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SUMMARY

A new generalized damage model for quasi-incompressible hyperelasticity in a total Lagrangian finite strain

framework is presented. A Kachanov-like reduction factor (1−D) is applied on the deviatoric part of the

hyperelastic constitutive model. Linear and exponential softening are defined as damage evolution laws, both

describable in terms of only two material parameters. The model is formulated following continuum damage

mechanics theory such that it can be particularized for any hyperelastic model based on the volumetric-

isochoric split of the Helmholtz free energy. However, in the present work it has been implemented in an

in-house finite element code for neo-Hooke and Ogden hyperelasticity. The details of the hybrid formulation

used are also described. A couple of three-dimensional examples are presented to illustrate the main

characteristics of the damage model. The results obtained reproduce a wide range of softening behaviors,

highlighting the versatility of the formulation proposed. The damage formulation has been developed to

be used in conjunction with mixing theory in order to model the behavior of fibered biological tissues. As

an example, the markedly different behaviors of the fundamental components of the rectus sheath were

reproduced using the damage model, obtaining excellent correlation with the experimental results from

literature. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since Kachanov [1] first introduced the concept of effective stress through the use of a reduction

factor associated with the amount of damage in a material, many authors have developed

formulations based on this concept of elastic degradation to model damage or degradation in
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2 E. COMELLAS ET AL.

materials. Over the years, these formulations have been consolidated and are now regarded

as indisputable knowledge in the context of continuum damage mechanics [2, 3, 4, 5]. This

phenomenological approach is based on a rigorous mathematical and thermodynamic basis and

has proved to be a simple and effective tool in numerical modeling. Although initially formulated

in an infinitesimal strain framework and as isotropic, it has been extended to include anisotropy

(e.g. [6, 7]), has been combined with plasticity (e.g. [8, 9, 10]) and viscoelasticity (e.g. [11]), and

has been formulated for application to specific materials such as concrete (e.g. [12, 13]), composites

(e.g. [14]) or biological tissues (e.g. [15]), among others.

The first damage models developed in a finite strain context were proposed more than two

decades ago, being the work of Simo [16] one of the most renowned. These are generally based

on the multiplicative decomposition of the deformation gradient into a volume-preserving or

volumetric part and an isochoric or deviatoric part, with damage affecting only the latter. Like the

formulations by Miehe [17], de Souza [18] and other authors [19], these models were motivated by

the stress softening effect known as Mullins effect which is characteristic of rubber-like materials.

More recently, damage models based on the decoupled volumetric-deviatoric response have been

formulated to model the behavior of fibered soft biological tissues [20, 21].

All these formulations use damage criteria and evolution laws which are defined to particularly

suit the specific material behavior being modeled. In this work, a new generalized softening finite

strain model is proposed, which includes linear and exponential damage evolution laws that have

been translated from an infinitesimal strain framework [22] into the present finite strain one. The

novelty of this formulation is that, on the one hand, both proposed evolutions of the damage variable

are based on solely two measurable material properties and, on the other hand, the formulation can

be particularized for any decoupled volumetric-deviatoric hyperelastic constitutive model desired.

Thus, the result is a general-purpose formulation which is versatile enough to model disparate

material behaviors without requiring reformulation of the damage model or complex material

parameter adjustments.

The ultimate aim, however, is to use this damage model in conjunction with mixing

theory to represent the behavior of fibered soft biological tissues. The original theoretical

framework of mixing theory was initially developed by Truesdell and Toupin [23]. It was later

generalized, receiving the name of Series-Parallel Mixing Theory (S-P) [24], to take into account

the incompatibility of deformations between its component materials and allowing, thus, the

representation of complex behavior of composite materials, in this case a biological tissue, by means

of the interaction between the simple constituent materials, each defined by its own constitutive law.

In this way, the same damage model can be used to account for very different behaviors of the tissue

components by particularizing the formulation to suit each component’s needs.

The paper is organized as follows: Section 2 describes the new generalized damage formulation.

This is then particularized for a neo-Hooke and an Ogden hyperelastic model and implemented in

the in-house finite element code PLCd [25] using hybrid formulation, as described in Section 3.

Examples for both particularizations are given in Section 4 with the aim of illustrating the main

characteristics of the implemented formulation and the versatility of the model proposed. Finally,

experimental data by Martins et al. [27] is numerically reproduced to show how the damage model

proposed, in conjunction with mixing theory, allows for representing fibered soft biological tissues
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GENERALIZED DAMAGE MODEL FOR QUASI-INCOMPRESSIBLE HYPERELASTICITY 3

in which fiber and matrix have markedly different behaviors. The conclusions of the work are then

stated in Section 5.

2. GENERALIZED DAMAGE MODEL DEFINITION

The multiplicative split of the deformation gradient typically used to represent the behavior of

hyperelastic materials [28] results in a decoupled volumetric-isochoric Helmholtz free energy

function, Ψ. Then, assuming that damage only affects the deviatoric part of the deformation [29],

the Helmholtz free energy is of the form

Ψ(C, D ) = Ψvol (J) + (1−D) Ψ̃0

(
C̃
)

(1)

where Ψ̃0 is the undamaged isochoric or deviatoric part of the free energy and Ψvol is its undamaged

volumetric part, both given in the reference configuration. The Jacobian determinant J is related to

the right Cauchy-Green strain tensor, C, through J = (detC)
1/2

. The tilde in C̃ indicates that it

is the deviatoric or volume-preserving part of C, given by C̃ = J−2/3C. The functions chosen for

Ψvol and Ψ̃0 must be such that Ψvol (J) = 0 and Ψ̃0

(
C̃
)
= 0 hold if and only if J = 1 and C̃ = I,

respectively.

Expression (1) introduces an internal scalar damage variable D ∈ [0, 1] which defines a reduction

factor (1−D) similar to the one first proposed by Kachanov [1].

2.1. Thermodynamic basis and damage dissipation

For an isothermal case with uniform temperature distribution and other standard arguments [16], the

Clausius-Duhem inequality in the reference configuration is reduced to

− .
Ψ+ S :

.
C

2
≥ 0 (2)

where S is the 2nd Piola-Kirchhoff stress tensor. Considering Ψ = Ψ(C, D ), the expression

becomes

−
(
∂Ψ

∂D

.
D + 2

∂Ψ

∂C
:

.
C

2

)
+ S :

.
C

2
≥ 0 (3)

Then, introducing the free energy defined in (1) and rearranging, the internal dissipation in the

reference configuration, Ξ, is obtained

Ξ = Ψ̃0

.
D +

[
S− 2

(
∂Ψvol

∂C
+ (1−D )

∂Ψ̃0

∂C

)]
:

.
C

2
≥ 0 (4)

This inequality must hold true for any strain increment, therefore, the term in brackets must be null

and the expression of the dissipation is reduced to

Ξ = Ψ̃0

.
D ≥ 0 (5)
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4 E. COMELLAS ET AL.

2.2. Constitutive equation

Setting the term in brackets in (4) to zero yields the following finite strain version of the Kachanov

effective stress concept.

S = Svol + (1−D ) S̃0 with Svol = −pJC−1 and S̃0 = 2
∂Ψ̃0

∂C
(6)

Here, the hydrostatic pressure p = −∂ Ψvol/∂J has been introduced and the relation ∂J/∂C =

JC−1/2 is used.

2.3. Evolution of the damage internal variable

The evolution of the damage variable is given by

.
D =

.
μ
∂F
∂τ

(7)

where
.
μ is a non-negative scalar named damage consistency parameter used to define the loading,

unloading and reloading conditions through the Kuhn-Tucker conditions

.
μ ≥ 0 ; F ≤ 0 ;

.
μ F = 0 (8)

The damage surface F = G (τ)−G (τmax) = 0 delimits the start of the non-linear behavior, where

G (τ) is a damage evolution law given in terms of the norm, τ , and G (τmax) is a scalar function

of the damage threshold, τmax. The proposed model allows using different energy-based norms,

however, criterion proposed by Simo and Ju [3] has been used in this work to define the norm as

follows

τ =

√
2Ψ̃0 (9)

The linear and exponential explicit scalar functions proposed in [30, 22] as damage evolution laws in

an infinitesimal strain context have been translated to a finite strain framework to define G (τ). The

advantage of these laws is that they are based on only two material parameters with direct physical

sense that can be experimentally determined. Most evolution laws proposed up to date in finite strain

damage formulations [16, 31, 32, 33, 34] either require a considerable amount of parameters or rely

on parameters that do not have a direct physical meaning, or both.

2.3.1. Linear softening The damage variable D is defined as a scalar function with linear arguments

D = G (τ) =
1− τd0

τ
1 +H

(10)

where τd0 and gdf are the material properties initial damage threshold and fracture energy per unit

volume, respectively. H is a parameter related to the dissipation obtained by imposing∫ t∞

t0

Ξ dt = gdf (11)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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GENERALIZED DAMAGE MODEL FOR QUASI-INCOMPRESSIBLE HYPERELASTICITY 5

Introducing (5) and (10) into (11) yields∫ t∞

t0

Ξ dt =

∫ t∞

t0

Ψ̃0

.
Ddt =

∫ τ∞

τ0

Ψ̃0 (τ)
∂G (τ)

∂τ
dτ =

∫ G(τ∞)

G(τ0)

Ψ̃0 (τ) dG (τ) (12)

Considering the Simo and Ju criterion in (9), (12) can be further developed as follows by introducing

integration by parts∫ t∞

t0

Ξ dt =

∫ G(τ∞)

G(τ0)

1

2
τ2 dG (τ) =

1

2
τ2 dG (τ)

∣∣∣∣τ∞
τ0

−
∫ τ∞

τ0

G (τ) τ dτ (13)

The damage variable has been defined for the interval D ∈ [0, 1], therefore⎧⎪⎪⎨⎪⎪⎩
G (τ0) = 0

G (τ∞) = 1 ⇒
1− τd0

τ∞
1 +H

= 1 ⇒ τ∞ = −τd0
H

(14)

Then, (13) results in ∫ t∞

t0

Ξ dt = −
(
τd0
)2

2H
(15)

And, considering (11), the parameter H is obtained

H =
− (

τd0
)2

2gdf
(16)

Finally, for the purpose of evaluating the tangent constitutive tensor defined later in subsection 2.4,

the differentiation of this evolution law with respect to the energy norm is

∂G (τ)

∂τ
=

−τd0
τ2 (1 +H)

(17)

2.3.2. Exponential softening The damage variable D is defined as a scalar function with

exponential arguments

D = G (τ) = 1− τd0
τ

exp

[
A

(
1− τ

τd0

)]
(18)

The parameter A is obtained in a similar manner to the parameter H in the linear softening law. Up

to (13) the procedure is identical. Then, the damage variable, defined for the interval D ∈ [0, 1], is

now ⎧⎪⎨⎪⎩
G (τ0) = 0

G (τ∞) = 1 =⇒ 1− τd0
τ∞

exp

[
A

(
1− τ∞

τd0

)]
= 1

(19)

Since exp
[
A
(
1− τ∞/τd0

)]
> 0 is always true, it becomes obvious that τ∞ → ∞ for G (τ∞) = 1.

Thus, operating on (13) with these values of G (τ) and τ yields∫ t∞

t0

Ξ dt =
(
τd0
)2( 1

A
+

1

2

)
(20)
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6 E. COMELLAS ET AL.

And, considering (11), the parameter A is finally obtained

A =

[
gdf(
τd0
)2 − 1

2

]−1

(21)

The evaluation of the tangent constitutive tensor, performed in the following subsection, requires

the differentiation of the evolution law with respect to the energy norm, which in this case is

∂G (τ)

∂τ
=

τd0 +Aτ

τ2
exp

[
A

(
1− τ

τd0

)]
(22)

2.4. Tangent constitutive tensor

The material tangent constitutive tensor is known to be

�
tan = 4

∂2Ψ

∂C⊗ ∂C
(23)

Introducing the decoupled definition of the Helmholtz free energy in (1) and considering the

definition in (6) with D = G (τ), the material elastic-damage tangent constitutive tensor obtained is

split into a volumetric and a deviatoric part

�
tan =�tan

vol + �̃
tan with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�

tan
vol = 2

∂Svol

∂C
= 2p

∂
(
JC−1

)
∂C

+ 2JC−1 ⊗ p
∂p

∂C

�̃
tan = 2

∂

∂C

[
(1−D) S̃0

]
= (1−D) �̃tan

0 − ∂G (τ)

∂τ

1

τ
S̃0 ⊗ S̃0

(24)

where �̃
tan
0 = 2∂S̃0/∂C is the deviatoric part of the undamaged hyperelastic model and

∂G (τ)/∂τ is defined in (17) and (22), for linear and exponential softening, respectively.

3. NUMERICAL IMPLEMENTATION

The proposed model has been integrated in the in-house finite element code PLCd [25], which is

capable of solving large strain non-linear 3D solid mechanics problems. The code, developed in

Fortran, uses a Pardiso solver [26] and a Full Newton algorithm to solve the problems. The model

has been implemented in a total Lagrangian framework, particularizing the Helmholtz free energy in

(1) for a neo-Hooke and an Ogden hyperelastic models. Any split quasi-incompressible hyperelastic

model could be used (Yeoh, Mooney-Rivlin, Arruda-Boyce, Fung, etc.) but Neo-Hooke was chosen

for its simplicity and exclusive dependence on physical parameters and Ogden was chosen for

its capability of reproducing the stress-stretch J-curve characteristic of soft biological tissues. To

overcome the numerical issues arising from incompressibility, a mixed u/p formulation is used to

solve the equilibrium equations.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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GENERALIZED DAMAGE MODEL FOR QUASI-INCOMPRESSIBLE HYPERELASTICITY 7

3.1. Hybrid finite element formulation used

The u/p formulation implemented [35] is based on the classical displacement finite element method

but includes an additional unknown variable, the pressure p, which is interpolated separately from

the displacement variable u. These elements are typically referred to as hybrid elements. The solid

hexahedron with linear displacement and constant pressure (Q1P0) has been used in this work since

it is the simplest functional available element of this type [36, 37]. Then, the equations of motion

for a typical element are⎡⎢⎣ Kuu Kup

Kpu Kpp

⎤⎥⎦ ·

⎡⎢⎣ u

p

⎤⎥⎦ =

⎡⎢⎣ F
e

0

⎤⎥⎦−

⎡⎢⎣ F
int
u

F
int
p

⎤⎥⎦ (25)

where F
e is the vector of nodal forces corresponding to the external loads and the K matrices and

internal forces, Fint, are given by

Kuu =

∫
V0

BT
L :�

tan

: BL dV0 +

∫
V
0

BT
NL · S ·BNL dV0 (26)

Kup = −
∫
V
0

BT
NL · J C−1 dV0 = KT

pu (27)

Kpp = −
∫
V0

1

κ
dV

0
(28)

F
int
u =

∫
V
0

BT
L · S dV0 (29)

F
int
p = −

∫
V0

(
∂Ψvol

∂J
+ p̃

)
1

κ
dV0 (30)

Here, BL and BNL are the classical linear and non-linear strain-displacement transformation

tensors, respectively; p̃ is the pressure obtained by independent interpolation and κ is the bulk

modulus. Note that the bulk modulus, a material parameter of the constitutive model, works here as

numerical penalizer.

Since there is a single pressure value per element, the equations of motion in (25) are condensed

at elemental level and the equation to solve is reduced to

K · u = F
e − F

int with K =
(
Kuu −KupK

−1
pp K

T
up

)
and F

int =
(
F
int
u −KupK

−1
pp F

int
p

)
(31)

The complete u/p formulation algorithm implemented in PLCd is schematically described in

Figure 1.
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8 E. COMELLAS ET AL.

Figure 1. Scheme of the u/p or hybrid formulation implemented in the in-house code PLCd.
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GENERALIZED DAMAGE MODEL FOR QUASI-INCOMPRESSIBLE HYPERELASTICITY 9

3.2. Model particularization for Neo-Hooken hyperelasticity

The volumetric and deviatoric parts of the Helmholtz free energy in (1) particularized for an

isotropic quasi-incompressible neo-Hookean model [36, 38] are:⎧⎪⎨⎪⎩
Ψvol =

κ

2
(J − 1)

2

Ψ̃ = C1

(
ĨC − 3

) (32)

where C1 is a material parameter given in terms of the shear modulus, μ, as C1 = μ/2; and κ is

the bulk modulus. ĨC = IC (IIIC)
−1/3

is the modified volume-preserving first invariant of the right

Cauchy-Green strain tensor C. The first and third invariant of this tensor are IC = tr (C) = Cii

and IIIC = det (C) = J2, respectively. Through differentiation of these expressions, the complete

expressions for the constitutive equation (6) and the tangent constitutive tensor (24) are obtained as

S = Svol + (1−D ) S̃0 with Svol = −pJC−1 and S̃0 = μJ
−2/3

(
I− 1

3
ICC

−1

)
(33)

�
tan =�tan

vol + (1−D) �̃tan
0 − ∂G (τ)

∂τ

1

τ
S̃0 ⊗ S̃0

with �
tan
vol = −p (IIIC)

1/2 [
C−1 ⊗C−1 − 2IC−1

]
+ κIIICC

−1 ⊗C−1

and �̃
tan
0 = 2μ (IIIC)

−1/3

[
1

3
ICIC−1 − 1

3
I⊗C−1 − 1

3
C−1 ⊗ I+

1

9
ICC

−1 ⊗C−1

]
(34)

where the fourth-order tensor, IC−1 , is

[IC−1 ]IJKL =
1

2

{[
C−1

]
IK

[
C−1

]
JL

+
[
C−1

]
IL

[
C−1

]
JK

}
(35)

3.3. Model particularization for Ogden hyperelasticity

The volumetric and deviatoric parts of the Helmholtz free energy in (1) particularized for an

isotropic quasi-incompressible Ogden model [28, 39] are⎧⎪⎨⎪⎩
Ψvol =

κ

2
(J − 1)

2

Ψ̃ =
3∑

i=1

μi

αi

(
λ̃αi
1 + λ̃αi

2 + λ̃αi
3 − 3

) (36)

where μi are (constant) shear moduli in the reference configuration and αi are dimensionless

constants, and both must satisfy the following consistency condition

2μ =

3∑
i=1

μiαi with μiαi > 0 for i = {1, 2, 3} (37)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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10 E. COMELLAS ET AL.

Through derivation of these expressions, the complete expression for the constitutive equation (6)

is obtained

S = Svol + (1−D ) S̃0 with Svol = −pJC−1 and S̃0 =

3∑
A=1

βAMA (38)

where βA is related to the deviatoric principal stretches as follows

βA =

3∑
i=1

μi

(
λ̃αi

A − 1

3

3∑
p=1

λ̃αi
p

)
(39)

and the tensor MA is given by

MA = λ−2
A NA ⊗NA (40)

where NA is the eigenvector of the right Cauchy-Green deformation tensor: C =
3∑

A=1

λ2
ANA ⊗

NA.

Further derivation results in the complete expression for the tangent constitutive tensor in (24):

�
tan =�tan

vol + (1−D) �̃tan
0 − ∂G (τ)

∂τ

1

τ
S̃0 ⊗ S̃0

with �
tan
vol = −p (IIIC)

1/2 [
C−1 ⊗C−1 − 2IC−1

]
+ κIIICC

−1 ⊗C−1

and �̃
tan
0 =

3∑
A=1

3∑
B=1

γABMA ⊗MB + 2
3∑

A=1

βA
∂MA

∂C

(41)

Here, the fourth-order tensor IC−1 is already defined in (35), γAB is related to the deviatoric

principal stretches as follows

γAB =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

μiαi

(
1

3
λ̃αi

A +
1

9

3∑
p=1

λ̃αi
p

)
if A = B

3∑
i=1

μiαi

(
−1

3
λ̃αi

A − 1

3
λ̃αi

B +
1

9

3∑
p=1

λ̃αi
p

)
if A 	= B

(42)

and the derivative
∂MA

∂C
is given by

∂MA

∂C
=

1

DA

[
i − I⊗ I+ IIICλ

−2
A

(
C−1 ⊗C−1 − IC−1

)]
+

1

DA

[
λ2
A (I⊗MA +MA ⊗ I)− 1

2

.
DAλA (MA ⊗MA)

]
− 1

DA

[
IIICλ

−2
A

(
C−1 ⊗MA +MA ⊗C−1

)]
(43)
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GENERALIZED DAMAGE MODEL FOR QUASI-INCOMPRESSIBLE HYPERELASTICITY 11

where the fourth-order identity tensor i is

i ijkl =
1

2
(δikδjl + δilδjk) (44)

and the scalar DA and its derivative are⎧⎪⎨⎪⎩ DA = 2λ4
A − ICλ

2
A + IIICλ

2
A

.
DA = 8λ3

A − 2ICλA − 2IIICλ
−3
A

(45)

The numerical integration in PLCd at Gauss point level of the generalized finite strain damage

model presented in subsections 3.2 and 3.3 is outlined in Figure 2. The term
(
κIIICC

−1 ⊗C−1
)

in the volumetric component of the tangent constitutive tensor of (34) and (41) is not included in the

definition of the tangent tensor at constitutive level, since this term is already implicitly accounted

for separately at element level in the implementation of the hybrid element schematized in Figure 1.

4. NUMERICAL EXAMPLES

The main characteristics of the generalized damage model proposed in the previous sections are

presented here by means of two representative three-dimensional examples. A homogeneous state

under uniaxial tension is reproduced with the aim of illustrating the basic constitutive characteristics

of the damage formulation for both the neo-Hookean and the Ogden particularizations of the

formulation.

Then, a membrane with a hole at its center is subjected to a tensile load in order to show how two

different particularizations of the same formulation can result in very different damage initiation

and evolution behaviors for a same specimen.

Finally, the experimental stress-stretch curve of a fibered soft biological tissue, the rectus sheath

[27], is numerically reproduced. The damage formulation particularized for Ogden hyperelasticity

is used to model the behavior of the tissue’s constituents, whose overall response is obtained by

means of the mixing theory. The aim is to show how this modeling approach allows accounting for

considerably different damage softening behaviors of the constituents of a composite material such

as fibered soft tissue.

4.1. Homogeneous uniaxial tension

An 8-noded hexahedral element with a single pressure point (Q1P0) is subjected to a displacement-

driven pure tensile load state. Uniaxial tensile loading, unloading and reloading is imposed for both

particularizations of the damage formulation to show how the choice of hyperelastic model has a

direct influence on the response of the damage formulation. The stress-stretch response obtained for

the neo-Hookean particularization is given in Figure 3 while Figure 4 shows the result obtained for

the Ogden particularization. The linear damage evolution law given in (10) has been used in both

cases, in addition to the specific material properties shown in the respective figures.

Both materials show a non-linear elastic response from the initial point O to point A, where

damage initiates. From A to B, loading continues but damage softening occurs. The gray dotted line

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

Prepared using nmeauth.cls DOI: 10.1002/nme



12 E. COMELLAS ET AL.

Figure 2. Numerical integration at a Gauss point of the finite strain damage model implemented in the in-
house code PLCd.

corresponds to the response of the undamaged (hyperelastic) material. In the neo-Hookean-based

damage model, stress decreases as stretch increases once damage is initiated (point A), as opposed

to the Ogden-based damage model, in which stress continues to grow with stretch, although with a

much lower stiffness than the one of the undamaged model. At point B, unloading starts and stress

decreases with the decreasing stretch, up to point O, where loading is imposed again. The reloading

path (O-B) is the same as the unloading one, with a stiffness lower than the original undamaged one

(curve O-A). When reloading reaches the stretch value at which maximum damage had occurred

previous to the unloading phase (point B), softening continues as if the unloading and reloading had

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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Material
parameter Value Units

C1 7.5 kPa
κ 0.1 GPa

τd0 57.7 Pa1/2

Gf 20.0 kN/m

Figure 3. 2nd Piola-Kirchhoff stress vs. stretch for loading, unloading and reloading considering the linear
damage evolution law with the neo-Hookean particularization of the damage formulation (left) and the

material parameters used (right).

Material
parameter Value Units

μ1 0.04 kPa
μ2 3.7 kPa
μ3 -0.05 kPa
α1 6.4 –
α2 1.9 –
α3 -4.2 –
κ 0.1 GPa

τd0 2.31 kPa1/2

Gf 50.0 kN/m

Figure 4. 2nd Piola-Kirchhoff stress vs. stretch for loading, unloading and reloading considering the linear
damage evolution law with the Ogden particularization of the damage formulation (left) and the material

parameters used (right).

not taken place. At point C, unloading up to point O and reloading is imposed once more, exhibiting

the same behavior as the first unloading-reloading phase (B-O-B).

As can be observed in these results, the damage model proposed is based on an accumulative

discontinuous damage variable which can increase but never decrease, as imposed by the Kuhn-

Tucker conditions. This model is analogous to the infinitesimal strain model proposed by Oller [22],

but translated into a finite strain framework in which large non-linearity is present, as made clear

by the stress-stretch curves plotted in Figures 3 and 4 . Note that the generalized damage model

can result in disparate softening behaviors, depending on the value of stiffness and amount of non-

linearity displayed by the original undamaged hyperelastic model chosen as basis for the generalized

damage model. These dissimilarities are further enhanced depending on the combination of material
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Figure 5. Results for the neo-Hookean particularization of the damage formulation for an initial damage

threshold Td = 57.7 Pa1/2 and different fracture energy values, Gf. 2nd Piola-Kirchhoff stress vs. stretch
considering the linear softening law (top left) and the corresponding evolution of the damage variable, D

(bottom left). 2nd Piola-Kirchhoff stress vs. stretch considering the exponential softening law (top right) and
the corresponding evolution of the damage variable, D (bottom right).

parameter values used. The effect of changing the initial damage threshold τd0 and the maximum

dissipated fracture energy gdf values, as well as the type of damage evolution law selected, is

illustrated in Figure 5 for the neo-Hookean particularization of the damage formulation and

in Figure 6 for the Ogden one. In both figures, the gray solid line represents the undamaged

(hyperelastic) response while the dotted lines show the response of the damage model for different

combinations of material parameters, where Td is the initial damage threshold τd0 and Gf is the

maximum dissipated fracture energy per unit of area, i.e., Gf = gdfL0. Here, L0 is the element’s

characteristic length in the reference configuration [12, 30]. These figures show the stress-stretch

curves obtained under uniaxial loading when using the linear and the exponential damage evolution

laws and, below, the corresponding evolution of the internal damage variable, D.

It is interesting to observe how the use of the exponential damage evolution law in the neo-

Hookean particularization of the model translates into a more markedly non-linear softening

behavior in the stress-stretch response. Yet, the opposite effect is observed in some of the stress-

stretch responses of the Ogden particularization, for example the one obtained for Td = 2.31 kPa1/2
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Figure 6. Results for the Ogden particularization of the damage formulation for different fracture energy,

Gf, and initial damage threshold, Td, values. 2nd Piola-Kirchhoff stress vs. stretch considering the linear

softening law (top left) and the corresponding evolution of the damage variable, D (bottom left). 2nd Piola-
Kirchhoff stress vs. stretch considering the exponential softening law (top right) and the corresponding

evolution of the damage variable, D (bottom right).

and Gf = 35 kN/m. This is due to the interaction of the exponential softening with the highly non-

linear original undamaged (hyperelastic) curve.

4.2. Membrane with a hole

The membrane with a hole at its center depicted in Figure 7 is subjected to the indicated

displacement-driven displacements u. Due to the symmetry in the specimen, only a quarter of the

membrane has been discretized using 360 8-noded hexahedral elements with a single pressure point

(Q1P0). Symmetry conditions are imposed, thus, nodes belonging to the symmetry y − z plane

shown in Figure 7 have motion restricted in the x−direction, while nodes belonging to the symmetry

x− z plane have motion in the y−direction restricted. A total of 500 accumulative incremental

displacements are imposed in the y−direction on the nodes of the top part of the specimen, with the

other directions left unrestrained.

The example is run for both the neo-Hookean and Ogden particularizations of the damage

formulation. In the former, the material properties used are those defined in Figure 3, except for

the fracture energy which is set to Gf = 600 kN/m; while the latter uses the material properties
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Figure 7. Geometry (r = 100 mm, h = w = 200 mm, t = 20 mm) and loading of the membrane with a hole
as described in [44] (left); and mesh and boundary conditions imposed on the quarter of the membrane which

has been discretized (right).

defined in Figure 4, except for the initial damage threshold and the fracture energy which are set to

Td = 34.7 Pa1/2 and Gf = 1200 kN/m, respectively.

The mechanical response of the membrane with neo-Hookean-based damage formulation is

illustrated in Figure 8 (top left) by means of the vertical reaction vs. stretch curve. The vertical

reaction plotted is the total resultant reaction force in the y−direction of the quarter of the specimen.

It can be observed how the initial response of the curve follows the undamaged (hyperelastic) load

path, depicted as a gray dotted line in the figure, up to approximately a displacement value of

u = 15 mm. This point corresponds to the initiation of damage in the specimen, whose progression

results in a considerable reduction of the overall structural stiffness. Figure 8 (bottom) shows the

distribution of the damage variable, D, in the specimen for the displacement values u = 20, 28 and

47 mm.

Damage initiates in the bottom corner of the quarter hole and progresses horizontally in the

outward direction, localizing for the lower band of elements. This localization allows verifying that

energy dissipation is being computed correctly following the calculations described in the Appendix.

As these elements where damage has localized are increasingly damaged, loosing, thus, the stiffness

of their deviatoric part, they become largely deformed. However, the quasi-incompressible character

of the hybrid elements requires that the adjacent band of elements deform to accommodate the

narrowing of the highly damaged elements in the lower band. This, in turn, generates higher

deviatoric stresses in these adjacent row of elements, which result in damage initiation.

The convergence curves for each load increment, plotted in Figure 8 (top right), show adequate

convergence of the solution. Note that a tolerance of 10−7 has been used.
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Figure 8. Neo-Hookean-based damage model with an initial damage threshold Td = 57.7 Pa1/2 and fracture
energy Gf = 600 kN/m. Vertical reaction vs. stretch response (top left) and convergence curves of each
load step (top right). Damage distribution, D, of this specimen corresponding to the imposed displacement
values, u, of 20 mm (bottom left), 28 mm (bottom center) and 47 mm (bottom right). Real deformation (×1)

is plotted.

The vertical reaction of the membrane with Ogden-based damage formulation is plotted vs. the

stretch in Figure 9 (top left). In this case, the value of the vertical reaction continues increasing

once damage initiates in the structure at approximately u = 20 mm, albeit at a considerably slower

rate than the expected load path of the corresponding undamaged (hyperelastic) model, depicted as

a gray dotted line. This effect is analogous to the one observed in the stress vs. stretch curves of

Figure 6, where the stiffness increase of the undamaged model is much higher than the decrease

induced by damage softening on the deviatoric part of the stress. However, damage softening is

still occurring since the damaged response exhibits lower stiffness than the original undamaged

hyperelastic model. Thus, the damage formulation proposed is capable of representing a wide range

of damage softening behaviors including both positive and negative slopes in the load-displacement

or stress-stretch response.

As in the neo-Hookean-based model, damage also initiates in the bottom corner of the quarter

hole but now progresses differently, as seen in Figure 9 (bottom). In this case, damage does not

localize in a band of elements, instead, it propagates vertically at first and, then, outward, resulting
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Figure 9. Ogden-based damage model with an initial damage threshold Td = 34.7 1/2 and fracture energy
Gf = 1200 kN/m. Vertical reaction vs. stretch response (top left) and convergence curves of each load step
(top right). Damage distribution, D, of this specimen corresponding to the imposed displacement values, u,
of 27 mm (bottom left), 44 mm (bottom center) and 76 mm (bottom right). Real deformation (×1) is plotted.

in a much larger zone of the structure affected by damage. Note that the displacements imposed in

this model are three times as large as those imposed in the neo-Hookean-based one, therefore, stress

induced by them will also be larger and probably increases faster than the damage propagation rate

that would be required for localization in the lower band of elements.

The convergence curves for each load increment, plotted in Figure 9 (top right), show adequate

convergence of the solution. Note that a tolerance of 10−7 has been used.

4.3. Damage in fibered soft biological tissue

The damage formulation proposed in this paper has been developed with the aim of representing

the behavior of fibered soft biological tissues by means of mixing theory. This theory provides the

behavior of a composite material as the composition of the individual components according to their

particular morphology and mechanical properties. For a more detailed description of the theoretical

basis of mixing theory see, for example, reference [40] or [41].
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Since mixing theory is, in fact, a constitutive equation manager, it allows for disparate material

behaviors of its individual components, each representable by a completely different constitutive

equation. To the best knowledge of the authors, the constitutive models used up to date to represent

damage in fibered soft tissues integrate the contribution of the fibers and matrix at strain-energy

function level [31, 32, 33, 34, 43]. The mixing theory approach manages the contribution of fiber and

matrix at stress level. This allows for more flexibility in composing the overall behavior of the tissue

since the fiber and matrix can be easily modeled with different constitutive equations if required. In

addition, the simple constituent models used have a solid and established thermodynamical basis,

which allows for better tracing of the individual component’s thermo-mechanical behavior.

In this context, the proposed damage model can be used to represent damage in either fiber or

matrix, or in both. Then, the contribution of each component to the composite tissue is determined

by their volumetric participation (v). As an example, the experimental data obtained by Martins

et al. [27] is used to illustrate how the manifestly different behaviors of fiber and matrix can be

represented by means of the damage model proposed, particularized for Ogden hyperelasticity, and

in the framework of mixing theory.

The work by Martins et al. provides experimental stress-stretch curves obtained from an uniaxial

tensile test of a rectus sheath sample in the longitudinal and transversal directions. Using Matlab’s

Curve Fitting Toolbox [42], an initial estimate of the material parameters of fiber and matrix were

obtained, which were then adjusted in the numerical reproduction of the sample to better fit the

experimental curve. The material parameters used are given in Figure 10, together with the stress-

stretch curve numerically obtained using mixing theory and the Ogden-based damage formulation

implemented in the in-house code PLCd. Due to lack of information, the fiber contribution to the

composite was estimated as 20% of the composite, based on information available in literature.

A different proportion of fiber and matrix in the composite would obviously lead to a completely

different stress response of the fiber in order to fit the composite response with the experimental

data.

5. CONCLUSIONS

A new generalized damage model for quasi-incompressible hyperelasticity in a total Lagrangian

finite strain framework has been presented and discussed. The damage model is based on the

decoupled volumetric-isochoric definition of quasi-incompressible hyperelastic formulations. These

require the use of hybrid elements, in which an additional variable, pressure, must be computed from

the equations of motion in addition to the displacements.

A Kachanov-like reduction factor is applied on the deviatoric part of the hyperelastic constitutive

model. Linear and exponential softening have been defined as damage evolution laws, both

translated from an infinitesimal strain context to the present finite strain framework. Other softening

laws could be considered to model particular materials. However, the evolution laws presented here

have the advantage of a straightforward formulation and being easily adaptable to model different

material behaviors since they are defined only by the material properties initial damage threshold,

τd0 , and maximum dissipated fracture energy per unit volume, gdf . Also, the popular Simo and Ju

damage criterion has been used, but any other energy-based criterion could be easily introduced.
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Material Matrix Fibre
parameter Value Value Units

μ1 71.26 142.75 kPa
μ2 74.59 -160.22 kPa
μ3 -0.485 0.152 kPa
α1 13.18 21.21 –
α2 16.05 -4.49 –
α3 -0.78 13.59 –
κ 0.1 0.1 GPa

τd0 0.835 2.686 kPa1/2

Gf 2.24 32.0 MN/m
v 0.8 0.2 –

Figure 10. Cauchy stress vs. stretch of the composite and its individual components modeled with the Ogden-
based damage formulation and mixing theory to reproduce the experimental data by Martins et al. [27] (left)

and the material parameters used (right).

The generalized damage model has been particularized for two types of hyperelastic formulation,

neo-Hooke and Ogden hyperelasticity, and implemented in the in-house finite element code PLCd.

Examples have been presented in order to illustrate the main characteristics of the proposed damage

model. The damage variable used has been shown to be accumulative and discontinuous, as imposed

by the Kuhn-Tucker conditions.

The damage formulation particularized for Ogden hyperelasticity has been used to fit

experimental data of fibered soft biological tissue [27] by means of mixing theory. This theory

describes the behavior of a composite material as the composition between the individual

components. In this case, both fiber and matrix have been modeled with the aforementioned

damage formulation. However, the constituents in mixing theory can be modeled with any desired

constitutive equation, which allows for a wide range of possible material behaviors and, thus, a

large variety of overall composite responses. Although the damage model presented in this paper is

isotropic, further work includes introducing anisotropy at composite level through the mixing theory

formulation.

The damage softening approach presented is robust and versatile. It can be easily adapted to

any desired hyperelastic formulation as long as it is defined with split volumetric and deviatoric

parts. In addition, it is able to reproduce a wide range of softening behaviors, as made clear in the

numerical examples. However, one must bear in mind that the non-linear nature of the undamaged

formulations influences greatly the final softening behavior of the damage model. Unlike in the

infinitesimal strain context, the linearity or exponentiality of the damage evolution law does not

directly dictate the shape of the softening curve in the present model.

Furthermore, the use of quasi-incompressible elements makes it difficult for damage to localize

in a band of elements as is common in infinitesimal strain damage models. Damaged elements loose

part of their stiffness, stretching in the loading direction. Due to incompressibility, the narrowing

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

Prepared using nmeauth.cls DOI: 10.1002/nme



GENERALIZED DAMAGE MODEL FOR QUASI-INCOMPRESSIBLE HYPERELASTICITY 21

of these elements require the adjacent elements to deform accordingly, inducing higher deviatoric

stresses in them which, in turn, results in damage. Note, however, that Q1P0 elements have

been used, which require fine meshing due to the lack of compliance with the inf-sup condition.

Improving the u/p elements will predictably result in better results, especially in terms of damage

localization and evolution in complex geometries. In any case, the fact that damage is applied only

on the deviatoric part of the model means that, for a completely damaged structure, there will always

remain a volumetric quasi-incompressible undamaged part.

A. CALCULATION OF THE DISSIPATION

The total dissipation value of the structure, Wf , is numerically obtained by means of expression (5)

as follows

Wf =

∫
V

∫ t∞

t0

Ξ dt dV (46)

When damage localizes in a band of elements, this can be compared to an estimate of the same

value calculated in terms of the fracture energy, taking into account (11), and the final volume of the

elements in the damaged band as

Wf =

∫
V

gdf dV = gdf Vf (47)

where the maximum dissipated fracture energy per unit volume, gdf , is related to the material

property Gf , which is the maximum dissipated fracture energy per unit area, through the element’s

characteristic length in the reference configuration, L0 : gdf = Gf/L0. The final volume can be

computed as Vf = Af lf , where Af is the final cross-section area of the band of elements where

damage has localized and lf is the final length of these elements in the direction perpendicular to

Af . Finally, defining a final damage stretch as λf = lf/L0, the expression for the total dissipation

results in

Wf = λfAfGf (48)
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20. Peña E, Peña JA, Doblaré M. On the Mullins effect and hysteresis of fibered biological materials: A comparison

between continuous and discontinuous damage models. International Journal of Solids and Structures 2009; 46(7-

8):1727–1735. DOI: 10.1016/j.ijsolstr.2008.12.015.

21. Balzani D, Brinkhues S, Holzapfel GA. Constitutive framework for the modeling of damage in collagenous soft

tissues with application to arterial walls. Computer Methods in Applied Mechanics and Engineering 2012; 213-

216(0):139–151. DOI: 10.1016/j.cma.2011.11.015.

22. Oller S. Nonlinear dynamics of structures Springer. 2014.

23. Truesdell C, Toupin R. The Classical Field Theories. In S. Flgge (Ed.), Principles of Classical Mechanics and Field
Theory / Prinzipien der Klassischen Mechanik und Feldtheorie 1960; 226858. Berlin:Springer. DOI:10.1007/978-

3-642-45943-6-2.
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