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SUMMARY

Traditionally, the most commonly used mesh adaptive strategies for linear elastic problems are based
on the use of an energy norm for the measurement of the error, and a mesh re�nement strategy based
on the equal distribution of the error between all the elements. However, little attention has been paid
to the study of alternative error norms and alternative re�nement strategies. This paper studies the
feasibility of using alternative mesh re�nement strategies based on

— the use of the classical error energy norm and an optimality criterion based on the equal distri-
bution of the density of error,

— the use of alternative error norms based on measurements of the point wise error contained in the
main magnitudes that control the equilibrium problem and=or the material constitutive equations
such as the stresses (e.g. the Von Mises stress).

The feasibility of using all the described strategies is demonstrated through the solution of a benchmark
example. This example is also used for comparison between the described re�nement criteria. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traditionally, the most commonly used mesh adaptive strategies for linear elastic problems
are based on the use of the energy norm for the measurement of the error, and a remesh-
ing strategy based on the equal distribution of the error between all the elements [1–11].
Taking into account these two ideas di�erent authors have derived alternative expressions
to obtain the element size distribution for a new mesh based on the element size dis-
tribution of the old mesh and the corresponding error estimation [1–3; 10–12]. The main
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470 G. BUGEDA

reasons for the use of the energy norm for the measurement of the error include the
following:

— There is a clear mathematical theory that explains the di�erent properties of the energy
norm of the error.

— The energy norm has a clear mathematical meaning that is very much related to the
�nite element discretization process.

— There is a large family of di�erent error estimators based on di�erent approaches
(residual-type, stress recovery, etc.) that are quite reliable and provide satisfactory
estimations of the existing error in a given �nite element solution.

However, the use of a mesh optimality criterion using the equal distribution of the energy
error between all the elements is based on the fact that, for a given value of the global energy
error norm, this criterion provides the cheapest mesh with the minimum number of degrees
of freedom. A justi�cation of this property can be seen in References [10–12]. Any other
remeshing criteria will produce more expensive solutions for the same �xed amount of global
energy error.
Nevertheless, very little attention has been paid to the use of alternative mesh re�nement

strategies [9–16], with alternative measurements of the error. In fact, the equal distribution of
the energy error between all the elements produces a concentration of the energy error in the
zones where the density of elements is largest. However, normally these are the zones where
the highest stresses are found and where the attention of the structural engineer is focused.
This apparent contradiction is due to the equal distribution of the energy error between the
elements being based on the optimization of the necessary computational cost to obtain a
given value of the global energy norm, but this does not necessarily agree with the principal
interest of the engineer making the analysis.
Today, the computational power of the computers allows one to use alternative mesh

re�nement strategies that are closer to engineering intuition and not so much related to the
computational cost. Bugeda proposes an alternative mesh re�nement criterion based on the
equal distribution of the density of error [13; 14; 16]. For the same amount of global energy
error this criterion produces much more expensive meshes than the classical method, but these
meshes result in more reasonable distribution of the error in stresses [14]. D��ez proposes an
alternative remeshing criterion that is, in some way, intermediate between the classical and the
equal distribution of the error density [15]. These concepts will be revisited in the following
sections and di�erent re�nement strategies will be compared.
The main objective of mesh adaptive strategies is to provide a �nite element solution with

a prescribed level of error in a speci�c magnitude with some physical meaning. However,
the main objective of a linear structural �nite element analysis is to provide accurate values
for the displacements, strains and stresses that will allow a check on the safety of a given
structure under a given set of loads. Taking into account that the majority of safety criteria are
based on the stress values obtained everywhere in the structure, the concern of the structural
engineer is focused more on the error contained in the stress solution of the structural problem
than on the error contained in the energy norm of the displacements. Thus, it seems logical
to base the adaptive remeshing strategies on the control of the error in stresses, instead of the
control of the error in the energy norm of the solution. Bugeda proposes a set of alternative
mesh adaptive strategies based on the control of the point wise error in stresses instead of
strategies controlling the energy norm of the error [14]. These concepts will be revisited in
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NEW ADAPTIVE REMESHING STRATEGIES 471

the following sections and the corresponding strategies will be compared with the re�nement
strategies based on the energy error norm.

2. ERROR ESTIMATION

When dealing with adaptive mesh re�nement �nite element analysis it is necessary to mea-
sure the quality of a given solution. Since the ‘exact’ solution is not known, a method to
approximately evaluate the error of the �nite element solution must be de�ned. The most
popular measurement of the discretization error contained in the solution of a structural
elliptic problem is based on the energy norm that can be expressed as

‖e‖=
[∫
�
[� − �̂]TD−1[� − �̂] d�

]1=2
(1)

where � are the exact stresses, �̂ are the stress values obtained from the �nite element solution
and e is the displacements error. Since the exact stresses are usually not known they can be
approximated by

�� �∗=N� ��∗ (2)

where N� are stress interpolating functions and �∗ are nodal stress values obtained by either
the simple nodal average of the �nite element values, local or global least-square smoothing,
or other adequate nodal stress recovery techniques [1–5].
Till now, the use of adaptive mesh re�nement techniques based on point wise stress errors

instead of the energy norm error has not received much attention due to the lack of reliable
and simple point wise stress error estimators. Nevertheless, some very promising advances in
this direction have arised recently. The most useful approaches available nowadays seem to
be the Superconvergent Patch Recovery (SPR) technique proposed by Zienkiewicz and Zhu
[6], the Recovery by Equilibrium in Patches (REP) proposed by Boroomand and Zienkiewicz
[17; 18] and the Constitutive Relation Error (CRE) technique proposed by Ladev�eze et al.
[19]. Despite the fact that further advances are expected in this �eld, these three approaches
seem to be good enough to be used in conjunction with adaptive mesh re�nement techniques
based on point wise stress errors.
The approximation in Equation (2) leads to the following error estimation:

‖e‖=
[∫
�
[�∗ − �̂]TD−1[�∗ − �̂] d�

]1=2
(3)

Despite the fact that most adaptive remeshing strategies are based on the control of the
energy norm of the error other possibilities are still available. The fact that the SPR, the
REP, the CRE and other recovery techniques provide very much improved stress �elds �∗
compared with the �nite element stress solution �̂, makes them suitable for the development
of adaptive remeshing strategies based on the control of only the point wise error in stresses.
In this case, the error in stresses e� can be estimated as

e�= � − �̂� �∗ − �̂ (4)
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472 G. BUGEDA

It must be emphasized that the estimation of the error in stresses de�ned in Equation (4)
is just a point wise measurement of the error, and that it should be controlled at a series
of a priori �xed points such as the integration and=or the nodal points. On the other hand,
the energy norm of the error is a global norm, in the sense that the error in the energy is
integrated over the elemental or the global domain.

3. STRATEGIES BASED ON ENERGY NORMS

As mentioned, such strategies are based on the use of an energy norm of the error for the mea-
surement of the quality of a solution. Due to the additive contribution of the elemental norms,
separate global and local parameters can be de�ned. It allows the control of the global error
norm as well as its distribution over the domain depending on the optimality criteria chosen
for the mesh. These concepts were detailed in References [14; 16], and are revisited below.

3.1. De�nition of acceptable solution

It is usually agreed that a solution is ‘acceptable’ if the two following conditions are satis�ed:

(a) The global error in energy norm is below a speci�ed value of the total energy norm:

‖e‖6�‖u‖ (5)

where � is the user’s speci�ed value of the permissible relative global error. Equation (5)
allows a de�nition of a global error parameter as

�g =
‖e‖
�

‖u‖ (6)

Clearly, the values �g61 denote satisfaction of the global error criterion, whereas �g¿1
indicates that further re�nement is necessary. A mesh re�nement criterion based only
on �g would lead to a uniform re�nement ((�g¿1)) or dere�nement ((�g¡1)) of all
element sizes (with the usual corrections to preserve the dimensions of the analysis
domain).

(b) In addition to the �rst condition, the present author considers that the distribution of
the elements in the mesh must satisfy an additional local condition. This local condition
can be expressed as

‖e‖i= ‖e‖ri (7)

where ‖e‖i is the actual error norm in each element i and ‖e‖ri is the ‘required’ error
norm in the element. The local error indicator ��i is de�ned as

��i=
‖e‖i
‖e‖ri

(8)

Note that a value of ��i=1 de�nes an ‘optimal’ element size (in the sense of sat-
isfaction of (7)), whereas ��i¿1 and ��i¡1 indicate that the size of element i needs
further re�nement or dere�nement, respectively. The de�nition of the required error in

Copyright ? 2002 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2002; 18:469–482



NEW ADAPTIVE REMESHING STRATEGIES 473

each element ‖e‖ri is a key issue and it strongly a�ects the distribution of element sizes
in the mesh. This de�nition can be based on di�erent mesh acceptance criteria and a
selection of these are presented later.

3.2. Element re�nement parameter

In practice, this paper will aim to satisfy both global and local conditions (a) and (b) de�ned
in previous subsection. This allows the de�nition of an element re�nement parameter using
Equations (7) and (8) as

�i= ��i�g =
‖e‖‖e‖i
�‖u‖‖e‖ri

(9)

The element re�nement parameter �i was �rst introduced in Reference [10] and since then
many authors have used it as the basis for de�ning the new element size in a general adaptive
remeshing strategy. The expression of �i given in Equation (9) can be interpreted as the result
of trying to satisfy the global and local error conditions in a successive manner. Clearly, �i¿1
indicates that the element should be further re�ned, whereas �i61 implies that the element
satis�es both the local and global error conditions.

3.3. Equal distribution of the global error

The classical and most popular criterion for adaptive remeshing in elliptic problems is that a
mesh is ‘optimal’ if the distribution of the energy norm of the error is equal between all the
elements [1–6; 9–12]. On the basis of this assumption, the required error for each element
can be de�ned as the ratio between the global error and the total number of elements in the
mesh n. Thus, noting that only the square norm is additive, we have

‖e‖ri =
‖e‖√
n

(10)

Combining Equations (8) and (10) yields the expression of the local error parameter as

��i=
‖e‖i

‖e‖n−1=2 (11)

The element re�nement parameter is obtained, viz. Equation (9), as

�i= ��i�g =
‖e‖i

�‖u‖n−1=2 (12)

The new element size �hi in terms of the existing size hi is then obtained using the expression
[14; 16]

�hi=
hi
�i
; �i= �1=pg ��2=(2p+d)i (13)

where p is the degree of the shape functions polynomials. The expression of the element
size parameter �i as given by Equation (13) takes into account the di�erent convergence
rates of the element and global error norms. Other authors propose di�erent expressions for
the obtainment of the element size distribution for the new mesh using di�erent arguments
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[1–6; 10–12]. The outcome of this paper is that Equation (13) has always converged to the
required optimal mesh despite the fact that some of the alternative expressions such as those
proposed in References [10–12] can also provide the same satisfactory results.

3.4. Equal distribution of the density of error

An alternative criterion is to assume that a mesh is optimal if the density of the square of the
energy norm of the error is constant over the whole mesh. It is clear then that in the optimal
mesh:

‖e‖2i
�i

=
‖e‖2
�

(14)

Obviously, in Equation (14) �i and � denote the element and the total area (or volume)
respectively. Comparing Equations (14) and (7) gives the expression of the required error
norm for each element as

‖e‖ri = ‖e‖
(
�i
�

)1=2
(15)

The local error parameter ��i is now obtained using (8) and (15) as

��i=
‖e‖i
�1=2i

[ ‖e‖
�1=2

]−1
=

‖e‖i
‖e‖

(
�
�i

)1=2
(16)

The element re�nement parameter �i is obtained from Equations (6), (8) and (16) as

�i= ��i�g =
‖e‖i
�‖u‖

(
�
�i

)1=2
(17)

The new element size is obtained from Equation (13) with the element size parameter �i
given now by [14; 16]

�i=( ��i�g)
1=p=(�i)1=p (18)

To the knowledge of the authors, the criterion of equal distribution of the density of error
was �rst introduced in the form given here by Bugeda [13].

4. STRATEGIES BASED ON POINT WISE MEASUREMENTS

These types of strategies are based on the control of a speci�c magnitude whose point wise
error is limited to a maximum value everywhere. In this case, the quality of the solution is
measured using an evaluation of the point wise error. The advantage of this type of strategies
is that they allow the control of a speci�c magnitude with a clear physical meaning such as
the stresses at each point, strains, etc. From an engineering point of view, the interpretation
of this type of criteria can be much easier than in previous cases.

Copyright ? 2002 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2002; 18:469–482



NEW ADAPTIVE REMESHING STRATEGIES 475

The following adaptive strategies are based on the fact that, assuming the necessary regu-
larity conditions, the error in stresses at each point behaves as hp [20]. For any regular point
P; and for each component of the stress tensor we can write

|�ij(P)− �̂ij(P)|6Chp (19)

The size h that appear in (19) is a global representation of the element size of the whole
mesh. Expression (19) indicates how the size of all the elements of the mesh should be
uniformly reduced in order to provide a speci�c value of the error in the corresponding
component of stress at point P. A uniform reduction of the element size h over the whole
mesh ensures the reduction of both the local and the pollution errors [7; 8]. On the other
hand, if only the size of the element containing the point P is reduced only the local part of
the error is reduced and the pollution error could remain constant.
Nevertheless, it is accepted that for globally adapted grids which satisfy a su�cient small

tolerance for error in global energy norm, the in�uence of the pollution error is very small and
the local accuracy of the recovered gradient is improved [7; 8]. In these conditions, expression
(19) can be used for the de�nition of adaptive strategies based on the control of the stress
error not only at a speci�c point but over a global set of points. In this way, the in�uence of
the pollution error is minimized and the mentioned stress recovery methods become reliable.
Expression (19) does not hold for zones around singularities due to the lack of regularity. At

this zones, the behaviour of the error in stresses is governed by the intensity of the singularity
� instead of the degree of the shape functions polynomials and the p parameter should be
substituted by �. Next subsections show di�erent adaptive remeshing strategies based on (19)
that do not contemplate any speci�c treatment of singularities. Nevertheless, the substitution of
p by � at these zones could provide the necessary alternatives for zones around singularities.

4.1. Maximum error in stresses

The �rst obvious possibility is to maintain the error in the stresses below to a certain limit
everywhere. This can be done by estimating the error in stresses e� de�ned in Equation (4).
Due to the tensorial nature of the stresses, the error in stresses de�ned in Equation (4) will
also have a tensorial magnitude. For this reason, this error can also be written in terms of its
components. Taking this into account, we have

e�=



e�x e�xy e�xz
e�xy e�y e�yz
e�xz e�yz e�z


=



�x − �̂x �xy − �̂xy �xz − �̂xz
�xy − �̂xy �y − �̂y �yz − �̂yz
�xz − �̂xz �yz − �̂yz �z − �̂z




�



�∗x − �̂x �∗xy − �̂xy �∗xz − �̂xz
�∗xy − �̂xy �∗y − �̂y �∗yz − �̂yz
�∗xz − �̂xz �∗yz − �̂yz �∗z − �̂z


 (20)

Equations (4) and (20) de�ne the error in stresses e� as the di�erence between the exact
and the approximated stress tensors. Due to the tensorial properties of the stress tensor, e�, it
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can also be written in terms of its eigenvalues:

e�I 0 0
0 e�II 0
0 0 e�III


 (21)

It seems logical to develop a strategy where the maximum error in the stresses is limited
to a certain maximum value everywhere:

max(abs(e�I ); abs(e�II ); abs(e�III ))6e�max (22)

A re�nement parameter � can then be de�ned at each point as the ratio between the
maximum error max(abs(e�I ); abs(e�II ); abs(e�III )) and e�max :

�=
max(abs(e�I ); abs(e�II ); abs(e�III ))

e�max
(23)

Using (19), the new element size �hi in terms of the existing size hi can now be de�ned at
each point using the expression

�hi=
hi
�1=p

(24)

Equation (24) provides the re�nement strategy to improve the quality of the mesh. The
re�nement parameter � and new size �hi can be computed at any point of the domain. Never-
theless, taking into account that the biggest error in stresses are normally obtained at the nodal
points the safest possibility is to compute � and �hi at those points. In addition, taking into
account that di�erent values of � and �hi will be obtained for each of the elements connected
to a speci�c node, the safest possibility is to de�ne the re�nement strategy in terms of the
minimum value of �hi obtained at each node.

4.2. Di�erent maximum error in tensile and compression stresses

Equation (22) does not make any distinction between tensile and compression stresses. Nev-
ertheless, in some structural problems where the mechanical properties of the material corre-
spond with a frictional behaviour it can be convenient to have a stricter control in the tensile
stress zones than in the rest of the domain. This type of control can provide more accurate
information about the stresses in zones where cracking phenomena can arise, whereas in the
rest of the domain a smaller computational e�ort will be required. In order to obtain this type
of control two di�erent values of the maximum stress error must be de�ned. At each point of
the domain, one or other error will be selected depending on the presence of tensile stresses.
Assuming the tensile stresses as positive, Equation (22) would then be complemented with:

e�max=

{
ecomp�max if max(�I; �II; �III)60

etens�max if max(�I; �II; �III)¿0
(25)

Clearly, for frictional materials it should be e tens�max¡e
comp
�max . Equations (23) and (24) will also

de�ne the remeshing strategy for this error criteria.
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4.3. Maximum error in Von Mises stress

Another possibility is to control the magnitude directly related with a failure criteria of a
material. A typical case is the Von Mises stress �� de�ned as

��=

√
(�1 − �2)2 + (�2 − �3)2 + (�3 − �1)2

6
(26)

where �1, �2 and �3 are the principal stresses. For these criteria, the error in the Von Mises
stress can be de�ned as

e �� =

√
(�1 − �2)2 + (�2 − �3)2 + (�3 − �1)2

6
−
√
(�̂1 − �̂2)2 + (�̂2 − �̂3)2 + (�̂3 − �̂1)2

6

�
√
(�∗1 − �∗2 )2 + (�∗2 − �∗3 )2 + (�∗3 − �∗1 )2

6
−
√
(�̂1 − �̂2)2 + (�̂2 − �̂3)2 + (�̂3 − �̂1)2

6

(27)

Using Equation (27) a maximum error in the Von Mises stress e ��max can be de�ned and
the re�nement parameter � can now be de�ned at each point as

�=
e ��
e ��max

(28)

The new element size �hi in terms of the existing size hi can now be de�ned at each point
using again expression (24).

5. NUMERICAL EXAMPLE

The behaviours of the di�erent adaptive strategies described in this paper are illustrated here
through the solution of a typical structural example. It consists in the analysis of a 2D section
of a gravity dam assuming an elastic plane strain model. Figure 1 shows the geometry of
the analysed section. All the possible corner points of the geometry have been conveniently
rounded in order to eliminate singularities that could mask the behaviour of each strategy.
The main data used for the analysis are the following:

— Total height of the dam h=33:5 m.
— Total height of water 32:5 m.
— Young modulus E=31:0 GPa.
— Poisson’s ratio �=0:25.
— Density of concrete �=2:3 Mg=m3.

The applied loads are the water pressure and the self-weight. The displacements of all the
nodal points placed at the bottom line have been prescribed to be zero in both the vertical
and horizontal directions, whereas the displacements of all the nodal points placed at the left
and right sides have been prescribed to be zero only in the horizontal direction. Figure 1 also
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478 G. BUGEDA

Figure 1. Geometry of the section of a gravity dam and initial mesh.

shows the initial mesh used for all the adaptive strategies. Quadratic triangular elements have
been used for all the presented analysis.
The dam section described in Figure 1 has been analysed using each of the adaptive remesh-

ing strategies described in this paper. For each strategy, the remeshing procedure has con-
verged to the �nal mesh in a few remeshing steps. The strategies used for comparison are
the following:

Strategy A: equal distribution of the global error energy norm between all the elements.
Strategy B: equal distribution of the density of the error energy norm.
Strategy C: control of the point wise error in stresses everywhere.
Strategy D: control of the point wise error in the Von Mises stress everywhere.
Strategy E: control of the point wise error in tensile stresses and in compression stresses

everywhere.

In order to compare the results obtained with strategies A, B, C, and D two di�erent sets
of meshes have been obtained.

— The �rst set of meshes has been obtained by prescribing a 1.50% error of the global
error energy norm (�=0:015) in strategy A, and prescribing the corresponding values
in strategies B, C, and D in order to obtain a �nal mesh with a similar number of
degrees of freedom to strategy A.

— The second set has been obtained by prescribing a 1.50% error of the global error
energy norm (�=0:015) in strategy B, and prescribing the corresponding values in
strategies A, C, and D in order to obtain a �nal mesh with a similar number of degrees
of freedom to strategy B.

In addition, strategy E has also been tested by prescribing the maximum error in the stresses
for the tensile elements to be e tens�max = 1:4 kPa and for compression elements to be e

comp
�max =

25 kPa. These values have been selected in order to obtain a �nal mesh with a similar
number of degrees of freedom than those obtained with the second set of meshes, but with a
much stricter control of the error in the stresses for the tensile elements than for the rest.
Figures 2 and 3 show, respectively, the �nal meshes obtained for each strategy and for

each set. Figure 4 shows the �nal mesh obtained for strategy E. On the other hand, Table I
shows a selection of the quality parameters obtained in the �nal mesh for each strategy.
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Figure 2. Final meshes obtained in the �rst set of applications of strategies A, B, C, and D.

Figure 3. Final meshes obtained in the second set of applications of strategies A, B, C, and D.
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480 G. BUGEDA

Figure 4. Final mesh obtained with strategy E.

In addition, the meaning of each of the parameters of Table I is as follows:

(e�)Max: Maximum value of the error in stresses
(e�)m: Mean value of the maximum error in stresses
(e�)�: Mean deviation of the maximum error in stresses

(e ��)Max: Maximum value of the error in the Von Mises stress
(e ��)m: Mean value of the error in the Von Mises stress
(e ��)�: Mean deviation of the error in the Von Mises stress

The exact value for the maximum stress over the whole domain is 4122:7 kPa, and for the
Von Mises stress is 3715:2 kPa. These values have been obtained by using a set of meshes
with a extremely large number of degrees of freedom and checking for their convergence.
In the case of strategy 4, the mean value of the error in stresses for the elements with tensile
stresses is 1:3 kPa, whereas for the elements without tensile stresses it is 24:4 kPa.
Looking at Figures 2–4 and at Table I we can see the following aspects:

— As expected, for a similar percentage of error in the global energy norm (� 1:5%)
strategy A (A1) provides a mesh that is much more economical than the rest of strate-
gies
(B2, C2 and D2). In fact, with a similar number of degrees of freedom strategy A
provides meshes with less than one-half of the global energy norm than the rest of
strategies. Nevertheless, meshes B2, C2 and D2 have much smaller errors in the stresses
than mesh A1.

— However, with a similar number of degrees of freedom strategies B and C provide a
much smaller maximum error in the stresses (e�)Max than strategy A. The mean value
of this error in stresses (e�)m is similar for this three strategies, but the mean deviation
(e�)� of this error is much smaller for strategies B and C than for strategy A. This
indicates a much more uniform distribution of the error in stresses for strategies B and
C than for strategy A. Strategy D provides a mean deviation (e�)m slightly higher than
strategies B and C.

— Something similar happens with the error in the Von Mises stress, but in this case
strategies B, C and D behaves in a more similar way.

— The meshes obtained with strategies B, C and D look quite similar and they tend to
use more and smaller elements than strategy A in the zones where stress concentrations
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Table I. Quality parameters obtained in the �nal mesh of each strategy.

No. of No. of % (e�)Max (e�)m (e�)� (e ��)Max (e ��)m (e ��)�
Strategy elements points error (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

A1 803 1715 1.40 311.3 16.2 26.6 303.8 13.4 24.1
B1 806 1708 3.43 75.7 16.8 10.7 85.9 13.8 10.4
C1 809 1693 2.75 74.6 16.1 11.0 90.6 13.5 10.5
D1 809 1713 3.36 113.8 16.2 14.2 92.0 13.4 11.8
A2 1923 4023 0.55 78.6 6.4 9.3 81.0 5.3 7.9
B2 1898 3974 1.35 23.8 6.8 3.1 18.9 5.7 2.8
C2 1896 3968 1.32 24.0 6.6 3.1 33.2 5.5 2.9
D2 1906 3982 1.34 32.4 6.7 3.5 28.0 5.6 3.1
E 1854 3888 2.50 65.9 See text See text 70.2 5.8 8.0

are present, whereas in the rest of the domain strategy A uses smaller elements than
the other strategies.

— Strategy E allows a �nal mesh to be obtained with a similar number of elements than the
other strategies, but with a much higher accuracy in the zones where tensile stresses
are present. In this case, the mean value and the mean deviation of the maximum
error in the stresses has not been included in Table I because the values of the error
in the stresses at each point are concentrated around two di�erent values depending
on the existence or otherwise of tensile stresses. Figure 4 also shows that strategy E
concentrates elements only in the zones where tensile stresses are present.

6. CONCLUDING REMARKS

The use of alternative adaptive remeshing strategies based on concepts that are di�erent to the
equal distribution of the energy error norm have been revisited and tested. It has been shown
that the classical error estimation based on the energy norm can be used in conjunction
with other mesh re�nement criteria such as the equal distribution of the density of error.
In addition, the use of alternative point wise error measurements of di�erent magnitudes allows
the derivation of new adaptive remeshing strategies based on magnitudes directly related with
the equilibrium equations or the material constitutive equations.
The results of the examples presented here show that some of the described remeshing

strategies are clearly related. In particular, the results produced by the equal distribution of
the density of the error energy norm are very similar to those produced by the point wise
control of the errors in stresses. In fact, for 1D problems it can be demonstrated that both
strategies are completely equivalent. This equivalence was also shown in Reference [14] for
a di�erent 2D problem. In addition, despite the fact that the equal distribution of the energy
error between all the elements provides the most economical mesh for a given degree of
accuracy in the global error norm, the rest of strategies have demonstrated that they provide
a much more reliable distribution of the error in stresses while still keeping a good control
on the total error energy norm.
The feasibility of a di�erent degree of demanded accuracy for tensile and compression

stresses has been shown and tested. This produces an alternative strategy that allows a very
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strict control of the stresses in zones where cracking or damage phenomena can arise whereas
in the rest of the domain the computational cost is not increased.
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