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SUMMARY

This paper describes some considerations around the analytical structural shape sensitivity analysis when
the structural behaviour is computed using the "nite element method with a non-linear constitutive material
model. Depending on the type of non-linear behaviour two di!erent approaches are proposed. First, a new
direct (non-incremental) formulation is proposed for material models characterized by the fact that the
stresses at any time t can be expressed in terms of the strains at the same time t and, in some cases, the
strains at a speci"c past time t6 (t6(t). This is the case of elasticity (linear as well as non-linear), perfect
plasticity and damage models. Second, a more classical incremental approach is proposed for general
plasticity cases. A special strategy is also proposed for material models with strain softening. The quality
and reliability of the proposed approaches are assessed through their application in di!erent examples.
Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Roughly speaking, sensitivities are understood as relations between some control parameters, like
the structural response, and some design variables that de"ne the structural shape. From this
point of view, if a design variable q is selected, the sensitivity of the structural response can be
de"ned in terms of the displacements u as the relation du/dq or in terms of the stresses as dr/dq.

In optimization problems these sensitivities are normally de"ned in terms of the objective
function and the constraints. In general, these functions depend on the structural response and,
due to that, only the sensitivities in terms of the displacements or the stresses have been
considered in this work.

There have been di!erent contributions for performing the sensitivity analysis in non-linear
structural systems [1}10]. In particular, in the case of non-linear material models, most of these
contributions are related to the use of plasticity models, see [11}14]. Due to the fact that using an
incremental approach solves most of the non-linear structural equilibrium problems, the
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sensitivity analysis is normally obtained as an addition of increments

dut#*t

dq
"

dut

dq
#*A

du

dqB
*t

(1)

The incremental magnitude of the sensitivities is obtained at each step of the incremental
approach through di!erentiation of the incremental integral equilibrium equation Vidal et al.
[12]

d

dq CP
V

BT r5 dV!fQD"0 (2)

where B is the deformation matrix, r5 is the stress increment vector and f0 is the external forces
increment vector.

Another alternative is to start from the incremental "nite element discrete equilibrium equa-
tions, [13, 14]

KT (u, q)*u(q)"f t`*t!rt (3)

where KT is the tangent sti!ness matrix, *u is the incremental displacement vector, f t`*t is the
nodal external forces vector and rt is the nodal internal forces vector corresponding to the last
equilibrium con"guration.

These strategies involve high computational cost because the sensitivity analysis must be
computed after the convergence of each load increment. In addition, its incremental nature
favours carrying and accumulation of errors depending on the resolution strategy used to solve
the equilibrium problems. Then, the quality of this type of sensitivity analysis can depend on the
resolution strategy and the size of the load increments.

Another general approach of the sensitivity analysis with non-linear material problems appears
[15], and it is applied to perfect plasticity [16]. In this last reference the di!erentiation of the
global equilibrium equation in its integral form is proposed:

d

dq CP
V

BT r d<!fD"0 (4)

where r are the stresses and f is the external nodal forces vector.
The present work follows similar arguments for the development of one of the proposed

strategies that can be used for elastic, perfect plasticity and damage models. On the other side,
a more &classical' strategy is proposed for general plasticity models. In addition, in order to solve
problems involving constitutive material models with strain softening a speci"c approach is also
proposed.

Next sections present the proposed sensitivity analysis formulations. Two di!erent concepts
are developed: The "rst one is a formulation for the sensitivity analysis of a non-linear constitut-
ive material model without taking into account, yet, the possibility of a strain-softening behav-
iour. This concept is speci"c for the cases of damage and plasticity models. The second one is the
possibility of considering a constitutive material model with strain softening. The additional
considerations to be taken into account are developed for the case of the damage model with
strain softening and can be easily generalised for any other constitutive model. One of these
additional considerations is the necessity of including a special approach based on an arc-length
strategy for a proper use of the sensitivity analysis to project the structural behaviour from an
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original structure to a modi"ed one. Finally, the use of all the presented formulations is illustrated
through some assessment examples.

2. FORMULATION OF THE SENSITIVITY ANALYSIS IN
NON-LINEAR STRUCTURAL PROBLEMS

For a typical structural equilibrium problem, it is well known that when the applied external
loads are in equilibrium with the internal loads the "nite element discrete equilibrium equation at
each step of the analysis can be written as

+
%-%.

P
V

BT rt d<!f t
"0 (5)

Here we have used the superscript t to indicate the pseudo-time that corresponds to the step of the
analysis in which the equilibrium equation has been considered.

Taking into account that our objective is to compute the sensitivities at the equilibrium point
we can di!erentiate the discrete equilibrium equation with respect to a design variable q

d

dq C +
%-%.

P
V

BT rt d<!f tD" +
%-%.
C

d

dq P
V

BT rt d<D!
df t

dq
"0 (6)

The last expression can be developed for each "nite element of the mesh. Assuming that the
iso-parametric mapping can be used for the integration domain of each element the last
expression becomes

+
%-%.
CP<

0

d

dq
(BT rt DJ D) d<

0D!
df t

dq
"0 (7)

where J is the jacobian of the iso-parametric mapping. If now we develop the expression (7) for
each element of the "nite element mesh we obtain

P<
0

d

dq
(BT rt DJ D ) d<

0
"P<

0

dBT

dq
rt DJ Dd<

0
#P<

0

BT drt

dq
DJ D d<

0
#P<

0

BT rt
d DJ D
dq

d<
0

(8)

where <
0

refers to the integration domain corresponding to one element. Most of the integral
terms of the last expression are well known and can be obtained using the well-established
strategies for linear problems (see [17]). Nevertheless, the second integral term contains the
expression dr t/dq that includes the non-linearity that characterizes the constitutive material
model. All the di$culties of the sensitivity analysis for material non-linear problems are concen-
trated in the computation of this term. Next, we will see how this term can be obtained in a direct
way for some particular non-linear material models.

2.1. Damage and perfect plasticity cases

For a general non-linear material model, during the equilibrium structural analysis the stresses
at each point for a given pseudo-time t can depend on the entire history of deformation. Due to
this, obtaining the term dr t/dq is not an easy task, and normally, it involves an incremental
procedure using expressions (1), (2) or (3) as commented above. Nevertheless, there are some cases
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where the material model allows expression of the stresses at time t in terms of the strains at the
same time t and, in other cases, the strains at a past time t6 such as

1. Linear and non-linear elastic models: this is an obvious case.
2. Perfect plasticity models: this was presented by Silva et al. [16].
3. Damage models: this will be shown in detail in the next subsection.

In a general plasticity case the stresses at each time t can be expressed in terms of the total
strains et at the same time t and the plastic strains et

1
at the same time as follows:

rt"D (et!et
1
) (9)

where D is the linear elastic constitutive matrix. For obtaining the plastic strain at time t there are
three possible situations:

(i) If the stresses have not reached the yield surface yet, the plastic strains are null and then the
expression (9) reduces to rt"Det.

(ii) When the stresses lie in the yield surface the plastic strain at time t can be obtained in terms
of the total strain et in a direct way by using the consistency equation and a radial return
algorithm. In this case expression (9) holds, and et

1
can be written in terms of et.

(iii) When due to an unloading situation, the stresses go back to the interior of the space
limited by the yield surface; the value of the plastic strain et

1
at time t is the same as the

plastic strain eu
1
at the time where the unloading process started tu. In this case equation (9)

transforms into rt"D (et!eu
1
).

As shown now, in the particular case of the perfect plasticity the stresses at time t can be
expressed in terms of the strains at time t and a set of internal variables jt (plastic strains) which,
in turn, depend on the strains at time t and, in some situations, the strains at a past time tu. This
can be expressed as follows:

rt"rt(et, jt(et, e6, l
#
)) (10)

In expression (10) a possible dependence with respect to a characteristic length l
#

has been
considered. This is normally used if the material model contains a strain softening behaviour. The
use of the characteristic length l

c
is necessary for the regularisation of the solutions obtained from

smeared (continuous) models after the analysis of a cracking (discontinuous) phenomena,
specially for those with softening (see Oliver [18]).

On the other hand, in the case of a simple damage model, jt is the damage parameter dt that
characterizes the amount of existing damage and so expression (10) can be written in the
following way:

rt"(1!d t)Det (11)

where the obtainment of the damage parameter d 5 in terms of the total stresses will be shown in
a next section.

In all non-linear material models, for every step of the analysis the variation of the strains and
stresses at the time t are related through the tangent constitutive matrix Dt

T in the following way:

drt"Dt
T det (12)

1388 G. BUGEDA AND L. GIL

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1385}1404 (1999)



And taking into account the equation (10) this matrix Dt
T can be written as follows:

Dt
T"

Lrt

Let
#

Lrt

Lit

dit

det
(13)

where all the derivatives have to be evaluated at time t. For instance, for the classical plasticity
model of equation (9) it is

Dt
T"D A1!

Let
p

LetB (14)

and for the damage model of equation (11) it is

Dt
T"D A1!d t!et

Ldt

LetB (15)

To obtain the derivative of the stresses at the time t with respect to the design variable q we can
consider again expression (10) taking into account all the possible dependencies of the stresses
with respect to the design variable q in the following way:

rt"rt(et(q), jt(et(q), e6 (q), l
c
(q), q), q) (16)

Nevertheless, normally there is no explicit dependence either of the stresses or of the internal
variables with respect to the design variable (this would be the case whether, for instance, the
Young modulus or the Poisson ratio be a design variable). Due to that, expression (16) can be
reduced to

rt"rt(et(q), jt(et(q), e6 (q), l
c
(q))) (17)

And then, we can di!erentiate the stresses with respect to the design variable in the following way:

drt

dq
"

Lrt
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dq
#

Lrt

Ljt A
Ljt

Let
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dq
#

Ljt

Le6
de6

dq
#

Ljt

Ll
#

dl
#

dqB (18)

"A
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#

Lrt

Ljt

Ljt

LetB
det

dq
#

Lrt

Ljt A
Ljt

Le6
de6

dq
#

Ljt

Ll
c

dl
c

dqB
If we combine expressions (13) and (18) we can arrive to the next expression

drt

dq
"Dt

T

det

dq
#

Lrt

Ljt A
Ljt

Le6
de6

dq
#

Ljt

Ll
#

dl
#

dqB (19)

Clearly, if the non-linear material model does not have any dependence with respect to the
characteristic length, the last term of expression (19) vanishes. In addition, in the case of elasticity
where there is no dependence of the stresses on any internal variable the terms where jt appears
are null. Finally, the terms where e6 appears will be null, unless the t corresponds to an unloading
situation. In the latter the tangent constitutive matrix Dt

T also corresponds to the unloading
situation.

On the other hand, we have to take into account that if a classical "nite element discretized
linear relation between the displacement "eld and the strains is assumed we have

et"But (20)
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where ut is the nodal displacements vector at the time t. Di!erentiating (20) with respect to
a design variable gives

det

dq
"

dB

dq
ut
#B

dut

dq
(21)

Now, if we substitute expressions (19) and (21) into expression (8) and rearrange terms the
following expression is obtained:

P<
0

d

dq
(BT rt DJ D) d<

0
"P<

0
A
dBT

dq
rt DJ D#BT rt

dDJ D
dq B d<

0
(22)

#P<
0

BT ADt
TA

dB

dq
ut
#B

dut

dqB#
Lrt

Ljt A
Ljt

Le6
de6

dq
#

Ljt

Ll
#

dl
#

dqBB DJ D d<
0

Now, if we substitute expression (22) into expression (7) we obtain the following matrix expres-
sion:

Kt
T

dut

dq
"f t* (23)

where KT is the tangent sti!ness matrix and f t* is a pseudo-load vector, both evaluated at the time
t. Their expressions are:

Kt
T" +

%-%.
CP<

0

BtDt
T B DJ Dd<

0D (24)

f t*
"

df t

dq
! +

%-%.
C P<

0
A
dBT

dq
rt DJ D#BTArt

d DJ D
dq

#ADt
T

dB

dq
ut
#

Lrt

LjtA
Ljt

Le6
de6

dq
#

Ljt

Ll
#

dl
#

dqBB DJDBBd<
0D
(25)

Equations (23)}(25) form a linear system of equations whose solution provides the sensitivities of
the displacement "eld with respect to a design variable. The coe$cient matrix of this system is the
same tangent sti!ness matrix normally used for the solution of the structural equilibrium
problem. Note that, often, this matrix is already factorized during the solution process. The
pseudo-load vector, with the exception of the last integral term, can be computed using the same
techniques as in the case of linear structural problems.

It has to be emphasized that the displacements and the tangent sti!ness matrix that appear in
equations (23)}(25) are obtained during the solution of the structural equilibrium problem in the
usual incremental way. This means that they incorporate all the dependencies with respect to the
strains and stresses assigned by the non-linear material model.

Aa a consequence, despite the fact that traditionally the structural sensitivity analysis for non
linear problems is performed in an incremental way, the above expressions show that, in the
mentioned particular cases, this analysis can be carried out in a direct way after the solution of the
structural equilibrium problem is obtained.
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2.2. Detailed expressions for a speci,c damage model

As mentioned above, continuous damage material models are based on an internal variable
d t that controls the mechanical behaviour of the material. The constitutive equation of the
simplest damage model depends on a single parameter dt in the way expressed in (11)

rt"(1!d t)Det"(1!d t)DBut, 0)d t)1 (26)

The damage parameter evolves in terms of the strain state. In this work the following evolution
equation has been used (see [19]):

d t"1!
s*

rt
eA(1!rt/q*), rt"max

s|*0, t+
(s*, ss) (27)

where qt is a norm of the stress state given by

qt"[1#l(n!1)]J(r%
1
)2#(r%

2
)2#(r%

3
)2 (28)

with

l"
3
+
i/1

Sre
i
T

Dre
i
D
, Sre

i
T"

1

2
[re

i
#Dre

i
D], n"

f
#
f
t

(29)

where r%"De are the elastic stresses, r%
i

are the principal elastic stresses and n is the ratio
between the maximum allowable stresses in compression ( f

#
) and in tension ( f

t
). Finally, q* is the

threshold value of this norm (a material property) above which the material starts to damage,
and A is a softening parameter which depends on the characteristic length of the elements l

#
(a measure of the element size), fracture energy G

f
, maximum traction stress f

t
and Young

modulus E as follows (see [19]):

A"

2l
#
f 2
t

2G
&
E!1

(30)

The dependence of A on the mesh size l
#
accounts for the proper numerical structural response

with respect to the size of the "nite elements. As mentioned earlier, this dependence is necessary
when a continuous displacement "eld (smeared model) is used for the analysis of cracking
phenomena, where the displacements are known to become discontinuous (see [18]). This means
that, in practice, the constitutive equation at each element depends on its size. In case of shape
sensitivity analysis this e!ect must be taken into account because a change on the structural shape
can a!ect the element sizes and, as a consequence, also the stress values.
Expression (27) indicates the following:

(a) The behaviour of the material is initially elastic (d t"1) until the stress norm reaches the
threshold value q*.

(b) Once the stress norm becomes higher than the threshold value, an increase of the strains
results in an increase of the stress norm. Due to this, in this situation the value of
rt corresponds to the value of the stress norm qt, and the value of the damage parameter at
time t can be obtained in terms of the strains at time t.
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(c) In case of an unloading situation of a damaged material the value of rt corresponds to the
value of the stress norm (rt"q6), obtained at the previous time t6 when the unloading
process started. This norm is obtained in terms of the stresses at that time e6. In this case,
the value of the damage parameter at time t can be obtained in terms of the strains at
time t6.

To our knowledge, the above comments are valid for any damage material model. As can be
seen from these comments, expression (19) is valid for this damage model because the stresses at
time t can be obtained in terms of the strains at time t, and time t6, as well as a characteristic
length. Due to this, the structural sensitivity analysis for this material model can be obtained
using expressions (23)}(25).

If we compute the value of the di!erent derivatives that appear in the last term of equation (25)
we have

Lrt

Ljt
"

Lrt

Ld t
"!Det"!DBut (31)

Ljt

Le6
"

Ld t

Le6
"

Ld t

Lq6
Lq6
Le6

(32)

The derivatives of last expression can be obtained through the direct derivation of expressions
(26) and (27). Anyway, these must be taken into account only in unloading situations and in
already damaged material. If this is the case, the term de6/dq must be computed at the time
t6 when the unloading process starts. This term can be obtained from the sensitivity of the
displacements at time t6 using

de6

dq
"

dB

dq
uu
#B

duu

dq
(33)

Another necessary term for (25) is obtained from (27) and (30) as

Ljt

Ll
#

"

Ld t

Ll
#

"!

q*
qt A1!

q5
q*B eA(1!qt/q*) 2 f 2

5
2G

&
E!1

(34)

Finally, if the characteristic length is taken in the following way:

l
#
"(<

%-%.%/5
)1@n (35)

where n takes the values 1, 2 or 3 for one, two or three-dimensional problems, respectively, then
after some algebraic manipulation we have

dl
#

dq
"

1

nln~1
#

d DJ D
dq

(36)

Finally, if we substitute (31)}(36) in expression (25) we obtain the "nal expression for the
pseudo-load vector corresponding to this type of material model.

2.3. General plasticity case

In the case of a general plasticity model the dependence of the stresses with respect to the
strains cannot be expressed using expression (10). The reason is that the strains at time t can
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depend not only on the strains at some speci"c time (as it was the previous case) but also on the
complete deformations history and in a continuous way. If this is the case, the structural
sensitivity analysis must be computed using an incremental approach. Typically, this is done
using expression (1), where the sensitivities of the displacements are obtained as an addition of
increments. In this work, the approach proposed by Kleiber et al. [10, 13, 14] has been used.
Instead of obtaining the drt/dq term of expression (8), this formulation is based on the obtainment
of the sensitivity of the incremental displacements through the derivation of expression (3) with
respect to the design variable. If the equilibrium equation (5) is developed using a "rst-order
expansion around an equilibrium point we obtain

Kt#Dt
T (ut#Dt)*ut#Dt

"f t#Dt
!rt (37)

where Kt
T is the consistent tangent sti!ness matrix at time t and rt is the internal forces vector

obtained after the last load increment. Their corresponding expressions are

Kt
T"P< BT Dt

TBd< (38)

rt
"P< BT rt d< (39)

If now we derive expression (37) with respect to q and rearrange terms we obtain the following:

Kt
T *

du

dq
"

df t#Dt

dq
!

drt

dq
!

dKt
T

dq
*u (40)

Expression (40) is a linear system of equations whose solution provides the sensitivity of the
incremental displacements. The sensitivity of the total displacements can be obtained using (1).

The reader is referred to Kleiber et al. [10, 13, 14] and Gil [20] to see the details of the
computation of the di!erent terms of expression (40). They are not detailed here since these
expressions are quite complex and have already been presented in the context of other works.

3. DISCUSSION AND STRATEGY FOR THE SENSITIVITY ANALYSIS OF
STRAIN-SOFTENING PROBLEMS

The solution of (23)}(25), as well as that of any other method based on a traditional incremental
approach, provides the sensitivities of the structural behaviour assuming that when the structural
shape is perturbed the loads remain constant. These sensitivities are the derivatives of the
structural behaviour with respect to the design variables, and are obtained assuming an in"nitesi-
mal perturbation of these design variables. Nevertheless, the sensitivity analysis is often used for
the "rst-order prediction of the non-linear behaviour of a modi"ed structure that has been
obtained by the application of a "nite perturbation. By using this approach, one can estimate the
answer of the new structure under the same load level rather than the original structure. This
means that the behaviour of a structure that we would obtain after a "nite perturbation of the
design variable q can be approximated by the following expression:

u(q#*q)+u(q)#
du

dq
*q (41)
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Figure 1. First-order projection of the structural response using the sensitivity analysis

Figure 2. Non feasible projections of the structural response using a constant load sensitivity analysis, (a) and (b)

Figure 1 shows the meaning of this type of projection assuming that we have the full
load}displacement curve for the original and the perturbed structures. In this "gure, the continu-
ous line shows the equilibrium response curve (force vs. displacement) of a given structure under
a speci"c loading history, and the dashed line shows the estimation of the corresponding
equilibrium response curve for a perturbed structure under the same loading history.

When the structural behaviour includes strain softening the use of this type of projection for
"nite perturbations can become meaningless. In principle, we do not know if a certain "nite
modi"cation of a design variable will increase or decrease the peak load of the structural
response. In particular, if the peak load decreases, it makes no sense to use a standard sensitivity
analysis to project the structural behaviour to the perturbed one. A clear example of this situation
is shown in Figure 2(a). Note that, in this case, a projection from the highest loaded equilibrium
points of the original structure is driven to situations where the perturbed structure cannot be
equilibrated.

On the other side, in the cases where the perturbed structure has a higher peak load than the
original one, it would not be possible to predict its value. This case is shown in Figure 2(b) where
we cannot estimate any of the highest loaded equilibrium points of the perturbed structure by
a horizontal projection from the original one.

It seems clear that in the two mentioned pathological situations the projections from the
original structure to the perturbed one should involve a variation not only of the displacement
"eld but also of the load level. This type of projections is named as desirable projections in Figures
2(a) and 2(b). In these cases it is not enough to know the sensitivities of the unknown variables of the
equilibrium equations. It is also necessary to know the sensitivities of the load forces.
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It should be emphasized that this type of problems appears because the sensitivity analysis that
has been performed assuming an in"nitesimal perturbation of a design variable is used to predict
the behaviour of a new structure that is de"ned through a "nite perturbation of a design variable.
In fact, when in"nitesimal perturbations are applied there are no "nite variations of the peak
load.

From the mechanical point of view structural problems with strain softening present a reduc-
tion of the structural resistance after the peak load equilibrium point. After this situation it is not
possible to increase the magnitude of the loads applied to the structure. Consequently, a classical
analysis strategy based on an incremental application of the loads does not allow studying the
structural behaviour after the peak load point.

However, the displacement "eld can always be increased producing new equilibrium states in
the structural response curve, even if the structural behaviour contains strain softening. This
allows the use of arc-length method for the study of the structural behaviour of strain-softening
problems after the peak load. This type of method is based on the simultaneous accomplishment
of the equilibrium equations and some conditions about the displacement "eld [21]. Both
conditions ensure to obtain new equilibrium points in the displacements}loads curve.

Taking into account that the solution strategies of this type of problems are based on the use of
a "xed arc-length for each equilibrium point instead of a "xed load level, it seems logical to use
this type of condition to predict the behaviour of a perturbed structure. In this case, the
projections will be made assuming that the arc-length condition, and not the load level, will
remain constant. This approach has the advantage that no assumption is made on the peak
load of the perturbed structure; in addition, it is completely consistent with the equilibrium
equations.

Arc-length methods are based on the simultaneous accomplishment of the two following
equations:

+
%-%.

P< Bt r d<!jf"0 (42)

g(u, j)"0 (43)

where j is a load factor parameter that controls the magnitude of the load applied at each
equilibrium point and (43) is a condition on the values of the displacement "eld at the same point.
Traditionally, this condition is applied on the value of the displacement of a single node or on the
value of a norm of the nodal displacement vector. Compared with a classical incremental
approach the arc-length methods introduce the additional unknown j and the additional
equation (43).

The sensitivity analysis of the arc-length equations involves the simultaneous di!erentiation of
(42) and (43). This process leads to the following system of equations:

d

dq C +
%-%.

P< Bt r d<D!
dj
dq

f!j
df

dq
"0 (44)

dg

dq
"

Lg

Lq
#

Lg

Lu

du

dq
#

Lg

Lj
dj
dq

(45)

Equation (44) is similar to (6) with the addition of some terms to the pseudo-load vector. On the
other side, the di!erent terms of (45) are readily obtained by di!erentiation of the arc-length
condition.
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The simultaneous solution of equations (44) and (45) can be grouped in the following, more
compact, matrix form:

C
KT !f

Lg/Lu Lg/LjD G
du/dq

dj/dqH"G
f t*

0 H (46)

The solution of (46) provides the sensitivities of the displacements and the load factor parameter.
If these sensitivities are used to project the structural behaviour by a perturbation of a design
variable, it will produce a "rst-order estimation of the displacements and the load level of the new
structure assuming the accomplishment of the same arc-length condition than the original one.
This estimation will be obtained by using the following expressions:

u(q#*q)+u(q)#
du

dq
*q (47)

j(q#*q)+j(q)#
dj
dq

*q (48)

On the other side, it should be mentioned that the addition of the arc-length condition to the
equilibrium equation leads to the system of equations (46) that is no longer symmetric. Fortu-
nately, due to the fact that only the last row and the last column are non-symmetric it is possible
to use cheap iterative strategies that take full advantage of the factorisation of the original tangent
sti!ness matrix, see Gil [20] for more details.

In addition, it should be mentioned that the presented strategy could be applied to any type of
non-linear structural problem, even if it does not have any strain-softening e!ect.

It should be noted that this procedure provides the design sensitivity analysis of the structural
response, and this allows to predict the complete structural response path (or part of it) which can
contain the new peak load. Nevertheless, it does not provide the design sensitivity analysis of the
peak load. The obtainment of this last sensitivity is a di!erent problem that has not been treated
here.

To our knowledge, a similar approach was "rst proposed in [14] and it was applied to the
sensitivity analysis of geometrically non-linear problems. In the present work, this technique has
been applied to structural problems where the non-linearity and the softening are due to the
constitutive material model.

4. ASSESSMENT EXAMPLES

The quality and the reliability of the formulations proposed in this paper are assessed here
through the resolution of four di!erent test cases:

(i) The "rst test case uses the damage model with strain softening for the analysis of
a two-dimensional beam under a bending moment.

(ii) The second test case is based on the problem similar to that of the "rst one but for using
a Von Mises plasticity model with linear hardening.

(iii) The third test case uses the damage material model for the analysis of a short beam with
a variable cross section.
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Figure 3. Geometrical de"nition of test cases 1 and 2, (a) and (b)

Figure 4. Finite element mesh for test case 1 and 2

(iv) The fourth test case checks the proposed formulation for the case of a three-dimensional
short beam using again a Von Mises plasticity with hardening model.

¹est case 1: two-dimensional beam under a bending moment. Damage model. This test case studies
the quality of the proposed formulation in the case of a concrete iso-static beam with a bending
behaviour. The selected design variable is the thickness of the beam. This test case shows the
application of the presented formulation to predict the behaviour of a beam that, which due to
construction errors, has a smaller thickness than the designed and analysed one. This test case is
analysed with a damage model with strain softening and the main aim is to predict the
modi"cation of the peak load produced by the aforementioned error.

The geometry and the applied load of this test case are described in Figures 3(a) and 3(b).
Figure 3(b) also describes the symmetry approach used for the analysis of the structural problem.

The di!erent data used for the structural analysis are the following:

(a) A plane stress model with a depth of 50 cm has been assumed.
(b) Arc-length method controlling the displacements of node 11 (see Figure 4) with increments

of *l"0)006 cm at each step of the solution process.
(c) The convergence criteria for the solution of the equilibrium problem has been de"ned in

terms of the ratio between the norm of the residual forces and the norm of the external
forces. This ratio has been limited to a 1 per cent. The "nite element mesh shown in Figure 4
contains 40 quadratic 8-noded elements.

(d) The design variable is the thickness of the beam.
(e) The material properties are shown in Table I.

Two di!erent analysis have been performed:

(i) The "rst analysis corresponds to the original structure. For this, the sensitivities of the
displacements with respect to the design variable have been computed at each equilibrium
point.
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Table I. Material properties

Young modulus E 2)1]106 kN/m2
Poisson ratio 0)2
Maximum compressive stress 2)0]102 kN/m2
Maximum tensile stress 500)0 kN/m2
Fracture energy 200)0 J/m2

Figure 5. Superposition of the displacement}load curves corresponding to the original, the modi"ed and the projected
structures for test case 1

(ii) The second analysis corresponds to a modi"ed (perturbed) structure that has been obtained
applying a reduction of 2)5 per cent on the design variable. This means that the thickness of
the modi"ed beam is 5 cm smaller than the original one.

In order to check the quality of the proposed formulation the following curves have been
compared:

1. Displacement}load curve corresponding to node 21 of the original structure.
2. Displacement}load curve corresponding to the same node of the modi"ed structure ob-

tained by a direct analysis.
3. Displacement}load curve corresponding to the same node of the modi"ed structure ob-

tained by a "rst-order projection (see expressions (47) and (48)) using the results of the
original one and its sensitivities.

The comparison of the response curves between the original, modi"ed and projected structural
behaviour is shown in Figure 5. It should be noted that the curves projected and modi"ed
superpose quite well. This reveals a good behaviour of the proposed formulation for this test case.
In particular, the projected curve allows a very good engineering estimation of the ultimate load
of the modi"ed structure (see Figure 6).

¹est case 2: two-dimensional beam under a bending moment. Plasticity with linear hardening. This
problem is similar to the previous one, but in this case the design variable is the span of the
beam. This test case is analysed with a Von Mises plasticity material model with linear
isotropic hardening. The geometry and the applied load are described in Figures 3(a)
and 3(b).
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Figure 6. Detail of the zone with the maximum applied load

Table II. Material properties

Young modulus E 2)1]108 kN/m2
Poisson ratio 0)2
Yield stress 2)5]105 kN/m2
Hardening parameter 2)0]107 kN/m2

The di!erent data used for the structural analysis are the following:

1. Plane stress with beam thickness of 1 m.
2. The convergence criteria for the solution of the equilibrium problem have been de"ned in

terms of the ratio between the norm of the residual forces and the norm of the external
forces. This ratio has been limited to a 1 per cent. The total load was been applied using 300
steps, each one of 160 kN.

3. The "nite element mesh shown in Figure 4 contains 40 quadratic 8-noded elements.
4. The design variable is the length of the beam.
5. The material properties are shown in Table II.

Two di!erent analysis have been made:

(i) The "rst analysis corresponds to the original structure. For this structure the sensitivities of
the displacements with respect to the design variable have been computed at each equilib-
rium point.

(ii) The second analysis corresponds to a modi"ed (perturbed) structure that has been obtained
by applying an increase of 2 per cent to the design variable. It means that the modi"ed
beam is 20 cm longer than the original one.

In order to check the quality of the proposed formulation the following curves have been
compared:

(1) Displacement}load curve corresponding to node 21 of the original structure.
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Figure 7. Superposition of the displacement}load curves corresponding to the original, the modi"ed and the projected
structures for test case 1

Table III. Material properties

Young modulus E 2)1]106 kN/m2
Poisson ratio 0)2
Maximum compression stress 2)0]104 kN/m2
Maximum traction stress 500)0 kN/m2
Fracture energy 200)0 J/m2

(2) Displacement}load curve corresponding to the same node of the modi"ed structure
obtained by a direct analysis.

(3) Displacement}load curve corresponding to the same node of the modi"ed structure
obtained by a "rst order projection (see expression (30)) using the results of the original one
and its sensitivities.

Looking at the Figure 7, it should be noted that the curves projected and modi"ed superpose
quite well. This reveals a good behaviour of the formulation for this test case.

¹est case 3: two-dimensional short cantilever beam. Damage model. In this test case the structural
problem consists of a small cantilever beam with a variable cross section.

The di!erent data used for the structural analysis are the following:

(i) Damage constitutive material model as described in Section 3 (see Table III).
(ii) Plane stress model equations assuming a thickness of 1 cm.
(iii) Arc-length controlling the displacement of node 34 (see Figure 8) allowing an increment in

its displacement norm of *l"3)5]10~4 cm at each step of the solution process.
(iv) The same convergence criteria as previous test cases.
(v) The design variable is the cross section of the structure.
(vi) A mesh of 12 eight node quadratic elements (see Figure 9).

In a similar way than in test case 1 two di!erent analyses have been performed:

1. The "rst analysis and sensibilities correspond to the original structure.
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Figure 8. Geometrical description of test case 3

Figure 9. Mesh and structural model, the coloured elements have a lower yield stress in order to localize the damage

Figure 10. Superposition of the displacement}load curves corresponding to the original, the modi"ed and the projected
structures for test case 3

2. The second analysis corresponds to a modi"ed (perturbed) structure that has been obtained
by applying a uniform increment of the cross section. It means that the cross section of the
modi"ed structure is 6)6 per cent larger than the original one.

Drawing the same type of curves as in previous test cases, Figure 10 shows that the projected
curve reproduces very well the behaviour of the perturbed structure. In fact, the coincidence of
curves projected and modi"ed is almost perfect.

¹est case 4: short three-dimensional beam. Plasticity model. This test checks the behaviour of the
formulation in a three-dimensional plasticity problem as shown in Figure 11. It consists of
a bending short loaded beam. Its material follows a plasticity constitutive law with strain
hardening. The details of the parameters are shown in Table IV.
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Figure 11. Geometry and structural problem of test case 4

Table IV. Material properties

Young modulus E 2)1]108 kN/m2
Poisson ratio 0
Yield stress 2)0]105 kN/m2
Hardening 1)0]106 kN/m2

Figure 12. Superposition of the displacement}load curves corresponding to the original, the modi"ed and the projected
structures for test case 4

(a) A tridimensional mesh of 8 node bilinear hexahedral elements is used.
(b) The same convergence criteria described in previous cases. The total load has been applied

using 200 steps, each one of 51 kN.
(c) The design variable is the length of the beam.

The projected curve, in Figure 12, coincides quite well with the modi"ed one and allows the
engineer to predict the structural behaviour of the modi"ed structure.

5. CONCLUSIONS

The di!erentiation of the discretized global equilibrium equation allows a very satisfactory
evaluation of the sensitivities of the structural behaviour when damage or plasticity models are
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used. In the case of the damage models, the present approach is a new one based on the use of the
tangent constitutive matrix and it does not make use of any incremental approach. For the
plasticity case the present approach is a &classical' incremental one.

The simultaneous di!erentiation of the equilibrium equations and the arc-length condition
leads to a new strategy for the evaluation of the structural sensitivities that solves the projection
problems when the structural behaviour presents strain softening.

The quality of the formulation proposed here for the sensitivity analysis of structures contain-
ing damage models, together with the inclusion of the arc-length condition has been assessed
through the resolution of di!erent test cases. The results shown in all the test cases are very
satisfactory.

In particular, some examples show the good possibilities of the proposed sensitivity analysis for
the study of situations where, due to a pathology, the "nally built structure is not coincident to
the originally designed one.
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