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Abstract: This study investigates the application of two advanced optimization methods for
solving active flow control (AFC) device shape design problem and compares their optimization
efficiency in terms of computational cost and design quality. The first optimization method uses
hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses
hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimiza-
tion methods are based on a canonical evolution strategy and incorporate the concepts of parallel
computing and asynchronous evaluation. One type of AFC device named shock control bump
(SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is
used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a
delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds
which is of special interest to commercial aircraft.

Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process.
From the practical point of view, applying a SCB on the suction and pressure sides significantly
reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline
design.

Keywords: active flow control, shock control bump, shape design optimization, Hybrid-Game,
Nash equilibrium, evolutionary algorithm

1 INTRODUCTION

Developing an efficient optimization technique is

still one of the most challenging tasks in the field of

evolutionary algorithm (EA) research. As modern

engineering problems become progressively more

complex not only robust but also efficient tools

are required. One of the emerging techniques to

improve an optimization performance can be the

use of Nash-equilibrium concept which will be

acting as a pre-conditioner of global optimizer.

Lee et al. [1] studied the concept of Hybrid-Game

(Pareto þ Nash) coupled to a well-known multi-

objective evolutionary algorithm (MOEA); non-dom-

inating sort genetic algorithm II (NSGA-II) [2] to solve

unmanned aerial system multi-objective mission

path planning system design problems. Their

research shows that the Hybrid-Game improves the

NSGA-II performance by 80 per cent when compared

to the original NSGA-II. In addition, Lee et al. [3]

hybridized NSGA-II with Nash-Game strategy to

study a role of Nash-Players in Hybrid-Game by

solving multi-objective mathematical test cases;

*Corresponding author: International Center for Numerical

Methods in Engineering (CIMNE), Edificio C1, Gran Capitan,

08860 Barcelona, Spain.

email: ds.chris.lee@gmail.com

SPECIAL ISSUE PAPER 1175

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0954410011406210&domain=pdf&date_stamp=2011-07-18


non-uniformly distributed non-convex, discontinu-

ous, and mechanical design problem. Their research

also shows that hierarchical asynchronous parallel

multi-objective evolutionary algorithm (HAPMOEA)

[4] can also be hybridized to solve a real-world

robust multidisciplinary design problem. Numeri-

cal results show that the Hybrid-Game improves

70 per cent of HAPMOEA performance while produc-

ing better Pareto optimal solutions. References [1, 3,

5] clearly describe the merits of using Hybrid-Game

coupled to MOEA for engineering design applications

which consider a complex geometry or a large

number of design variables.

Hybrid-Game has two major characteristics;

the first is a decomposition of design problem, a

multi-objective design problem for instance can be

split into several simpler single-objective problems

which correspond to Nash-Players which have their

own design search space. The second temperament is

that Nash-Players are synchronized with a Global/

Pareto-Player as a pre-conditioner; hence, Pareto-

Player can accelerate the optimization process using

a set of elite designs obtained by the Nash-Players

during optimization.

The main goal of this study is to investigate the

efficiency of Hybrid-Game (Global þ Nash) for a

single-objective design problem. The search space

herein will be decomposed to be explored by each

Nash-Player. In this study, HAMOPEA is hybridized

with Nash game strategy to improve optimization

efficiency. Both optimization methods are imple-

mented to active flow control (AFC) device-shape

design optimization and their performance are com-

pared in terms of computational cost and design

quality.

Recent advances in design tools, materials, elec-

tronics, and actuators offer implementation of flow

control technologies to improve aerodynamic effi-

ciency [6–10]. Such aerodynamic improvement

saves mission operating cost while condensing criti-

cal aircraft emissions. The main benefits of using

ACF techniques on current transonic aircraft are

to improve aerodynamic efficiency and reduce

manufacturing cost when compared to designing a

new airfoil or wing planform shape.

In this study, one of AFC devices; double-shock

control bump (SCB) [8–10] is applied on the suction

and pressure sides of a natural laminar flow (NLF)

aerofoil; the RAE 5243 [10, 11] to reduce transonic

total drag, especially wave drag at the critical flight

conditions where two shocks occur.

The rest of the article is organized as follows;

section 2 describes the optimization methods:

HAPMOEA and Hybrid-Game. Section 3 presents

mathematical benchmarks using Hybrid-Game.

Section 4 demonstrates the use of a SCB. Section 5

considers double-SCB design optimization using

HAPMOEA and Hybrid-Game. Section 6 delivers con-

clusion and future works.

2 OPTIMIZATION METHODS

The EA used in this study is based on covariance

matrix adaptation evolutionary strategies (CMA-ES)

[12, 13] which incorporates an asynchronous parallel

computation and a Pareto tournament selection [14–

16]. The first method; HAPMOEA uses the concept of

hierarchical multi-population topology which can

handle different models including precise, interme-

diate, and approximate models. Each node (Node0–

Node6) belonging to the different hierarchical layer

can be handled by a different EA code, as shown in

Fig. 1(a).

The second method hybridizes HAPMOEA by

applying a concept of Nash-Equilibrium instead

of the concept of hierarchical multi-population

topology [4, 17] which is denoted as Hybrid-Game.

Figure 1(b) shows one example topology for Hybrid-

Game which consists of three Nash-Players and one

Global-Player. The Nash-Game players choose their

own strategy to improve their own objective. The

Hybrid-Game takes a high fidelity/resolution popula-

tion from HAPMOEA to the core of Nash-Game;

hence, the Nash-Players can seed/update their elite

designs to Global-Player (Node0).

Both HAPMOEA and Hybridized EA are coupled to

the aerodynamic analysis tool. Details and valida-

tions of HAPMOEA and Hybrid-Game can be found

in references [1, 3, 17]. Lee et al. [3, 17] described the

details of topology for HAPMOEA and Hybrid-Game

for robust multidisciplinary design problem, and

showed their validation by solving multi-objective

mathematical design problems including non-

uniformly distributed non-convex, discontinuous

(TNK), and mechanical design problems.

3 MATHEMATICAL BENCHMARKS

In this section, Hybrid-Game is implemented to

NSGA-II [2] to solve two complex mathematical

design problems; single-objective mathematical

design developed by author and Zitzler, Deb, and

Thiele (ZDT6) [18] are considered. Both NSGA-II

and Hybrid-Game use same optimization parame-

ters: a constant random seed, population size ¼ 100,

cross-over rate ¼ 0.9, and mutation probability ¼ 1/n

where n is the number of decision variables. The

reason why a constant random seed is considered is

to produce the same initial random population for

both NSGA-II and Hybrid-Game.
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3.1 Single-objective mathematical design
optimization using NSGA-II and

Hybrid-Game

One single-objective mathematical design problem

which is similar to inverse design (desired to have

zero value for fitness function) is considered. The fit-

ness function is shown (1). Two test cases are con-

ducted with different number of design variables

(n ¼ 20, n ¼ 30). The same random initial population

is used for both NSGA-II and Hybrid-Game. Hybrid-

Game employs three players: one Global-Agent

(GlobalP) minimizing equation (1) and two Nash-

Agents (NashP1 and NashP2) minimizing equations

(2) and (3). The stopping criterion for NSGA-II and

Hybrid-Game is when the fitness value reaches

lower than predefined value 1.0 � 10�6, i.e. fMOGA

and fHMOGA 41.0 � 10�6.

fGlobal�Player xið Þ ¼
Xn

i¼2

xi � 0:5ð Þ
2

ð1Þ

fNash�Player1 xi , x�i
� �

¼
XnNashP1

i¼1

xi � 0:5ð Þ
2

þ
XnNashP2

i¼1

x�i � 0:5
� �2

ð2Þ

fNash�Player2 x�i , xi

� �
¼

XnNashP1

i¼1

x�i � 0:5
� �2

þ
XnNashP2

i¼1

xi � 0:5ð Þ
2

ð3Þ

Fig. 1 (a) Hierarchical multi-population topology and (b) example topology of Hybrid-Game
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where nGlobal ¼ [20, 30], nNashP1 ¼ [10, 15], and

nNashP2 ¼ [10, 15]. x�i is an elite design obtained by

the Nash-Player 1 and Nash-Player 2.

Figure 2 compares the convergence history

obtained by NSGA-II and Hybrid-Game for (n ¼ 20,

n ¼ 30). It can be seen that Hybrid-Game has con-

verged (f 4 1.0 � 10�6) faster than NSGA-II; for 20

design variables, Hybrid-Game converged after

12 058 function evaluations (4.3 s) while NSGA-II

converged after 31 262 function evaluations (8.0 s).

For the second test with 30 design variables,

Hybrid-Game converged after 21 101 function evalu-

ations (10.178 s), while NSGA-II converged after

56 961 function evaluations (20.975 s). It can be seen

that Hybrid-Game can save almost 50 per cent of

computational cost while converging at one-third of

total function evaluations of NSGA-II.

3.2 Multi-objective mathematical design

problem using NSGA-II and Hybrid-Game

For the multi-objective mathematical design, ZDT6

is considered [18]. It is formulated, as shown in equa-

tions (4) and (5).

f1 x1ð Þ ¼ 1� exp �4x1ð Þ sin6 6�x1ð Þ ð4Þ

f2 f1, g
� �

¼ 1�
�
f1 g
� �2

ð5Þ

Fig. 2 Convergence history obtained by NSGA-II and Hybrid-Game for Test1 (nGlobal¼ 20: top) and
Test2 (nGlobal ¼ 30: bottom)
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where m ¼ 10, xi 2 [0, 1] and g ðxi, ...,mÞ ¼ 1þ 9

ðð
Pm

i¼2 xiÞ=ðm � 1ÞÞ0:25.

NSGA-II itself has one population (Pareto-Game)

considering both equations (4) and (5) while

Hybrid-Game employs two more populations;

Nash-Player 1 considers minimization of equation

(4) as its sole objective while Nash-Player 2 considers

minimization of equation (5) with fixed elite design

x�1 , as shown in equation (6).

fNP2 fNP1, g
� �

¼ 1� fNP1 x�1
� ��

g
� �2

ð6Þ

In this problem, Nash-Game splits the ZDT6

into two simpler problems corresponding to Nash-

Player 1 and Nash-Player 2. In addition, the elite

designs; here, x�1 , . . ., x�10 obtained by Nash-Players 1

and 2 will be seeded to the Pareto-Player popula-

tion (original population of NSGA-II). Due to the con-

stant random seed, NSGA-II and Hybrid-Game

produce the same initial random population,

as shown in Fig. 3. In addition, the optimization

using NSGA-II is stopped after 200 generations,

while Hybrid-Game is stopped when Hybrid-

Game reached the computational cost of NSGA-II.

These conditions will provide to make a fair

comparison.

Pareto optimal fronts obtained by NSGA-II (after

100 and 200 generations) and Hybrid-Game (after 5

and 13 s) are compared, as shown in Fig. 4(a) and (b).

It can be seen that both NSGA-II and Hybrid-Game

are converging to the same solutions; however, the

Pareto-Game of Hybrid-Game has much better solu-

tions for both objectives after 100 and 200 generations

when compared to NSGA-II. This is because the

Nash-Players are acting as pre-conditioners to the

Pareto-Player.

Table 1 compares the fitness values obtained by

NSGA-II (after 100 and 200 generations) and

Hybrid-Game (after 5 and 13 s). The best solutions

obtained by Hybrid-Game are better than NSGA-II

due to injection of the elite design obtained by

Nash-Game to the Pareto-Game population of

Hybrid-Game. In other words, the use of Hybrid-

Game (Nash þ Pareto) improves the optimization

efficiency of NSGA-II due to the two major character-

istics; the decomposition of design problem and the

pre-conditioning.

4 WAVE DRAG REDUCTION VIA SCB

At transonic speed, the flow over aircraft wing causes

shock waves where there is a large amount of gas

property changes and the flow becomes irreversible.

Through the shock, total pressure decreases and

entropy increases which means there is a loss of

energy. In other words, there is an increment of

wave drag. To cope with this problem, Ashill et al.

[8] proposed the concept of a transonic bump

which is so-called SCB using geometry adoption on

an aerofoil. As illustrated in Fig. 5, the typical design

variables for SCB are: length, height, and peak posi-

tion and, the centre of SCB will be located at sonic

point where the flow speed transits from supersonic

to subsonic on the transonic aerofoil design.

Fig. 3 Initial random population for ZDT6 obtained by NSGA-II and Hybrid-Game
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Fig. 4 (a) Pareto optimal front obtained by NSGA-II: (a) 100 generations, elapsed time: 5 s and
Hybrid-Game (89 generations) and (b) 200 generations, elapsed time: 13 s and Hybrid-Game
(160 generations)

Table 1 Comparison of fitness values obtained by NSGA-II and HNSGA-II for ZDT6

Optimizer
Non-dominating sort
genetic algorithm II Hybrid-Game (hybrid non-dominating sort genetic algorithm II)

Game strategies Pareto-Game Pareto-Game

Nash-Game

Nash-Player1 Nash-Player2

Best Fit1 (Gen100) 0.388 32, 1.274 76 0.388 32, 1.115 18 0.388 32 0.971 23
Best Fit2 (Gen100) 0.997 90, 0.563 06 0.999 57, 0.274 48
Best Fit1 (Gen200) 0.388 32, 0.882 32 0.388 32, 0.858 84 0.388 32 0.852 96
Best Fit2 (Gen200) 0.999 99, 0.037 30 0.999 99, 0.013 92

Best Fit1 and Fit2 represent the best solutions for fitness functions 1 and 2, respectively.
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Figure 6 illustrates the Cp distributions obtained by

RAE 2822 aerofoil and RAE 2822 with SCB. For aero-

dynamic analysis tool, MSES (Euler and boundary

layer) written by Drela [19] is utilized. The transonic

flow over normal aerofoil without SCB accelerates the

supersonic and the pressure forms a strong shock that

leads to a high-wave drag (CdWave); however, the pres-

sure difference over the SCB causes a deceleration of

supersonic flow which delays shock occurrence. SCB

cannot totally remove a shock; however, it makes a

weaker shock or breaks into isentropic compression

waves (lower CdWave).

Table 2 compares the aerodynamic performance

obtained by RAE 2822 and with SCB. Even though

applying SCB on RAE 2822 produces 5 per cent

higher viscous drag (�CdViscous ¼ 0.0005), it reduces

60 per cent wave drag (�CdWave ¼ 0.0036) while

improving 19 per cent of L/D when compared to

RAE 2822 aerofoil.

Applying SCB on either suction or pressure side of

aerofoil will produce slightly thicker thickness ratio

(t/c) which causes increment of viscous drag

(CdViscous); however, the use of SCB is still beneficial

due to CdWave reduction especially when the Mach

number is higher than critical Mach number where

the shock starts appearing.

In Section 5, the shape of SCB is optimized at crit-

ical flight conditions where two shocks occur on the

suction and pressure sides of aerofoil. This flight con-

ditions make a suitable application for Hybrid-Game

(Global þ Nash) since two SCBs are required. The

aerodynamic characteristics of baseline with the opti-

mal double-SCB are also investigated at normal flight

conditions where a single shock is on the suction side

of aerofoil.

5 SCB DESIGN OPTIMIZATION ON RAE 5243

For baseline design, a NLF aerofoil RAE 5243 is

selected, as shown in Fig. 7(a). The problem considers

the critical flow conditions; M1¼ 0.8, Cl¼ 0.175, and

Re ¼18.63� 106 where two shocks occur on the suc-

tion and pressure sides of RAE 5243 aerofoil, as shown

in Fig. 7(b).

The sonic points on the suction and pressure sides

are occurred at 62.6 per cent and 58.1 per cent of

chord, respectively. In the following sections,

double-SCB design optimization using HAPMOEA

and Hybrid-Game are conducted to minimize the

total drag (CdTotal). The aerodynamic analysis tool,

MSES will run two times at each function evaluation;

the first run will analyse SCB on the suction-side

aerofoil and then two SCBs on both the suction and

pressure sides will be analysed at the second run.

5.1 Evaluation mechanism for HAPMOEA and

Hybrid-Game

Figure 8(a) shows the evaluation mechanism for

HAPMOEA which consists of hierarchical multi-

population (Node0–Node6) based on multi-resolu-

tion. Each population will run aerodynamic analysis

tool two times to evaluation double-SCB design in

different resolution conditions.

Fig. 6 Cp distributions obtained by RAE 2822 (dots and
line) and with SCB (line)

Fig. 5 Design components of SCB

Table 2 Aerodynamic characteristics

Aerofoil CdTotal CdViscous CdWave L/D

RAE 2822 0.0153 0.0093 0.0060 34.34
With SCB 0.0123

(�20%)
0.0098
(þ5%)

0.0024
(�60%)

42.6
(þ24%)

M1 ¼ 0.77, Re ¼ 17.93 � 106 and Cl is fixed to 0.524.
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Figure 8(b) shows the evaluation mechanism for

Hybrid-Game which employs three players: Global-

Player and Nash-Players 1 and 2. Solely, Global-

Player runs aerodynamic analysis tool two times

since its optimization domain includes SCBs on

both the suction and pressure sides. However, the

analysis tool will run only once for Nash-Players 1

and 2 due to the Nash-Game characteristics, decom-

position of design problem. For Hybrid-Game,

double-SCB design problem becomes two single-

SCB design problems; Nash-Game 1 will only opti-

mize SCB on the suction side of aerofoil with elite

SCB obtained by Nash-Player 2 on the pressure side,

while Nash-Player 2 will optimize SCB on the pres-

sure side of aerofoil with elite SCB design from Nash-

Player 1 on the suction side. The elite designs

obtained by Nash-Players will be seed to the popula-

tion of the Global-Player that will allow Global-Player

to accelerate optimization process.

5.2 SCB design optimization using HAPMOEA

5.2.1 Problem definition

This test case considers a single-objective double-

SCB design optimization using HAPMOEA to mini-

mize total drag (CdTotal) which consists of viscous

drag (CdViscous) and wave drag (CdTotal). The flow con-

ditions M1 ¼ 0. 8, Cl ¼ 0.175, and Re ¼ 18.63 � 106.

The fitness function is shown in equation (7)

f ðSCBSuction, SCBPressureÞ ¼ minðCdTotal Þ ð7Þ

where CdTotal ¼ CdViscous þ CdWave.

5.2.2 Design variables

The design variables bound for both SCBs on the suc-

tion and pressure sides are illustrated in Table 3.

Fig. 7 (a) Baseline design (RAE 5243) geometry (Note: max t/c ¼ 0.14 at 41%c and max cam-
ber ¼ 0.018 at 54%c) and (b) P/P0 contour of RAE 5243
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On total, six design variables are considered for

double-SCB.

The centre of SCB (50 per cent of SCB length) will be

positioned where the flow speed transits from super-

sonic to subsonic.

5.2.3 Implementation

The following conditions are for MSES coupled

to the multi-resolution/population hierarchical

populations.

1. First layer: Population size of ten with a computa-

tional grid of 36 � 213 points (Node0).

2. Second layer: Population size of 20 with a compu-

tational grid of 24 � 131 points (Node1, Node2).

3. Third layer: Population size of 20 with a

computational grid of 36� 111 points (Node3–

Node6).

Note: these grid conditions produce less than

5 per cent accuracy error compared to precise

model at the first layer (Node0).

5.2.4 Numerical results

As illustrated in Fig. 9, the algorithm was allowed

to run for 24 h and 2508 function evaluations using

a single 4� 2.8 GHz processor and convergence

occurred at 1053 function evaluations with

CdTotal ¼ 0.034 41 after 10 h.

Fig. 8 (a) Evaluation mechanism of: (a) HAPMOEA and (b) Hybrid-Game

Table 3 SCB design variables and bounds

Design variables Lower bound Upper bound

Length (% chord) 15 30
Height (% chord) 0.15 0.65
Peak position 0 100

Peak position is in terms of percentage of SCB length.
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Table 4 compares the aerodynamic characteristics

obtained by the baseline design (RAE 5243)

and the baseline design with SCBs on both the suc-

tion and pressure sides. Applying SCB to RAE 5243

aerofoil saves the wave drag by 8 per cent which

leads 12 per cent of total drag reduction. This optimal

double-SCB improves L/D by 13.0 per cent.

The optimal shape of double-SCB is described in

Table 5. Figure 10 compares the geometry of the

baseline design and baseline with the optimal

double-SCB which has same t/c while the max

camber (max, maximum) is increased by 0.0005

and its position is moved 16%c towards to the

trailing edge when compared to the baseline

design.

Figure 11 shows the contour of baseline design with

the optimal double-SCB. It can be seen that the strong

shocks on the baseline design shown in Fig. 7(b) get

weaker by adding double-SCB.

Figure 12 compares the Cp distribution obtained

by the baseline design and the baseline design

with SCBs on the suction and pressure sides.

Fig. 9 Convergence history obtained by HAPMOEA

Fig. 10 Baseline design with the optimal double-SCB obtained by HAPMOEA (Note: max t/c¼ 0.14
at 41%c and max camber ¼ 0.0209 at 69.8%c)

Table 5 Optimal double-SCB design components

Variables Length (%c) Height (%c) Peak position

SCBSuction 23.31 0.649 84.95
SCBPressure 26.38 0.477 75.98

Peak position is in terms of percentage of SCB length. The SCBSuction starts

from x and y coordinates (0.5084, 0.0838) to (0.7416, 0.0480) and SCBPressure is

positioned from (0.4397, �0.052 69) to (0.7035, �0.0258).

Table 4 Aerodynamic characteristics

Aerofoil CdTotal CdWave L/D

Baseline 0.03898 0.0088 4.49
With SCB 0.03442 (�12%) 0.0081 (�8%) 5.08 (þ13%)

Cl is fixed to 0.175.
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It can be seen that the total drag is reduced by

9 per cent while the double SCB reduces

12 per cent of total drag. The shock on the suction

side is delayed while the shock on the pressure

side becomes weak isentropic waves.

5.3 SCB design optimization using Hybrid-Game

5.3.1 Problem definition

This test case considers a single-objective double-

SCB design optimization using Hybrid-Game on

Fig. 11 P/P0 contour of the optimal double-SCB solution obtained by HAPMOEA

Fig. 12 Cp distributions obtained by the baseline design and the optimal solution (U-SCB and
UL-SCB); U-SCB and UL-SCB represent the optimal SCB on the suction side only and the
optimal SCBs on both the suction and pressure sides of aerofoil respectively
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MOEA to minimize total drag at flow conditions

M1 ¼ 0.8, Cl ¼ 0.175, and Re ¼ 18.63 � 106. Hybrid-

Game consists of three players: one Global-Player

(GP), two Nash-Players (NP1 and NP2) instead of

hierarchical multi-population/resolution (Node0–

Node6). The fitness functions for Hybrid-Game are

shown in equation (8).

f GPðSCBSuction, SCBPressureÞ ¼ minðCdTotal Þ

fNP1ðSCBSuction, SCB�PressureÞ ¼minðCdTotal Þ

fNP2SCB�Suction, SCBPressureÞ ¼ minðCdTotal Þ

ð8Þ

Table 7 Aerodynamic characteristics

Aerofoil CdTotal CdWave L/D

Baseline 0.038 98 0.008 8 4.49
With SCB 0.034 37 (�12%) 0.008 1 (�8%) 5.09 (þ13%)

Cl is fixed to 0.175.

Table 8 Optimal SCB design variables obtained by

Hybrid-Game

Variables Length (%c) Height (%c) Peak position

SCBSuction 23.65 0.649 84.99
SCBPressure 23.88 0.384 80.35

Peak position is in terms of percentage of SCB length. SCBSuction and

SCBPressure represent SCB on the suction and pressure sides of RAE 5243

aerofoil. The SCBSuction starts from x and y coordinates (0.506 7, 0.083 9) to

(0.743 2, 0.047 74) and SCBPressure position is located from (0.452 1,�0.052 8)

to (0.691 0, �0.027 7).

Fig. 13 Convergence history obtained by Hybrid-Game

Table 6 Design variable distribution for Hybrid-Game

Type of SCB

Hybrid-Game
Hierarchical asynchronous parallel multi-objective
evolutionary algorithm (Nodes 0–6)GP NP1 NP2

SCBSuction 3 3 3

SCBPressure 3 3 3

GP, NP1, and NP2 represent global player and Nash-Players 1 and 2.

Fig. 14 Performance comparison between HAPMOEA
and Hybrid-Game
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where CdTotal ¼ CdViscous þ CdWave. SCBSuction and

SCBPressure represent SCB on the suction side and

pressure side, and * the elite SCB design obtained

by Nash-Players. SCB�Suction and SCB�Pr essure are the

elite SCB designs obtained by Nash-Players 1 and 2.

These elite SCB designs will be seeded to the popula-

tion of Global-Player at every ten function evalua-

tions and will act as a pre-conditioner.

5.3.2 Design variables

The design variable bounds for the upper and lower

SCB geometries are illustrated in Table 3. Table 6

shows design variable distribution for Hybrid-Game.

It can be seen that the Nash-Players 1 and 2 consider

only three design variables while the Global-Player of

Hybrid-Game considers six design variables.

5.3.3 Implementation

The following conditions are for MSES coupled to

Hybrid-Game: Global-Player, Nash-Player 1, and

Nash-Player 2:

(a) GP: Population size of ten with a grid of 36 � 213;

(b) NP1: Population size of ten with a grid of 36� 213;

(c) NP2: Population size of ten with a grid of 36� 213.

5.3.4 Numerical results

As illustrated in Fig. 13, the algorithm was allowed to

run for 5 h and 1775 function evaluations using single

4 � 2.8 GHz processor and convergence occurred at

683 function evaluations (approximately 1.9 h) with

CdTotal ¼ 0.0344 which HAPMOEA could not capture

Fig. 15 Baseline design with the optimal double-SCB obtained by Hybrid-Game (Note: max
t/c ¼ 0.14 at 41%c and max camber ¼ 0.021 4 at 69.0%c)

Fig. 16 P/P0 contour of the optimal double-SCB solution obtained by Hybrid-Game
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even after 24 h shown in previous test Section B.

To compare the computational efficiency of

HAPMOEA and Hybrid-Game, the fitness value

is chosen to be CdTotal ¼ 0.034 41 which HAPMOEA

captured after 10 h. Hybrid-Game took 1.48 h

which is only 15 per cent of HAPMOEA computa-

tional cost. In other words, Nash-Game improves

the performance of EA by 85 per cent, as shown

in Fig. 14.

Table 7 compares the aerodynamic characteris-

tics obtained by the baseline design (RAE 5243)

and the baseline design with SCBs on the suction

and pressure sides. Applying SCB to RAE 5243

aerofoil saves the wave drag by 8 per cent which

leads to 12 per cent of total drag reduction.

This optimal double-SCB improves L/D by

13.0 per cent.

The optimal double shape of double-SCB obtained

by Hybrid-Game is described in Table 8. It can be

seen that the SCBSuction obtained by Hybrid-Game

and HAPMOEA (Table 5) have almost same shape

while the SCBPressure from Hybrid-Game is

10 per cent shorter than the one obtained by

HAPMOEA.

Fig. 17 (a) CdTotal versus Mach numbers and CdWave versus Mach numbers
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Figure 15 illustrates the geometry of the baseline

design and baseline with the optimal double-SCB

from HAPMOEA and Hybrid-Game. The baseline

design with double-SCB obtained by Hybrid-Game

has same t/c while the max camber is increased by

0.000 55 and its position is moved 15%c towards to

the trailing edge when compared to the baseline

design.

Figure 16 shows the pressure contour of baseline

design with the optimal double-SCB obtained by

Hybrid-Game. It can be seen that the upper shock is

moved towards to the trailing edge while lower shock

becomes weak isentropic waves.

Figure 17(a) and (b) compares total drag (CdTotal)

and wave drag (CdWave) distributions obtained by the

baseline design and with the optimal double SCB

from both HAPMOEA and Hybrid-Game. The flow

conditions are M1 2 [0.5:0.85] with constant

ClFixed ¼ 0.175 and Re ¼ 18.63 � 106. It can be seen

that both optimal double-SCBs obtained by

HAPMOEA and Hybrid-Game perform almost same

drag along the Mach numbers. The baseline design

with the optimal double-SCB starts to produce lower

total drag when Mach number is higher than 0.71.

One thing should be noticed from Fig. 17(b) is that

the critical Mach number (MC¼ 0.65) for baseline

Fig. 18 (a) Drag reduction obtained by the optimal double-SCB at five different flight conditions
Condi represents ith flight conditions. Cond1: M1 ¼ 0.705, Cl ¼ 0.690, Re ¼ 18.63 � 106;
Cond2: M1 ¼ 0.730, Cl ¼ 0.560, Re ¼ 18.63 � 106; Cond3: M1 ¼ 0.750, Cl ¼ 0.430,
Re ¼ 18.63 � 106; Cond4: M1 ¼ 0.775, Cl ¼ 0.300, Re ¼ 18.63 � 106; and Cond5:
M1 ¼ 0.800, Cl ¼ 0.175, Re ¼ 18.63 � 106 (b) L/D obtained by the optimal double-SCB at
five different flight conditions
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design is extended to 0.71 by adding double SCB. The

maximum total drag reduction (�26 per cent) is

observed at M1 ¼ 0.75, as shown in Fig. 17(a), due

to 88 per cent of wave drag reduction shown in Fig.

17(b) when compared to the baseline design.

The optimal double-SCB obtained by HAPMOEA

and Hybrid-Game is also tested at five different

flight conditions. The histogram showed in Fig.

18(a) compares the total drag. It can be seen that

the double-SCB optimized at critical flight conditions

reduces more total drag by 15 per cent to 44 per cent

while improving the lift-to-drag ratio by 13.5 per cent

to 80 per cent, as shown in Fig. 18(b) at the normal

flight conditions.

One example (Cond1) is shown in Fig. 19(a) and (b)

where the pressure ratio contours obtained by the

baseline design and with the optimal double-SCB

solution from the Hybrid-Game are illustrated. Even

though the double-SCB is optimized at the critical

flight condition, the optimal double-SCB moves the

normal strong shock, as shown in Fig. 19(a) towards

to the trailing edge by 10%c and reduce the total drag

by 44 per cent which leads to 80 per cent improve-

ment of L/D.

To summarize the optimization test case, double-

SCB on RAE 5243 is optimized using HAPMOEA and

Hybrid-Game to reduce transonic drag at the critical

flight conditions. The use of optimal double SCB is

beneficial at both normal and critical flow conditions.

In addition, Hybrid-Game significantly reduces the

computational cost for double-SCB design optimiza-

tion while generating high-quality optimal solution

when compared to HAPMOEA.

The design engineer will choose the optimal double-

SCB obtained by Hybrid-Game which has 10 per cent

shorter length than SCB from HAPMOEA. In other

Fig. 19 (a) P/P0 contour of baseline design at Cond1 (Fig. 18 (a)) and (b) P/P0 contour of the optimal
double-SCB obtained by Hybrid-Game at Cond1 (Fig. 18(a))
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words, the double-SCB from Hybrid-Game will

require less modification in current manufacturing

system as well as less material.

6 CONCLUSION

In this article, two advanced optimization techniques

have been demonstrated and implemented as a

methodology for AFC bump named as SCB shape

design optimization. Analytical research clearly

shows the benefits of using Hybrid-Game in terms

of computational cost and design quality. In addition,

the use of SCB on current aerofoil reduces signifi-

cantly the transonic drag. In long-term view, the

use of SCB will not only save operating cost but

also critical aircraft emissions due to less fuel burn.

Future work will focus on robust multi-objective

design optimization of SCB (Taguchi method)

which can produce the model with better perfor-

mance and stability at variability of operating condi-

tions and transition positions. In forthcoming

research, other evolutionary optimizers including

strength Pareto evolutionary algorithm 2, self-adap-

tive Pareto differential evolution will be hybridized

with Nash-Game strategy and their results will be

compared in terms of solution quality and computa-

tional cost.
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