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Abstract

The aim of this work is to develop a numerical framework for accurately and
robustly simulating the different conditions exhibited by thermo-mechanical prob-
lems. In particular the work will focus on the analysis of problems involving large
strains, rotations, multiple contacts, large boundary surface changes and thermal
effects.

The framework of the numerical scheme is based on the Particle Finite Ele-
ment Method (PFEM) in which the spatial domain is continuously redefined by a
distinct nodal reconnection, generated by a Delaunay triangulation. In contrast
to classical PFEM calculations, in which the free boundary is obtained by a ge-
ometrical procedure (a«—shape method), in this work the boundary is considered
as a material surface, and the boundary nodes are removed or inserted by means
of an error function.

The description of the thermo-mechanical constitutive model is based on the
concepts of large strains plasticity. The plastic flow condition is assumed nearly
incompressible, so a u-p mixed formulation, with a stabilization of the pressure
term via the Polynomial Pressure Projection (PPP), is proposed.

One of the novelties of this work is the use of a combination between the
isothermal split (Simo and Miehe [79]) and the so-called IMPL-EX hybrid inte-
gration technique (proposed by Oliver, Huespe and Cante [53]) to enhance the
robustness and reduce the typical iteration number of the fully implicit Newton-
Raphson solution algorithm.
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The new set of numerical tools implemented in the PFEM algorithm -including
new discretization techniques, the use of a projection of the variables between
meshes, and the insertion and removal of points- allows us to eliminate the neg-
ative Jacobians present during large deformation problems, which is one of the
drawbacks in the simulation of coupled thermo-mechanical problems.

Finally, two sets of numerical results in 2D are stated. In the first one, the
behavior of the proposed locking free element type and different time integration
schemes for thermo-mechanical problems is analyzed. The potential of the method
for modeling more complex coupled problems as metal cutting and metal forming
processes is explored in the last example.

Keywords: Particle Finite Element Method (PFEM), Thermo-elastoplasticity,
IMPL-EX integration, Remeshing and Geometry Update.
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1 Introduction

1.1 Motivation

Thermo-mechanical processes, which involve large strains and rotations, multiple con-
tacts and generation of new surfaces, are a major challenge of the numerical simulation,
and thus require advanced numerical techniques. Numerical modeling has been applied
to simulate complex thermo-mechanical processes, in order to predict incoming diffi-
culties such as defects in formed parts, improper tool profile, and low lifetime.

First, we lay out a summary of the advantages and drawbacks of the different
numerical strategies capable to represent the complex phenomena taking place. The
principal problem in the use of a conventional FE model with a Langrangian descrip-
tion is the mesh distortion in high deformation processes. Traditional Langrangian
approaches such as FEM cannot resolve the large deformations very well. Element
distortion has been always matter of concern that turns the modeling into an incipi-
ent analysis. Instead, the FEM with a Eulerian formulation require the knowledge of
the deformed geometry in advance, which, undoubtedly, restricts the range of problem
conditions capable of being analyzed.

A lagrangian formulation was used to simulate complex thermo-mechanical pro-
cesses in [H0, 61, 81, 8I] and [25]. The Eulerian formulation is used in [67]. In order
to avoid the disadvantages of Finite Element Lagrangian and Eulerian formulations,
other computational techniques have been investigated. One of them is the Finite Ele-
ment Arbitrary Lagrangian Eulerian (ALE) formulation in conjunction with adaptive
mesh techniques [35], [36], [54]. The ALE formulation combines the best features of pure
Lagrangian analysis (in which the mesh follows the material) and Eulerian analysis (in
which the mesh is fixed and the material flows through the mesh). In ALE framework
mesh motion is independent of material motion, for that reason high quality finite ele-
ment meshes are preserved during the numerical simulation. In addition to the numer-
ical strategies based on the finite element, there exist some recently developed meshless
methods. Among them, we can mention the smoothed-particle hydrodynamics (SPH)
[47], the finite pointset method (FPM)[84], the constrained natural element method
(C-NEM) [29,/43], the discrete element method (DEM) [32], a meshless technique based
on a reproducing kernel particle method (RKPM) [23, 66} 19], and a meshless method
based on maximum entropy meshfree approximants (MEM) [38]. The main advantage
of a meshless method is that it does not need a finite element mesh to calculate deriva-
tives. Material properties and state variables are available at a set of points, called
particles. This avoids severe problems associated with mesh tangling and distortion
that usually occur in Finite Element Lagrangian formulations involving large deforma-
tion and strain rates. The main disadvantage of meshless methods in comparison with
the FEM is the neighbors search, because updating the data base of neighbor particles
takes usually a long time in comparison with other calculations needed during each
time step. Another disadvantage of meshless methods is that due to a fix number of
particles used in the numerical simulation, the particles usually concentrate in some
region and disperse in other areas. Also, imposing essential boundary conditions in
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meshless methods is not as straightforward as for the finite element method. Further-
more, nearly incompressible conditions are a big challenge to meshfree methods. The
main objective of this work is precisely to contribute to solve some of the problems
described above through the extension of the Particle Finite Element Method (PFEM)
to thermo-mechanical problems in solid mechanics that involves large strains and ro-
tations, multiple contacts and generation of new surfaces. In this work, we exploit the
particle and lagrangian nature of the PFEM and the advantages of finite element dis-
cretization. The new ingredients of PFEM are focused on the insertion and removal of
particles, the use of constrained Delaunay triangulation and a novel transfer operator
of the internal variables, which minimizes the numerical diffusion of internal variables,
one of the main disadvantages of the standard finite elements. As a consequence of
PFEM basic features, the element distortion is minimized during all the numerical
simulation.

1.2 Contents

Next we present the mathematical and numerical ingredients necessary to simulate a
classical thermo-mechanical problem, including the balance of momentum and its finite
element discretization, and the balance of energy and its finite element discretization.
The constitutive equation for the treatment of metals and the used time discretization
will be detailed. Particular solutions related to the treatment of the incompressibility
constraint and for the improvement of the time integration scheme are explained. All
developments are build within the Particle Finite Element Method (PFEM).

The paper starts with the definition of the PFEM in section [2 the basic general
steps and the custom characteristics used in the present formulation are explained. In
section [3|the coupled thermo-mechanical problem is described with a summarized form
of the balance equations of the initial boundary value problem (IBVP). The equations
are stated using a thermo-elastoplastic split of the problem and particularized with the
mixed displacement-pressure formulation used for the finite element discretization. A
review of the most used techniques for the treatment of the incompressibility constraint
is made. The pressure stabilization method used in this work is explained in detail
in this section. The main expressions of the finite element numerical integration of
the IBVP are developed in section [d] In section [f] we present an overview of the
thermo-elastoplastic model at finite strains proposed by Simo et al. in [79, [77, [7§].
This model will be used in the examples of section [7] that test the capabilities of the
present formulation. Also in section [5] the IMPL-EX scheme for the constitutive law
integration is presented. The flow rules, the algorithmic constitutive tensor expression
and the expression of the linearization of the algorithmic dissipation are developed
and given for the current scheme. The expressions for the dissipation will be used
in the thermal solution and also as a error estimates for the mesh update within the
PFEM. Three possible time integrations of the IBVP are explained in this work, in
section [6] the proposed isothermal IMPL-EX scheme for the time integration of the
thermo-mechanical problem is described.

The paper finishes analysing three classical benchmark problems found in the lit-
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erature. With these examples we validate the formulation in front of the current state
of the art. In section [7] we also include an example of analysis of challenging thermo-
mechanical problems. First, a classical steel cutting test-type is presented to show the
thermo-mechanical modelling capabilities of the PFEM. In second term, we make a
comparison with experimental results and the results from commercial codes to prove
the competitiveness of the PFEM in the field of the modelling of thermo-mechanical
processes. All problems analysed represent qualitative validations of 2D models.

The theory, presented in synthesized way in each one of the sections, is described
in more detail in the appendices.

2 The Particle Finite Element Method

The PFEM is founded on the Lagrangian description of particles and motion and it
combines a meshless definition of the continuum containing a cloud of particles with
standard mesh-based finite element techniques.

The initial developments of the Particle Finite Element Method (PFEM) took place
in the field of fluid mechanics [42] 56], because of the PFEM feasible features of track-
ing and modeling of free surfaces. Later on, the Particle Finite Element (PFEM) was
applied in a variety of simulation problems: fluid structure interaction with rigid bod-
ies, erosion processes, mixing processes, coupled thermo-viscous processes and thermal
diffusion problems [58, 57, [59L 60].

The continuum, representing a solid or a fluid, is described by a collection of parti-
cles in space. The particles contain enough information to generate the correct bound-
aries of the analysis domain. Meshing techniques like the Delaunay tessellation and the
a—shape concept [33] are used to discretize the continuum with finite elements starting
from the particle distribution. The meshing process creates continuum sub-domains
and identifies the geometrical contacts between different sub-domains.

First applications of PFEM to solid mechanics were done in problems involving
large strains and rotations, multiple body contacts and creation of new surfaces (rivet-
ing, powder filling, ground excavation and machining) [52] 16} 17, [70]. In this work, we
extended the Particle Finite Element Method to the numerical simulation of process
involving thermo-mechanical problems.

2.1 Basic steps of the PFEM

In the PFEM the continuum is modelled using an wupdated Lagrangian formulation.
That is, all variables are assumed to be known in the current configuration at time t.
The new set of variables is sought for in the next or updated configuration at time t+ At
(Figure 1). The finite element method (FEM) is used to solve the continuum equations.
Hence a mesh discretizing the domain must be generated in order to solve the governing
equations in the standard FEM fashion. Recall that the nodes discretizing the analysis
domain are treated as material particles which motion is tracked during the transient
solution. This is useful to model the separation of particles from the main domain,
in groups of particles such as a metal chips in metal cutting problems, or as single
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particles such as water drops in fluid problems. In the last case, it is possible to follow
the motion of the domain as individual particles with a known density, an initial
acceleration and velocity and subject to gravity forces. The mass of a given domain is
obtained by integrating the density at the different material points over the domain.

The quality of the numerical solution depends on the discretization chosen as in
the standard FEM. Adaptive mesh refinement techniques can be used to improve the
solution.

For clarity purposes we will define the collection or cloud of nodes (C) belonging to
the analysis domain, the volume (V) defining the analysis domain and the mesh (M)
discretizing the domain.

A typical solution with the PFEM involves the following steps.

1. The starting point at each time step is the cloud of points in the analysis domains.
For instance C,, denotes the cloud at time ¢ = t,, (1.

2. Identify the boundaries defining the analysis domain V,,. This is an essential
step as some boundaries may be severely distorted during the solution, including
separation and re-entering of nodes. The a—shape method [33] is used for the
boundary definition.

3. Discretize the continuum domains with a finite element mesh M,,.

4. Solve the Lagrangian equations of motion in the domain. Compute the state
variables at the next (updated) configuration for t+ At: displacements, pressure,
temperature, stresses and strains, etc.

5. Move the mesh nodes to a new position C),41; where n + 1 denotes the time
tn, + At, in terms of the time increment size. This step is typically a consequence
of the solution process of step 4.

6. Go back to step 1 and repeat the solution process for the next time step to obtain
Chr42. The process is shown in Figure

Figure [1] shows a conceptual example of application of the PFEM to model the
progressive fragmentation of a solid mass under the action of an external object.

2.2 Meshing procedure and variables transfer in the PFEM

The original idea of the PFEM was to improve the mesh quality by performing a re-
triangulation of the domain only when is needed, that allows to capture large changes
in the continuum domain and avoid global remeshing and interpolation from mesh
to mesh. Usually that is performed according to some criteria associated to element
distortion. This re-triangulation consists in re-computing the element connectivity
using a Delaunay triangulation [24], 44] [68] where the current position of the particles
(i.e. of the mesh nodes) is kept fixed. Mesh distortion is corrected and improved in
the naturally with the Particle Finite Element Method (PFEM), because the Delaunay
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Figure 1: Sequence of steps to update in time a “cloud” of nodes representing a solid
mass that is progressively fragmented the action of an external object using the PFEM.
In the boundaries the particles are fixed.

triangulations maximize the minimum angle of all the angles of the triangles in the
triangulation. Therefore, they tend to avoid skinny triangles.

This strategy has some important implications, the Delaunay triangulation gener-
ates the convex figure of minimum area which encloses all the points and which may be
not conformal with the external boundaries. A possibility to overcome this problem is
to couple the Delaunay triangulation with the so-called a—shape method. An example
of the remeshing scheme using PFEM is shown in Figure .

In the Lagrangian approach, the particles move because of the material flow and
it may happen that particles concentrate in same regions of the domain and, on the
contrary, in other regions the number of particles becomes too low to obtain an accurate
solution. To overcome these difficulties PFEM adds and removes particles comparing
with a certain characteristic distance h. If the distance between two nodes d,,pges 1S
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Figure 2: Remeshing steps in an standard PFEM numerical simulation

dpodes < h , one of the nodes is removed. If the radius of an element circumsphere 7.,
is rec < h, a new node is added at the center of the circumsphere. The flow variables
in the new node are linearly interpolated from that of the element nodes, and the
assigned material properties are the ones of the elements.

The solution scheme described by the PFEM applied to fluid mechanics problems
can be summarized by the following steps:

1. The domain is filled with a set of points referred to as ”particles” which are
endowed with initial velocity vq, pressure pg and position Xg. The accuracy of
the numerical solution is clearly dependent on the considered number of particles.

2. A starting finite element mesh is generated using the particles as nodes through
a Delaunay triangulation and external boundaries are identified by means of the
a—shape technique.

3. As long as mesh distortion is acceptable, the non-linear Lagrangian form of the
governing equations is solved determining the velocity v,, and the pressure p,, at
every node of the mesh.

4. The position of the ” particles” is updated and if the mesh distortion is no accept-
able a new finite element mesh is generated again using the particles as nodes
trough a Delaunay triangulation.

In the PFEM, the size of each time step is assumed small enough to avoid remeshing
during the iterations for the solution of the non-linear equations in the time step itself.
Mesh distortion is checked only at convergence.
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The usual PFEM presents some weaknesses when applied in Solid Mechanics prob-
lems. For example, the external surface generated using a—shapes may affect the
mass conservation of the domain analysed. To deal with this problem, in this work
we propose the use of a constrained Delaunay algorithm [24 [44] [6§]. In order to deal
with complex material flows where the material can be merged, the use of a—shapes
will be essential. In these cases, a non-constrained Delaunay tessellation can be em-
ployed together with proper techniques to preserve the contour surface and for the
mass conservation, see [I5]. That also allows the extension to 3D models where, in
many cases, the constrained Delaunay tessellation is not guaranteed. There are also
some other works focussed possible constructions of the constrained Delaunay tessel-
lation in 3D, see [73} [75], [69]. For a certain non-convex domains, where the constrained
tessellation is not allowed, one possible solution consists in adding some nodes on the
border of the domain, see [73], 40]. Furthermore, addition and removal of particles are
the principal tools, which we employ for sidestepping the difficulties, associated with
deformation-induced element distortion, and for resolving the different scales of the
solution. The insertion of particles is based on the equidistribution of plastic power,
such that, elements exceeding the prescribed tolerance ;. are targeted for refinement.

0 Dmech ae > Etol (1)
where D,,ech is the mechanical power that will be introduced later on by the equa-
tion and Q° is the domain of the element. When the condition is fulfilled, a
particle is inserted in the gauss point of the finite element.
The removal of particles is based on a Zienkiewicz and Zhu [87,, 88] error estimator
defined by the expression (2).

=k

Error (e) = S

(2)

where €* is the recovered equivalent plastic strain and €4, is the maximum equiv-
alent plastic strain. A particle is removed if and only if, the error in all the elements
belonging to the particle is less than a given tolerance.

All the information necessary in subsequent time steps has now to be transferred
to the new mesh, it includes the nodal information like displacements, temperatures,
pressure in the new inserted particles and the Gauss point information like internal
variables in the new element. This is achieved using the procedure described in Box

€max

3 The coupled thermo-mechanical problem

We start with the description of the system of partial differential equations govern-
ing the evolution of the thermo-mechanical initial boundary value problem (IBVP).
This is a solid mechanics problem which uses a Lagrangian description of the contin-
uum medium. Thus the material and spatial Lagrangian descriptions of the governing
equations can be used and will be presented in the appendix [A] These descriptions are
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PROCEDURE FOR MESH REFINEMENT
AND
INFORMATION TRANSFER USED IN THE PFEM

1. Update the particle positions due to motion.

2. Refine elements. Criterion based on plastic dissipation values.

3. Refine boundary that is too distorted. Criterion based on curvature informa-
tion and plastic dissipation values.

4. Remove particles if error estimators are less or equal than a given value.
Error estimators based on plastic strain values or on the norm of the isochoric
stresses. A particle is removed if all previous finite elements joined to that
particle have an error value less or equal to a given tolerance.

5. Perform a constrained Delaunay triangulation in the refined mesh boundary.
The triangulation must include remaining and new particles and must delete
the triangles outside the boundary

6. Estimate the mesh quality. If mesh quality is less or equal than a given toler-
ance, develop a Laplacian smoothing [34] of the updated particle positions.

1. Find smoothed particles in the new mesh

2. Transfer particle information (displacement, pressure, temperature) to
the new particle positions using the shape functions

7. Calculate the global coordinates of the gauss points of the new triangulation.

8. Using the information of the previous mesh, update the internal variables of
the new triangulation.
This step states that the Gauss point information of finite element in the new
mesh is the Gauss point information of the closest finite element in the previous
mesh.

It is important to remark that step 4 and 6 are optional.
The main advantage of the proposed strategy is that:
It is not necessary to create a complete new mesh; we only adapt the mesh with
the addition and removal of particles and the mesh quality is improved using a
Delaunay triangulation.

Box 1: Flowchart of the refining scheme and information transfer process.
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equivalent in continuum mechanics. However, in this work we will focus on the spatial
one because is more suitable for the features of the PFEM. The IBVP described by
the thermo-mechanical equations can be written in a simpler way using an operator
split. This is:

1. Isothermal elastoplastic problem

) %) v(x,t) 0
Z—| pv | = | div (@0 Mp.0) | + | b (3)
0 0 0
2. Thermoplastic problem at a fixed configuration
) @ 0 0
0 —div (Q(‘Pv 0, )\(QO, 0))) + Dint r

In equations and , p is the density, v is the velocity field and v it the
acceleration, where (*) expresses the time derivative. The motion ¢ and the absolute
temperature 6 are regarded as the primary variables in the problem while b the body
force per unit of spatial volume and r the heat source per unit of spatial volume are
prescribed data. In equation , Dint is the internal dissipation per unit of spatial
volume. In addition, the heat flux q as well as the Cauchy stress tensor o are defined via
constitutive equations, where A(¢p, #) expresses the set of internal constitutive variables.

Further details of the coupled thermo-mechanical IBVP are presented in the ap-

pendix [A]

3.1 Mixed displacement-pressure formulation for the IBVP

It is well known that pure displacement formulations are not suitable for problems in
which the constitutive behavior exhibit incompressibility since they tend to experience
locking. Locking means, in this context, that the constraint conditions due to incom-
pressibility cannot be satisfied. These constraint conditions are related to the pure
volumetric mode (in the elastic case the condition is det(F¢) = 1, see equation (93))
and for the plastic flow the condition is det(F?) = det(CP) = 1, see equation ((94])).
Thus, this behavior is also called volume locking. As locking is present in the modelling
of metal plasticity, we adopt a mixed formulation in the momentum balance equation
of the workpiece [I§]. Introducing a pressure/deviatoric decomposition of the Cauchy
stress tensor, the standard expression of the weak form of the equilibrium equation
becomes

Gudayn = (dev(o) +pl,Von) — (n,b) — (t, ).+ M, pV) =

Vn eV,
Go,ayn = —(V(, @) = (¢ Dint) = ((,q-1m), +((,€) =0 VCeT, (5)
G, = (wu(n-3an T2+ g0 | 9
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where £ > 0 and « can be interpreted as the bulk modulus and the thermal
expansion coefficient, respectively. J is the determinant of the deformation gradient,
see equation . The pressure is denoted by p, t is the surface traction, e is the
internal energy per unit of spatial volume and n is the surface normal. The initial
temperature is set as fg. Beingn € V, ( € T and ¢ € Q valued functions in the space
of virtual displacements V, virtual temperatures T and virtual pressures Q respectively.
The Ly inner product is represented as (-, -), and with a slight abuse in notation (-, ),
and (-, )4, is denoting the Ly inner product on the boundaries v, and 74, respectively.

The weak form of the IBVP and the details of the mixed displacement-pressure
formulation are developed in appendix

3.2 Numerical treatment of the incompressibility constraint

The most common finite elements used in the numerical simulations involving plasticity
at finite strains are, in 2D: the plane strain isoparametric quadrilateral element used
in [74], 81l [86], the 6 noded isoparametric triangle element used in [74] and [50], and
the enhanced four node quadrilateral with 1-point quadrature used in [61]. When
finite elements have linear order of interpolation, the performance for the treatment
of the incompressibility is very poor. Usually the problems appear with the use of
linear triangles and linear tetrahedra under incompressible and nearly incompressible
conditions. This is exactly the case we encounter when the PFEM is employed. In order
to surpass this inconvenience different type of finite elements have been developed.
They can be classified in four groups mainly:

1. Mixed enhanced element. The enhanced strain technique, essentially consists in
augmenting the space of discrete strains with local functions [3].

2. Composite pressure fields. The most representative finite elements with compos-
ite pressure fields are F-Bar [63, [51] and Composite Triangles [13] [39].

3. Average Nodal Pressure. The Average Nodal Pressure (ANP) was presented in
[9] and [10] in the framework of explicit dynamics and by [64] in the framework
of implicit dynamics. Another references for the ANP are [65][27]and [27]. There
are alternative formulations based in node average of the variables. The Node
Based Uniform Strain Elements (NBUSE) [30, 37], the Average Nodal Deforma-
tion Gradient (ANDG) [II] and the Mixed Discretization Technique (MD) [49],
improved in [28] creating their formulation called Nodal Mixed discretization
(NMD).

4. Pressure stabilized finite elements

In this work we have chosen the pressure stabilized option for the treatment of the
incompressibility constraint. The details set out below.
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3.2.1 Pressure stabilization

This element technology is applied to linear finite elements formulated in a mixed
displacement-pressure or velocity-pressure field. When the order of interpolation of
the pressure field of the finite element is the same as the order of interpolation of the
displacement field, the solution presents nonphysical oscillations. Mathematically, it
means that equal order interpolation for displacement and pressure does not satisfy
Babuska-Brezzy condition. In order to remove these undesirable oscillations, a lit-
erature overview shows different strategies. Among them: The Characteristic Based
Split (CBS)[22], the finite calculus (FIC) [55], the Orthogonal Subgrid Scales (OSS)
[72, 20, 21] and the Polynomial Pressure Projection (PPP) [31, [6].

After looking at the advantages and disadvantages of the cited pressure stabilization
techniques, we have chosen the use of the PPP for the development of our finite element.
The theoretical explanation for this technique is summarized next.

3.2.2 Polynomial Pressure Projection(PPP)

Mixed formulations have to fulfill additional mathematical conditions, which guarantee
its stability. Linear displacement-pressure triangles and tetrahedra finite elements do
not satisfy Babuska-Brezzy condition; consequently, a stabilization of the pressure field
is needed.

In our approach the stabilization method utilized is the so-called Polynomial Pres-
sure Projection(PPP) presented and applied to stabilize Stokes equations in [6], 31].
The PPP is based on two ingredients:

1. The use a mixed equal order interpolation of the pressure and displacement /velocity
fields

2. The use of a Lo pressure projection

The method is obtained by modification of the mixed variational equation by using
local Lo polynomial pressure projections. The application of the pressure projections in
conjunction with minimization of the pressure-displacement mismatch, eliminates the
inconsistency of equal-order approximations and leads to a stable variational formu-
lation. Unlike other stabilization methods, the Polynomial pressure projection (PPP)
does not require specification of a mesh dependent stabilization parameter or calcula-
tion of higher-order derivatives. The PPP uses a projection on a discontinuous space
and as a consequence can be implemented in an elementary level surpassing the need of
mesh dependent and problem dependent parameters. The implementation of the PPP
reduces to a simple modification of the weak continuity equation (incompressibility
constraint). In this work, we extend the PPP to solid mechanics problems involving
large strains.

Given a function p € Lo, the Ly projection operator p: Ly — QU is defined by

Gf,pz/vcz(p—mdvt:o Vi e Q° (6)
t
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where p is the best approximation of the pressure p in the space of polynomials of
order O(QV). V; is the volume of the domain at the current configuration.

To stabilize the mixed form given by equations , we add the projection operator
to the third equation in

Qs

Goras =/<q—d>
Sap ‘/t 'LL

where oy is the stabilization parameter and p is the material shear modulus.

The use of the projection operator to the pressure test and trial functions removes
the approximation inconsistency present for equal-order displacement and pressure
spaces.

The role of the form Gqp is to further penalize pressure variation away from the
range of the divergence operator. Taking into account the mixed formulation and the
polynomial pressure stabilization terms to deal with the incompressibility phenomena,
the momentum and energy balance equations take the form:

(p—p)dV; =0 (7)

Gu,dyn =0
GG,dyn =0 V’l’) € VaVC € T,Vq € Q (8)
G‘r + Gstab,p =0
where
Gr = Grp+ (9 (9)
1-1
Grp = </<; ID(J)—304/€(JH(J>)(9—00),Q> Vg e @ (10)
and
g o o . v
Gatabp = <H(p—p),q—q> vp, g e Q° (11)

The set of governing equations for the displacement, pressure and temperature
variables is completed by adding the proper initial conditions and constraint equations
related to the problem variables.

4 Finite element numerical integration of the IBVP

Consider a spatial discretization Q = ', Q) into a disjoint collection of non-
overlapping elements Q(¢) with characteristic size h(®), being n. the total number of
elements. The finite element method for numerical solution of problem consists on
replacing the functional sets {u, V'}, {0, T} and {p, P} with discrete subsets {u®, V"},
{6, T"} and {p", P"} generated by a finite element discretization h of the domain
Q. Let w(X,t) be a generic scalar or vector field defined over the domain Q. of the
element. The finite element interpolation of the field w within element (e) is obtained
as
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ij (X, 1) (12)

where n,, is the number of nodes of an element, w; is the value of w at node j, and
Nj(e) is the shape function such that its value is 1 at the node j and zero at any other
node of the element.

The interpolated function, now defined over the approximated domain is given by

t) = zp:w]'Nj(X,t) (13)
j=1

where N; is a piecewise polynomial function (the global shape function) associated
with the global node j and n,, is the total number of nodal points in the finite element
mesh.

With the introduction of the above interpolation procedure, we generate the finite
dimensional sets. The discrete counterpart of is given then by the equations:

/ B, odV, — / NTbav,— | NTpvdV, — | Ntdy, =0 (14)
Vi Vi Vi Yo
/ ¢NNTQav, — | ByTqdV, — | NTDjdV; + / NT(q-n)dyg=0  (15)
Vi Vi Vi Ya
1 1—1In(J .
“NNTpdv, — / N7 <ln(J) ~3a w(a - 90)> dv, +F, =0 (16)
V} K ‘/t J p,sta

where c is the specific heat of the material, B,, and By are the strain-displacement
matrix and the global gradient-temperature matrix respectively. That matrices contain
the derivatives of the shape functions used in the interpolation of the problem variables.

Fj(fs)t . expresses the discrete counterpart of the projection operator, accounting
that the pressure projection is constant and discontinuous among finite elements.

p,stab

FO / D (@) (N<e>NT<e> _N<e)NT<e>) v (7)
© i

If N(©) contain the set of polynomials of order k, N(¢) contain the set of polynomials
of order k — 1.

The equilibrium incompressible equations can be expressed alternatively as
follows. Starting with the balance of the linear momentum :

Fu,dyn(ﬁ) - Fu,int(u7 p) + Fu,ewt =0 (18)

where
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Fuint(u,p) = B. o dV; (19)
Vi
Fuw: = | NThav, - / Nt dy, (20)
Vi Yo
Fuan(ll) = N7 piradv, (21)
Vi

The equation for the energy balance ([15) are written as

FG,dyn(G) - FG,int(‘g) + F@,e;rt =0 (22)
where
Fom(0) = / By"qdV; — | NTDydV; (23)
Vi Vi

Foint = N”(q - n)dvq (24)

Ya
Foam(0) = / ¢NNT§ qv, (25)

Vi

and the incompressibility balance equations are written as

Fppres(P) — Fpuoi(w) + Fp sta(p) = 0 (26)
where
1 T
Fp,pres(p) = —NN*pdV; (27)
Vi K
1-1
Fpoo(u) = / N7 <IH(J) -3« (;l(‘]))(e — 90)) dV; (28)
Vi
Fpstan(P) = / & p© (N(€>NT (©) _ NONT (e)) v (29)
V(&) H

In finite element computations, the above force vectors are obtained as the assem-
blies of element vectors. Given a nodal point, each component of the global force
associated with a particular global node is obtained as the sum of the corresponding
contributions from the element force vectors of all elements that share the node. In
this work, the element force vectors are evaluated using Gaussian quadratures.
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5 Thermo-elastoplasticity model at finite strains

In this section, the formulation of the constitutive thermo-plasticity model at finite
strains will be summarized. Some models are proposed in the literature to deal with
thermo-plasticity accounting for the characteristics of the material behavior. If the
plastic behavior experiences isotropic hardening, the approach proposed by Simo et
al. [79, 77, [78] is usually followed. When the strain and strain rate hardening and
the thermal softening is considered, other models can be used: (i) Voce [85] and Simo
et al. [80] (ii) Johnson and Cook [45] and (iii) Bdker [4]. In Box [2| we present the
main equations of the thermo-mechanical J; flow model for rate independent plasticity
that will be used in this work. Details of the theory of thermo-plasticity as well the
definition of the variables that appear in Box [2] are explained in appendix

The purpose of presenting here the main equations for the constitutive model is
to introduce later a new integration scheme for thermo-hyperelastoplasticity called
IMPL-EX scheme, see [53].

5.1 Time integration of the constitutive law

The problem of integrating numerically the initial-value ODE equations configured
by the Evolution equations and the Kuhn-Tucker conditions (see Box [2)) is the main
objective of this section.

In Box [3| the integration flowchard for the Backward-Euler method is presented.
The implicit Backward-FEuler method is the most commonly used integration scheme
for plasticity. The details of the constitutive law integration are given in the appendix
The equation g(AM,+1) related to the obtention of the consistency parameter A\, 11
(see Box [2)) is effectively solved by a local Newton iterative procedure. The conver-
gence of the Newton-Raphson is guaranteed if g(A\,+1) is a convex function. In this
work we use isotropic hardening functions that makes g(A\,4+1) convex. Although
the convergence of the integration is guaranteed, the fully implicit integration of the
constitutive law requires some relevant computational effort and can experience some
numerical problems of robustness when the material failure appears.

To improve the performance in the integration of the constitutive law, we introduce
the integration of the constitutive law by means of the IMPL-EX scheme. Next, we
develop the IMPL-EX integration for the thermo-hyperelastoplastic constitutive model
used in this work.

5.2 IMPL-EX integration scheme

The IMPL-EX (IMPLicit-EXplicit) adopted herein is the one pioneered by Oliver et.
al.[53], originally conceived for addressing the problem of robustness and stability aris-
ing in the numerical simulation of material failure. The essence of the method is to
solve explicitly for some variables, in the sense that the values at the beginning of
the increment are presumed known, and implicitly for other variables, with the pri-
mary motivation to enhance the spectral properties of the algorithmic tangent moduli.
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COUPLED THERMO-MECHANICAL J, FLOW THEORY
RATE INDEPENDENT PLASTICITY

1. Free energy function.
) =T(0) + M(9,J¢) + U(J¢) + W (b¢) + K (e?,6)
2. kirchhoff stress.

T = Jpl+s
1 —In(J®
p = |-3ak (JIZ(J))(H —0p) + K In(J°)
s = pudey(b®)
and the entropy

no= =0+

n® = —0pT'(0)

nt o= —8gM(0,J%) — 9K (e”,0)

3. Von Mises yield criterion.
2
B(7,%,0) = [des(r)] /2 0y + ) <0
4. Evolution equations A >0, ® <0, A® =0
21 =
L,b¢ = =2XJ 3§tr(be)n

e’ = —X\0s®(r,e?,0)
"’ = Xop®(r,e?,0)

The definition of the variables that appear in this box are explained in appendix

Box 2: Coupled thermo-mechanical J; flow theory. Rate independent plasticity.
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BACKWARD-EULER INTEGRATION FLOWCHART
1. Thermoelastic trial state:
Initial data: b¢, eh, nh

= 1
Current values of Fy, 41, 041, where Fy i1 = J 3F, 11

Let ftrml _ H ffﬁlH f (oynt1 + Bni1(eh))

IF flriel <0:  Set (bS,q, el i, nh,,) =By, &b nh ) and EXIT

n

ELSE:

2. Consistency parameter:

et fu = 4 tr(by{7")

Compute A\, 11 by solving:

1 _ .
9(AAns1) = [ —2ANp gtr(bi’j:fal)

+ \/g (Uy,n + ﬁn(é'rlz))) - \/g (C’y,nJrl + 6n+1(érf+1)) =0

Return mapping:

trml

Set n, 11 = and update

|| tmal ”
n+1

t l etrial
Snt1 = nTial —2 A)\n+1 o 3t7“(bn+1 )nn-i-l

2
ni1 = éﬁ—)‘nHAt\@

2 _
772+1 = - \/;A)\nﬂao (Uy,n+1 + ﬁn+1(€£+1))

e

3. Update the intermediate configuration by the closed form formula:

e e,trial 1 e,trial
n+1 — bn+1 -2 A)\nJrl (bn+1 ) Npt1

END

The definition of the variables that appear in this box are explained in appendices [B| and

Box 3: Implicit Backward-FEuler integration flowchart for thermo-elastoplastic models.
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However, our primary motivation of using IMPL-EX is to reduce the equation solving
effort associated to the solution of the fully implicit scheme. The explicit integration
of some variables in the coupled thermo-mechanical J; flow theory and therefore, the
use of extrapolated values in the balance of momentum and energy, allow us to solve a
coupled thermo-mechanical problem as a sequence of three uncoupled problems. First,
an elastic problem with shear modulus changing from element to element; second, a
thermal problems with a temperature dependent plastic heat source and finally, a re-
laxation process affecting the stress and the internal variables at the integration points.
It is important, to remark, that the mechanical and thermal problem are solved using
the IMPL-EX integration scheme for the Jo plasticity model, while in the relaxation
steps, stresses and internal variables are calculated using the implicit Back-Euler time
integration presented in Box [3]and explained in detail in appendix[C.I] The arguments
in support of the IMPL-EX integration scheme for the numerical simulation of metal
thermo-mechanical processes were already put forward above. Here we simply choose
the variable to be treated explicitly and derive the stress update algorithm arising from
this choice.

By definition, the equivalent plastic strain is a monotonically increasing function
of time, é? > 0. For this reason, it is a logical candidate to be treated explicitly,
since its evolution can be predicted more accurately than other variables exhibiting
non-monotonic behavior. The following analysis pursues, to develop an expression
for explicitly updating the equivalent plastic strain at t,,; using values obtained in
previous time steps by an implicit Backward-Euler integration procedure.

Let us consider, the Taylor expansion of the equivalent plastic strain at ¢,,_1 around
tn:

(tn — tn_1) + O(A%) (30)

tn

Next, the Taylor expansion is carried out at ¢,+; around t,, yielding

OeP

| (e —ta) + O(A%*t41) (31)

ln

4 — zb
6n—&-l =€y +

The standard explicit difference scheme is obtained truncating the remainder terms
O(A%41).

The earlier explicit difference equation presents an inconvenience that ensure that
the yield condition is not enforced at t,, 1 and as a result, it is possible for the solution,
over many time steps, to drift away from the yield surface. In order to avoid that
this drift from the yield surface grows unboundedly, Oliver et al. [53] propose to
approximate the derivative in using the derivative appearing in .

Hence, truncating the terms O(A?¢, 1) in equation , one gets

oeP

| (am) (32)
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The earlier equation is a Backward-Fuler integration of the equivalent plastic strain,
in the sense that the equivalent plastic strain at t¢,, €%, is obtained by an expression
that uses a derivative evaluated at t,. As a result, €} and €’ _, are obtained at times
t, and t,_; using the implicit scheme presented in the previous section. From ,
we can deduce that

L On Gy (33)
ot |, ~ At

Finally, inserting the expression into , and truncating the remainder terms,
yields

Atn—l
Aty

Expression constitutes an explicit extrapolation of the equivalent plastic strain
at t,4+1 in terms of the implicit values computed at ¢, and ¢,_1. Note that the IMPL-
EX algorithm is a multistep method, since two points are used to advance the solution
in time to point t,41.

The algorithmic plastic multiplier resulting from this extrapolation reads:

. 3
Adpp1 = \/;(eﬁﬂ—@f;)
3 Atn+1
— /2an,
Vaan B

Expression reveals that the elastic or plastic nature of the response predicted
by the IMPL-EX integration scheme at t,41 is dictated by the response computed
implicitly at ¢,. This may give rise to overshoots and oscillations in the transitions
from elastic to inelastic and vice versa. Now, steps 3 and 4 in Box [3| can be pursued in
terms of extrapolated plastic multiplier yielding the IMPL-EX integrated values of the
remaining variables S,41, €%, and 7%, ;. Those IMPL-EX results will be replaced
later in Box [0] to fulfill the momentum and energy equations. The IMPL-EX explicit
stage for both cases is summarized in Box [4]

QR

fwl = é’rZZ + (ég - éf:ﬂ) (34)

(35)

5.3 Algorithmic constitutive tensor and algorithmic dissipation

The ultimate goal in the numerical simulation of thermo-mechanical processes is to
solve an initial boundary value problem (IBVP) for the displacement and temperature
fields. The numerical solution of this problem relies on the spatial discretization, via
a Galerkin finite element, of the momentum and energy equations and a time dis-
cretization of the displacement, velocity and temperature fields. In case of an implicit
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IMPL-EX INTEGRATION FLOWCHART

1. Explicit extrapolation stage:
Initial data: b, &b, nh

Current values of Fy, 11, 041

~ Aty
A>\7H-1 = \/EA)\n At+1

. . 2 -
eh, = éﬁ+\/;AAnH

2. Let Fn’n+1 = J_%anﬂ and set:

trial = re T
Bo = By B ET
siid = pdeo(B]T")
3. Compute stresses and plastic entropy:
_ trial
Set j1 = g (biflw )
trml
Set n, 11 = || tmal” and update:
n+1
Spt1 = er-all -2 A/\n—i-l J73 s PSS

Moyl = 1h— \/;A;\n+180 (Gymt1+ Bnr1(€L )
4. Compute plastic power:
- 2 . A
+1 ~ n+1
o =3 ()., 5

The definition of the variables that appear in this box are explained in appendices [B| and
(@]

Box 4: IMPL-EX explicit integration flowchart for thermo-elastoplastic models.
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discretization the response in obtained by solving a sequence of linearized problems.
The theories underlying the spatial and temporal discretization are presented in the
section [ and in section [l The linearization of the weak form of the momentum and
energy equation are not addressed in this work. We refer the reader to [8| [7] for further
details.

In the appendix the expressions for the algorithmic tangent moduli for the
implicit integration scheme as well as the IMPL-EX scheme are provided. The algo-
rithmic constitutive tensor is a a key aspect in the linearization of the weak form of
the momentum equation. In addition, in appendix we provide a linearization of
the plastic power relevant in the linearization of the weak form of the energy equation.

6 Time integration of the IBVP

The Finite Element Method allows different time discretization schemes. The most
common are the implicit and explicit time integration schemes. Each of them has its
advantages or disadvantages, see appendix

The implicit time integration scheme using isothermal split will be used in this
work. Based on the global operator split for finite deformation plasticity presented
in equations and , a formal split of the problem into a mechanical phase with
the temperature held constant, followed by a thermal phase at a fixed configuration is
presented in the following lines.

The implicit coupled algorithm for a simultaneous solution of the thermo-mechanical
equations is presented in appendix

6.1 Isothermal split

The following lines present a summary of the isothermal split, developed in [79]. Let
tn, — tpe1 be the initial and final time step. Let At = ¢,11 —t,, be the time increment.

The algorithm in Box is based on the application of an implicit backward-Euler
difference scheme to the momentum equation, for fixed initial temperature (tempera-
ture at previous time step) and the application of an implicit backward-Euler difference
scheme to the energy equation at a fixed configuration (configuration obtained as a
solution of the mechanical problem).

The solution of the balance of momentum equation for fixed initial temperature
gives an update of the primary variables uj,, |, p;,; and a first update of the internal
variables (left Cauchy-Green tensor, internal energy and entropy) of the form

bS,82,nf — (Box[3) — bf,ens1,75 (36)

Along with an incremental value of the consistency parameter satisfying the Kuhn-
Tucker conditions and denoted by A\, 1

The solution of the balance of energy with initial conditions uj,,,p}, 1,0, and
initial internal variables b¢, &%, n} gives an update of the primary variable 6 41 and a
second update of the internal plastic variables (at fixed configuration) of the form
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COUPLED SYSTEM OF EQUATIONS
ISOTHERMAL SPLIT

1. Momentum equation for fixed initial temperature

Fu,dyn (ﬁ;;,+1) =

Fu,int (0n+1 (u;kl+17 p;kLJrl) 9;; )\n+1(u2+17 0;))) - Fuﬁxt(ujwrl)
2. Incompressibility
(MP 4+ M) By = Bt (Ji g1 (Wh41,63)

where MP and M**® are the mass-type matrices of the linearized pressure and
stabilization forces respectively

3. Update nodal variables

Vntl = Vp+ "’n—l—lAt
uy . = u,+ vy At
Pry1 = Pt AP,

4. Energy equation at updated fixed configuration

FG,dyn(G:LH) =

Fo,int(q(0541); D (041505 41); A1 (01,05 11)) — Foear
5. Update nodal variables

w1 = O 0 AL

n

The definition of the variables that appear in this box
are explained in sections [4] and [6]

Box 5: Implicit isothermal split scheme.
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by, &%h,n; — (Box ’ — by, éﬁﬂa Tt (37)
Along with an incremental value of the consistency parameter satisfying the Kuhn-

Tucker conditions and ~denoted by AS\nH. In general, AS\nH % AS\nH as a conse-
quence b§, &, 0P, # biﬂaéﬁ-s-lj]g-i-l

In summary, the isothermal split solves the mechanical problem with a predicted
value of temperature equal to the temperature of the last converged time step and,
then, solves the thermal problem using the configuration obtained as a solution of
the mechanical problem. A full Newton-Raphson scheme is used for the solution of
the non-linear system; the necessary linearization of the constitutive law has been
presented in appendix The details of the linearization of the weak form of the
momentum and energy equation can be seen in [ [7].

The well-known restriction to conditional stability is the crucial limitation of the
isothermal approach, which often becomes critical for strongly coupled problems. How-
ever, this restriction is not significant for metal plasticity [79]. Armero and Simo [I]
provide the sufficient conditions for stability of the isothermal split as:

At 5 \/PC At 9 V2 e P
— < ~ — <
- <K > & - <K - \/(/\+2u) (38)

where A\, u > 0 are the Lamé constants, o the thermal expansion coefficient, p,c
the density and the specific heat, and h, At, K are the minimum element size of the
mesh, the maximum allowed time step, and a given constant. In the cases where
the mechanical inertia can be considered negligible, Armero and Simo [1] provide the
sufficient conditions for stability of the isothermal split as:

(39)

W= 2Bk 2T 2k\Ec

Previous restrictions show that algorithms based on the isothermal split are not
suitable for strongly coupled problems, since the stability restriction phrased in terms
of the Courant number becomes increasingly restrictive the higher the coupling (in-
crease in the thermal expansion coefficient). The numerical simulation of metal cutting
and metal forming processes can be considered a weakly coupled problem (the thermal
expansion coefficient of metals is usually small), as a result, the isothermal split will
perform well in most of the numerical simulations of cutting and forming processes for
metal presented in this work. The stability restriction of the isothermal split is circum-
vented using an isentropic split, in which one must solve first a mechanical problem
at constant entropy (estimates the temperature change in the mechanical problem),
followed by a thermal heat conduction problem at constant (fixed) configuration [1J.

At a?2—2Ec¢ At c <a2 >
> >

6.2 Isothermal IMPL-EX split

The isothermal scheme presented in [79] decouples the thermo-mechanical problem
in two more simple problems, but, yet, the mechanical problem is coupled with the
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COUPLED SYSTEM OF EQUATIONS
IMPL-EX SPLIT

1. Momentum equation for fixed initial temperature ({3
(elastic problem with shear modulus changing from element to element)

Fu,dyn (u;kzil) =

Fu,int (Un—i-l (u;il y p::}-]j 9}'2*, )\n—&-l(u;ﬁbﬂ_l; 0:*)))) - Fu,ewt(u;j_l)
2. Incompressibility
(MP -+ M) Pty = B (05, 077))

where MP and M**® are the mass-type matrices of the linearized pressure and
stabilization forces respectively

3. Update nodal variables

Vn+l = Vp+ \.’n—i—l At
wr, o= w4 v At
%k %k %k
Pny1 = Pp + Apn+1

4. Energy equation at updated fixed configuration
(thermal problem with temperature dependent external heat source)

FG,dyn(é**) =
Fo,int(a(0371); Dy (uily 15 0771 )3 Anr (i1, 0371)) — Foean

5. Update nodal variables
W= OO AL

6. Constitutive equation and update internal variables (Plastic algorithm)

k%

b?erl? én-ﬁ-h ﬁ£+1 = f ((u::;rl’ n )’ (bfl+17 €nt1, 77n+1))

The definition of the variables that appear in this box
are explained in sections [ and [6]

Box 6: Isothermal IMPL-EX split.
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evolution equations of the internal variables and the thermal problem is also coupled
with the evolution equations of the internal variables, both of them are coupled through
the plastic multiplier. The above reason, suggests decoupling the problem in the
following three simple problems: (i) an elastic problem with shear modulus changing
from element to element, (ii) a thermal problem with a temperature dependent plastic
heat source and (iii) a relaxation process affecting the stress and the internal variables
at the integration points.

In this work, we present a new staggered algorithm, which is based on the isother-
mal split presented in [79] and the IMPL-EX integration scheme of the constitutive
equations presented in [53]. Using the ingredients presented above, the solution of the
coupled system of ODE , and could be decoupled in the three simple prob-
lems mentioned previously. In addition, the elastic and the thermal problems update
the internal variables according to a predicted plastic multiplier (explicit), while the
constitutive equations keep the displacements, velocities and temperatures unchanged
(implicit).

For simplicity, a partition of the time domain I := [0,7] into N time steps, of the
same length At is considered. Let us focus on the time step ¢, — t,+1, where At =
tp+1 — tn. An implicit backward-Euler difference scheme is applied to the momentum
equation and to the energy equation. In the first step the extrapolation of the plastic
multiplier A)\,+1 = A\, is done. Consequently, the stresses ¢,,+1 are computed via
in IMPL-EX integration scheme of the constitutive equation. After that, the balance
of momentum is solved implicitly providing the nodal displacement and pressure
for fixed initial temperature. The balance of momentum equations, providing a fixed
initial temperature and an extrapolated value of the internal variables, constitutes a
non-linear system to solve. In this case, the non-linearity of the system appears due to
the geometrical part of the linearized equations. Therefore they have to be iteratively
solved until convergence is achieved.

The solution of the balance of momentum equation for a fixed initial temperature
gives an update of the primary variables u}’, ;, p;," ; and a first update of the internal
variables of the form

bé, el k. — (BoxW) — bS,e. 7k (40)

Then, in the second step, the solution of the balance of energy with initial conditions

', Py, 057, initial internal variables by, el nn and the extrapolation of the plastic
multiplier A\,41 = A), gives an update of the primary variable 6% ; and a second

update of the internal plastic variables (at fixed configuration) of the form

by, &b, nn — (BOX - b%+1aéﬁ+1aﬁ£+1 (41)

Finally, in the third step, the values of u};", 1, p;;", 1, 0, remain fixed, and an implicit

backward-Euler integration of the constitutive model ([132)) is done using as initial
internal variables b¢, &%, nY. Given, as a consequence a finally update of the internal
variables of the form
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by, en.m — (BOX - Bi+1aéﬁ+1aﬁﬁ+1 (42)

The set of internal variables obtained at the end of this time step, will be the set
of internal variables used as the starting point in the next step of the fractional step
method proposed in this work. As summary about the isothermal IMPL-EX split is
shown in Box [6l

It is interesting to note that the boundary values of the momentum equation are
included in the elastic equations with shear modulus changing from element to element
and the boundary values of the balance of energy are imposed on the thermal problem
with temperature dependent plastic heat source. In addition, the plastic algorithm
consists on a collection of systems of ordinary differential equations, each one of which
belongs to a different integration point. A full Newton-Raphson scheme is used for the
solution of the non-linear system.

7 Examples

This section we present some 2D examples using the proposed formulation. First
of all, two benchmarks, the Cook’s Membrane and the Taylor impact test. With
the solutions reported in the literature we validate qualitatively and quantitatively
the pressure stabilization in quasi-incompressible elastic problems and in mechanical
problems involving plasticity. Furthermore, a plane strain traction test is presented to
validate the locking free element type proposed for thermo-mechanical problems. In
the traction test example, we also report the comparison of different time integration
schemes, showing the advantages and disadvantages of the IMPL-EX solution scheme.
Finally, the proposed formulation is used in the numerical simulation of a continuous
steel cutting test in order to show the possibilities of the PFEM in the modelling of
metal cutting and metal forming processes.

7.1 Plane strain Cook’s Membrane problem

The Cook Membrane problem is a bending dominated example that has been used by
many authors as a reference test to check their element formulation. Here it will be
used to validate the proposed formulation in incompressible elasticity and plasticity.
The results of our formulation will be compared against Q1P0 finite element and a
mixed finite element using Orthogonal Subgrid Scale as a stabilization strategy. The
problem consists in a tapered panel, clamped on one side and subjected to a shearing
load at the free end, see figure . In order to test the convergence behavior of
different formulations, the problem has been discretized into 16 x 16, 24 x 24 and
40 x 40 elements per side. The following materials properties are assumed: Young’s
Modulus F = 70 g 52, Poisson'‘s ratio v = 0.4999 and applied force F' = 1UF. Where
UF means Units of Force and UL means Units of Length.

Figure shows the behavior of both quadrilateral and triangular finite elements in
case of nearly incompressible elasticity. The figure shows the poor performance of the
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Figure 3: Cook’s Membrane benchmark. Problem dimensions and the initial structured
triangular mesh of 16x16 elements.

Q1 and T'1 standard elements within the context of nearly incompressible elasticity, due
to an extreme locking. Furthermore, the figure shows that the proposed formulation
converges similarly to OSS but a low computational cost. It is important to remark
that in Polynomial pressure projection (PPP) strategy the stabilization parameter is
mesh size independent and that the stabilization terms added to the mixed formulation
are elementary depend. It shows that our proposal allows getting similar results to the
OSS strategy but a low computational cost. The stabilization parameter used in PPP
and OSS was o =7 = 1.

Next examples involves Cook‘s Membrane but J2- plasticity and the following as-
sumed materials propertles Young‘s Modulus E = 70 L i LQ, Poisson'‘s ratio v = 0.4999,

yield stress o, = 0. 243 U L2’ hardening modulus H = 0. 135 UL 77z and kinematic harden-

ing modulus K = 0. ()15 2 and an applied force of F' = 1. 8 UF in 50 increments.

Flgure shows a comparlson of the top corner displacement for the mixed finite
element using OSS and PPP as stabilization strategies. It also shows that the con-
vergence behavior of two formulations is really similar. As we say in case of elastic
behavior, PPP is simple to implement and do not need an extra calculation like the
projected pressure gradient in OSS.

Figure @ presents pressure contour field at the end of the deformation process. A
smooth contour field can be identified in both mixed formulations. At the same time,
the predicted results are very similar quantitatively.
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Figure 4: Plane strain Cook‘'s Problem: convergence of different formulations for in-
compressible elasticity. T1 standard displacement for triangular elements, Q1 stan-
dard displacement for quadrilaterals elements, Q1P0 mixed mean dilatation/pressure
approach for quadrilateral elements, T1P1 OSS mixed formulation for linear triangles
using orthogonal sub grid scale as a stabilization strategy, T1P1 PPP mixed formula-
tion for linear triangles using Polynomial pressure projection.

7.2 Taylor impact test

The problem consists of the impact of a cylindrical bar with initial velocity of 227 m/s
into a rigid wall. The bar has an initial length of 32.4mm and an initial radius of
3.2mm, see figure . Material properties of the bar are typical of copper: density
p = 8930 kg/m?, Young‘s modulus E = 1.17 - 105 MPa, Poisson‘s ratio v = 0.35, initial
yield stress o, = 400 MPa and hardening modulus H = 100 MPa. A period of 80 us
has been analyzed.

The problem is treated as a 2D axisymmetric model of the cylindrical bar shown in
figure @ We will compare qualitatively and quantitatively the results obtained using
the proposed formulation with the results of the formulations based in the Character-
istic Base Split(CBS) [71], the Average Nodal Pressure (ANP) [9], and the De Micheli
formulation [26]. In this problem the effect of the temperature is not considered. The
bar constitutive behaviour experience plasticity but not thermo-plasticity.

First we consider a Finite Element solution of the problem with the displacement-
pressure stabilized element proposed in this work. The mesh is considered the same
in the whole analysis and the PFEM features are not used. The final geometry of the
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Figure 5: Plane strain Cook‘s Problem: convergence of different formulations for J2-
Plasticity. T1P1 OSS mixed formulation for linear triangles using orthogonal sub grid
scale as a stabilization strategy, T1P1 PPP mixed formulation for linear triangles using
Polynomial pressure projection.

bar is in good agreement with the results obtained in the literature and any locking
is not present in the solution. However some parts of the mesh gets very deformed,
the elements that received first the impact experience large plastic deformations. That
causes a pressure distribution somehow conditioned by the mesh shape. The final
radius in the base of the bar obtained using the proposed formulation (PPP with
FEM) is of 7.24 mm. Table || shows the comparison of the final radius obtained with
present formulation with the results presented in the literature.

Table 1: Final radius of the rod after the Taylor Impact Test obtained with De Micheli
formulation, CBS formulation, ANP formulation and the proposed formulation of this
work.

Formulation De Micheli[26] CBS[7I] APN[9] PPP (FEM) PPP (PFEM)

Final Radius 7.07 mm 7.07 mm 6.99 mm 7.24 mm 7.02 mm
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Figure 6: Pressure field for mixed formulation using Orthogonal Sub Grid Scale and
Polynomial Pressure Projection as stabilization strategies and J2-Plasticity.

Figure shows the final mesh and the numerical results of the pressure and
effective plastic strain distribution using the formulation proposed in this work.

In order to improve the solution the PFEM simulation with the intrinsic geometry
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Figure 7: Taylor impact test. Problem dimensions and the initial structured triangular
mesh of 6x50 elements.

update is used. In this case the finite elements of the mesh have always a good shape.
It avoids the artificial numerical peaks that appear in the solution of the bad shaped
linear triangles. The final geometry of the bar is in good agreement with the results
obtained in the literature, without locking in the solution and with a final radius in
the base of the bar of 7.02mm (PPP with PFEM). Figure (9) shows the final mesh
and the numerical results of the pressure and effective plastic strain distribution using
the PFEM formulation proposed in this work. The values for the equivalent plastic
strain and pressure fields obtained with the PFEM coincide well with those given by
FIC and by the CBS formulation.

7.3 Thermo-mechanical traction test

We consider a rectangular specimen in plane strain submitted to uniform traction
forces. The specimen considered in the simulation has a width of 12.866 mm and a
length of 53.334 mm, see figure . Figure shows also the mesh in the initial con-
figuration. The bar is assumed insulated along its lateral face, while the temperature
is held constant and equal to 293.15 K on the upper and lower faces.
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Figure 8: Final mesh, equivalent Plastic Strain distribution and Pressure field 80us
after the impact for the proposed formulation without geometry update.

The total value of imposed displacement is increased to 5 mm applied in 100 equal
time steps, with a rate of increase of 1 mm/s. The chosen values of thermo-mechanical
properties of the specimen are given in Table [4 and Table [2] they correspond to steel.
We consider the source term in the energy equation defined as a fraction of the plastic
work, in this example we use a factor of 0.9. Due to the symmetry of the solution,
only one quarter of the specimen is discretized, imposing the corresponding symmetry
boundary conditions. To solve the problem we use the mixed linear displacement-linear
pressure finite element presented in this work with the Polynomial Pressure Projection
as a stabilization technique.
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Figure 9: Final mesh, equivalent Plastic Strain distribution and Pressure field 80us
after the impact for the PFEM formulation.

Y
B

Table 2: Material properties

Young Modulus

E 206.9-10° MPa
Dissipation Factor x 0.9

Thermal Capacity c 046-10° mm?/s’K
Density p 7.8-107%  Ns?/mm
Expansion Coefficient o 1-107° K1

The simulations are performed under quasi-static conditions with the isothermal
implicit split proposed by Simo [4], presented in the section |§| and the isothermal
IMPL-EX split proposed in this work. No specific features of the PFEM are used in
this example. The purpose is to evaluate the thermo-hyperelastoplastic model and
the stabilized element developed within the IMPL-EX integration scheme. Next some
results are presented.

Figure shows the temperature and von Mises field at the final configuration.

35
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Figure 10: Plain strain nearly adiabatic shear banding traction test benchmark. Prob-
lem dimensions and initial mesh.

Figure shows the load /displacement curve obtained with the proposed formulation.
The same figure shows also the results presented by Ibrahimbehovic and Chorfi [41]
using a four node element with incompatible modes and Beni and Movahhedy [82]
using an Arbitrary Lagrangian Eulerian formulation. The predicted forces are similar
during the strain hardening part of the force displacement curve, but in the softening
branch of the force displacement curve the predicted forces are different in the three
formulations. Our formulation predicts the force in the softening branch in a similar
way as the results presented by Ibrahimbehovic and Chorfi do. It means that the
formulation does not lock in softening.

The load displacement curve obtained using the isothermal IMPL-EX split pro-
posed in this work is presented in Figure . The total value of imposed displace-
ment is increased to 5mm and applied in 100-500-2000 equal time steps to analyze
the overshoots and oscillations in the transitions from elastic to inelastic state. The
results presented in Figure show that the overshoot decreases by increasing the
number of time steps used. Using 2000 time steps, the nonphysical overshot predict by
the isothermal IMPL-EX split is negligible, although, the results predicted with 500
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Figure 11: Plane strain nearly adiabatic shear banding. Temperature and von Mises
stress field at 5 mm.

time steps can be considerable satisfactory, taking into account that we identify the
overshoot as an nonphysical prediction that comes from the integration scheme. On
practice the error on the norm of the stress can be used to predict the suitable time
step for the IMPL-EX integration scheme.

The computing time need to solve the thermo-mechanical traction test using the
isothermal IMPL-EX split is slightly smaller compared with the computing time needed
by the isothermal implicit split. Considering that in both cases we are getting the
same accuracy, the isothermal IMP-LEX split will be used in the numerical modeling
of larger problems. In that problems the IMPL-EX is a substantially better choice,
because it needs less computing time per time step in comparison with the implicit
split and because it introduces robustness in the integration of the constitutive law.

7.4 Challenging thermo-mechanical problems
7.4.1 Steel cutting test

Here we introduce our first industrial application, it consists in the cutting of a rect-
angular block of a common steel. The block (workpiece) has a length 3.7 mm and a of
width 1.8 mm. The cutting has an imposed velocity of 3333.3mm/s, a cutting depth
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Figure 12: Plane strain nearly adiabatic shear banding. Load/Displacement curve,
from different authors.

of 0.10 mm, a rake angle of 0°, a clearance angle of 5° and a tool radius of 0.025 mm.
The rigid tool is composed by to straight lines connected by a circular arch on the
tool tip with the characteristics of the cutting parameters described, see . The
workpiece material behavior is given by a Simo law that takes into account thermal
softening (Table [4 and Table [2)).

Conductivity and specific heat does not depend on temperature, we consider them
constant. The following assumptions are made: First, the tool is supposed to be rigid
and friction is neglected. Furthermore, the thermal exchange between the workpiece
and the tool are also neglected. The inertia of the workpiece is neglected. A classical
penalty method is considered for the contact constraint generated by the action of the
rigid tool.

An implicit quasi-static step with the isothermal IMP-LEX split is used. Time
steps were of 1.2 - 1078 which takes 2.5 - 10 steps for a tool to travel 1.0mm. The
assumption that the tool is rigid is reasonable, since the deformation of the tool is
negligible compared with the deformation of the workpiece.

Temperature, pressure, effective plastic strain rate and von Mises contours are pre-
sented in Figures and . Depicted pressure distribution shows the tension and
compression zones. It is completed with the von Mises stress shown, which demon-
strates that relatively high stresses arise in the primary shear zone and at the tool
chip interface. The localization of this zone agrees with simplified models. It is also
important to note the presence of residual stresses at and below the produced new



7 EXAMPLES 39

10000

8000

6000

Load (N/mm)

4000

—— |sothermal split 100 steps
--------- IMPLEX split 100 steps
—— Isothermal split 500 steps
200f9—ot—+— 1 L] e IMPLEX split 500 steps
—— |sothermal split 2000 steps
--------- IMPLEX split 2000 steps

0 0,5 1 1,5 2 25 3 3,5 4 45 5
Displacement (mm)

Figure 13: Plane strain nearly adiabatic shear banding. Load/Displacement curve.

surface and in the upper part of the chip, especially near the tool-chip interface where
unloading due to curling of the chip occurred. The effective strain rate in the pri-
mary and the secondary shear zone is of the order of 10° and it has its highest value
close to the tool tip. Finally, temperature distribution is also shown in the workpiece.
Temperature reaches its peak on the tool tip zone located on the machined surface.

Figure depicts the cutting and thrust forces applied on the tool, that are
obtained from the simulation. Although the predicted chip is continuous, the cutting
and thrust force does not reach a steady state due to the strong dependency of the
yield hardening function on the linear hardening modulus. Figure depicts the chip
formation in different time step sequences and the contour fill of the temperature on
the continuous chip.

The contact length between the tool and the workpiece, the deformed chip thickness
and the shear angle are 0.16 mm, 0.25 mm and 22 ° respectively.

7.4.2 Analysis of the competitiveness of the PFEM

In order to validate PFEM as an effective strategy to deal with thermo-mechanical
problems we present here a small comparison with other codes based in the FEM
and with experimental results. The comparison is performed with a steel cutting test
example similar to the one presented in this article. In this case the test is a model of
the orthogonal cutting process proposed in [2].

The objective of this test is to predict the chip formation in the cutting process
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Figure 14: Steel cutting test. Workpiece, tool dimensions and initial unstructured
triangular mesh.

of 42CD4 steel at 300 m/min, with a tool radius of 0.04 mm, rake angle of 6 and
cutting depth 0.2 mm. Data about experimental results have been obtained from data
reported in the literature, see [2].

The validation was carried out comparing numerical results with experimental ones
and numerical results obtained from the commercial software Abaqus, Deform and
AdvantEdge. It is important to mention that there are some differences and similarities
between the formulations used in those softwares. They use distinct time integration
schemes, boundary conditions, material models and contact laws. Main differences
between the numerical models are listed next:

1. PFEM, Deform and Abaqus use a Johnson’s Cook yield function to model the
material behaviour. However in AdvantEdge the material behavior is governed
by Marusich law.

2. Abaqus, AdvantEdge and Deform use a Coulomb friction law at the tool chip
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Figure 15: Cutting and thrust force vs. simulation time applied on the tool for a rate
independent yield function.

interface, with a friction coefficient of 0.23. However PFEM and Deform use a
Norton-Hoff friction law with a Norton Hoff constant value of 6e-5.

3. PFEM, Deform and AdvantEdge consider the tool as a deformable while Abaqus
consider the tool as a rigid body.

Furthermore, PFEM, AdvantEdge and Deform use a Lagrangian description of mo-
tion while Abaqus uses an Arbitrary Lagrangian Eulerian description of motion. Also,
PFEM and Deform use implicit time integration while AdvantEdge and Abaqus use
explicit time integration. More information about the constitutive model, boundary
conditions used in the numerical models developed in Abaqus and AdvantEdge are
explained in detail in [2].
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Figure 16: Continuous chip formation using a rate independent yield function: von
Mises (MPa) and Temperature (K).

Table 3: Experimental and numerical results (PFEM, Abaqus, AdvantEdge, Deform)

Temperature Chip Von Mises Contact Contact
(K) thickness (mm) (MPa) force (N) length (mm)
Experimental - 0.32 - 395 0.49
PFEM 1173 0.35 1400 383 0.26
Abaqus 1240 0.35 1348 412 0.32
AdvantEdge 1442 0.27 2343 647 0.29

Deform 1107 0.30 1210 365 0.24
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Figure 17: Continuous chip formation using a rate independent yield function: Strain
rate (1/s) and Pressure(MPa).

Taking in account mentioned differences the results of the numerical simulation are
presented in Table |3l The obtained process variables of temperature, chip thickness,
contact length, von Mises stress and contact force are compared.

It is observed a good agreement between the experimental and numerical cutting
forces predicted by the PFEM, Deform and Abaqus. Instead, comparing experimental
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Figure 18: Continuous chip formation sequence: Temperature (K).

cutting forces with AdvantEdge results, higher differences were found. Regarding to
the chip thickness a relatively quite good agreement was found for all the results.
However, the tool-chip contact length measured in the experiments is about two times
greater than the length predicted by the numerical simulations.

Comparing results for the maximum tool temperature it is observed that the larger
difference occurs between Deform-AdvantEdge, while the smaller takes place between
the PFEM and Deform. The differences are due to material model and friction law
used in each one of the software (stated before).

In the case of the von Mises stress the results predicted by the PFEM, Deform
and Abaqus are really similar, however the maximum von Mises stress predicted by
Advantedge is 1000 MPa greater than the average stress predicted by the other soft-
ware. The differences and similarities among the predicted results are because of those
existing ones between the PFEM, Abaqus, Deform and AdvantEdge (stated before).

The numerical model set up with PFEM is considered to be accurate enough to
compete with current comercial softwares based in the FEM method. Concerning
with the computational cost, a MATLAB code with the PFEM implementation was
used for this comparison. The calculation time in a serial execution was similar to
the commercial ones. We guess that, with an implementation in a more optimized
programming language, the PFEM would be clearly faster.
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8 Conclusions

A numerical framework, based on the extension of the PFEM, for accurately and
robustly simulating the different conditions exhibited by thermo-mechanical problems
has been presented.

We show in examples[7.1]and [7.2]that the elastic and plastic incompressibility prob-
lem can be solved accurately with the proposed u-p formulation. This mixed nodal
implementation adapts naturally to the core of PFEM since no additional transfer
variables are required. It was observed that the stabilization parameter is mesh in-
dependent and that the convergence rate is similar to OSS technique but with lower
computational cost.

In example[7.3| thermo-mechanical coupling, stabilization and IMPL-EX integration
scheme were analyzed. The main conclusion is that IMPL-EX scheme increases the
robustness compared with a typical implicit integration scheme and the continuous
particle discretization of the domain allows us to control the mesh homogeneity.

The potential of numerical methods for the modelling of cutting problems is widely
accepted by the industries of this field, the challenge being to promote effectively their
industrial practice. In section we have attempted to make an exploratory step in
this regard by extending the model to simulate the main aspects of a typical continuous
chip formation in 2D. The most relevant advantage of the formulation presented is
the automatic update of the geometry and the natural generation of new boundary
surfaces. It reduces the numerical diffusion due to re-meshing because transient mesh
additivity is used instead of remeshing, and usually needs less degrees of freedom and
less computing time than other methods to achieve the same accuracy. The results
also show the good agreement between our method and the results obtained with other
commercial codes.

This paper is an exploratory work, intending to evaluate the capabilities and pos-
sibilities of the PFEM in modelling thermo-mechanical problems, rather than being
an attempt of comparison with other well established methods on the subject. In this
sense, and for the sake of simplicity, all simulations in the paper are in 2D.

The extension of the method to 3D cases is a future research field not in the scope
of this paper. It will possibly bring some new challenges, e.g.: a) facing the geomet-
rical aspects to ensure mass conservation, b) construction of a constrained Delaunay
tessellations and advanced a—shape techniques in 3D, and c) evaluation of competi-
tiveness aspects of the PFEM based methods with respect to alternative techniques in
3D cases.
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A Coupled thermo-mechanical IBVP

A.1 Balance equations

The coupled thermo-mechanical initial boundary value problem (IBVP) is governed
by the momentum and energy balance equations, restricted by the second law of ther-
modynamics. The material form of the local governing equations for the body (X, t)
can be written as

p(X,t) = V(X,1) (43)
DIV (P)+B = pV (44)
E+DIV(Q) = Diu+R (45)

In the above equations pg is the reference density, V is the velocity field, B are
the prescribed forces per unit of reference volume, DIV (-) is the reference divergence
operator, and P is the first Piola-Kirchhoff stress tensor. F is the internal energy
per unit of material volume, Q the nominal heat flux, R is the prescribed reference
heat source per unit of material volume and D, is the internal dissipation per unit of
reference volume.

The entropy N and first Piola-Kirchhoff stress tensor P are formulated in terms of
the free energy ¥ and subjected to the dissipation inequality often referred to as the
Clausius Plank form of the second law of thermodynamics.

Dip = P:F4+ON—-E>0 (46)
= P:F-ON-U>0 (47)

where the free energy function per unit of material volume ¥ is obtained from the
internal energy via the Legendre transformation

U=FE- N0 (48)

The nominal heat flux Q is defined by Fourier’s Law, subjected to the restriction
on the dissipation by conduction D.gy,

_ 1
Deon = —5 GRAD(0)-Q > 0 (49)

The spatial form of the local governing equations for the body ¢(x, t) can be written
analogously as

p(X,t) = v(x1) (50)
div (6)+b = pv (51)
é+div(q) = Dy +r (52)

In these equations, the motion ¢ and the absolute temperature 6 are regarded
as the primary variables in the problem while b the body force per unit of spatial
volume, e the internal energy per unit of spatial volume, and r the heat source per
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unit of spatial volume are prescribed data. In addition, the heat flux q, the entropy 7
as well as the Cauchy stress tensor o are defined via constitutive equations.

These constitutive equations are subjected to the following restrictions on the in-
ternal dissipation and the dissipation arising from heat conduction per unite spatial
volume

Dint = Jo:d+ 07 —é >0 (53)
1
Deon = ~2 grad(d)-q >0 (54)

where the free energy function per unit of spatial volume v is obtained from the
internal energy via the Legendre transformation

v=e—nb (55)

A.2 Boundary conditions and initial conditions

The basic governing equations and and the constitutive constraints and
are completed by the standard boundary conditions for the mechanical field

p=¢ only, (56)
t=P-N=%t onT, (57)

where @ and t are the prescribed deformation and nominal traction.
Together with the analogous essential and natural boundary conditions for the
thermal field, namely,

=60 onTy (58)
Q-N=Q onTy (59)

where 6 and Q are the prescribed temperature and the normal heat flux maps.
Additionally, we assume that the following initial data is specified for the mechan-
ical and thermal fields

(X, 1) [i=0 = @o(X)
V(X,t) |t=0 = Vo(X) pin Q (60)
0(X,1) lt=0 = 60(X)

A.3 Global operator split thermo-elastoplasticity
The IBVP described in equation can be written in a simpler way. Suppose that
) ¢ ¢
Z=|pv | and Z= | v (61)
0 0
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Then equations can be written in a generalized form as

7 =A(Z)+f (62)

Where A is a nonlinear elliptic operator and f a prescribed function. The Cauchy
stress tensor g, the heat flux vector q, the total  and the plastic nP entropies, and the
mechanical dissipation D,pecr, := Dine Will be regarded as dependent variables in the
problem, defined in terms of the primary variables Z and a set of internal strain-like
variables I'. The set of internal variables are defined in terms of a constrained problem
of evolution driven by the primary variables, with the functional form

' =\IT,2Z) (63)

where A is an additional variable determined by means of the Kuhn-Tucker condi-
tions, as follows

A>0 ®T,Z)<0 AOT,Z)=0 (64)

and ®(T',Z) is the Mises yield function. The Kuhn-Tucker conditions are applied
only for rate independent plasticity models.

Generally, the nonlinear operator A can be decomposed in two simpler operators
A; and Ay, where A = A; + Ay [79]. The use of the additive operator split applied to
the coupled system of nonlinear ordinary differential equations leads to the following
two simple problems:

1. Isothermal elastoplastic problem

) @ v(x,t) 0
Z=| pv | = | div(o(p.0,X9.0) |+ | b (65)
0 0 0
2. Thermoplastic problem at a fixed configuration
) ) 0 0
Z=|pv|= 0 +10 (66)
0 —div (q(SD? 0, )\(QD, 0))) + Dint r

A.4 Weak form of the IBVP

We define the set of admissible displacements and admissible temperatures of the body
domain §2 as the set of all sufficiently regular displacement and temperature functions
that satisfy the essential boundary condition, denoted here respectively as

U = ¢(Q)—=R>: det(F) >0 ¢|,, =¢ (67)
O = Q) —>R:0>0 0|, =0 (68)
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The spatial version of the virtual work principle states that the body € is in equi-
librium if, and only if, its Cauchy stress satisfies the equation. The weak form of the
momentum balance equation

div (g) +b = p¥ (69)

can be justified by taking the Lo inner product of with any valued function n € V,
being V the space of virtual displacements

V:={nep)— R3| g |, =0} (70)

and making use of the divergence theorem will lead to the following expression:

/[G:Vsn—n(b—p\")] th—/ t-ndyy=0 VpeV (71)
Vi

o

The dynamic weak form of the energy balance equations on the body (2 in
absence of a heat source (r = 0)

¢ +div (q) = Dint (72)

can be obtained by taking the Lo inner product of with any valued function ¢ € T,
being T the space of virtual temperatures

T:={Ceb@) =R [(|, =0} (73)

making use of the divergence theorem, leading to the following expression:

O~ [ Ve-aavi- [ Duedvit [ darmdg=0 weT (1)
Wi Vi

Vi Ya

For simplicity the Ly inner product will be represented as (-, ), and with a slight
abuse in notation (-, -),, and (-, -),, will denote the Ly inner product on the boundaries
Yo and g, respectively.

As a consequence, equations and can be written as

(0,V°n) — (n,b—p¥) — (t,n), =0 (75)
<C7 €> - <VC7q> - <C7D’Lnt> - <C7 q- l’l>,yq =0 (76)

Denoting by Gy qyn and Gy star the dynamic and quasi-static weak forms of the
momentum balance equations lead to

Gu,dyn = Gu,stat + <n7 ,OV> (77)
Gustat = (0,V°n) —(n,b) — <ta77>% (78)

And denoting by Gg gy, and Gg sier the dynamic and quasi-static weak forms of
the energy balance equations lead to
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G97dyn = GG,stat + <<7 €> (79)
Ge,stat = _<V<.'7 q> - <C7D'mt> - <C7q ' 1’l>,yq (80)

The weak form of the momentum balance and energy equations for body €2 can be
expressed in short notation as

Gudynzo }
’ YneV,¥v(eT 81
Goam =0 J 70 ¢ (81)

A.5 Mixed displacement-pressure formulation for the IBVP

It is well known that pure displacement formulations are not suitable for problems in
which the constitutive behavior exhibit incompressibility since they tend to experience
locking. Locking means, in this context, that the constraint conditions due to incom-
pressibility cannot be satisfied. These constraint conditions are related to the pure
volumetric mode (in the elastic case the condition is det(F€¢) = 1 see equation and
for plastic flow the condition is det(F?) = det(CP) = 1, see equation (94)). Thus, this
behavior is also called volumetric locking. As locking is present in the modelling of
metal plasticity, we adopt a mixed formulation in the momentum balance equation of
the workpiece. Introducing a pressure/deviatoric decomposition of the Cauchy stress
tensor, the standard expression of the equilibrium equations becomes.

Gu,dyn = Gu,stat + <"77 P"’> (82)
Gu,stat = <d€’U(0’) + pl, Vs’?) - <777 b> - <t777>70 (83)

The pressure field p in the variational equation is an additional variable de-
termined by the volumetric part of the material model. In our case a Neo-Hookean
material [8, [77] is used. It will be introduced in section (B]). The resultant continuity
equation is given by

(1 —In(J))

p—kIn(J)+3ak (0 —6y) =0 (84)

where k > 0 and « can be interpreted as the bulk modulus and the thermal
expansion coeflicient, respectively. J is the determinant of the deformation gradient,
see equation .

The weak form of the pressure constitutive equation can be obtained by taking
the Lo inner product of with any valued function g € Q, being Q the space of virtual
pressures

Q:={q€p(Q) =R |q|,, =0} (85)

The variational equation that represents the weak form of the pressure constitutive
equation can be expressed as
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1-1
/q[p—filn(J)—3a/-i(Jn(J))(9—90)}th:0 YgeQ (86)
i
or in an alternative form
Gr = Grpt(pq) (87)

1 —1In(J))

Grp = </<c In(J) -3 ak ( (0—00),q> Vg € Q (88)

Taking into account the mixed formulation for the momentum and energy balance
equations take the form

Gu,dyn =0
Go,gyn =0 Vpe V,V(e T, Vqge @ (89)
Gr=0

B Thermo-elastoplasticity model at finite strains

In the treatment of the themo-mechanical coupling, the constitutive equations must
account material and geometrical non-linearities. In the mechanical part, a material
model with the finite strain elasto-plasticity and the multiplicative decomposition of
the deformation gradient will be used.
The decomposition of the deformation gradient into elastic and plastic parts is
defined by
F(X,t) = F¢(X,t)FP(X, 1) (90)

If we are taking in account finite strains, the deformation measures used are the
Green Lagrange and the Almansi strain tensors which describe the strain in the ma-
terial and in the spatial configuration respectively.

1 - 1
E:= §(C—]l) and e:= 5(]1—0) (91)
where

C:=F'F and b:=FF', then c:=b!'=(FF)' =FTF"! (92)

and 1 and 1 denotes the symmetric unit tensor in the reference and the current
configurations respectively.

A Neo-Hookean model will be taken as a reference for the finite strains elastic
behaviour. Once the material reaches plasticity, the thermal behaviour must be taken
into account. In most materials the stress-strain relationship is affected by the strain
rate and temperature during plastic deformation. For a given value of strain we can
encounter: (i) the stress is higher for a higher strain rate and (ii) the stress is lower
for higher temperatures.
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The materials to be treated will be metals-type. In this case the formulation of the
constitutive equations is based on two basic assumptions:

1. The stress response is isotropic. Therefore, the free energy is independent of the
orientation of the reference configuration

2. The plastic flow is isochoric (standard assumption in metal plasticity)

det(FP) = det(CP) =1

det(F) = det(F¢) =Jc=J (93)
where CP is the plastic part of the Cauchy-Green tensor is defined as
C? .= FrTE? (94)

With these two assumptions, we proceed to outline the governing equations of the
model beginning with the thermo-hyperelastic model and continuing with the thermo-
hyperelastoplastic one.

B.1 Constitutive thermo-hyperelastic model

The first model considered will be an hyperelastic model under temperature effects.
The first assumption is the material isotropy and the second one the thermal response.
Volumetric changes in the constitutive response must be accounted due to the variation
of the temperature in the material.

The Neo-Hookean material used to represent the phenomenology mentioned above
is represented with the following free energy function, see [, [77].

(b) = U(J) + W(b) + M(0, ) (95)
The elastic part of the fre? energy is Auncoupled into volumetric/ deviatoric response
described by the functions U(J) and W(C), respectively. The function M (0, J) de-

scribes the thermo-mechanical coupling due to thermal expansion and provides the
potential for the associated elastic structural entropy.

U(J) = %n1n2(<])
W(b) = % p[tr(b) — 3] = % p [tr(C) — 3] (96)
NI(0,7¢) = —3ax ln(j) (6 6)

where ¢ > 0, kK > 0, ¢ > 0 and « can be interpreted as the shear modulus, the
bulk modulus, the heat capacity and the thermal expansion coefficient,respectively. C
and b are the volume preserving right Cauchy-Green tensor and the volume preserving
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left Cauchy-Green tensor. If F denote the volume preserving part of the deformation
gradient, then det(F) = 1. Recalling that J := det(F) gives the volume change, then

Fi= J3F = det(F) = 1 (97)

Associated with F and F we define the volumetric preserving part of the right
Cauchy-Green tensor and the volume preserving left Cauchy-Green tensor as

C=J3C=J3FF (98)
and
B¢ =J"ib® where b°:=FFT =F(Cr)LFT (99)
The free energy function zﬂ(b) satisfies two important properties:

° &(b) is invariant when the current configuration undergoes a rigid body rota-
tion. This is because ¥ (b) only depends on the stretching part U = V/C and is
independent of the rotation part R of F, F = UR (Objectivity)

° zﬂ(b) on any translated and/or rotated reference configuration is the same at any
time t (Isotropy)

From equation and applying, the standard Coleman-Noll procedure leads to a
constitutive equation expressed in terms of material variables as follows:

2

B In(J) 8J (1 —1n(J)) aJ otr(C)
= 2k 3 6C—60¢/@ (0—00)8(34—,& 3
(1 - In(J)] SRS i T
= K ln(J)—3af(9—90) C+2pnJ s ]I—gt'r(C)C
(100)
or its terms in spatial variables as follows:
1
= - FSF’
’ ! (101)
1-1 5
- % {m(J) “3a (Jn(‘]))(a - eo)} 1+ 2 pJ 5 dev(b)

B.2 Constitutive thermo-hyperelastoplastic model

Consistent with the assumption of isotropy and extending the hyperelastic model to
plasticity we characterize the stress response by a stored energy with the form

) =U(J) + W (D) + M(0,J°) + T(0) + K(e”,0) (102)
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The elastic part of the free energy is uncoupled into volumetric/deviatoric response
described by the functions U(J¢) and W (b®), respectively. The function M(6, J)
describes the thermo-mechanical coupling due to thermal expansion and provides the
potential for the associated elastic structural entropy, while the function T(G) is the
potential for the purely thermal entropy. The function K (e?,0) is a nonlinear function
of the equivalent plastic strain e? and temperature § which describes the isotropic
strain hardening via the relation 8 = —9» K'(€P,6). To make matters as concrete as
possible, we consider the following explicit forms [79, [14].

A

U(Je) = %an(Je)

W(be) = g [tr(6) 8] = L e [1r(C7) 3
) (103)
70)=c[i0-00~om ()]

0

In(J¢)
Je

where ¢4 > 0, kK > 0, ¢ > 0 and « can be interpreted as the shear modulus, the bulk

modulus, the heat capacity and the thermal expansion coefficient,respectively.
Some remarks can be made about the structure of the free energy function (102)):

M(@0,J¢) = -3ak (0 — 6o)

1. the structure of the free energy is usually restricted to temperature independent
material properties

2. the thermoelastic free energy is decoupled from the plastic contribution dz» K (e?,0)
associated with the hardening variable e? (this assumption is motivated by the
experimental observation that the lattice structure remains unaffected by the
plastic deformation) [79]

3. The functions U(.J¢) and W (b¢) generalize the linear isotropic elastic model

4. The function K (&?,6) represents the visible (macroscopic) plastic deformations
that are the result of microscopic dislocation(crystallographic defects in the crys-
tal structure) motion and multiplication. Generally, the material exhibits high
strength if there are either high levels of dislocations or no dislocations. In ad-
dition, the function K (e?,0) represents the yield stress decreasing as the grain
size is increased [48]. Also, K (&7, 6) represents the decrease in dislocation den-
sity due to the heating of the material above its critical temperature (thermal
softening).

There are four main strengthening mechanisms for metals, each one is a method to
prevent dislocation motion and propagation, or make it energetically unfavorable for
the dislocation to move (work hardening, solid solution strengthening, precipitation
hardening and grain boundary strengthening).
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In addition, there are other factors that affect the shape and the magnitude of the
hardening potential among them [I2]: (i) material composition, (ii) previous heat treat-
ment, (iii) the type of crystal structure and (iv) prior history of plastic deformation.
Different hardening potentials that represent the work hardening phenomenon have
been proposed in the literature, which reflect some of the strain hardening patterns
observed in the experiments. Among them the following:

B.2.1 Voce and Simo hardening potential

Voce [85] presented and Simo [79] applied the following potential describing isotropic
hardening:

R(e7,0) = 5 h(O)(e)? ~ [o0(6) 0w (0)] H(e?)
—ex —oe®
I‘i’(ép) — eP — % for ¢ 75 0 (104)
0 for d=0

where ¢ is the saturation exponent and the functions h(6), 0o(#) and o (#) describe
linear thermal softening.

oo(f) = o0(fo) (1 —wo(0 — b))
a(8) = Ta(B0) (1— wy(6 — b)) (105)
h(#) = h(6o) (1 —wn(0 — 6))

where 0g(fp) is the initial yield stress, o (6y) is the final saturation hardening
stress, h(6p) is the linear hardening modulus, all obtained at the reference temperature
0o, while wy and wy, are the flow stress softening and hardening softening parameter,
respectively.

The above potential allows us to study materials exhibiting a combination of linear
and saturation-type hardening.

B.3 Yield condition

Accurate flow stress models are considered extremely necessary to represent work ma-
terial constitutive behavior under high strain rate deformation conditions. We consider
the classical Mises-Hubber yield conditions, expressed in terms of the Kirchhoff stress
tensor, for the case of rate independent plasticity:

(r,e”,0) = ||dev(r)|| — \/g (o0 = K'(7,6)) = |1 dev(r)]| - \/g(ay +6) <0 (106)

and for rate dependent plasticity
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f(r,e?,0) = || dev()|| — \/g(ffy +8) (1 +g(e") =0

or

5 (107)
f(r,e7,0) = &(r,e",0) — \/;(Uy +8)g(e") =0
if ®(r,e?,0) >0
where o, denotes the flow stress, o,, denotes the flow stress at 6 = 6y, 8 =

—K'(e?, ) the isotropic nonlinear hardening modulus, §; the isotropic hardening at
6 = 0y, g(€’) the strain rate hardening modulus and €” the hardening parameter.
The expressions (o, + 8) y and g(€”) depend on the hardening law used. Numerous
empirical and semi-empirical flow stress models have been proposed. Some examples
of strain-rate dependent models have been developed by Johnson and Cook [45] and
Biker [4]. Simo [79] proposed the strain dependent model that will be used in this
work.

B.3.1 Simo flow model

In the Simo flow model a particular expression is proposed to define the hardening
and thermal softening condition (o, + f):

(0y +8) = &y + H(eP) + (Kins — &) (1 — exp(—deP))

where
6y =0y (1 —wo(e—eo)) (108)

H=H(1—wy(0—0))
King = King (1 —wp (0 — 6p))
This model describes the strain hardening and thermal softening for most steels in
temperature range between 300K and 400K [79]. Common values of material constants

of the Simo yield function are shown in Table
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Table 4: Simo yield function. Material properties

Yield Stress oy 450 MPa
Flow Stress Softening wo 0.002 K1
Reference Temperature 6 293.15 K
Linear Hardening H 129.24 MPa
Hardening Softening wp, 0.002 Kt
Saturation Hardening Kiny 715 MPa
Hardening Exponent 0 16.93

B.4 Associative flow rule

The functional form of the corresponding associate flow rule is uniquely determined
analysing the evolution equations and the plastic dissipation. For the Mises-Hubber
yield function and the free energy function (109), Simo [79] and Ibrahimbegovic
[41] show that the flow rule takes the form based on the principle of maximum plastic
dissipation.

O =T(0) + M(8,J¢) + U(J) + W(b°) + K(e?,0) (109)

_ 2 -
fir.29.0) = lden(r)] 2 (0,4 ) (1 + () =0 (110
A detailed procedure about how to get the flow rule is shown in the following lines.
First defining the plastic mechanical dissipation and then the evolution equations.
B.4.1 Mechanical Dissipation
Due to the restriction to isotropy implied by the thermo-elastic domain, the functional
form of the internal energy function e can be written as
e =&(b% el n°) with n°=n—nP (111)

where 7 is the entropy of the system, é” is the equivalent plastic strain and b® is
the elastic left Cauchy-Green tensor. The free energy can be expressed in terms of the
internal energy via the Legendre transformation as

&(Bev épa 6) = é(Bev épa 6) - 77p9 (112)

Applying the second Law of Thermodynamics, constitutive equations consistent
with the assumed free energy function are derived. This gives the expression of the
energy dissipation as
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D=r-d+0n—é=71-d+07—1—70—n°0 (113)
differentiating the free energy function zﬁ of the equation 1D with respect to time

oY e aw . w
AR (114)

and taking the derivative of b® with respect to time.

b=

b¢ = FF'F(CP)'FT + F(CP) ' FTFTRT 4 F(CP)IFT (115)

Using the definition of the spatial velocity gradient 1 = FF~! and the Lie derivative
of the elastic left Cauchy Green tensor £,b® (117)), the time derivative of b® is written
as

be = 1b¢ 4+ be1” + £, b° (116)

Remark. The Lie derivative for the tensor b® is defined as

)
Fol

The Lie derivative of b® tensor is exactly the push forward of the time derivative of
the pull-back of the spatial tensor b€. More information about push-forward and pull-
back operations is given in references [8, 7). Inserting equation mto equation

114)), the derivative of the free energy function 12) becomes

L,b¢ = F{;[FlbeFT]}FT c?) YFT = F(CP)FT (117)

o

@Z——(le“rﬁ,,be) 00 o 0,

der © 00

By inserting the relation d = symll] into and using the Lengendre Transfor-
mation ([112)), the dissipation inequality becomes

D=0+ (‘M—an) 9+<T—28¢be> a- oo = =0 )

(118)

00 Ob¢ Ob¢ Oep

By demanding that (119) hold for all admissible processes, the Kirchhoff stress
tensor is obtained by the general expression:

B G2, . . OW
= 25 bt = 2FC S FT
(120)
(1 —=1In(J¢)) In(J®) —
= N - -_— — — ]1 e
J¢|-3ak )2 (0 —60) —k e + p dev(b®)
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The hydrostatic and deviatoric parts of the Kirchhoff stress tensor are

(1 —1In(J°))

7o (0—00) —rkIn(J9| 1 (121)

p:=|-3ak

s := u dev(b®) (122)

and the entropy constitutive equation

N

n=n" = 55 =1 — 0T (0) — 0pM (6, ) — 0K (", 0) (123)
The dissipation inequality becomes
L o0 .
D =D=nP0— obf— —7¢€f > 124
mech n g abe[’ e P e >0 ( )

B.4.2 Evolution equations and maximum plastic dissipation

Now, we need to define the evolution equations for the internal variables in the model
in order to complete the constitutive theory of plasticity at finite strains.

Based on the thermo-mechanical principle of maximum dissipation, the problem is
to find the values of the stress, the isotropic nonlinear hardening and the temperature
(1,B,0) such that the dissipation function attains a maximum subject to the
constraint ®(7,e?,0) < 0 (rate-independent plasticity), prescribed the intermediate
configuration (b® is fixed) and prescribed the rates (£,b®, P, 9) The problem can be
reformulated as a constrained minimization of the negative value of the dissipation

(r,8,0) = arg L)( min)go(—D)]

T,eP,0
. . 0y oy .
= —_pP € Y Y
arg L(Jf&%)go ( 7o+ 8beﬁvb + 557 ¢ )] (125)

But the problem can be expressed as an unconstrained minimization problem by
introducing a Lagrangian functional

O:LP(1,B8,0;\) = —D(1,5,0) + XD(r,e?,0)
1 .
= 0+ L,bb*™ ! — Ge? + X &(1,e”,0) (126)

The solution to the problem is given by

O-LP(7,3,0;\) = %Evbebe‘wwf@(nép,@)zo (127)
OpLP(7,5,0;%) = —€ +X05d(r,e?,0) =0 (128)
OpIP(7,B,0;0) = —i + \p®(7,e7,0) =0 (129)
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where the consistency parameter \ is the Lagrange multiplier satisfying the Kuhn-
Tucker conditions

A>0 ®(r,eP,0)<0 Ab(r,eP,0) =0 (130)

It is important to remark that the Kuhn-Tucker conditions are equivalent to the
loading-unloading conditions. In summary, the evolution equations of the internal
variables are

L,b® = —2X0.0(r,e",0)b°
e’ = -\ 85(13(7', e?, 9)
n’ = Xoy®(r,e?,0) (131)

From expressions (115) and (117]), the Lie derivative of the elastic left Cauchy-

Green tensor can be expressed in material description as

(CPY~Y = —2X0,f(dev(r),eP,0) (CP)™?
oy euT) o1 5y S eyt
= P e @ = 2 e
. 2
el = 3

n? o= A \/2(590’ + 913) (132)

Using the specific constitutive equations and decomposing b into its spherical and
deviatoric parts, the exact flow rule (131]) becomes

1 _
L,b° = —2X\J 5n’ ”Z” —2NJ 3 5 ir(B)n (133)

The first term in (133 can be neglected in most metals, because this term is of the
order of the flow stress over the f,hear modulus, which for metal plasticity, is of the
order of 1073 [79]. Using F = J 3F at the modified flow rule

1 _
Lb¢ = —2AJ*%§tr(b€)n

F(CP)'FT = —QA%tr(Be)n (134)

C Time integration of the constitutive law

The problem of integrating numerically the initial-value ODE equations represented
by (132)) in conjunction with the condition (130]) is the focus of this appendix.
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C.1 TImplicit Backward-Euler integration scheme

Let (Ch)~1, &P, 0, denote the initial state at time ¢,,, and assume that the deformation
gradient and temperature field Fj11,60,11 at time ¢,41 are prescribed. Let us focus
on the time step t, — t,+1, where At = t,.1 — t,,. Using an implicit unconditionally
stable scheme on and the scalar equations of gives

— _ _ _ 1 _,
Fo (Chp) ™ = (CRH T Fpyy = —2Xn At§tr(bn+1)nn+1
el —el = N1 At\F
n+1 n 3
2
Moyl = N8 = Ant1 At\/; (Opoy + O0g3) (135)

The right hand side of equation (135]) in terms of spatial variables becomes

_ _ - 1 _
b761+1 — Font1 by, Fg,n—i—l = =241 Atgtr(b2+1)nn+1 (136)

along with the following counterpart of the loading-unloading conditions:

AAL > 0 fn—l—l(Tn—l-la é£+179n+1) < 0 )\n+1At fn+1(7n+17 éﬁ+17 0n+1) =0 (137)

where the yield condition is defined by the Mises criterion

2
i, s ) = lder(e)ll 2 @y + o) (138)

A closed form solution of these equations is obtained by defining the thermo-elastic
state by the relationships

Fetrial @ —1 T T e @l
bn+1 - Fn7n+1 CIT’L Fn,n+1 - Fn,n+1 bn Fn,nJrl
trial e, trial
Sni1 = pdev(b, )
trial trial 2 ~
Judd Spt1|| — \/g(ay,n—i-l + Bnt1(eh)) (139)

We observe that the trial state is determined solely in terms of the initial conditions
b¢, ek, 0, and the given incremental deformation gradient F,WH. We remark that this
state may not correspond to any actual state, unless the incremental process is elastic.
An analysis of equation (|139)) reveals two alternative situations:

First, we consider the case for which

fiigt <o (140)

It follows that the trial state is admissible in the sense that



C TIME INTEGRATION OF THE CONSTITUTIVE LAW 62

e _ fetrial _ 1 p—1 4T
bn+1 - bn+1 =F, ,n+1 Cn Fn,n—H F, n+1 by, Fn n+1
trial
Sn+1 = SJ—T-QI
trial d (be tmal)
Sp41 = HACU(Dy
14 — b
&, = e (141)

and satisfy

1. The stress strain relationship
2. The flow rule and the hardening law with A\, 11 = A1 1At =0

3. The Kuhn-Tucker conditions, since
Fai1 (T 1, €201, 0n1) = FE <0 ANy =0 (142)

satisfy ((137]).
trial

Next, we consider the case for which f"/{" > 0. Clearly, the trial state cannot

be a solution to the 1ncremental problem since bflf:fal ek, 0, violates the constraint

condltlon frns1(Tnet, et €pi150nt1) < 0. As a result, we require that A\,;1 > 0 so that

el | # ek to obtain s, 41 # sl

To summarize our results, the conclusion that an incremental process for given
incremental deformation gradient is elastic or plastic is drawn solely on the basis of
the trial state according to the criterion

prial <0 = elasticstep AXpy1 =0
ntl >0 = plasticstep Alpy1 >0

Here we focus on the algorithmic problem for an incremental plastic process char-
acterized by the conditions

fﬁtﬁl >0 for1(Tnt, é£+1v On+1) =0 (143)
and Adpy1 >0 (144)
The objective is to determine the solution (BZ+17 éﬁﬂ, Ont1,Sn+1, AXpt1) to the

problem ((136)), (137)) and ((138)). To accomplish this we express the isochoric Kirchhoff

stress tensor s,41 in terms of s and AX,41 as follows

Swir = pden(Bl,,)

_ _ 1
= pdev(Fpnni1 by Fz;n-i-l) = 20N gtr(bfwl)nn-&-l

1
= st 2 AN 1 p 3tr(bn Y (145)
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The update of Kirchhoff stress tensor and the tensor bf,,; need the determination
of the trace of b, ;. By taking the trace of equation (136]) and using (139)) we conclude
that

tr(bs, ;) = (b ") (146)
Then replacing (146)) in (136]) we get
_ o 1
n = B = 20 At (B (147)

and using the hyperelastic relationships yields

. 1, —etri
Sp41 = Sgiall —2ANq1 4 gtr(bgirlzal)nnﬂ (148)

From (145)) and the definition s,,+1 = [|Sp+1]|np+1, the normal n,; is determined

in terms of the trial stress sfﬁall

) 1 —etrial
Isnerllmoer = [ Innes =2 A o g tr(Br Y
) ) 1 .
s iy = (sl +2 AN g tr(BI™) | mnsy
s = [l ol
1 = nlli (149)

By taking the dot product of (145) with n,; and using (138]), we obtain the
following scalar nonlinear equations that determines the consistency parameter A\, 1:

1 e tria 2 =
9(ANas1) = sn1ll —2AN 1 p gtr(bnil l) - \/; (Uy,n+1 + ﬁn+1(6r€+1))

ria 1 e, trial 2 _
= [ = 20N p gtr(an )+ \/; (oyn + Bn(el))

2 _
- 3 (Jy,nJrl + 5n+1(65+1))

-0 (150)

Equation is effectively solved by a local Newton iterative procedure since
g(AN,41) is a convex function for the isotropic hardening functions used in this work,
and then convergence of the Newton-Raphson is guaranteed.

Once A\, 11 is determined from the intermediate configuration, the hardening
variable and plastic entropy are updated from .
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C.2 Algorithmic constitutive tensor

In the following lines, we provide an expression for the algorithmic tangent moduli,
which is a key aspect in the linearization of the weak form of the momentum equation.
The algorithmic constitutive tensor is developed for the implicit integration scheme
and for the IMPL-EX scheme.

C.2.1 Algorithmic constitutive tensor: implicit integration scheme

The expression for the tangent moduli for the implicit stress update algorithm will be
presented in the following lines

9S4 |
8CZ+1 = 6103221?[ =+ 52Nn+1 & DGV(N?L+1) -+ (53Nn+1 ® Nn_’_1 (151)

where the coefficients 41, d9 and d3 are defined by the expressions

2 AN,
o= (1o 24SAn (152)
1Sy7 ]
_ plsy|
by = 2 ANy — 153
2 1% +1 2 N gd[ay +ﬁ] ( )
3 dAM 41
B A)\ ”Stmal” 2
2M2A)\n+1 n+1 n+1 2 trial
03 = . — =AX11||ST4 154
3 Hsgiall” + 2 L2 2d O'y 4 B 3 Jr1|| n+1 || ( )
3 dAM 11
And, where trial Cfi’;"fl is given by
] astmal 1
Ctr‘zal — n+l _ 771 Cn —1 Cn —1 In
n+1 9C, 11 = fn+1 3( +1)7 @ (Crp1)” + It
L 2

LA (Ch) '@ (Cnt1) '+ (Copn) T @ (Ch) ! (155)

where 1,11 the operator has the following component form

1 _ _ _ _

L1k = _i(Cn—l—l,ik) YCni1.50) M+ (Crgrit) H(Crgr i) ™! (156)
It is important to remark that, the consistent deviatoric tangent modulus is non-

symmetrical.
The last point to complete the derivation of the consistent tangent modulus is to
calculate the derivatives of the isotropic hardening function used in this work with
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respect to the plastic multiplier. The following equations present the derivatives of the
Voce and Simo model ((108)).

8(0y+,8)n+1 - (1 —’LUO(Q—GO))
(9€n+1
—+ (Kmf (1 — wh(e — (90)) — K() (1 — ’Ujo(@ — (90))) (5exp( e n+1)

(157)

Since, the stress update formula is cast in terms of spatial quantities; it is con-
venient to transform the material algorithmic tangent moduli (151)) into the spatial
configuration via a pull-forward operation as follows

_ Os 1
€ dev,ijkl = ﬁ = Foi1,i4Fns160Fn10Fni1,58Caev, aBCD (158)
n+
8Sn+1 astrizﬁl 9
= 01 + Somy gy @ dev(ng ) + G3nn 41 @ gy (159)
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C.2.2 Algorithmic constitutive tensor: IMPL-EX integration scheme

The derivation of the algorithmic tangent moduli for the IMPL-EX stress update al-
gorithm follows a similar procedure to that used for the implicit scheme.

The nonsymmetrical expression for the consistent deviatoric elastoplastic module
for the IMPL-EX stress update scheme is given by

8Sn+1
aCn-i—l

C= =61 C 4 55N, 1 ® Dev(N2 ) 4+ 03N,1 @ Npyyg (160)

where the coefficients 61, 52 and 93 are defined by the expressions

- 2 AN,

51 = 1- Htmal+1 (161)
1SmE

S = 20041 (162)

_ 2 2 A _

v (Hs#falu HSWH) Adnti (163)

where C7i@ is given by (155 and

Athrl
At,

As was said above, a comparison of the coefficients of equation (161]) and equation
(152)) shows that the algorithmic tangent modulus is simpler in IMPL-EX scheme

AS\n«H = A)\nJrl

(164)
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that in implicit scheme. Also, equation shows that the tangent moduli of the
IMPL-EX scheme is independent of the isotropic hardening function used, by the
above reason the task of implementing a new hardening function inside the IMPL-EX
scheme is simpler than in the implicit scheme. Since, the stress update formula is cast
in terms of spatial quantities; it is convenient to transform the material algorithmic
tangent moduli ((160)) into the spatial configuration via a pull-forward operation as
follows

_ OSn41 _
€ dev,ijkl = 8%: =Foi1i4F 1 0cFnt1,0Fnt1,iB Cdev,aBCD (165)
n+
95 B astrial _ _
ntl _ 5 Zontl dony, 11 @ dev(niﬂ) + 03Ny 1 @ Ny (166)

1
01,11 01,41

C.3 Linearization of the algorithmic dissipation

In the same way, the solution of the mechanical problem using an implicit integra-
tion scheme requires the algorithmic elastoplastic tangent moduli, the solution of the
thermal problem requires the linearization of the algorithmic dissipation.

The mechanical dissipation that comes from the free energy depends
only on the initial flow stress o,. This feature, however, is not consistent with the
experimental observation on metals which suggest that part of the work hardening
possess a dissipative character. In order to accommodate the experimental observa-
tions introduced above into the phenomenological thermoplastic constitutive model,
an additional dissipation hypothesis concerning the amount of mechanical dissipation
must be introduced. In practice, this is accomplished by assuming that the mechanical
dissipation is a fraction of the total plastic power.

2 :
Dmech =X \/Q(O’y + B))‘ (167)
where x € [0, 1] is a constant dissipation factor chosen in the range of [0.85,0.95].
C.3.1 Linearization of the algorithmic dissipation: implicit integration
scheme

An implicit Backward-Euler time discretization of the plastic dissipation is shown in
the next equation

i > A,
Dyyten = X \/;(Uy + B)nt1 Atﬂ (168)

The derivative of the dissipation with respect to the temperature is given by the
following expression
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>
oDl \/7(Uy + B)nt1
Pomech — o | ANy — 43 (169)

00 _ 2

where the coefficients a and b are given by the expressions

_ X [20(0y + Blni1
“=AtV3 90 (170)

0oy + B)nt1
aA>\n+1

The terms a and b depends on the yield functions (o + 8)p41. The term b has
been calculated in the previous section. Therefore, it is only necessary to calculate the
derivative of the yield functions with respect to the temperature field, as is shown in
the following lines.

First, the derivative with respect to temperature of the Simo and Voce yield func-
tion is

b= (171)

0oy + B)ni1

50 = —oy+ Ko (1 —exp(—deh ,;)wo)

— H+ Ky (1 —exp(—deh ;) wo) (172)
C.3.2 Linearization of the algorithmic dissipation: IMPL-EX integration
scheme

Starting from the extrapolated value of the plastic multiplier, the plastic dissipation
at tp41 could be written as

_ 2 A
Deen = X \/; (04 + Bhntr =5y (173)

As the extrapolated value of the plastic multiplier is held constant during the time
increment, the linearization of the IMPL-EX dissipation is given by

oDl \/58(03/ + B)nt1 Adnta
00 V3 o9 At (174)

A comparison of equations and shows how simple it is to linearize the
plastic dissipation in case of using IMPL-EX.

The derivative of the yield function with respect to the temperature field for each
of the model used in this work have been presented in equation .

Using the coefficients introduced in equations and , the linearization in
case of IMPL-EX is simplified as
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aan-i-l _
T"gch = a[AN41] (175)

D Time integration of the IBVP

The implicit scheme is unconditionally stable; it means that there is no restriction on
the time step used in the numerical simulation. In implicit formulations, mechanical
problem can be solved in a static o dynamic way. Furthermore, implicit formulations
can be used with standard and mixed (displacement/pressure) finite elements. How-
ever, implicit schemes needs the solution of a linear system of equations, a certain
number of times, within each time step. Usually, the solution of the linear system
represents most of the computing time. Furthermore, in the implementation of a new
constitutive equation, the implicit time integration has the requirement an algorithmic
constitutive tensor. Moreover, in some cases an implicit scheme does not converge,
due to the high nonlinearities involved in the problem.

The explicit formulation solves the mechanical problem in a dynamical way. The
solution of each time step in an explicit scheme is simple and computationally efficient,
provided the use of a lumped mass matrix in the simulation. Explicit schemes do not
need the solution of a linear system; this topic is an advantage if the numerical solution
is done using parallel computing. Implementation of a new constitutive equation is an
easy task; it allows to implement simple or complex constitutive equations without a
big effort. Explicit schemes are conditionally stable, it means that the time step used
in the simulations should be less or equal than a given critical time step, the critical
time step correspond to the time that take to an wave to travel through the small finite
element of the mesh. In case of an elastic material, the critical time step depends on
the mesh size, elastic modulus, Poisson ratio, density of the material and v a constant
that depends on the finite element used.

Aty =y B0 AT (176)
3r(l—v) 2G(1 —v)

p(1+p) p(1 —2p)

The restriction imposed on the time step by the explicit schemes, allows concluding
that for numerical simulation which involves long period of computing time or low
speeds, implicit schemes are more favorable in comparison with explicit schemes.

There is no a reference comparison between explicit and implicit time integration
schemes in the literature. There are no clear rules to determine in which condition one
scheme is better than the other.

In the literature, implicit schemes have been used in [81 [74] [5, [76] and explicit
schemes in [50], [61), 27]. Also, there are some mixed schemes in which the hydrostatic
part of the balance of momentum is integrated implicitly and the deviatoric part is
integrated explicitly. Some examples of mixed time integration schemes are given in
the definition of the The Characteristic Based Split [71] and The Finite Calculus [55].
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An implicit coupled algorithm is presented next.

D.1 TImplicit coupled algorithm (Monolithic scheme)

For simplicity, a partition of the time domain I := [0,7] into N time steps, of the
same length At is considered. Let us focus on the time step ¢, — t,+1, where At =
tn+1 — tn. The application of an implicit backward-Euler time integration scheme to
the problem (displacements, pressures and temperatures), (16]), (14)), yields the
algorithm described in Box |7 defined by the initial conditions described in .

COUPLED SYSTEM OF EQUATIONS

1. Momentum

Fu,dyn (ﬁn+1 ) =

Fu,int (an+1 (un—i—ly Pn+1, ‘9n+1); >\n+l (un+17 6’n—&-l)) - Fu,ext(un—i-l)

2. Incompressibility

(Mp + Msmb) Pn+1 = Fp,’l)Ol(Jn+1(un+17 0n+1))

where MP and M**® are the mass-type matrices of the linearized pressure and
stabilization forces respectively

3. Energy

Fo.ayn(0) =
F@,int (Q(an-‘rl); Dint(un—f—la en—l—l); An—l—l (un—i—h 9n+1)) - FG,emt

4. Update nodal variables

Vel = Vit V1At
Upt1 = Uy + Va1 AL
Pnt1 = Pn+ App+

Opt1 = On+ én+1At

The definition of the variables that appear in this box
are explained in sections [4] and [6]

Box 7: Implicit coupled solution scheme.

The set of equations presented in Box [7| show a simultaneous solution scheme of
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the coupled systems of equations where the temperature varies during the mechanical
step and the configuration varies during the thermal step. At first glance, the simulta-
neous solution is the obvious one, but a depth analysis shows that is a computationally
intensive procedure [79]. The monolithic scheme is unconditionally stable due to its
fully implicit character. The different time scales associated with the thermal and me-
chanical fields suggested that an effective numerical integration of the coupled problem
should take advantage of these different time scales. One of the effective integration
schemes is the so-called staggered algorithms, whereby the problem is partitioned into
several smaller sub-problems that are solved sequentially (splitting each time step in
several pseudo-time steps). Most of the time, this technique is especially attractive
from a computational point of view, since the large and no symmetric system that
results from a simultaneous solution scheme is replaced by a much smaller, subsystem.
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