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Abstract

An optimization method to identify the material parameters of composite structures using an inverse method is proposed. This

methodology compares experimental results with their numerical reproduction using the finite element method in order to obtain

an estimation of the error between the results. This error estimation is then used by an evolutionary optimizer to determine, in an

iterative process, the value of the material parameters which result in the best numerical fit. The novelty of the method is in the

coupling between the simple genetic algorithm and the mixing theory used to numerically reproduce the composite behavior. The

methodology proposed has been validated through a simple example which illustrates the exploitability of the method in relation to

the modeling of damaged composite structures.
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1. Introduction

The structural use of composite materials is widespread in

many fields, including civil infrastructures and the aerospace,

automotive and marine industries [1]. The high strength-to-

weight and stiffness-to-weight ratios of these materials, in ad-

dition to their corrosion resistance and thermal stability, make

them well suited for structural applications in which weight re-

duction is a priority.

Composite materials are made of two or more simple mate-

rials or components, typically exhibiting the best qualities of

these components and, often, superior properties to those of

the individual components alone [2]. In general, composites

are designed to meet certain structural needs. The determina-

tion of the overall behavior of the composite material is key to

the design process. Representing the composite as a single or-

thotropic material with the averaged properties of the whole set

has proven unsatisfactory. The main drawback of this approach

is that it cannot capture correctly the behavior of the composite

if one or more of its components exceeds the elastic limits [3].

Hence, composite materials need to be modeled using theories

that allow taking into account the behavior of the simple materi-

als, which can be quite diverse and include anisotropy, plasticity

and damage, among other characteristics. One of the most com-

monly used is the mixing theory [4], whose general theoretical

framework was initially developed by Truesdell and Toupin [5].

The classical mixing theory explains the behavior of a com-

posite material according to the interaction between the com-

ponents of the composite. It is based on the hypotheses that all
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components suffer the same strains and each component con-

tributes to the behavior of the composite in the same proportion

as their volumetric participation. Each component is a mate-

rial in itself whose individual behavior can be represented by

its own constitutive law. Thus, the mixing theory can be con-

sidered a constitutive equation manager. This behavior combi-

nation technique allows preserving the original constitutive law

of each component, which is especially useful when studying

composite structures with the Finite Element Method (FEM).

Finite element analysis has proven to be an extremely use-

ful tool in the design process of composite materials. The use

of FEM for the structural analysis and characterization of com-

posites offers an insight into its internal behavior in addition

to reducing physical testing and its associated costs. However,

the reliability of the numerical result is heavily dependent on

the adequacy of the input data, with the material parameters

of the simple materials playing an important role. Compos-

ite manufacturers tend to report the composite properties as

a whole rather than specify the component’s properties sepa-

rately [6]. For this reason, correct parameter identification is an

issue which is being addressed more and more in this field.

An optimization method for the determination of material pa-

rameters in damaged composite structures is presented in this

paper. The proposed methodology faces an inverse problem

from a numerical point of view. It adjusts the material parame-

ters of a composite test specimen with unknown properties but

available experimental results.

The experimental set-up is reproduced in FEM using the in-

house code PLCd [7], with the material properties taking the

values assigned by the in-house optimizer Optimate [8]. The

numerical result is compared with the experimental data to ob-
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tain an error value for the objective function, which is fed back

to Optimate. An l∞–norm is used to estimate the error. Then,

by means of a genetic algorithm, Optimate adjusts the material

properties until the numerical result is as close as possible to

the experimental one.

Several authors have presented inverse methods for the deter-

mination of material parameters based on the same fundamental

idea as the methodology proposed here. Markiewicz et al. [9]

and Geers et al. [10] first used the inverse approach to deter-

mine parameters for material models of an aluminum alloy and

a glass-fiber reinforced polypropylene composite, respectively.

Since then, several variations and improvements on this method

have been presented, with different authors putting more focus

on particular aspects of the methodology. These include the

type of optimization algorithm used [11, 12, 13], the objective

function defined [14, 15] and the material parameters to identify

in the context of its applications [11, 16, 17, 18, 19].

The work presented here provides a novel way of identifying

the material parameters which define the components of a com-

posite material. Even with limited experimental data available,

the methodology proposed manages to correctly reproduce nu-

merically its behavior. The coupling between the constitutive

model and the optimization algorithm is highly flexible and can

be easily adapted to different experimental contexts. In addi-

tion, the mixing theory used to formulate the constitutive model

of the composite is versatile enough to be capable of numer-

ically representing distinct types of composites as long as the

simple materials that compose them are correctly characterized.

In the following section, the mixing theory used to numeri-

cally model the composite behavior is detailed, including a brief

description of the constitutive models considered for the com-

ponent materials. Section 3 describes the optimization method

developed to determine the material parameters of the simple

materials which form a composite. An example which illus-

trates the utility of the coupling between the optimization al-

gorithm and the mixing theory in the proposed methodology is

provided in section 4 to validate the method. Finally, the con-

clusions of the work are presented.

2. Constitutive modeling

The classical mixing theory assumes strain compatibility as

the closing equation [20]:

εi j =
(
εi j

)
1
=
(
εi j

)
2
= ... =

(
εi j

)
c

(1)

where εi j is the strain of the composite material and the sub-

script (•)c refers to the c-component of the composite material.

The hypothesis that the contribution of each component is

proportional to its volumetric participation is enforced through

the specific Helmholtz free energy:

Ψ =

n∑
c=1

kcΨc ;

n∑
c=1

kc = 1 (2)

where n is the total number of components and k is the volume

fraction, which must fulfill the mass conservation principle.

By means of the Clausius-Planck inequality, the secant con-

stitutive equation for the whole composite is obtained in the

standard manner [20, 21, 22]:

σi j =
∂Ψ

∂εi j
=

n∑
c=1

kc
∂Ψc

∂εi j
=

n∑
c=1

kc

(
σi j

)
c

(3)

where σi j is the Cauchy stress tensor. The expression for the

free energy of each component Ψc will depend on the type of

constitutive model chosen for each simple material. In this

work, the composite being modeled is a carbon fiber rein-

forced epoxy matrix, so an anisotropic elasto-plastic consti-

tutive model is proposed for the fibers and an isotropic scalar

damage for the matrix [23]. However, other constitutive equa-

tions could be easily introduced if required for different type of

composites.

2.1. Anisotropic elasto-plasticity

The anisotropic elasto-plastic constitutive model is based on

the generalization of the classical plasticity theory [20, 24].

The anisotropic theory used to derive this model [23, 25, 26]

is based on the concept of mapped stress tensor first introduced

by Betten [27].

2.1.1. Plastic Damage Model
The specific Helmholtz free energy of an elasto-plastic ma-

terial is:

Ψ = Ψ e + Ψp =
1

2
ε e

i jCi jklε
e

kl + Ψ
p (4)

where Ψe is the specific elastic free energy, Ψp is the specific

plastic free energy, Ci jkl is the constitutive tensor of the material

and ε e
i j is the elastic strain. The total strain is split into an elastic

and a plastic part, following the Prandtl-Reus hypothesis:

εi j = ε
e

i j + ε
p

i j (5)

Then, the constitutive equation of an isotropic elasto-plastic

material is:

σi j =
∂Ψ

∂εi j
= Ci jkl

(
εkl − ε p

kl

)
(6)

The plastic strain is obtained by means of the flow rule:

ε̇
p
i j = λ̇

∂Gσ

∂σi j
(7)

where λ is the plastic consistency factor as derived by Simo and

Ju [28] and Gσ is the plastic potential function.

To fully characterize the plastic response, the yield function

Fσ must satisfy the yield condition and a plastic hardening

law must be defined. In this case, the expression proposed by

Oller [29] is used:

κ̇p = hi jε̇
p
i j (8)

where κp is the plastic damage internal variable and hi j is a

second-order tensor defined in [29] which requires the defini-

tion of a scalar hardening parameter, H.
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2.1.2. Anisotropy theory
Anisotropy is modeled by transporting all the constitutive pa-

rameters of the material and its stress and strain states from

a real anisotropic space to a fictitious isotropic space. This

mapping technique allows reproducing the behavior of the real

anisotropic material by means of a well known and developed

constitutive model of an isotropic material. The two spaces

are related through a linear transformation, using a fourth-

order tensor which contains all the information regarding the

anisotropy of the real material. It is assumed that both spaces

have the same elastic strains, which are related through the

strain transformation tensor ae
i jkl:

ε e
i j = ae

i jklε
e
kl (9)

where ε e
i j and εekl are the strains in the fictitious isotropic and

real anisotropic spaces, respectively. The strain transformation

tensor is defined as:

ae
i jkl =

(
Ci jmn

)−1
aσi jklCklrs (10)

where Ci jmn and Cklrs are the fictitious isotropic and real

anisotropic constitutive tensors of the material, respectively.

The stress transformation tensor aσi jkl relates the Cauchy

stresses of the isotropic and anisotropic spaces, σi j and σkl, re-

spectively, as follows:

σi j = aσi jklσkl (11)

Then, the relation between the constitutive tensors in the real

and fictitious spaces C jlmn and Cikrs, respectively, can be de-

rived:

C jlmn =
(
aσi jkl

)−1
Cikrs ae

rsmn (12)

Note that the anisotropic constitutive tensor is typically given

in a local reference system and it must be transformed into the

global reference system by means of a rotation tensor as shown

in [23, 25, 26].

The stress transformation tensor is defined such that it can

be exactly adjusted to the desired isotropic or orthotropic yield

criterion:

aσi jkl = f i j ( fkl)
−1 (13)

where f i j and fkl are the yield strengths in the isotropic and

anisotropic spaces, respectively.

The yield and potential functions in the anisotropic space, Fσ

and Gσ, respectively, can be defined in terms of the irreducible

basis of the invariants of σi j, as detailed in [25, 26]:

Fσ
(
σi j, κ

p
)
= Fσ

(
σi j, κ

p
)
= 0 (14)

Gσ
(
σi j, κ

p
)
= Gσ

(
σi j, κ

p
)
= K (15)

where K is a constant. Therefore, the known functions based

on the invariants formulated for isotropic materials can be used

as yield and potential functions in anisotropic materials.

2.2. Isotropic scalar damage
The damage model used was first proposed by Simo and

Ju [28, 30] in the context of continuum damage mechanics,

which is based on the effective stress concept initially intro-

duced by Kachanov [31]. The constitutive equation defines the

Cauchy stress σi j through a scalar damage parameter d which

is a measure of the loss of rigidity in the material and must be

within the limits d ∈ [0, 1]:

σi j = (1 − d)Ci jklεkl (16)

where Ci jkl is the constitutive tensor of the undamaged material

and εkl is the strain. In this model, damage is understood as a

loss of stiffness, which starts once the damage threshold of the

material, σd, is reached.

Oller et al. [20] formulated a generalized damage model,

translating the yield criteria used in plasticity to damage. How-

ever, the evolution of the internal damage variable d is different

to that of the plastic parameter κp. Here, an explicit exponential

softening model has been used:

d = 1 − σd

(Fσ)d e
[
A
(
1− Fσ

σd

)]
(17)

where (Fσ)d is the yield function chosen for the generalized

damage model and A is a constant given by:

A−1 =
E gd

(
σd)2 −

1

2
(18)

Here E is the Young’s modulus and gd is the dissipated energy.

2.3. Composite constitutive model
Finally, the constitutive equation of the whole composite re-

sults in:

σi j = km

(
σi j

)
m
+ k f

(
σi j

)
f

(19)

where the subscripts (·)m and (·) f indicate matrix and fiber,

respectively. The stress value for each component is calcu-

lated according to the constitutive model chosen and developed

above:(
σi j

)
m
= (1 − d)

(
Ci jkl

)
m
εkl (20)

(
σi j

)
f
=
(
aσmni j

)−1 (
Cmnkl

)
f

(
εkl − (εkl)

p
f

)
(21)

where the damage variable d is obtained from (17), the stress

transformation tensor aσmni j is calculated as in (13) and the plas-

tic strain (εkl)
p is given by (7).

Then, the material parameters needed to define such model

are: (i) the volumetric participations of matrix and fiber, km and

k f ; (ii) the Poisson ratio and Young’s modulus of matrix and

fiber, νm, ν f , Em and E f , which define their elastic behavior;

(iii) the damage threshold stress and the dissipated fracture en-

ergy of the matrix material, σd
m and gd

m; and (iv) the yield stress

and hardening parameter of the fiber material, σ
y
f and Hf . In

addition, the damage criterion of the matrix material and the

yield criterion of the fiber material must be established, as well

as the evolution law of the plastic and damage variables.
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External evaluator in GNU Octave:

1. Print new material properties

in FEM input file.

2. Launch FEM calculation.

3. Post-process FEM results to

obtain the FFEM–u curve.

4. Compare Fexp–u and FFEM–u
curves to obtain the objective

function f (u) .

Input file: FEM model replicates

the experimental structure. All

data completely defined except

for optimization parameters.

FEM calculation in PLCd

Output files: Including displace-

ments and forces in nodes.

Optimate:

Simple genetic

algorithm

Experimental
data: Fexp–u
curve from

literature.

optimization

parameters

objective

function

Figure 1. Scheme of the proposed optimization method for the determination of material parameters.

3. Optimization method for the determination of material
parameters

The proposed optimization method for the determination of

material parameters, from here on simply optimization method,

is divided into three different blocks: (1) the optimizer or opti-

mization algorithm per se; (2) the FEM calculations launched

for each evaluation of the optimizer’s objective function; and

(3) the experimental data used to calculate the optimizer’s ob-

jective function. These three blocks can be understood as inde-

pendent units which interact with each other to form the com-

plete method, as schematized in Figure 1.

The optimizer used in block (1) is the in-house simple genetic

algorithm Optimate [8], described in section 3.3.1. Optimate is

coupled to an external objective function evaluator written in

GNU Octave [32]. The external evaluator also acts as the inter-

face with the in-house FEM code PLCd [7] used in block (2).

It launches the FEM calculation for each set of parameters pro-

posed by Optimate and uses the results obtained to calculate the

objective function which is fed back to Optimate. The calcula-

tion of the objective function requires the experimental data in

block (3), as will be detailed in section 3.3.2. The experimental

data also dictates the FEM model to be used in block (2).

3.1. Experimental data

The optimization method requires adequate experimental

data with which to compare the numerical results in order to

identify the correct material parameters. Since the experimen-

tal set-up must be reproduced in FEM, it is essential that the

geometrical details of the specimen used as well as the im-

posed boundary conditions are known. To calculate the objec-

tive function required by the optimizer, a simple load vs. dis-

placement curve such as those obtained by standardized tensile

tests suffices.

For the purpose of illustrating how the method works, an ex-

ample is presented in section 4, based on the numerical data

used by Car et al. [23]. In this way, the numerical result ob-

tained can be validated. However, the methodology only re-

quires the experimental data mentioned above to identify the

material parameters of the FEM model.

3.2. FEM module – PLCd
The FEM code PLCd is not directly accessed by the user

while the optimization process is working. However, previous

to launching this process, the FEM model must have been pre-

pared to run in PLCd. This model must include a complete

test specimen with the geometry, loads and boundary condi-

tions completely defined, as well as the desired output results

which will be used to calculate the FEM load vs. displacement

curve.

The type of constitutive model to be used must be fixed for

all materials, with all parameters defined except for the ones for

which the optimum value is sought. That is, the type of consti-

tutive models used to represent the behavior of the component

materials in the composite must be established a priori.

3.3. Optimizer module – Optimate
The optimizer module includes the optimization program

Optimate which seeks to minimize an objective function

through evolutionary methods. This objective function is eval-

uated externally by the Optimate–PLCd interface written in

GNU Octave.

This interface receives the optimization parameter values for

the present evaluation of the objective function which corre-

spond to the selected material parameters of the FEM model.

Then, the previously prepared PLCd input file is accessed, the

new material values are written in the adequate positions of

the file and the calculation is launched. Once the calculation

is completed, GNU Octave accesses the output result file and

post-processes the data to obtain the FEM curve which is then

compared to the experimental data. By means of an l∞–norm

estimation of the error between the two curves, the objective

function is evaluated and the value obtained is fed back to Op-

timate.
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3.3.1. Optimization algorithm

The algorithm developed in Optimate is a genetic algorithm

with SBX [33] crossover, polynomial mutation, and binary

tournament selection. These operators have been widely used

in the well known NSGA-II [34] and omni-optimizer [35] algo-

rithms for multi-objective optimization.

The main algorithm is as follows:

1. A random population P (t) is generated inside the search

limits. The population size is denoted as np.

2. The objective function is evaluated for P (t), obtaining the

objective function vector F (t).
3. Using the binary tournament selection, a set of parents of

size np is selected as follows:

• Two individuals, i and j, are randomly chosen from

P (t) and the objective function is evauated for these

individuals, Fi and F j, respectively.

• If Fi (t) < F j (t), then i is selected for minimization;

if F j (t) < Fi (t), then j is selected; otherwise, one of

the two is selected randomly.

• The procedure is repeated until np individuals have

been selected.

• The selected individuals are denoted as Pa (t).
4. The crossover is applied. Using a Bernoulli experiment,

the algorithm determines if the two parents are used for

reproduction (with the crossover operator) or for cloning

(a simple copy). If the parents are suitable for reproduc-

tion, another Bernoulli experiment is used per variable in

order to decide if the operator is applied to it or not. Two

consecutive parents in Pa (t) generate two children. This

procedure is repeated until np children are generated. The

children population is denoted as P̂ (t). Two user-given

parameters (probabilities) are required for this operation:

• pcroind: probability of crossover for individuals.

• pcrovar: for two individuals selected for crossover,

probability of applying the crossover operator to a

variable of these individuals.

5. The mutation is applied. The mutated population is de-

noted as as P̄ (t). Similar to the crossover, a Bernoulli

experiment decides whether an individual is mutated or

not, and another is used for each variable of an individ-

ual suited for mutation. Hence, two additional user-given

parameters are required for this operation:

• pcmutind: probability of mutation for individuals.

• pmutvar: for two individuals selected for mutation,

probability of applying the mutation operator to a

variable of these individuals.

6. P̄ (t) is evaluated and the new objective function values are

denoted as F̄ (t).
7. The old population is replaced with the np best individuals

obtained from the union of P̄ (t) and P (t).
8. The procedure is repeated from step 3 until a stopping cri-

terion is reached.

Three possible stopping criteria are defined for the algorithm.

If one of these criteria is satisfied, the algorithm stops:

• A minimum objective function value to reach. If the

best individual in the population has an objective function

value less than a user-given value (minObj), the algorithm

stops.

• A minimum allowed variance of the objective function.

The variance of the objective function is computed for

each generation (iteration) and, for a given generation, if

it is less than a user-given value (maxVar), the algorithm

stops.

• A number of iterations for which the minimum variance
does not change. The minimum variance of the objective

function values of the population from the beginning of the

generations is computed and stored for each generation, if

it does not change in a number of generations (user-given

value, minVarCount), the algorithm stops.

3.3.2. Objective function
An l∞–norm is used to estimate the error between the ex-

perimental and FEM curves in order to obtain a value for the

objective function:

f (x) = f (ui) = max

[
Fexp (ui) − FFEM (ui)

Fexp (ui)

]
(22)

where x represents the optimization parameters, ui are the dis-

placement values of the curves, and Fexp (ui) and FEM (ui) are

the load values of the experimental and FEM curves for each ui,

respectively.

Since the displacement values at which the curves are com-

pared must be the same, the experimental curve is linearly in-

terpolated to the displacement values of the FEM curve. Ob-

viously, the FEM calculation must be set up to obtain a cer-

tain number of displacement values such that the number of

curve points used to determine the objective function is suffi-

cient. Also, to avoid an indetermination for the first point of the

curves, which is always zero, a very low value is added to the

denominator.

4. Validation Example

Experimental data to validate the proposed optimization

method has been taken from Car et al. [23]. The geometric

details of the specimen used are presented in Figure 2. This

specimen is composed of carbon-epoxy T2300/914C, with the

fibers oriented at 10◦ with respect to the longitudinal axis of the

sample. The specimen is subjected to a tensile test by fully-

fixing the bottom side and imposing displacements on the top

side. A load vs. displacement curve is obtained for the top side

of the specimen. This is the experimental curve Fexp used in

the optimization method.

4.1. Numerical model

The experimental set-up has been reproduced in FEM using

standard 8-noded hexahedral solid elements. The model has

been meshed with 897 elements and 1944 nodes, resulting in

5832 degrees of freedom and 7176 Gauss integration points. A

displacement of 0.295mm has been imposed on the top nodes

of the specimen in 25 equal increments, with the bottom nodes

fully-fixed.
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Figure 2. Geometry of the composite material specimen used

for the validation example, from [23]. Values given in mm.

The material behavior of the carbon fibers is modeled with

an anisotropic elasto-plastic model with the properties shown

in Table 1, where TBD indicates the value of the properties

which have been selected for the optimization method to de-

termine. Note that the Young’s Modulus and Poisson coeffi-

cient indicated are for the longitudinal direction of the fibers,

in the transversal direction the values assigned are those of the

epoxy matrix. The anisotropy stress transformation tensor is

implemented in Voigt notation into the FEM code and has been

defined as a diagonal matrix with ones, except for aσ
11
= 5, fol-

lowing the criterion used in the reference model [23]. The ma-

terial behavior of the epoxy matrix is modeled with an isotropic

explicit scalar damage model with the properties shown in Ta-

ble 1.

The material parameters to be determined are normalized and

introduced as optimization parameters of the optimizer. Since

these parameters have a physical meaning, reasonable upper

and lower limits have been imposed for each. This information

is summarized in Table 2, together with the user-given parame-

ters required by Optimate, already described in section 3.3.1.

4.2. Results and Discussion

The material parameters identified by the optimization

method are reported in Table 3, which correspond to an ob-

jective function value of 2.23E-03. The use of these parameters

results in a load vs. displacement curve which matches the ex-

perimental one, as shown in Figure 3. The optimizer required

2860 evaluations of the objective function, with each evalua-

tion requiring about half a minute of CPU time in a personal

Material Normalization Lower Upper

parameter value limit limit

E f 1.00E+11 1.0 5.0

σ
y
f 1.00E+08 1.0 30.0

Hf 1.00E+10 1.0 10.0

Em 1.00E+10 1.0 5.0

σd
m 1.00E+08 0.2 0.6

gd
m 1.00E+04 0.1 1.0

np 100

pcroind 0.9

pcrovar 0.85

pmutind 0.8

pmutvar 0.5

minObj 0.002

maxVar 1.0E-09

minVarCount 20

Table 2. Normalization values and imposed limits of the opti-

mization parameters (above) and user-given parameters (below)

introduced into Optimate.

Material Normalized Real

parameter value value

E f 3.982 3.98E+11 Pa

σ
y
f 13.343 1.33E+09 Pa

Hf 9.428 9.43E+10 Pa

Em 2.124 2.12E+10 Pa

σd
m 0.374 3.74E+07 Pa

gd
m 0.760 7.60E+03 N/m

Table 3. Parameter values identified by the optimization

method.

computer which uses an OpenSuse 12.3 operative system and

is equipped with a 3.4GHz Intel(R) Core(TM) processor and

16GB RAM.

The material parameters identified using the proposed op-

timization method agree with the expected margin of values

for these properties, as provided by manufacturers and seen in

literature. Examination of the numerical result obtained also

reveals expected behavior of the specimen under loading, as

shown in Figure 4. The displacement pattern obtained as well

as the stress distributions closely match those of the reference

model [23].

5. Conclusions

An optimization methodology which uses an inverse method

for the identification of material parameters in composite struc-

tures has been presented and discussed. The method numeri-
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Figure 4. Top left: Contours of total displacement in the FEM specimen with the identified material parameters (values in m). Top

right: Contours of stress in the longitudinal direction (values in Pa). Bottom left: Contours of the principal plastic strain in the

fibers (adimensional). Bottom right: Contours of the internal damage variable in the matrix (adimensional). Deformation amplified

x30.

7



Carbon fibers

Young’s modulus, E f TBD
Poisson coefficient, ν f 0.0
Yield stress, σ

y
f TBD

Post yield behavior law Linear with hardening

Yield criterion Von Mises

Hardening parameter, Hf TBD
Volumetric participation, k f 47.5 %

Epoxy matrix

Young’s modulus, Em TBD
Poisson coefficient, νm 0.325

Damage threshold stress, σd
m TBD

Damage behavior law Exponential with softening

Damage (yield) criterion Von Mises

Fracture energy, gd
m TBD

Volumetric participation, km 52.5 %

Table 1. Material properties defined in the FEM model.

Figure 3. Load vs. displacement curve for the FEM model with

the identified material parameters.

cally reproduces the experimental set-up of a test using mixing

theory and compares the numerical results obtained to the ex-

perimental ones. By means of a population-based evolutionary

optimizer it then determines the value of the material parame-

ters which result in a closest approximation of the FEM model

to the experimental test.

The example chosen for the numerical validation of the opti-

mization method shows that the procedure developed is capable

of correctly identifying the material parameters of the compo-

nent materials of a composite based solely on an experimental

load vs. displacement curve. Yet, the constitutive model used in

each material must be defined a priori and certain parameters of

the models must be fixed, such as the yield and damage criteria

and evolution laws. The user can then select which parameters

with numerical values require identification. These can include

basic material properties such as the Young’s Modulus.

The bottleneck of the optimization method proposed is the

computational cost of each FEM computation, which hinders

the computational cost of the overall procedure. Since a com-

plete FEM computation is required for each evaluation of the

objective function, and the optimization method requires a sig-

nificant number of evaluations, certain FEM models might re-

sult prohibitive to work with. Thus, a compromise must be

reached between accuracy and computational efficiency when

it comes to numerically reproducing the experimental set-up.

Moreover, the methodology is highly flexible due to its mod-

ular structure: the in-house codes both for the FEM calcula-

tion (PLCd) and optimization algorithm (Optimate) could be

easily replaced by other in-house or commercial equivalent

softwares and the experimental data and equivalent numerical

model could also be changed, requiring only minor changes in

the interface code.

However, the novelty of the approach is precisely in the sim-

ple but functional coupling of the FEM mixing theory with the

genetic optimization algorithm. The mixing theory is a pow-

erful tool for modeling the behavior of composite structures in

FEM. It allows combining several constitutive models which

represent the individual behavior of the component materials to

obtain the global behavior of the composite.

As to the optimizer, it is highly parallelizable in the most

expensive part of the code, the evaluation of the objective func-

tion. Also, it allows using l∞–norms which cannot be used in

gradient-based algorithms since they are not differentiable in all

the domain. In fact, practically any function can be defined as

objective function in the genetic algorithm used because there

is no need for it to be derivable, continuous and convex in all

the domain. This makes the optimizer especially well-suited

for purposes such as the identification of material parameters

through comparison of experimental and numerically-obtained

curves. In addition, the multi-objective capability of the opti-

mizer code could be easily exploited in the future for the iden-

tification of material parameters when additional result curves,

for example, torsion-rotation curves, must be satisfied.

Future work related to the optimization algorithm will also

contemplate statistically contrasting the efficiency and effi-

cacy of evolutionary algorithms with other methods such

as the Global and Local Optimization using Direct Search

(GLODS) [36], in order to find the global optimization method

which best fits the parameter identification problem posed in

this work. The exploration of other algorithms undoubtedly de-

livers empirical knowledge about the best possible algorithm.

However, considering that the no free lunch theorem [37] holds

for all possible problems, the comparison must be tackled sta-

tistically for this particular problem.
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