstanding [28]. It should also be
mentioned that in the range of one to six quadrature points per triangle there is no significant
difference between the structured and unstructured node sets. It is also noteworthy that, for
the node set (b), a lower value of γ requires a more accurate quadrature for a given error in
the patch test. The relative errors reported in Table II for the first four rules are not affected if
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Figure 10. Linear elastic built-in cantilever loaded at the tip, convergence plots. (a) ν = 0.3 and (b)
ν = 0.499.

to the neutral axis of the beam, and therefore only the upper half of the beam is analyzed.
It should be noted that, owing to the weak Kronecker-delta property of the local max-

ent approximants, the imposition of Dirichlet boundary conditions is straightforward without
degrading the optimal rate of convergence: it is sufficient to set the nodal displacement to the
prescribed values. Indeed, owing to the properties outlined in Section 2.2, the basis functions
corresponding to the nodes on a face alone retain the full approximation properties on that
face.

Figure 9 compares the exact deformed configuration of the beam and the numerical deformed
configurations obtained by means of linear finite elements and local max-ent shape functions
with γ = 1.8. In this example, Poisson’s ratio is ν = 0.3 and thus volumetric locking is not an
issue. The superior accuracy of the local max-ent approximation scheme is clearly apparent
from this figure.

Convergence plots are shown Fig. 10. In this plots, the L2 norm of the error is defined as

‖e‖L2 =
(∫

Ω

|u− uh|2 dx

)1/2

, (36)

whereas the energy semi-norm is

‖e‖E =
(

1
2

∫
Ω

(ε− εh) : (σ − σh) dx

)1/2

, (37)

In these expressions u, ε, and σ denote the exact displacement, strain and stress fields, and
uh, εh, and σh denote the corresponding numerical approximations. The convergence plots
display the numerical errors normalized by the norm of the exact solution as a function of a
normalized nodal spacing.
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Fig. 10(a) shows the convergence plots for the case of ν = 0.3. It is evident from these
plots that there is an optimal value for the parameter γ of around 1.8 for which accuracy
is maximized. A similar behavior is observed in meshfree methods in terms of the dilation
parameter. For very low values of γ convergence is degraded. This is due to the numerical
quadrature: with the 12 point rule and γ = 0.8, the optimal rate of convergence is recovered.
It should be noted that for the other values of γ considered, improving the numerical
quadrature does not affect noticeably the numerical errors, which are mostly due to the
approximation properties of the local max-ent schemes. As expected, the behavior of the local
max-ent solutions approaches that of the Delaunay solutions as γ increases. The local max-
ent solutions exhibit optimal convergence rates, whereas the Delaunay solutions display slightly
suboptimal rates. Furthermore, the accuracy of the local max-ent solutions is vastly superior
to that of the Delaunay solutions, as evidenced by the large shift in the convergence curves.
The distinct advantage of the local max-ent approximations over Delaunay approximations
persists when the cost of the solutions is carefully accounted for.

Figure 10(b) shows the convergence plots for a nearly incompressible material. It is well
known that increasing the support size in MLS meshfree methods can alleviate the problem
of volumetric locking. However, locking is not completely eliminated (cf [4] and references
therein) since the discretization schemes do not commute exactly with the Helmoltz-Hodge
decomposition of the displacement field. This type of behavior is also exhibited by local max-
ent approximations; for nearly incompressible materials, the asymptotic rate of convergence is
reached at much coarser discretizations for the local max-ent approximants than for simplicial
finite elements (cf Fig. 10(b)). Nevertheless, as the incompressible limit is reached locking
occurs for both methods.

Figure 11. Compression of a hyper-elastic block.
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Figure 12. Final deformation for the finest FE mesh and second-coarsest local max-ent discretization
(ν0 = 0.495).
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Figure 13. Signed relative error in strain energy with respect to a reference numerical solution for (a)
ν0 = 0.333, and (b) ν0 = 0.495.
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5.3. Nonlinear elasticity: hyper-elastic block

Next we demonstrate the performance of local max-ent approximations in strongly nonlinear
problems. The test case under consideration concerns the compression and tension of a
hyperelastic block. The material is compressible-neo Hookean with energy density

W (F ) =
1
2
λ log2(J)− µ log(J) +

µ

2
tr(F T F ) (38)

where F is the deformation gradient, J = det(F ) and λ and µ are Lamè constants. Two sets
of material constants are considered: λ/µ = 2, corresponding to an initial Poisson’s ratio of
ν0 = 0.333; and λ/µ = 100, corresponding to an initial Poisson’s ratio of ν0 = 0.495. By
the symmetry of the problem only an eighth of the sample needs to be analyzed. Quasi-static
loading conditions are considered. The prescribed displacements are applied incrementally and
the total potential energy is minimized by the conjugate gradient method.

Figure 11 shows the deformation of the block at 75% compression for the second parameter
set. The robustness of the method for nonlinear problems involving severe deformations is
evident from this figure. It is interesting to note that some nodes lie outside the deformed
body, which is a consequence of the non-interpolatory character of the shape functions.

Figure 13 shows the deformed configurations of the block at 100% tensile deformation. The
calculation is performed with seven uniform node sets of variable resolution and for both sets
of material constants. Figure 13 shows the dependence of a normalized signed relative error in
strain energy (relative to an overkill numerical solution) on the nodal spacing. It is evident from
this figure that the numerically computed potential energy decreases monotonically with mesh
refinement, as expected. Figure 13(a) depicts convergence curves for the local max-ent and
finite element solutions in the compressible case (ν0 = 0.333). It is observed from that figure
that the accuracy of the local max-ent solution is vastly superior to that of the finite element
solution. The finest finite element solution has a comparable—albeit slightly larger—error than
the second-coarsest local max-ent solution, Fig. 12. By contrast, the CPU time incurred by
the local max-ent solution is over a hundred times shorter than that of the finite element
solution. This difference in performance is more pronounced in the nearly incompressible case,
Fig. 13(b). In this case, the finite element solution converges very slowly and the coarse meshes
result in very large errors. Indeed, the coarsest local max-ent solution suffices to achieve an
accuracy comparable to that of the finest finite element mesh, at a CPU-time knockdown
factor of one thousand.

6. SUMMARY AND CONCLUDING REMARKS

We have developed a new type of approximation scheme, which we term local max-
ent approximation scheme, which represents a compromise between unbiased statistical
inference, in the sense of information theory, and the desire to define shape functions of the
least width possible. The resulting shape functions are non-negative, possess a weak Kronecker-
delta property at the boundary, and reduce in the limit to piecewise affine interpolation over
a Delaunay triangulation, whereas away from this limit the shape functions are smooth and
analogous to those employed in MLS schemes. In this sense, local max-ent approximation
supplies an efficient bridge between simplicial finite elements and meshfree methods. In
particular, by adjusting the spatial variation β(x), it is possible to select regions of the domain
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of analysis which are treated by finite elements and regions that are treated in the style of
meshfree methods, with seamless smooth transitions between those regions. This is in contrast
to other approaches coupling meshfree schemes with finite elements (cf [4] and references
therein). Although we have not developed here the blending of the local max-ent approximants
with other convex approximants such as subdivision approximants, NURBS, or linear finite
elements, the variational nature of our method makes this coupling straightforward. The
calculation of the shape functions can be carried out simply, robustly and efficiently in any
spatial dimension. The numerical tests presented in this paper suggest that, for problems
possessing smooth solutions, local max-ent approximations supply high accuracy at low cost.

We conclude by pointing out some of the limitations of the method and opportunities for
further development. As defined in this paper, local max-ent shape functions are necessarily
positive, which precludes the formulation of high-order schemes satisfying the second order
consistency condition in Eq. (9). The positivity constraint is introduced mainly in order enable
the interpretation of the shape functions as probability densities, which in turn facilitates the
conceptual connections with information theory. Higher-order schemes may be obtained by
relaxing the requirement expressed in Eq. (9). These developments, as well as the formulation
of strictly compactly supported max-ent approximants, will be reported in a subsequent paper.

The local max-ent approximation schemes have been defined in the convex hull of the
node set. If non-convex domains are treated, the local max-ent approximants lose the weak
Kronecker-delta property in the non-convex parts of the boundary, and thus behave similarly
to MLS approximants. The effective treatment of non-convex domains is of considerable
interest and has been extensively studied in the context of MLS-based meshfree methods
[30, 31, 32]. Visibility, diffraction, and constrained path criteria have been proposed that
modify how nearby nodes interact in the vicinity of a non-convex part of the boundary. These
methods are directly applicable to local max-ent approximation. For instance, it is possible to
replace the Euclidean distance |x− xa| in the definition of the shape functions by the length
of the shortest path contained within the domain connecting x and xa. Alternatively, the
non-convex domain can be decomposed into convex sub-domains and approximation schemes
can then be constructed separately in each of the sub-domains. The schemes in each sub-
domain are guaranteed to be conforming by the conforming patches property of local max-
ent approximation schemes.

Finally we remark briefly on the possibility of adapting the function β(x). In problems having
a variational structure and where the solutions obey a minimum principle, the natural approach
is to let the minimum principle itself select the optimal function β(x). In this view, the energy
function is minimized with respect to the displacement field and with respect to β(x). This
program is facilitated by the ability to compute explicitly derivatives of shape functions with
respect to β, and by the guaranteed solvability of Eq. (18) for any non-negative value of β. This
is in contrast to the problem of choosing an optimal value of the dilation parameter in MLS
approximations. In this case, it is often not straightforward to obtain analytical derivatives of
the shape functions with respect to the dilation parameter. In addition, the dilation parameter
is subject to lower-bound solvability constraints which are difficult to verify a priori.
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APPENDIX

II. Spacial derivatives of the shape functions

In this appendix we detail the procedure for the calculation of the spatial derivative of the shape
functions. For the sake of generality we consider the case in which the parameter β(x) is spatially
non-uniform. We denote spatial gradients of real functions by ∇, whereas for vector-valued functions
we denote by Dy(x) the matrix partial derivatives. The symbol ∂ denotes partial differentiation. We
define the following functions

fa(x, λ, β) = −β|x− xa|2 + λ · (x− xa), (39)

pa(x, λ, β) =
exp [fa(x, λ, β)]∑
b exp [fb(x, λ, β)]

, (40)

r(x, λ, β) =
∑

a

pa(x, λ, β)(x− xa), (41)

J(x, λ, β) =
∂r

∂λ
=
∑

a

pa(x, λ, β)(x− xa)⊗ (x− xa)− r(x, λ, β)⊗ r(x, λ, β). (42)

Given a function h(x, λ, β), we define the function h∗ that depends only on x as

h∗(x) = h (x, λ∗(x), β(x)) ,

where λ∗(x) is the unique maximizer of

g(λ) = − log

{∑
a

exp [fa(x, λ, β(x)]

}
.

Our goal is to compute ∇p∗a. It is readily verified that

∇p∗a = p∗a

(
∇f∗a −

∑
b

p∗b∇f∗b

)
.

By the chain rule, we have

∇f∗a =

(
∂fa

∂x

)∗
+

(
∂fa

∂λ

)∗
Dλ∗ +

(
∂fa

∂β

)∗
∇β, (43)

where (
∂fa

∂x

)∗
= −2β (x− xa) + λ∗(x),

(
∂fa

∂λ

)∗
= (x− xa),

(
∂fa

∂β

)∗
= −|x− xa|2.

The only term that is not available explicitly in eq. (43) is Dλ∗. In order to compute this term we
note that, since r∗ is identically zero,

0 = Dr∗ =

(
∂r

∂x

)∗
+

(
∂r

∂λ

)∗
Dλ∗ +

(
∂r

∂β

)∗
⊗∇β.
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Simple calculations show that(
∂r

∂λ

)∗
= J∗,

(
∂r

∂x

)∗
= −2β J∗ + id,

(
∂r

∂β

)∗
= −

∑
a

p∗a|x− xa|2(x− xa),

whence it follows that

Dλ∗ = 2β id− (J∗)
−1

+ (J∗)
−1

(∑
a

p∗a|x− xa|2(x− xa)⊗∇β

)
.

Rearranging terms, and noting that p∗a verifies the linear consistency condition, we finally obtain

∇p∗a = −p∗a (J∗)
−1

(x− xa) + p∗aKa∇β, (44)

where we write

Ka =

[∑
b

p∗b |x− xb|2(x− xb)

]
· (J∗)−1

(x− xa)− |x− xa|2 + U(x, p∗).
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