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Abstract

Reinforced brick masonry has experienced only scarce use as a fully structural material due to, among other reasons, the lack of design criteria
and calculation tools allowing a scientific, but also practical, engineering approach to design and assessment. Aiming at contributing to a more
widespread use of this material, a simplified method for the ultimate analysis of reinforced masonry arches and cylindrical vaults, based on the
lower-bound theorem (or static approach) of plasticity, has been developed. This approach has been satisfactorily validated by comparison with
experimental and numerical results obtained by more accurate numerical models.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforced masonry, consisting of a combination of plane
inlaid bricks and continuous mortar joints with embedded
steel reinforcement, has demonstrated important architectural
and structural possibilities mainly through the realizations
of the Uruguayan engineer Eladio Dieste [1,2]. Among
other interesting buildings, Dieste designed and constructed
appealing simple or double curvature single-leaf, long-span
reinforced masonry shells such as in the Church of Altantida
or the Caputto Warehouse in Montevideo, Uruguay, the latter
spanning up to 46.5 m.

Reinforced masonry construction is not only interesting
because of its structural and architectural possibilities;
brick masonry is inexpensive and available everywhere,
while it offers interesting qualities in terms of aesthetics,
thermal insulation, small maintenance costs and sustainability.
However, reinforced masonry shells have not experienced much
significant use or interest, beyond Dieste’s work. This is due
to reasons related with, first, the amount of handwork required
and, second, the lack of objective, scientifically-based available
design criteria and simulation tools.

On the one hand, a significant amount of handwork may
be necessary if traditional construction procedures, based on
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personnel skills and non-industrial forming solutions, are used.
However, handwork can be reduced to a minimum by means of
industrialized construction procedures such as those proposed
by the Craft EC project ISOBRICK oriented to the design and
construction of cylindrical short- to medium-span reinforced
masonry roofs [3]. The process is based on a semi-prefabricated
construction in which flexible meshes, including the bricks and
part of the reinforcement, are previously manufactured to be
later installed and shaped in the site according to the desired
vaulted geometry; mortar or concrete are then poured to fill the
joints and to create a continuous topping (Fig. 1).

On the other hand, Dieste’s structural designs relied mostly
on his vast experience and refined personal understanding.
Modern designers may feel more compelled to use an objective
approach involving specific design criteria and calculation
methods adequately validated by experimental evidence.
As a necessary complement to the proposed construction
technology, the ISOBRICK project also contributed with
experimental research on the strength performance of short-
and medium-span cylindrical shells (see in Section 4.1). In
turn, the experimental results allowed the validation of a
numerical method (termed PRO-SHELL) for the analysis of
reinforced masonry shells based on the theory of continuum
damage (see in Section 4.2). The capacity of this method
to produce a detailed simulation of the service and ultimate
response of reinforced masonry shell structures has been
proven satisfactorily. However, the use of this method requires
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Fig. 1. Industrialized reinforced masonry construction technology [3].

significant computer effort and advanced structural and
numerical knowledge. A simpler tool for analysis, usable for
the practical design and assessment of masonry shells, is also
needed.

This paper presents a simplified tool (termed DBS-ROOF)
for the analysis of cylindrical short- and medium-span
reinforced masonry shells. The aim at developing DBS-ROOF
was to provide an easy to use, interactive and user-friendly tool
useful to practical potential users (designer architects, engineers
and construction companies) for guiding the design process
and assessing the structural viability and safety of the resulting
vaults. The tool can also be applied to the ultimate analysis
of reinforced concrete or plain masonry or concrete arches.
The method stems from the application of plastic analysis to
the assessment of unreinforced stone or brick masonry arches
and, in essence, preserves the simplicity and operation of this
well-known approach. Because of its geometrical character, the
method can be easily and interactively operated by means of
an adequate graphic user interface. This calculation tool has
been validated by comparison with experimental and numerical
results obtained within the ISOBRICK project.

2. Theoretical background

The application of plastic analysis to the assessment of
unreinforced masonry arches is today well acknowledged
thanks to the contribution of Heyman [4,5]. Within the
static approach, limit analysis involves, as a first step, the
determination of a thrust line in equilibrium with the external
loads. The thrust line is defined as the locus of the points of
application of the sectional forces throughout the arch. Where
the thrust line becomes tangent to the boundaries of the arch,
meaning that the only possible contact between sections or
blocks is reduced to a point or to a very reduced portion of
the section yielded in compression, rotation becomes possible
and a hinge is formed. According to the safe (or lower-bound)
theorem, if it is possible to find a thrust line in equilibrium
with the applied loads and fitting within its boundaries, then the
structure is safe (Fig. 2). According to the uniqueness theorem,
if it is possible to find a thrust line in equilibrium with the
Fig. 2. Example of thrust lines corresponding to a concentrated load for the
safe and the uniqueness theorems.

applied loads and fitting within its boundaries, which causes
a collapsing mechanism, then the loads are the true ultimate
ones and the mechanism is the true ultimate one (Fig. 2). Such
a mechanism will be produced by the generation of a number
of hinges, each one, in turn, being caused by the thrust line
becoming tangent to the boundaries of the arch.

Experiments carried out on reinforced masonry cylindrical
vaults (Section 4.1) have shown that the ultimate response
of such structures is governed by the development of ductile
collapse mechanisms caused by the generation of a certain
number of plastic hinges. In fact, the failure modes are
qualitatively similar to those experienced by unreinforced brick
or masonry arches. Furthermore, all the tested reinforced
masonry structures exhibited an important ductility, i.e., a
significant capacity to accept deformation until collapse. This
ductility was observed even in the case of structures with a very
small amount of reinforcement. In fact, since the structures are
arranged in the shape of an arch, the capacity to fully develop
ductile collapsing mechanisms is theoretically certain even if
no reinforcement exists. The possibility of applying both the
static or the kinematic approach to the analytical calculation of
reinforced masonry cylindrical shells has been already explored
by Lourenço et al. [6].

3. Proposed method for the analysis of reinforced cylindri-
cal shells

3.1. Description of geometry and support conditions

The method proposed herein consists of a numerical
technique applicable to the ultimate analysis of arbitrarily
shaped arches or cylindrical shells. The method is based on
limit analysis and uses the static approach (the aforementioned
safe – or lower-bound – and uniqueness theorems) to determine
the ultimate capacity of the structures analyzed by means of an
optimization process.

For that purpose, the geometry is described by decomposing
the entire arch in a series of equally spaced short segments
(or fictitious “voussoirs”) limited by sections oriented
perpendicularly to the axis (Fig. 3). This procedure affords the
description of the geometry and the equilibrium condition of
any type of arch or elementary voussoir. In particular, voussoirs
with variable thickness or width are also acceptable.
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Fig. 3. Examples of curved members decomposed into fictitious voussoirs.

The adequate modeling of the support conditions at the
springings of the arches or vaults is of great importance
to determine realistic thrust line solutions. The following
alternative support conditions are considered (Fig. 4): (a)
perfectly hinged ends, in which case the thrust line is set
to coincide with the position of the axis of physical hinges
materialized at the springings; (b) simple supports offering
direct contact spreading totally or partially on the surface of
the springing; (c) perfectly clamped ends, where the thrust line
is allowed to move freely between top and bottom strength
boundaries defined in Section 3.2; and (d) partially clamped
ends, in which case the thrust line is set to vary within a
restricted region contained within the boundaries. Condition
(1) requires a specific device able to work as a true hinge.
Conditions (c) and (d) require specific reinforcement details
affording the transmission of the end bending moments; in fact,
a perfectly clamped end, with no rotation allowed at the end,
seems difficult to obtain using conventional reinforcing details;
the consideration of a partially clamped support seems more
reasonable where a clamped end is formed by doweling steel
bars (Fig. 4(d)). In Fig. 4, the limit thrust lines are those with
maximum acceptable eccentricity at the support.

3.2. Modeling of reinforced masonry vaults

The method can be easily extended to describe the
mechanical effect of steel reinforcement in a geometrical way.
The reinforcement is modeled as an increase of the depth of
the arch described by means of equivalent top and bottom
boundaries, or strength boundaries, to be considered for the
application of the plastic theorems. The strength top or bottom
boundaries are defined as the maximum (or top) and minimum
(or bottom) eccentricities of applied forces accepted by the
reinforced section.

The position of the strength boundaries depends on
the amount of reinforcement, the concrete cover and the
compressive strength of concrete. The distance between the
strength boundaries and the axis of the arch can be determined
by assuming a certain distribution of stresses and forces in the
section at the ultimate condition.

According to Eurocode 6 [7], the distribution of stresses in
reinforced masonry sections experiencing a ultimate condition
Fig. 4. Different support conditions: (a) hinged; (b) direct support; (c) perfect clamping; (d) partial clamping.
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Fig. 5. Simplified rectangular distribution of stresses at the ultimate condition.

Fig. 6. Assumed distribution of stresses and forces at failure.

in bending or compression can be modeled by means of
a parabolic diagram or, in a more simplified way, by the
rectangular diagram of Fig. 5, where G is the centroid of the
section, N is the axial force applied to the section, M is the
ultimate moment, C is the force resisted by the compressed
material, T is the force experienced by the reinforcement, y
is the depth of the compressed block, εm , set equal to 0.0035, is
the ultimate unit strain of the compressed material (masonry or
concrete) and As is the section of steel reinforcement in tension.
The stresses in the compressed block are assumed uniform
and equal to the uniaxial compression strength fc. The steel is
assumed to behave according to a perfect elastoplastic bilinear
diagram with a horizontal second branch defined by the yield
stress εy .

The diagram of Fig. 5 can be easily adapted to the
distribution of reinforcement and forces existing in a reinforced
masonry vault such as the one described in Fig. 1. In this case,
two different layers of steel, distributed as indicated in Fig. 6,
are considered.

Depending on the depth of the compressed block, the
steel closest to the maximum compressed fibre will work in
compression or in tension, producing either a positive or a
negative Ts force. Furthermore, both the top and the bottom
reinforcement can work in elastic or plastic condition. As
shown by the experiments, for conventional topping mortar
or brick strengths, and for the usual covers (between 1 and
3 cm), the depth of the neutral axis is small enough as to cause
tensile forces to both the lower and the upper reinforcement.
However, the use of poor mortars, with low compression
strength, may cause the upper reinforcement to work in
compression.

The equations providing the ultimate moment can be derived
from the compatibility and the equilibrium conditions and the
adopted stress–strain relationships. The procedure to solve the
equations is the same one used in the conventional calculation
of reinforced concrete and is not reproduced here.
Fig. 7. Forces acting on the arch (below) and the elementary voussoir (above).

Once the ultimate moment is known, the value of a
maximum possible eccentricity esmax results from

esmax =
M
N

. (1)

By applying Eq. (1) to both the ultimate positive and negative
moments resisted by the section, the maximum top and
bottom eccentricities, etop and ebot, determining the strength
boundaries, can be calculated.

3.3. Generation of a thrust line solution

Overall equilibrium of the arch provides three equations
(vertical forces, horizontal forces and moments) to relate
the unknowns, namely the vertical and horizontal reactions
at the left and right supports, V0, E0, Vn , and En , and the
corresponding points of application at the end sections, defined
by the eccentricities with respect to the axis of the arch, e0
and en , (Fig. 7). Equilibrium does not determine a single
solution, but just a range of solutions constrained by the three
equilibrium equations. In the present method, E0, e0, and en are
chosen as the variables or degrees of freedom determining each
possible solution. Once the reactions are known for a certain
triplet (E0, e0, en), internal equilibrium can be considered to
generate the corresponding thrust line.

Thrust line solutions in equilibrium with the external loads
are generated by subsequently balancing all the loads acting at
each individual voussoir (see Fig. 7). Let i and i + 1 be the
centroids of the end sections and let G be the centroid of the
entire voussoir. The loads applied on the voussoir include the
vertical and horizontal forces acting at the end sections, Vi , Ei ,
Vi+1, and Ei+1; the self-weight of the voussoir, W ; and possible
external vertical and horizontal concentrated loads acting at the
section of the centroid, Vg , Fg . ei , ei+1 are the eccentricities of
the forces at the end sections and eg is the eccentricity of the
external forces Vg , Fg .
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The equilibrium of vertical forces, horizontal forces and
moment (Fig. 7) leads to the following expressions:

Ei+1 = Ei + Fg (2)
Vi+1 = Vi − W − Vg (3)
Ei (yi + ei cos αi ) − Vi (xi − ei sin αi ) + W xg

+ Fg(yg + eg cos αg) + Vg(xg − eg sin αg)

= Ei+1(yi+1 + ei+1 cos αi+1)

− Vi+1(xi+1 − ei+1 sin αi+1) (4)

where (xi , yi ), (xi+1, yi+1), (xg, yg) are the coordinates of
points i , i + 1 and G.

The above equation permits the determination of ei+1 once
the value of ei is already known from the study of the previous
contiguous voussoirs. The set of eccentricities {e1, e2, . . . , e.n}

determine the shape of the thrust line across all sections
between voussoirs. Thus, the thrust line is obtained as a
polygonal approach whose accuracy will depend on the density
of the decomposition. As observed from the analyses carried
out, a short number of voussoirs is enough to obtain satisfactory
results. Calculations undertaken for a typical catenary vault
(example V1 of Section 4.1) showed that the error in the
ultimate load was of 27%, 9.1%, 2%, 1% and 0% for
calculations carried out with 5, 10, 20, 30 and 40 voussoirs
respectively. All the examples presented later in this paper have
been modeled with 40 voussoirs.

Note that the strength boundaries etop, ebot are dependent
with the value of the axial force N acting at each section of
the arch. Because of that, the resulting boundaries show an ex-
pectable, theoretically consistent but brusque variation where
vertical concentrated forces are applied (Fig. 8(a)). For the same
reason, the strength boundaries must be recalculated for each
different applied loading. Because of this effect, three different
alternative ways to represent graphically the solutions are envis-
aged. As a first possibility, the true thrust line mode is consid-
ered, in which the already defined strength boundaries and the
thrust line are represented (Fig. 8(a)). The second possibility
(moment ratio mode) consists of representing the curves which
result from multiplying the eccentricities by the axial forces ex-
perienced by each section; in that case, the graphic represents
the moment acting on the section compared with the maximum
acceptable moments (Fig. 8(b)). The third possibility (normal
mode) consists on normalizing the strength boundaries along
the arch, so that they become constant, and then scaling the ec-
centricity of the thrust line accordingly. As a consequence, the
equivalent boundary lines do not depend on the applied loads.
Although the real meaning of the lines is lost, this graphical
mode is advantageous because it allows the direct comparison
of lines corresponding to different loading hypotheses with re-
spect to constant equivalent limits (Fig. 8(c)).

3.4. Application of plastic theorems

A method envisaged by Andreu et al. [8] is used to determine
the thrust line solutions satisfying either the safe theorem or the
uniqueness theorem. For that purpose, a thrust line is described
by a vector defined as
Fig. 8. Different modes of representing a thrust line solution. The examples
correspond to solutions verifying the safe and the uniqueness theorems.

X = {e0, e1, . . . , en−1, en}
T (5)

where e0 and en are the eccentricities of the thrust line solution
at the end sections of the arch, and e1, e2, . . . , en−1 are the
eccentricities at the sections limiting the consecutive voussoirs,
n being the number of voussoirs.

Because of the equilibrium constraint, and for a given set of
external loads, X is in fact a function of the eccentricities and
horizontal reaction, chosen as the free variables as mentioned
in Section 3.3

X = X(e0, en, E0). (6)

The top and bottom strength boundaries are defined in a similar
way as

Etop = {etop,0, etop,1, . . . , etop,n−1, etop,n}
T (7)

Ebot = {ebot,0, ebot,1, . . . , ebot,n−1, ebot,n}
T . (8)
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Functions Dtop(i) and Dbot(i) are defined as

Dtop(i) = etop,i − ei (9)

Dbot(i) = ei − ebot,i (10)

A cost function Dmin(X) is defined as the minimum distance
from the thrust line to the strength boundaries,

Dmin(X) = Min{Dtop(i), Dbot(i), i = 0, 1, . . . n}. (11)

A solution complying with the safe theorem, if existing, can be
obtained as the one providing the maximum value of Dmin(X).
For that purpose, an optimization process can be carried out
in which the end eccentricities e0 and en , together with the
reaction E0 are set as the target variables. Let Xmax be the
solution obtained by this procedure.

The solution yielded by the optimization process doesn’t
necessarily describe the real state of equilibrium experienced
by the structure. As mentioned, it simply consists of a way
to provide, whenever possible, a solution satisfying the safe
theorem.

In order to apply the uniqueness theorem, some of the loads
acting on the arch must be scaled by a factor ϕ. The theorem
will permit the determination of the value of ϕ for which the
arch reaches the ultimate mechanism. The vector X is now also
a function of such a load factor,

X = X(e0, en, E0, ϕ). (12)

For each value of ϕ, applying the aforementioned optimization
process will produce a solution Xmax with maximum distance
to the boundaries,

Xmax = Xmax(ϕ). (13)

To obtain a solution complying with the uniqueness theorem
requires the determination of a set {e0, en, E0,ϕ} producing
the minimum possible value of Dmin(Xmax). The solution will
consist of a thrust line becoming tangent to the boundaries in
the number of sections needed to generate the mechanism.

Different optimisation methods, such as the maximum
descent (gradient method) and the conjugated gradient ones,
can be used to carry out the mentioned optimisation
procedures [8]. However, accurate solutions can also be
easily obtained by scanning a large sample of thrust line
solutions; such a sample can be generated by considering small
increments of the involved variables {e0, en, E0, ϕ}.

4. Comparison with experimental and numerical results

4.1. Experimental results

The experimental program undertaken in the Laboratory
of Technology of Structures of the Technical University of
Catalonia included two series of reinforced masonry vaults, the
first one consisting of 4 specimens of 4 m of span, labeled
U1–U4 and tested during 2002, and the second one consisting
of 11 specimens with various spans, labeled V1–V9 and tested
from 2002 to 2004 [9,3]. Cases V4 and V7 are disregarded
because they did not lead to failure during the experiment. Case
V8 is also disregarded because it was intentionally subjected
to a horizontal imposed displacement, which cannot be easily
modeled using the proposed approach. Vault G1 is a virtual
case for which only numerical results are available and will be
described with more detail in Section 4.3.

The specimens consisted of cylindrical shells shaped
roughly according to a catenary curve. The ceramic bricks were
arranged to form continuous joints both in the longitudinal
and the transverse directions, where the lower reinforcing bars
were embedded. In addition, a layer of mortar, 3 cm thick,
topped the bricks. The total depth of all vaults was of 7.5 cm,
of which 4.5 corresponded to the thickness of the bricks.
The reinforcement included either a single layer of steel bars
placed close to the intrados (bottom reinforcement), or two
layers, each placed close to a different surface (top and bottom
reinforcement). Different amounts of reinforcement, as well as
different mortar compression strengths were considered. The
compression strength of the bricks was of 50 MPa for vaults
U1–U5 and 65 MPa for the V1–V9 ones. The reinforcement
was provided by means of steel bars with diameter of 6 or 8 mm
and yielding stress of 400 or 500 MPa.

Table 1 summarizes the characteristics of each vault. The
reinforcement ratio indicated in Table 1 is calculated as

ρ =

∑
Asi ( fyi/500)

bh
(14)

where Asi is the section of each i-rebar, fyi is the corresponding
yielding stress, b is the width of the vault and h is its total
depth. Table 1 refers also to the average mechanical cover of
the reinforcement, obtained as:

c =

∑ (
ci +

φi
2

)
Asi fyi∑

Asi fyi
(15)

where ci is the geometric cover (distance between the parament
and the perimeter of the rebar) and φi is the diameter of each
i-rebar.

All the specimens, with the exception of vault V6, were
simply supported on rigid steel frames allowing the rotations
but preventing any displacements at the springings. The
experiments consisted of applying a vertical load at 1/4, 1/3
or 1/2 of the span and gradually increasing it, by displacement
control, until failure. The load was applied by a hydraulic
actuator on a steel rigid beam spanning the full width of the
vault (Fig. 9).

Special reinforcing details (similar to Fig. 4(c)) were
materialized in the case of vault V6, the more slender one, to
restrain the rotations at the springings and to create a sort of
clamped ends. However, the fact that the vault failed without
causing visible damage at one of the supports suggests that
it did not actually behave as a perfect clamped support, but
allowed a certain rotation.

The arches failed always (except in the case of V6) due
to the development of an unstable mechanism involving 3
plastic hinges for symmetric loading and 2 plastic hinges
for asymmetric loading, the supports acting as two initial
hinges. As shown in Fig. 10, high ductile responses were
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Fig. 9. Test arrangement.
Table 1
Main characteristics of vaults and loading condition

Vault Length, rise, width
(cm)

Position of loaded
point

Topping/joint mortar
compression strength (MPa)

Top/bottom reinforcement
ratio (×10−3)

Top/bottom mechanical
cover (mm)

U1/U2 400, 100, 109 1/4L 21.0/13.0 0/3.35 –/19
U3 56.3/56.3 0/3.35 –/19
U4 53.5/53.5 0/1.89 –/18
U5 38.6/28.3 0/1.89 –/18

V1 400, 100, 100 1/2L 2.9/4.5 0/4.90 –/17
V2 2.1/3.3 1.89/3.35 42/13

V3 400, 100, 200 1/2L 4.6/4.6 1.89/1.89 42/13
V5 600, 100, 100 1/3L 4.0/4.0 1.89/1.89 42/15
V6 1000, 330, 100 1/4L 25.5/25.5 3.35/1.89 57/18
V9 400, 100, 100 1/3L 36.6/36.6 1.89/3.35 22/16

G1 809, 413, 110 1/6L 25.0/25.0 3.35/3.35 24/24
Asymmetric

Table 2
Values of ultimate load

Case Description span, rise, width (cm) Experimental (kN) FEM with PROSHELL (kN) Plastic analysis [6] (kN) Present method (kN)

U1 400, 100, 100 19.5 – 17.96 20.0
U2 ” 21.0 – 17.96 20.0
U3 ” 26.0 LG 27.5 21.00 21.4

NLG 26.0
U4 ” 15.2 – 11.97 10.4
U5 ” 14.2 – 11.27 10.3
V1 400, 100, 100 16.3 16.5 – 16.2
V2 ” 15.1 16.3 17.3
V3 400, 100, 200 21.6 24.0 – 22.0
V5 600, 100, 100 8.5 7.7 9.0
V6 1000, 330, 100 14.7 LG-H 12.7 −H 10.6

LG-C 20.7 – −C 15.8
NLG-C 18.9

V9 400, 100, 100 45.2 45.4 – 43.5
G1 Unsymmetrical – 14.8 – 14.0

NLG: non-linear geometric analysis; LG: linear geometric analysis; −H : hinged; −C : clamped.
obtained showing large residual capacity after the peak load.
As predicted by the numerical analysis and confirmed by the
experiments, the ultimate peak loads (Table 2) vary almost
proportionally with the reinforcement; for cases U2–U5 and
V9, geometrically equal and subject to the same load condition,
a similar value (8000 ± 500 kN) is always obtained by dividing
the ultimate load by the total (top plus bottom) reinforcement
ratio.
4.2. Numerical modeling

As mentioned in Section 1, the experimental program
permitted the validation of a sophisticated numerical model
(PRO-SHELL) specifically developed for non-linear analysis
of reinforced masonry vaults. The model is based on the
micro-modeling approach, meaning that the three material
components existing in the structure – the ceramic bricks, the
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Fig. 10. Load versus vertical deflection experimental and numerical diagrams
for vaults U3, V2, V5 and V9.

Fig. 11. Initial and deformed FE mesh at failure (×6) for vault U3.

mortar volumes and the steel rebars – are actually described
as distinct components with specific constitutive equations. In
fact, in a general micro-model, the unit-joint interfaces should
be simulated by means of frictional joint elements, or similar
devices, allowing sliding or rotation between units. To limit the
required calculation effort, the hypothesis of perfect bonding
between units and mortar is adopted for the present application.

Bricks and mortar volumes are described by means of solid
Serendipit 3-D, 20 node elements. Using a single finite element
of this type to describe each individual brick, or each portion
of mortar joint between brick faces, has been demonstrated
to produce adequate results. This simple treatment is made
possible thanks to the capacity of the adopted element to
simulate intense stress gradients across its thickness. Fig. 11
shows a typical mesh of a vault and the corresponding deformed
shape at the ultimate condition for a concentrated load applied
at one-quarter of the span.

The steel reinforcement is modeled as an equivalent
horizontal layer referred to a solid element (brick or mortar
volume) whose centre of gravity is located at the height of
the actual reinforcing bar. In turn, the steel layers may be
unidirectional or bidirectional to account for one or two families
of parallel rebars placed approximately at the same depth.

Non-linear behavior is accounted for by a local multiaxial
(isotropic) damage model for mortar and bricks and by
a uniaxial elastic–plastic model for steel accounting for
plastic hardening. Damage index ranges between 0 (no
damage, integer status) and 1 (full damage). To describe the
structural constitutive behavior of the materials (bricks, mortar,
concrete and steel) the most relevant required parameters are:
deformation modulus (E), Poisson’s ratio (υ), tensile strength
( ft ), compressive strength ( fc), plastic strain hardening ratio
(H), ultimate strain (ε f ) and fracture energy (Ec). More
information can be found in [10].

The model produced acceptable predictions of the ultimate
load and the stress–strain diagrams (Fig. 10 and Table 2).

4.3. Comparison with the proposed method

The results obtained from the experimental and numerical
studies presented in Sections 4.1 and 4.2 have been utilized to
validate the method herein presented. For these calculations, the
characteristic value of the compression strength of the bottom
masonry fc is calculated by means of Eq. (16), provided by
Eurocode 6, using the compression strength values of mortar
fm and brick fb,

fc = K f 0.65
b f 0.25

m (16)

where the constant K is taken equal to 0.4 in the case of
hollow bricks. It is noted that Eq. (16) provides only an estimate
and that further research would be needed for a more accurate
prediction of the compression strength of the masonry used to
build the reinforced vaults here discussed.

Table 2 compares the experimental and numerical results
available with those obtained using the present method. The
results obtained analytically by Lourenço et al. [6] are also
considered.

The calculations carried out using PRO-SHELL always
considered non-linear geometric effects, except when indicated
in Table 2. Given the uncertainty in the actual behavior of the
supports, experimental case V6 is computed assuming either
clamped or hinged ends. Fig. 12 shows the thrust line solution
(represented in “normal” mode) obtained for vaults V5 and G1.

As can be seen in the table, the estimation obtained for the
ultimate load is acceptable for most of the considered cases.
A slight, but acceptable, overestimation of the ultimate load is
observed in some vaults built with poor mortar (cases V1, V2,
V3 and V5, with fm between 3 and 5 MPa). Conversely, the
ultimate load is underestimated in the cases built with medium
to high strength mortar (cases U1–U5 and V9, with fm above
10 MPa). Among the effects which may contribute to these
disagreements are (1) the inaccuracy of Eq. (16) in estimating
the true compressive strength of masonry, (2) the influence of
the tensile strength of the mortar, particularly in the case of
high strength, and (3) the true ultimate stress of steel above the
yielding limit, which is not considered in the calculations. The
fact that bonding between mortar and steel may be partially lost
at the ultimate condition may also affect the estimation. In spite
of these considerations, the encountered errors range between
1% and 15% for most of the cases, with the exception of
vaults U4 and U5, for which the error is about 30%. The slight
disagreements with Lourenço et al. [6] are due to a different
estimation of the compressive strength of the material and the
plastic moments at the critical sections.

The estimation provided by the proposed method agrees
well with other analytical solutions, such as those provided
by Lourenço et al. [6] (cases U1–U5) and those calculated
by means of PRO-SHELL (cases V1–V9). In particular, the
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Fig. 12. Resulting thrust line solutions for vault V5 and G1 (normal mode).

accuracy of this method at estimating the ultimate load can be
compared to that of the more complex numerical approach.

Example G1 consists of a more complex shaped, asymmetric
vault spanning 8.09 m, with rise of 4.13 m, composed of a
vertical segment 1.00 m high, an elliptic segment defined by
a horizontal semiaxis of 3.04 m and a vertical semiaxis of
4.13 m, starting at 0◦ and reaching the highest point at 90◦, and
another elliptical segment with horizontal semiaxis of 5.05 m
and horizontal semiaxis of 3.04 m, starting at 90◦ and ending
at 125◦. The material properties and reinforcement are given
in Table 1. In spite of the complexity of the shape, the present
method also provides an ultimate load in agreement with PRO-
SHELL, with an error of only 6.5% at the safe side.

The influence of second-order equilibrium effects on the
ultimate load was investigated by carrying out a non-linear
geometric analysis (NLG) by means of PRO-SHELL on two
selected cases corresponding to a short-span vault (U3), and
a medium-span one (V6). The consideration of the second-
order equilibrium effects produced a reduction of the ultimate
load of 5.5% and 8.6% for the short- and medium-span vaults
respectively. These results show that such effects have a small
influence, although perceptible, on the response of the vaults.

5. Conclusions

A simplified method for the ultimate analysis of reinforced
brick masonry arches or cylindrical shells, also usable for the
analysis of reinforced concrete or plain masonry or concrete
arches, is presented. The method is based on conventional
plastic analysis of unreinforced masonry arches. A procedure,
based on a graphical treatment of the problem, has been
developed to extend this approach to the case of reinforced
masonry arches and cylindrical vaults with arbitrary geometry
in the longitudinal direction. The method is complemented with
automatic algorithms for the application of the safe (or lower-
bound) and uniqueness plasticity theorems.

The method has shown its capacity to provide engineering
estimations of the ultimate loading capacity of such structures.
An acceptable agreement has been attained with results
obtained both experimentally and numerically, by means of a
more sophisticated approach, on vaults covering a variety of
situations with regards to the properties of the materials and the
amount of reinforcement.
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