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Abstract

This paper presents a formulation for the obtainment of the sensitivity analysis of a point wise error estimator with

respect to the nodal coordinates using the adjoint state method. The proposed point wise error estimator is based on the

SPR method.

The numerical accuracy of the presented sensitivity analysis has been tested by perturbing a mesh. The capability of

the presented sensitivity analysis for the detection of pollution error has also been tested.

A new adaptive remeshing strategy based on the sensitivity analysis of the point wise error estimation has been devel-

oped and tested. This strategy produces very cheap meshes for the accurate evaluation of stresses at specific points.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the solid mechanics context, the idea of improving the mesh quality by using a sensitivity analysis is

not new. The first historical reference comes fromMcNeic and Marcal [1], who proposed to improve a mesh

by minimizing the potential energy of the structural problem with respect to the nodal coordinates. This

was done by coupling the finite element solution with the mesh sensitivity analysis. Another important

reference comes from Kang, Tae and Kwak [2], who maximized the deformation energy with respect to

the nodal coordinates. These works allow to optimize a mesh in order to obtain the best solution for a
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structural problem with a fixed mesh topology and a fixed number of degrees of freedom. These types of

methods are very convenient if the storing capacity and the computational speed are limited. Nevertheless,

the increasing power of computers makes the computational power not to be a serious limitation. Due to

that, this type of methods is no more in use.

On the other hand, it is possible to obtain specific adaptive remeshing strategies for the control of the
point wise error of any physical quantity related with the structural analysis (see Bugeda [3]), but the con-

trol of the pollution error (see Babuška [4,5]) obligates to control the local error everywhere, this producing

globally adapted meshes with a very high number of degrees of freedom. Nevertheless, when doing a struc-

tural analysis we know very often where the points with the highest values of stresses are, and the control of

the point wise error not only at those points but everywhere seems to be excessively expensive for just eval-

uating the stresses at those points.

Furthermore, it is well known (see Babuška [4,5]) that a local refinement around the conflictive points

will only minimise the so called ‘‘local error’’, but not the ‘‘pollution error’’. For this reason, the evaluation
of the sensitivity analysis of the point wise error at those points with respect to the nodal coordinates can

provide information about which zones of a mesh have the biggest influence over the point wise error in

stresses at those points. This information indicates how to control that error in the most effective way

by refining the mesh only at those zones.

Duality techniques have already been applied in order to get element bounds for functional outputs of

different partial differential equations and the corresponding goal-oriented adaptive remeshing strategies

(see Refs. [6–9]). The work presented here also provides a goal-oriented adaptive remeshing strategy based

on a sensitivity analysis instead of the duality techniques.
The objective of the sensitivity analysis of a point wise error estimator is to know its derivative with re-

spect to each of the nodal coordinates. This information provides a first order prediction of the variation of

the point wise error estimator produced by a modification of the position of the nodal points. In this way,

for a mesh with N nodal points the sensitivity analysis of a point wise error ‘‘e’’ provides the next vector of

derivatives:
de
dx

¼ de
dx1

de
dy1

de
dx2

de
dy2

. . .
de
dxN

de
dyN

� �T
. ð1Þ
In this way, the first order prediction of the variation of the error that would be produced by an increment

Dxi of each nodal coordinate xi would be:
De ¼
X2N
i¼1

de
dxi

Dxi ¼
de
dx

DxT. ð2Þ
In this work, the error e in expressions (1) and (2) corresponds with the estimated point wise error in the

Von Mises stress eVonMises. This estimation is based on the difference between the finite element stresses and

the smoothed stresses obtained from the SPR procedure. The corresponding expression for this point wise
error estimator is the following (see Bugeda [3] for more details):
eVonMises ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�

1 � r�
2Þ

2 þ ðr�
2 � r�

3Þ
2 þ ðr�

3 � r�
1Þ

2

6

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̂1 � r̂2Þ2 þ ðr̂2 � r̂3Þ2 þ ðr̂3 � r̂1Þ2

6

s
. ð3Þ
In expression (3), r̂i are the different principal components of the stress tensor obtained from the finite ele-
ment analysis and r�

i are the corresponding values obtained from the SPR procedure.

This paper presents how the sensitivity analysis of the point wise error estimator can be computed and

some of its possible applications including a new adaptive remeshing scheme.
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2. Finite element approximation

Before to proceed to the sensitivity analysis it is convenient to review some aspects of the formulation of

the equilibrium problem and the corresponding finite element discretisation. The equilibrium equations can

be written as
Lu� q ¼ 0. ð4Þ

Last equation is defined in the interior of a domain X where u is the displacements field, L is a second

order linear operator and q is the volumetric force vector field. Eq. (4) is also complemented with the cor-

responding Dirichlet and Neumann boundary conditions.

During the finite element discretisation process we use the following approximation:
u � û ¼ Na; ð5Þ

where N contains the shape functions and a is the vector containing the nodal displacements. The Principle

of Virtual Work drives us to the well known discrete equations:
Ka ¼ f; ð6Þ

where
K ¼
Xn0elements

e¼1

Ke Ke ¼
Z

Xe

BTDBdX ¼
Z

Xn

BTDBjJjdn1 dn2; ð7Þ

f ¼
Xn0elements

e¼1

fXe þ fCe

fXe ¼
R

Xe
NTvdX ¼

R
Xn

NTvjJjdn1 dn2;

fCe ¼
R

Ce
NTtdC ¼

R
Cn

NTtjJjdn1.

(
ð8Þ
Being fX the vector due to the volumetric forces v and fC the vector due to the surface forces t. jJj is the
determinant of the jacobian matrix of the transformation between the physical and the isoparametric do-

main for each of the elements whereas n1 and n2 are the corresponding isoparametric coordinates for a two

dimensional case.

Obviously, the solution û obtained from the Finite Element Method (FEM) is not the exact solution of
(4) and the substitution of u by û in the original equilibrium equations produces:
Lû� q ¼ rX; ð9Þ

where rX is the residual or lack of equilibrium at each point. Most of the existing methods for the error

estimation and its correction try to control the values and the distribution of the residual.

The relation between the nodal displacements a and the corresponding stresses and strains is the

following:
ê ¼ Ba; r̂ ¼ Dê; ð10Þ
where the matrix B contains the derivatives of the shape functions with respect to x and y, whereas the ma-

trix D contains the elastic parameters of the material.
3. The ‘‘Superconvergent Patch Recovery’’ (SPR) technique

This section is dedicated to remind the different expressions related with the SPR method (see Zie-

nkiewicz and Zhu [10]) that will be differentiated later. In this process, the smoothed stresses corresponding

to a fixed nodal point are obtained from a polynomial expansion defined over a patch of elements centred
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Fig. 1. Definition of the patches and the points for the evaluation of stresses.
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on that node (see Fig. 1). This polynomial expansion is determined from a minimum square adjustment

using the FEM values evaluated at the ‘‘superconvergent’’ points.

At each node, each of the stress components r�
i is obtained from a complete polynomial r�

pi whose degree

p is the same used for the shape functions N. For each of the stress components of a plane stress situation

(rx,ry,sxy) this polynomial has the following expression:
r�
pi ¼ pb; ð11Þ
where p contains the polynomial terms and b contains the polynomial coefficients. On the other hand, r�
pi

corresponds with the i component of stress obtained in the patch. For the two dimensional linear case
p = {1,x,y} and b = {b1,b2,b3}

T whereas for the two dimensional quadratic case p = {1,x,y,x2,xy,y2}

and b = {b1,b2,b3,b4,b5,b6}
T.

The components of the b vector associated with each of the stress components are obtained by minimis-

ing the following residual:
RGiðbÞ ¼
XG
j¼1

r̂iðxjÞ � r�
pi

	 
2

¼
XG
j¼1

	
r̂iðxjÞ � pðxjÞb


2

; ð12Þ
where xj are the coordinates (xj,yj) of each of the points where the FEM stress components (r̂i) are eval-

uated, and G = mk is the total number of those points, being k the number of those points at each of the m

elements contained in the patch.

The minimisation of (12) produces the following expression:
XG
j¼1

pTðxj; yjÞpðxj; yjÞb ¼
XG
j¼1

pTðxj; yjÞr̂iðxj; yjÞ. ð13Þ
Last equation has to be solved for each of the stress components. This can be solved as
b ¼ A�1c with A ¼
XG
j¼1

pTðxj; yjÞpðxj; yjÞ and c ¼
XG
j¼1

pTðxj; yjÞr̂jðxj; yjÞ. ð14Þ
The number of equations to be solved at each patch is equal to the number of stress components mul-

tiplied by the number of components of the b vector (3 or 6). Matrix A is the same for all stress components

and, for each patch, it only needs to be built and factorised once. This makes the computational cost of the

SPR procedure very small compared with the cost of the FEM analysis.
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Once the components of the vector b have been evaluated, the values of each of the components of the

stress r* at any point can be evaluated by substituting its coordinates in expression (11).

The original SPR procedure that has been described here has been complemented by Wiberg et al. [11]

for improving the accomplishment of the equilibrium equations and the boundary conditions applied to the

smoothed stresses. Labbé and Garon [12] have also improved the robustness of the method at the boundary
points.

In this work we have used the original version of the SPR method (see [10]).
4. Sensitivity analysis of the point wise estimations of the error

This section is devoted to the formulation of the sensitivity analysis of the point wise error estimator

eVonMises, defined in expression (3), with respect to the mesh nodal coordinates.

4.1. Formulation of the adjoint-state

The error eVonMises depends of the nodal displacements vector a and the nodal coordinates vector x. On

the other hand, the displacements and the coordinates are related by the discrete equilibrium equations (6).

For this reason, we can write the problem as the computation of the derivatives of eVonMises:
eVonMises ¼ eVonMisesða; xÞ; ð15Þ

where the fields a and x are related by the discrete equilibrium equations
W ¼ KðxÞa� fðxÞ ¼ 0. ð16Þ

The lagrangian of eVonMises under the restrictions (16) can be written as
L ¼ eVonMises þ kTW; ð17Þ

where k is a n-dimensional vector containing the Lagrange multipliers, typically named as the adjoint-state

(see [13]). The derivatives of L with respect to x will be identical to the derivatives of eVonMises because the

vector W must be identically zero. These derivatives can be computed as
dL
dx

¼ deVonMises

dx
¼ oeVonMises

ox
þ oeVonMises

oa

oa

ox
þ kT oW

ox
þ oW

oa

oa

ox

� �
; ð18Þ
where the derivatives of k have been omitted because they would be multiplied by W that is identically null.

The adjoint-state is selected as the solution of the following system of equations:
oeVonMises

oa
þ kT oW

oa
¼ 0. ð19Þ
This simplifies expression (18) now becoming:
deVonMises

dx
¼ oeVonMises

ox
þ kT oW

ox
. ð20Þ
The main characteristic of the exposed method is that once all expressions have been evaluated the only

system of equations that must be solved is (19). In addition, looking at (16) we can see that the matrix of

this system is the same stiffness matrix of the FEM that has already been assembled and solved.

In the case of most goal oriented methods a system of equations similar to (19) is also solved where the

independent term is the derivative of the goal magnitude with respect to the nodal displacements vector a

(see Refs. [6–9]).



G. Bugeda / Comput. Methods Appl. Mech. Engrg. 195 (2006) 462–478 467
The obtainment of the partial derivatives of eVonMises with respect to the vectors a and x appearing in

(19) and (20) will be seen later. On the other hand, the computation of the partial derivative of W with re-

spect to the vector a is trivial looking at (16):
oW
oa

¼ K. ð21Þ
Looking at (16) we can also see that the partial derivative of W with respect to x appearing at (20) re-

quires the computation of the partial derivatives of the stiffness matrix K and the nodal forces vector f with

respect to the vector of nodal coordinates:
oW
ox

¼ oK

ox
a� of

ox
. ð22Þ
This computation can be considered as belonging to the state of the art in the context of the structural opti-

misation and the corresponding sensitivity analysis and, due to that, it is not detailed here. The correspond-

ing expressions can be seen in [14]. The computation of the partial derivatives of the stiffness matrix K with

respect to x is made by assembling the derivatives of each of the elemental matrices Ke. These derivatives
are obtained by using the isoparametric transformation concept that allows to use the following expression

for the two dimensional case:
oKe

ox
¼

Z
Xn

oBT

ox
DBjJj þ BTD

oB

ox
jJj þ BTDB

ojJj
ox

� �
dn1 dn2. ð23Þ
Similar concepts allow to compute the partial derivatives of the nodal forces vector f with respect to x.

4.2. Computation of the partial derivatives of the point wise error estimator

The partial derivatives of eVonMises with respect to the vector a appearing in (19) can be expressed in

terms of the principal components of the stress tensors r̂ and r*, and their partial derivatives with respect

to a by derivation of expression (3):
oeVonMises

oa
¼

ðr�
1 � r�

2Þ
or�

1

oa
� or�

2

oa

� �
þ ðr�

2 � r�
3Þ

or�
1

oa
� or�

2

oa

� �
þ ðr�

3 � r�
1Þ

or�
1

oa
� or�

2

oa

� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�

1 � r�
2Þ

2 þ ðr�
2 � r�

3Þ
2 þ ðr�

3 � r�
1Þ

2

6

s

�
ðr̂1 � r̂2Þ

or̂1

oa
� or̂2

oa

� �
þ r̂2 � r̂3ð Þ or̂1

oa
� or̂2

oa

� �
þ r̂3 � r̂1ð Þ or̂1

oa
� or̂2

oa

� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂1 � r̂2ð Þ2 þ r̂2 � r̂3ð Þ2 þ r̂3 � r̂1ð Þ2

6

s . ð24Þ
The partial derivatives of the principal components of the stress tensors r̂ and r* with respect to the no-

dal displacements vector a can be expressed in terms of their cartesian stress components and the corre-

sponding partial derivatives by derivation of the explicit expression that provides the principal stresses

in terms of the stress components. For instance, for the two-dimensional case we have that the two principal

components of any stress tensor r can be written as
r1;2 ¼
rx þ ry

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2

	 
2

þ s2xy

r
. ð25Þ
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Then, their corresponding partial derivatives with respect to the mesh nodal coordinates are:
or1;2

oa
¼ 1

2

orx

oa
þ ory

oa

� �
	

rx � ry

2

	 
 orx

oa
� ory

oa

� �
þ 2sxy

osxy
oa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx � ry

2

	 
2

þ s2xy

r . ð26Þ
Expressions (25) and (26) can be used for the obtainment of the partial derivatives of the principal compo-

nents of any of the stress tensors r̂ and r* in terms of the partial derivatives of their respective cartesian

stress components. In addition, the same approach used in expressions (24)–(26) can also be used for the

obtainment of the partial derivatives of eVonMises with respect to the vector of nodal coordinates x appear-

ing in (20). The corresponding expressions are identical to (24) and (26) with the only difference that the

partial derivatives with respect to a are substituted by partial derivatives with respect to x.

After the previous process, the reminding part of the sensitivity analysis of eVonMises with respect to the
vector of nodal coordinates is the computation of the partial derivatives of the cartesian components of r̂

and r* with respect to the vectors a and x. This is described in next subsections.

4.3. Computation of the partial derivative of the FEM stresses r̂

For the computation of the partial derivatives of the values of the stress vector r̂ obtained for a fixed

point from the discrete equations we can just do the following:
r̂ ¼ BDa;
or̂

oa
¼ BD;

or̂

ox
¼ oB

ox
Da. ð27Þ
The partial derivatives of B have already appeared in (23) and the corresponding formulation can be

seen in [14].

4.4. Computation of the partial derivative of the SPR stresses r*

Starting from (11) and (14), the computation of the partial derivatives of each of the stress components

r�
pi with respect to the nodal displacements vector a can be obtained using the chain rule of derivation:
or�
pi

oa
¼ p

ob

oa
¼ pA�1 oc

oa
; ð28Þ

oc

oa
¼

XG
j¼1

pT xj; yj
� � or̂j xj; yj

� �
oa

. ð29Þ
In last expressions it has been taken into account that neither the expression of the matrix A nor the eval-

uation of the polynomials p are dependent of the displacements a. On the other hand, the partial deriv-

atives of the stress components r̂jðxj; yjÞ with respect to the displacements vector can be obtained from

(27).

The derivatives of each of the stress components r�
pi with respect to the nodal coordinates vector x can be

obtained from the following expression:
or�
pi

ox
¼ p

ob

ox
. ð30Þ
Starting from (27) and taking into account that c = Ab we can do:
oc

ox
¼ oA

ox
bþ A

ob

ox
;

ob

ox
¼ A�1 oc

ox
� oA

ox
b

� �
. ð31Þ
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The new partial derivatives appearing in (31) can be obtained from the following expressions:
oc

ox
¼

XG
j¼1

opT xj; yj
� �
ox

r̂j xj; yj
� �

þ pT xj; yj
� � or̂j xj; yj

� �
ox

" #
; ð32Þ

oA

ox
¼

XG
j¼1

opT xj; yj
� �
ox

p xj; yj
� �

þ pT xj; yj
� � op xj; yj

� �
ox

" #
. ð33Þ
The partial derivative of the term r̂j can be obtained from (27). The partial derivatives of each of the

components of the polynomial vector pk(xj,yj) evaluated at the point (xj,yj) can be obtained from:
opk xj; yj
� �
ox

¼
opk xj; yj

� �
oxj

oxj
ox

þ
opk xj; yj

� �
oyj

oyj
ox

. ð34Þ
Due to the polynomial expression of each of the components pk its differentiation with respect to any of

the coordinates (xj,yj) is trivial. On the other hand, the differentiation of these coordinates with respect to

the nodal coordinates x will have no null values only if we are differentiating with respect to a nodal point

whose position affects to the position of point (xj,yj).
5. Application examples

This section shows two examples of use of the presented sensitivity analysis of the point wise error

estimators.

5.1. Circular ring with an interior load

This first example is the analysis of a circular ring with an interior distributed load that can be seen in

Fig. 2. The objectives of this example are:

• The analysis of the possibilities of the presented sensibility analysis for predicting the new values of the

point wise error estimators when the finite element mesh is perturbed by modifying its nodal coordinates.

• The development of a new adaptive remeshing scheme based on the presented sensitivity analysis.
Fig. 2. Triangular quadratic finite element mesh with 666 elements and 1428 nodal points.
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Fig. 2 also shows the finite element mesh used for this analysis with triangular quadrilateral elements.

The internal radius of the geometry is 10 m whereas the external one is 20 m. The structural analysis has

been made with a Young modulus E = 3.1 · 104 MPa and a Poisson ratio c = 0.25. The maximum value
of the distributed load is 1.0 N/m2.

The points where the highest values of stress appear are shown in Fig. 2. The exact value of the equiv-

alent Von Mises stress at those points, obtained with an extremely fine mesh, is rVon Mises = 2.15 Pa.

Fig. 3 show the distribution of the Von Mises stress.

The values of the Von Mises stress at point A have been computed in two different ways:

• Directly from the finite element solution as the average of the stress values at point A obtained at all the

elements containing that point.
• From the values provided at point A by the SPR method.

The estimation of the point wise error in the Von Mises equivalent stress at point A have been computed

using expression (3) and have been compared with the exact point wise error. The corresponding compar-

ison can be seen in Table 1.

Table 1 shows how the SPR values represent an improvement with respect to the FEM values but this

improvement is not enough to ensure a good quality of the point wise error estimation which is very under-

estimated. It is well known that the stress recovery processes produce the worst predictions when applied to
boundary points (see [11,12]). The percentage of error in the energy norm corresponding to this mesh is

smaller than a 4%.

Fig. 4 shows the scalar distribution of the modules of the two components of the sensitivity analysis cor-

responding to each nodal point. Fig. 5 shows a representation where, at each nodal point, the vector rep-

resents the two components of the sensitivity analysis.
Fig. 3. Distribution of the Von Mises stress.

Table 1

Values of stress and estimated and real point wise errors at point A

FEM values SPR values Exact values Estimated error Exact error

rVonMises 1.91 1.96 2.15 0.05 0.24

All the values are in Pa.



Fig. 4. Scalar representation of the sensitivity analysis of the error in the Von Mises stress.

Fig. 5. Vector representation of the sensitivity analysis of the error in the Von Mises stress.
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Figs. 4 and 5 show that the represented sensitivity analysis presents relevant values only at the vicinity of

point A. This suggests that the first order approximation of the point wise error at point A only depends on

the coordinates of the nodes located close to it. This also suggests that, in this case, there is not any presence

of pollution error coming far from point A. In fact, this is the expected behaviour of the error due to the

fact that this problem does not present any source of pollution error like a singular point or a point with a

relevant concentration of stresses.

5.1.1. Quality of the presented formulation for the sensitivity analysis

In order to check the quality of the presented sensitivity analysis we have proceeded to perturbate the

mesh and to compare the prediction of the point wise error estimation obtained by using expression (2) with

the values computed using the new mesh. The perturbation of the mesh has been done by displacing each

node in the direction of the considered sensitivity analysis and in the opposite sense. This is, in fact, the per-

turbation that should produce the quickest first order minimisation of the values of the point wise error esti-

mations. The vector containing the nodal coordinates has been incremented using the following expression:
Dx ¼ �j
deVonMises

dx
ð35Þ
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where j is a factor that controls the size of the mesh perturbation. In order to avoid a possible modification

of the boundary shape during the perturbation due to the movement of the boundary nodes, the sensitivity

vector at those nodes has been projected over the tangent direction to the boundary. The value of j has

been progressively increased and, for each value, the following quantities have been computed:

• The value of the point wise estimation of the maximum error in stress at point A computed from a new

analysis for each value of j.
• An estimation of this value using the information obtained with the initial mesh and the corresponding

sensitivity analysis. In this case, for each value of j the increment of the estimation of the point wise

error has been obtained with:
DeVonMises ¼ j
deVonMises

dx

� �2

: ð36Þ
Fig. 6 shows the described comparisons. It can be seen how for values of j smaller than 0.02 the agree-

ment between the computed and the predicted values is practically perfect. For larger values of j the first

order prediction provided by the sensitivity analysis is not enough for a good prediction of the evolution of

the error estimation. Good predictions for higher values of j would require a higher order sensitivity

analysis.
5.1.2. Minimisation of the point wise error estimation by moving the nodal points (r-adaptivity)

Another application of the sensitivity analysis is the minimization of the point wise error estimation in

terms of the nodal coordinates. This is, in fact, an optimization problem where the objective function is the

error measure to be minimized and the corresponding sensitivity analysis is the one presented in this work.

The used minimisation algorithm is the following:
Fig. 6. Comparisons between the computed and the predicted point wise error estimations.



Table 2

New stress values after the minimization of the error

Initial

FEM

Initial

SPR

Final

FEM

Final

SPR

Exact

values

Improvement in

FEM values

Improvement in

SPR values

rVonMises 1.91 1.96 2.03 2.03 2.15 0.12 0.07

All the values are in Pa.
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1. For the minimisation of eVonMises the nodal coordinates of the mesh are modified using expression (35)

and the corresponding sensitivity analysis.

2. The optimum value of j is chosen by performing a line search looking for the minimum value of the

selected error.

3. The sensitivity analysis is computed again for the modified mesh and the process goes back to point 1.

The process stops when no more reductions of the estimated error are obtained or when the mesh be-
comes too much distorted.

Table 2 shows the final values of stresses obtained after the described error minimization process. This

table allows to compare the new values of stress with the previous ones and with the exact ones.

The minimized error estimation has becomed null because after the modification of the mesh the FEM

stresses and the SPR stresses have become identical. In fact, the mesh has been slightly distorted in order to

produce SPR stresses identical to the FEM ones. It does not means that the exact error after the process be

null. Anyway, the exact error in both the FEM stresses and the SPR stresses has been reduced. This reduc-

tion has been bigger for the FEM values. The modification of the nodal coordinates are very small and the
modified meshes are practically identical to the original ones.

5.1.3. Adaptive remeshing scheme (h-adaptivity)

As stated in the introduction of this paper, when doing a structural analysis we know very often where the

points with the highest values of stresses are. Nevertheless, when developing an adaptive remeshing scheme,

the control of the pollution error obligates to control the point wise error not only at those points but every-

where, this producing very expensive meshes for just evaluating the stresses at those points (see [3] for more

details). In order to overcome this situation we propose a new adaptive remeshing scheme based on the
reduction of the element size only at the zones where the error sensitivity analysis produce relevant values,

i.e., the zones where the corresponding nodal coordinates are relevant for the value of the error. In this way,

at each nodal point i a new element size hnewi is computed by reducing the old size holdi proportionally to the

derivatives of the error with respect to the nodal coordinates xi and yi. The old size holdi can be computed as

the mean size of the elements connected with the ith node. Each new value of hi can be computed then as
hnewi ¼ holdi 1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deVonMises

dxi

� �2

þ deVonMises

dyi

� �2
s0

@
1
A. ð37Þ
The value of l is used to avoid negative values of the new element sizes by using:
l ¼ min
0.9holdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

deVonMises

dxi

� �2

þ deVonMises

dyi

� �2
s ; for i ¼ 1; . . . ; total number of nodes

0
BBBB@

1
CCCCA. ð38Þ
In the case of the circular ring example the highest values of stress are clearly located at point A. Thus,
we have proceeded with the adaptive remeshing scheme presented in expressions (37) and (38). Fig. 7 shows

the final mesh obtained after three adaptive remeshing loops that can be compared with the initial one. It



Fig. 7. (a) Initial mesh with 1428 nodal points and 666 elements. (b) Mesh obtained after the third remeshing step with 1680 nodal

points and 786 elements.

Fig. 8. (a) Sensitivity analysis of the error in the equivalent Von Mises stress for the initial mesh. (b) Sensitivity analysis of the error in

the equivalent Von Mises stress after the three remeshing steps.
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can be observed how the adapted mesh concentrates additional elements around point A whereas the rest of

the domain remains practically unaltered. Fig. 8 shows the distribution of the sensitivity analysis of the esti-

mated point wise error in the equivalent Von Mises stress with respect to the nodal coordinates. For the

adapted mesh the non zero values of the sensitivity analysis are concentrated in a very reduced vicinity

point A whereas in the rest of the domain it is practically null.

Table 3 shows the final values of stresses at point A obtained which each of the obtained meshes. It can

be seen how the last mesh produces a prediction of the equivalent Von Mises stress at point A with three

significant digits of precision. Different numerical experiments have shown that a globally adapted mesh
using any standard adaptive remeshing procedure (see Ref. [3]) would require more than 20,000 nodal
Table 3

New stress values with each adapted mesh

Initial

mesh FEM

Initial

mesh SPR

Second

mesh FEM

Second

mesh SPR

Third

mesh FEM

Third

mesh SPR

Fourth

mesh FEM

Fourth

mesh SPR

Exact

values

rVonMises 1.910 1.958 2.131 2.134 2.134 2.139 2.151 2.150 2.153

All the values are in Pa.
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points and 9000 elements for producing a similar precision in the prediction of the Von Mises stress at point

A, this being much more expensive than the mesh presented in Fig. 7b with only 1680 nodal points and 786

elements.

The adaptive remeshing scheme presented here does not provide any control neither over the final error

at point A after the remeshing operations nor over the number of elements of the final mesh. Nevertheless,
this last aspect could be easely obtained by multiplying expression (37) by a scalar factor and adjusting this

factor in order to obtain a predefined number of elements. For triangular elements, this could be done as

follows:
hnewi ¼ xhold
i 1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deVonMises

dxi

� �2

þ deVonMises

dyi

� �2
s0

@
1
A; ð39Þ

x ¼ 2

N

Z
X

dX
hnew

; ð40Þ
where N is the desired number of elements and hnew is a value that can be interpolated at each point from

the nodal values given by (37). This technique could provide a possibility for densifying/coarsening meshes

while maintaining a good level of precision at point A.

5.2. L shaped domain

This second example has been used to check the capability of the presented sensitivity analysis for detect-

ing the presence of a significant amount of pollution error when estimating the point wise error in stresses at

a specific point and to see the capabilities of the presented adaptive remeshing scheme in the presence of

pollution error. The selected problem is the very well known L shaped domain shown in Fig. 9. This geom-

etry presents a singular point at the interior corner that disseminates pollution error to the rest of the do-
main unless its surrounding zone be well discretised (see Refs. [4,5]).

The capability of the presented sensitivity analysis for detecting the pollution error has been tested by

comparing the results obtained with different meshes with a different degree of discretisation. Fig. 9 shows

the first of the employed meshes together with the position of the point where the point wise error estima-

tions and the corresponding sensitivity analysis have been evaluated. This mesh has 202 triangular linear

elements and 122 nodal points.

Fig. 10 shows the sensitivity analysis of the point wise estimation of the error in the Von Mises stress. As

it can be seen, this sensitivity analysis presents significant values at zones located far away from the control
Fig. 9. Initial mesh, loads and boundary conditions for the L shaped domain problem.



Fig. 10. Sensitivity analysis of the point wise estimation of the error in the Von Mises stress.
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point and, in particular, in the zones located at the corner points like the singular one. This reflects that the

magnitude of the estimated point wise error presents a clear dependence with respect to the quality of the
mesh in zones located far away from the controlled point indicating the presence of pollution error. This

behaviour is radically different to that of the previous example where there was not any singular point.This

analysis has been repeated with the uniform mesh shown in Fig. 11. This new mesh has 2144 triangular

linear elements and 1141 nodal points. Fig. 12 shows the corresponding sensitivity analysis with the new

mesh. In this case, the relevant values of the sensitivity analysis only appear in the surrounding of the con-

trolled point and not around the corner points. Only a very small zone around the singular point still pre-

sents non null values of these sensitivities. Experiments developed with even more dense meshes have sown

that these small zones around the singularity disappear when improving the quality of the mesh. This dem-
onstrates that the improvement of the mesh around the singular points diminishes the local error at that

zones and the pollution error transferred to the rest of the domain as shown by Babuška et al. in Refs. [4,5].

The adaptive remeshing procedure described for the previous example has also been applied to the pres-

ent one. Fig. 13 shows the comparison between the initial mesh and the mesh obtained after four remeshing

steps. In this case, the remeshing procedure has concentrated a lot of elements around the controlled point

but, in addition, it has also reduced the element size around the interior corner point. Fig. 14 shows how the

new adapted mesh presents a uniform distribution of the error sensitivity analysis with the exception of a

very small zone around the controlled point. This indicates the absence of pollution error in the adapted
mesh.
Fig. 11. Second mesh for the L shaped domain.



Fig. 13. (a) Initial mesh with 122 nodal points and 202 elements. (b) Mesh obtained after the fourth remeshing step with 296 nodal

points and 529 elements.

Fig. 12. Sensitivity analysis of the point wise estimation of the error in the Von Mises stress.

Fig. 14. (a) Sensitivity analysis of the error in the equivalent Von Mises stress for the initial mesh. (b) Sensitivity analysis of the error in

the equivalent Von Mises stress after the four remeshing steps.
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6. Conclusions

The main conclusions of this work can be summarized as follows:

• The sensitivity analysis of the point wise estimation of different measures of the error in stresses has been

developed based on the adjoint state method.
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• The sensitivity analysis is able to predict the changes in the error estimation produced by a perturbation

of the mesh.

• The presented sensitivity analysis has also some capabilities for improving the point wise stress values by

minimizing the point wise error estimation.

• The use of the presented sensitivity analysis for the detection of the pollution error due to a bad discret-
isation around singular or stress concentration points has also been checked.

• A new adaptive remeshing strategy based on the use of the sensitivity analysis of the point wise stress

error estimation has been proposed. This new strategy produces very cheap meshes for the evaluation

of accurate stresses at a specific point controlling also the amount of pollution error.
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