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Abstract

In this work a generalized anisotropic model in large strains based on
the classical isotropic plasticity theory is presented. The anisotropic theory
is based on the concept of mapped tensors from the anisotropic real space
to the isotropic fictitious one. In classical orthotropy theories it is necesary
to use an special constitutive law for each material. The proposed theory
is a generalization of classical theories and allows the use of models and
algorithms developed for isotropic materials. It is based on establishing a
one-to-one relationship between the behavior of an anisotropic real material
and that of an isotropic fictitious one. Therefore the problem is solved
in the isotropic fictious space and the results are transported to the real
field. This theory is applied to simulate the behavior of each material
in the composite. The whole behavior of the composite is modeled by
incorporating the anisotropic model within a model based on a modified
mixing theory.
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1 Introduction

An anisotropic material is one which exhibits properties with different values
when measured in different directions. Modeling the behavior of an elastic
anisotropic solid does not present big difficulties. In this case, it is possible
to use the general elasticity theory (Hull, 1987), (Pendleton and Tuttle, 1989),
(Matthews and Rawlings, 1994), etc. The formulation of a constitutive law ade-
quate to simulate the non-linear behavior of orthotropic or anisotropic solids such
us fiber reinforced composites is a complex task. The main objective of this work
is to present a general theory which allows to model the non-linear constitutive
behavior of this type of materials.

The general formulation of anisotropic yield surfaces should describe the be-
havior of isotropic materials as a particular case. When the yield surface of an
isotropic material is obtained as a particular case of an anisotropic one, it must
have the properties of isotropic functions described by Gurtin (1981).

The first attempts to formulate yield functions for orthotropic materials are
due to Hill who was able to extend the isotropic Von Mises model to the or-
thotropic case (Hill, 1948, 1971, 1979, 1990). The main limitation of this theory
is the impossibility of modeling materials that present a behavior which not only
depends on the second invariant of the stress tensor, i.e. the case of geoma-
terials or composite materials. Several authors proposed yield functions in the
anisotropic stress space. (Bassani (1977) , Budiansky (1984) and Barlat et. al.
(1989, 1991) ). In 1991 Barlat et. al. proposed a linear transformation of the
stress state of an anisotropic material by multiplying all the components of the
stress tensor by different constants. Many authors have used four rank tensors in
the formulation of yield functions for anisotropic materials, see, for instance Shih
and Lee (1978) , Bisenberg and Yen (1984) and Voyiadjis and Foroozesh (1990).
In 1982 Dvorak and Bahei-El-Din used tensorial operators with a Von Mises yield
function to simulate the behavior of composite materials. In 1993 Karafillis and
Boyce proposed a general expression of yield surfaces of polycrystalline materi-
als which allows to describe isotropic and anisotropic materials. The anisotropy
of the material is described with a set of irreductible tensorial variables. This
set of variables allows to make a linear transformation of the stress state of the
anisotropic material to an Isotropic Plasticity Equivalent Material (IPE). Later,
Voyiadjis and Thiagarajan (1995) based on previous works, proposed a general
yield surface which depends on a four rank tensor and applied this model to study
the behavior of unidirectional fiber reinforced composites.

The non-linear anisotropic theory developed in this work is a generalization of
the classic isotropic plasticity theory (Malvern, 1969) (Lubliner, 1990). It is based
in a one-to-one transformation of the stress and strain spaces by means of a four
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rank tensor. This transformation preserves the convexity of the plastic potential
and the yield functions which assures that the material does not return to an
elastic state once it has reached a plastic state under monotonically growing loads.
Applications of this theory to the linear and non-linear analysis of composites
under small and large strains conditions were reported in previous works of the
authors. (Oller et al., 1993a, 1995a) (Car et al., 1999)

The layout of the paper is the following. In the next section the constitutive
model for anisotropic materials undergoing large strains is described. The treat-
ment of the anisotropic behavior of the overall composite using mixing theory is
then presented. The accuracy and potential of the anisotropic model is tested in
the failure analysis of a composite specimen for which experimental results are
available.

2 Anisotropic material in large strains

2.1 A brief introduction to the anisotropic model in small
strains

The anisotropic theory developed in this work is based on the ideas proposed by
Betten (Betten, 1981, 1988) and uses the concept of mapped tensors. This con-
cept allows to use the advantages and algorithms developed for classic isotropic
materials. The implementation of this theory in finite element codes is straight-
forward.

Several authors have developed a generalization of the classic isotropic plastic-
ity theory to the anisotropic case (Betten, 1981, 1988)(Oller et al., 1993a, 1993b).
The basic idea consists of modeling the behavior of an anisotropic real solid by
means of a ficlitious isotropic solid. A basic assumption of this model is that
the elastic strain is unique for the anisotropic and isotropic solids. This hypoth-
esis introduces a limitation in the theory, because it involves a proportionality
concept between the yield strength and the elasticity modulus for each material
direction.

The constitutive model presented in this work is more general and it can
simulate high anisotropic materials, such as fiber reinforced composites. The
anisotropic behavior of the material is expressed in terms of an isotropic fic-
titious stress and strain spaces which are the linear tensor transformations of
the real anisotropic stress and strain spaces. All the information on the ma-
terial anisotropy is contained in the fourth order transformation tensors A°
and Afrelating the stresses and strains in the real (anisotropic) and fictitious
(isotropic) spaces. The parameters that define the transformation tensors can
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be calibrated from adequate experimental tests. The constitutive model in the
fictitious isotropic space is defined by the same yield function, plastic potential
and integration algorithms developed for standard isotropic materials.

2.1.1 Constitutive equation

The constitutive equation derives from the first and second laws of thermodynam-
ics, the expression of the Helmholtz free energy, the additive decomposition of
the strain tensor into elastic and plastic part and the Clasius-Duhem inequality.
The latter is written as

E=[U—m w]:ée—mé[—w— ]+a’:é”—m—i0‘z—lq.V920 (1)

where = is the dissipation, o is the Cauchy stress tensor, ¥ = ﬁe : C: e is the
free energy function, € is the rate of change of the strain, m is the density, 7, is
the specific entropy, 0 is the temperature, a is a set of internal variables and g
is the conductivity heat flow. Applying Coleman method on eq. (1) (Malvern,
1969) (Lubliner, 1990) the constitutive equation in the real space is obtained by

o=m C.e (2)

Oe®
where Cis the four rank constitutive tensor.

The constitutive equation of the fictitious isotropic material is obtained con-
sidering the uniqueness of dissipation in the isotropic and anisotropic spaces (Car
et al., 1999). Applying Coleman method the constitutive equation in the fictitious
isotropic space can be written as

%0
Oe®
where C is the four rank constitutive tensor and & is the strain in the fictitious
space. From now on (7) will denote variables in the fictitious isotropic space.

Qi

=m

=C=z (3)

2.1.2 Yield and plastic potential functions

The yield and plastic potential functions are defined in Cauchy stress space, i.e.

Yield function ¢’ (o7; ")
Potential function g(o;aT) = K (5)

a

(=)
|
N
S



A Large Strain Plasticity Model for Anisotropic Materials 6

where o is the Cauchy stress tensor, ¢” and g are the yield and plastic potential
functions, and K is a constant.

2.1.3 'Translation of stresses from the anisotropic to the isotropic
space

The relationship between the anisotropic and isotropic stress spaces is based on
the following linear transformation (See Figure 1)

Tij = Afron (6)
where A’ is a four rank tensor which relates the stress tensors in the anisotropic
and isotropic spaces and & and o are the Cauchy stress tensor in the isotropic
and anisotropic spaces respectively.

For the definition of the shape and properties of the tensorial operator it is
necessary to take into account the symmetry of the Cauchy stress tensor in the

anisotropic and isotropic spaces, therefore the four rank transformation tensor
must satisfy the following symmetries:

Agjkl = Agikl = A;ilk (7)

The symmetry of the four rank transformation tensor is also necessary:

gjkl = AZlij (8)
The four rank transformation tensor A’ is obtained in global axis from the

definition of the tensor components in local axes, through the following transfor-
mation

‘(ifjkl = R’UTS ( Uqu)loc qukl (9)

The four rank rotation tensor R is defined as:

Rijri = rixr (10)

where 7, = cos [(_e’,-) gto5 (€ &) ,OC], “¢’; is the unit vector corresponding to the

k'™ component of the global reference coordinate system chosen. The rotation
tensor R takes into account the angles between the local principal directions of
the anisotropic material and those of the global coordinate system.

The components of A? in the local coordinate system are defined as
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(A(lrlll)loc = R(O) (Ag222)loc = R(QO)
(A(17212)[oc = (Agml)zoc = ( gllZ)loc = R(45) (11)

where R(0) = 41 is the ratio between the strength of the material in the fictitious
f N

isotropic and real anisotropic spaces in the local z axis direction, R(90) = ‘f% is
the ratio between the strength of the material in the isotropic and anisotropic
spaces in the local y axis direction and R(45) = %ﬁ is the ratio between the shear
strengths of the material in the fictitious and real spaces. It is important to note
that the parameters which define A” can be obtained from simple experimental
tests.

The yield condition in both spaces is:
¢(030) = ¢(;00) = §(0;A%0) = 0 (12)
where ¢ and ¢ are respectively the yield functions in the real anisotropic and the
fictitious isotropic spaces.

2.1.4 Transformation of strains from the anisotropic to the isotropic
space

The relationship between the elastic strains in the real anisotropic space and the

fictitious isotropic space is given by:

&5 = Aimich (13)

where A€ is a four rank tensor, € and € are the strain tensors in the isotropic and

anisotropic spaces respectively. The hypothesis expressed by eq. (13) implies no

uniqueness in the elastic strains between spaces. Tensor A® is computed taking
into account egs.(36), (13) and the constitutive equation in the anisotropic and

isotropic spaces (egs.2 and 3) (Car et al., 1999). This gives

- -1
‘Afnnrs = (Cmnij) Iqi'rjkl Chirs . (14)
where C_'mm-j is the constitutive tensor in the fictitious isotropic space and Chypg
is the constitutive tensor in the real anisotropic space. Note that Cj;,., includes
the current properties of the material. The choice of Cinni; can be arbitrary and
for this purpose the property of any known material can be chosen.

The components of the are first defined in local axes and then transformed
into global axes by the following expression
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< M) I
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Figure 1: Space transformations. Real and fictitious stress and strain spaces in
small strains

Cijkl = R'ijrs (CT3PQ)loc qukl (15)

where (Chrgpq),,. 1s the anisotropic constitutive tensor in the local coordinate sys-
tem.

In Figure 1 the stress and strain spaces and the constitutive equation in both
isotropic and anisotropic spaces are schematically shown. Recall that four rank
tensors (A7) and (A¥f) establish the relationships between the variables in both
spaces.

2.2 Definition of the elasto-plastic isotropic model in large
strains

Kinematic changes is one of the most complex aspects to be considered when
defining constitutive equations under large strain conditions. The kinematics
used in this work are based on the multiplicative decomposition of the gradient
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ae Updated
s .
E; = Configuration

Reference
Configuration
(original)

Intermediate
Configuration

Figure 2: Original, intermediate and deformed configurations

deformation tensor introduced by Kroner (1960) and developed by Lee (1969)
and Mandel (1971) .

The multiplicative decomposition results from the definition of the gradient
tensor as

_ 0z oz 0X
T 8X 84X X
where F'® and F? are the elastic and plastic part of the gradient deformation.
The elastic part of the deformation gradient is obtained by unloading the points
of the deformed configuration up to the intermediate configuration 2.

In the kinematics of the elasto-plastic continuum under large strains three
configurations are distinguished: original (°Q2), intermediate (°2!) and deformed
(*Q). The intermediate configuration is based on the coordinate system X. In
Figure 2 the different configurations are shown.

F

= F¢.F? (16)
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2.2.1 Small elastic and large plastic strain case. Free energy expres-
sion

Composite materials are usually subjected to small elastic strains. Thus the
elastic part of the deformation gradient F'® tends to unity and the elastic part
of the left Cauchy-Green tensor (b°)”' tends to the spatial metric tensor g. In
this case the distinction between intermediate and deformed configurations is
irrelevant.

However, the plastic strains continue being finite and therefore it is neces-
sary to keep the presence of the right Cauchy-Green tensor C in the material
expression of the constitutive model to preserve its physical meaning,.

For the small elastic strain case it 1s enough to characterize the elastic com-
ponent of the free energy by means of a quadratic function of the elastic part of
Almansi strain tensor, i.e.

1
Y*=—e®:c: e’ (17)

2m
where c is the constitutive tensor on the updated configuration.

2.2.2 Constitutive equation

Taking into account the expression of dissipation on the updated configuration,
the additive decomposition of the Almansi strains and the free energy expression
(eq..17), the Kirchhoff stresses are obtained as:

T=e¢:e=c:(e— ) (18)

In eq. (18) the constitutive tensor ¢ could be considered constant either on
the updated or in the referential configuration. If it is considered constant in the
reference configuration c, is obtained by performing a ” push forward” operation
(Garcfa Garino, 1993) (Cante, 1995). Spatial variables are used in the definition
of the constitutive equation because they describe in a natural way the physics
of the problem. The afore-mentioned ideas do not preclude the possibility to
formulate constitutive models in terms of material variables or using a reference
configuration different from the deformed configuration. If the constitutive tensor
is considered constant on the updated configuration, the constitutive tensor in the

reference configuration comes out by performing a ” pull back” operation.(Garcfa
Garino, 1993) (Cante, 1995)
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2.2.3 Yield condition

The yield condition distinguishes elastic and plastic behavior. All the stress states
inside the domain limited by the yield function are considered elastic and those
on the yield surface are considered plastic (Lubliner, 1990) (Crisfield, 1991). The
yield condition depends on the material type. On the updated configuration it is
defined as:

¢ (Tig;0) = F(71;9) —k(a) =0 (19)

where 7 is the Kirchhoff stress tensor, g is the metric tensor on the updated
configuration and « is the plastic internal variable which controls the evolution
of the yield surface.

2.2.4 Flow rule

The flow rule defines the evolution of the plastic strains. On the updated config-
uration it is defined as:

L,(e)ff = df = /\%

where g=g(7;g) is the plastic potential function and ) is a non-negative scalar
known as the plastic consistency parameter which satisfies the Kuhn-Tucker con-

ditions (Lubliner, 1990) (Crisfield, 1991).

(20)

A>0 ¢ (T;g;0) <0 A (T3g;0) =0 (21)

2.2.5 Tangent elasto-plastic constitutive tensor

The tangent elasto-plastic constitutive tensor relates the Kirchhoff stress tensor
and the Almansi strains by

Lo () = ¢ : L, (e) (22)

The objective derivative of eq. (18) gives the rate constitutive equation

Ly(T)=Ly(c): (e—e€P)+ c: [L,(e) — L, (e")] (23)
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2.2.6 Constitutive tensor constant on the updated configuration

As previously mentioned the constitutive tensor can be considered constant ei-
ther on the referential or the updated configuration. This leads to the definition
of different materials. If the constitutive tensor in considered constant on the up-
dated configuration, the consistency condition comes out by taking into account
the definition of the yield condition on the updated configuration (eq..(19)), i.e.

_% 0¢ .

/ : Ly — : Ly — G =
where & is the rate of change of the internal variables defined by
: g
Y=A|h:=—| =he: L, (€
a=A|he: 52| (@) (25)

where the second order tensor h, is a function of the stress state and of the
hardening variable. In the most simple case of the incremental theory of plasticity
h, is the Kirchhoff stress tensor. The objective derivative of the spatial metric
tensor is obtained by considering the relationship between the rates of change of
the right Cauchy - Green tensor and the Green - Lagrange strain tensor, i.e.

C=2E (26)
On the updated configuration this relation is written as:

L, (g9) =2L, (e) (27)

Considering egs.(20), (23), (24) and (27), the consistency equation can be
rewritten as

¢ = %: [L,,(c):(e—e”)+c: [Lv(e)—A%H+
+2Z—‘§ ; Lv(e)—%'z-x[m;%]ﬂ | (28)

The product L, (¢) : (e — €P) can be expressed as (Cante, 1995):

Ly,(c): (e—€’)=d: L,(e) _ (29)

where d is given by :

dijiy = — 4T (€566 + bixef;] — 2X [6i5¢5, + bunbtr [e5]] (30)
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Taking into account egs.(28), (29) and (30) the plastic consistency parameter
1s obtained as:
2 (c+d): L, (e) 2—8 L, (e)

62‘%:6:36‘% an[h 5‘;!:]

A= (31)
The tangent elasto-plastic constitutive tensor is obtained from eq. (23), the

plastic consistency parameter given by eq. (31) and the definition of the plastic
flow (eq.(20)). This gives

Ly, (1) = (C+d)—[

(32)
where ¢ is the tangent elasto-plastic constitutive tensor on the updated config-
uration.

2.2.7 Constitutive tensor constant in the reference configuration

The constitutive tensor can be considered constant in the reference configuration.
In this case the first term of eq. (23) is zero, and the rate of change of the Kirchhoff
stress is

L,(T)=c:[L,(e) — L, (€e?)] (33)

The plastic consistency parameter is obtained from the consistency equation

(eq.. (24)), i.e
7% :(c): Lu(e) +255 : Lu (e)

82%16‘% an[h 5‘7%]

A=

(34)

The tangent elasto-plastic constitutive tensor is obtained from eq.(33), using
the plastic consistency parameter given by eq.(34) and the definition of the plastic
flow (eq. (20)). This gives g

[ga c+2_<a] (c:22)
oT 67’

2 e 2L [h, : 2] Ly (e)=c?: Ly(e)  (35)
aT - C a1 ok ' BT

L, (T)= |e—
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2.3 Extension of the anisotropic theory to large strain

2.3.1 Material formulation

To extend the elasto-plastic large strain model proposed to the anisotropic case is
necessary to split the referential and updated configurations into the anisotropic
and isotropic spaces, introduced in section 2 for the small strain case. Therefore,
it is necessary to define the transformation tensors in the reference and updated
configurations. The transformation of the second Piola Kirchhoff stress tensor
in the anisotropic space to the isotropic space is performed in a similar way as
presented in eq. (6), 1. e.

S1s = Af;x1Sk1 (36)

where A is a four rank tensor which relates the stress tensors in the real and
fictitious spaces, S and S are the second Piola - Kirchhoff stress tensor in the
fictitious isotropic and real anisotropic stress spaces respectively. The four rank
tensor A° is defined in the reference configuration and remains constant in this
configuration. The definition of the elements of A® is done in a similar way as
for A°.

The global expression of A® is obtained by standard transformation of the
local components given by

Afrkr = Rirs (ARspo) ,,, RroxL (37)

where (A%S PQ) 1oc 18 the four rank stress transformation tensor in the local coor-
dinate system and R is a rotation matrix.

It is also necessary to define the relationship between the Green - Lagrange
elastic strain in the real anisotropic space Ef; and the Green - Lagrange elastic
strain Ej» ; in the fictitious isotropic space. This relation is defined in the same

way as presented in eq. (13); ie.

—Ejv = A}IEJKL ?{L (38)

where A is a four rank tensor which relates the Green - Lagrange strains in
the anisotropic and isotropic spaces, E and E are the Green - Lagrange strain
tensors on the isotropic space and anisotropic space respectively. The four rank
strain transformation tensor is computed taking into account egs.(36) and (38)
and it is equivalent to the expression given by eq.(14)

AﬁNRs = (C_'MNIJ)HI A7 1 CxLrs (39)
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where Cyn;s is the constitutive tensor in the isotropic space and Ckpgis the
constitutive tensor in the real anisotropic space. The choice of Cpsnrs can be
arbitrary and for this purpose the properties of any known material can be chosen,
because their influence in the computations is cancelled when all the quantities
are returned to the real space.

The anisotropic constitutive tensor C'is defined in global axes by the following
transformations

Crixr = Risrs (Crspq),,. RrokL (40)

where (Crspq),,. 1s the local four rank constitutive tensor in the anisotropic space
in the local coordinate system and R is a rotation matrix.

2.3.2 Formulation on the updated configuration

The relationship between the Kirchhoff stresses in the anisotropic and isotropic
spaces on the updated configuration is given by

where a” is the four rank tensor which relates the stress tensor in the anisotropic
and isotropic spaces on the updated configuration, T and 7 are the Kirchhoff
stress tensors in the isotropic and anisotropic spaces respectively.

In a large strain context, it is necessary to redefine the four rank transfor-
mation tensor on the updated configuration due to the fact that the four rank
tensor a” is not constant in this configuration and it is a function tensor A® in
the referential configuration and the deformation gradient F. Tensor a” in the
updated configuration is obtained by the ”push - forward” operations (Car et al.,
1999):

g = Fir (F7') o, (F77),, (FT),; Alker (42)

Similarly, the relation between Almansi strains in the anisotropic and isotropic
spaces is defined by

€;j = a’?jk[ekl (43)

where tensor a®, establishes the relationship between the Almansi strain tensors
in the anisotropic and isotropic spaces and € and e are the Almansi strain tensors
in the isotropic and anisotropic spaces respectively.

In an similar way a®on the updated configuration is obtained as:
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G =(F")y (F) g B (F71),; Alkr (44)
In Figure 3 the four rank tensors which relate the stresses and strains spaces

in the real and fictitious spaces in the referential ( A° and A”) and updated (a”
and a®) configurations are shown.

2.3.3 Flow rule and evolution law for the internal variables

The evolution law of the plastic deformation on the updated configuration is
given by:

0

Ly (€") = d” =A 89 (45)
Taking into account that all the information on the material anisotropy is con-

tained in the four rank transformation tensor a”, the following plastic potential

function on the fictitious space is proposed

9(Tig;0) =F(7; 075 g;0) =G(T; g;0) = k (46)
Considering eqgs. (46) and (45) the evolution of the plastic part of Almansi
strain is

0 . dg OF . 07 o5

i —'—/\—:a7=(é) :a (47)
ar o7 ot oT
where (é)T is the plastic flow normal to the plastic potential function § in the
isotropic space. The additivity concept of the strain velocity allows to extend the

strain transformation rule to the plastic part of the strains, so

dP =\ ==

e y e 3§ T e N\T T
&‘D:a:dp:Aa:ﬁ:a:a:(e):a (48)

where d is the isotropic plastic strain on the updated configuration. The evolu-
tion of the plastic hardening internal variable is given by

89 %0y Gy, O
where the second order tensor (h™), is a functlon of the actual stress state and
of the actual hardening plastic variable. This tensor, in the most simple case of
plasticity theory, is the stress tensor. Therefore, the evolution law of the internal

variable is written as

G=3 (h™), : 52 =A (™), :

G=AT: 2 (50)
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3 Anisotropic composite material model

3.1 Introduction

The use of composite materials in structures like fiber reinforced plastic (FRP)
has significantly increased during the past few years. This trend is mainly due to
the fact that composite materials have properties which are very different from
conventional isotropic engineering materials.

Composite materials present high strength to weight and high stiffness to
weight ratio, are corrosion resistant, thermally stable and are well suited for
structures in which the weight is a fundamental variable in the design process.
Structural components requiring high stiffness and strength, impact resistance,
complex shape and high volume production are suitable candidates to be man-
ufactured using composite materials. This explains why aerospace, automotive
and marine industries use these materials (Ali, 1996) (O’Rourke, 1989). Compo-
nents manufactured with composite materials are tough and durable, exceeding
in many occasions the performance of metal parts.

In the redesign process of a structural component using composite materials,
simple replacement of the component is not enough. Due to the special char-
acteristics of these materials (high anisotropy and high strength ratio between
matrix and fibers), the redesign of the component is necessary. Furthermore,
analytical techniques for components manufactured with composite materials are
entirely different from conventional methods of analysis used for isotropic mate-
rials and require specialist knowledge. The design process of components made
up of composite materials today is mainly based on empirical methods. The ab-
sence of numerical simulation tools for the non-linear analysis of the behavior of
composite materials is observed in the literature.

The failure mechanism of fiber reinforced materials is complex due to the
presence of diverse phenomena and can happen as a combination of diverse failure
mechanisms. In this work the anisotropic constitutive model of previous section
has been extended by using mixing theory to take into account this complex
phenomena. Details of the particular class of mixing theory used are described
next. The model is based on three theories:

e Large strains for isotropic materials,
e Mapping space theory for anisotropic materials. This theory allows to trans-

late the anisotropic plastic behavior of the material into an isotropic plastic
one.

e Enhanced mixing theory for isotropic materials which allows to combine
basic substances,
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The adequate selection of the constitutive model, yield criteria and plastic flow

rule are very important in the description of the non-linear anisotropic behavior
of FRP materials.

3.2 Mixing Theory

There are several theories which allow to simulate the constitutive behavior of
composite materials, among them Mizing Theory is considered one of the most
appropriate.

Trusdell and Toupin (1960) studied mixing theory providing the background
for the work of Ortiz and Popov (1982a) . These results also constitute the base
of the work of Green and Naghdi (1965) and Ortiz and Popov (1982b) for bi-
phase materials. The model presented here is a more general one and it allows
to represent the non linear constitutive behavior of a material made up of ”n”
anisotropic phases undergoing large strains.

The mixing model chosen is based on the following assumptions: (i) in each
infinitesimal volume of a composite material a finite number of compounding
substances participate; (ii) each substance participates in the behavior of the
composite in the same proportion that its volumetric participation; (iii) all com-
pounds have the same strain (closing equation or compatibility concept); (iv) the
volume occupied by each compound is much smaller than the total volume of the
composite.

The second hypothesis implies a homogeneous distribution of all substances
in a certain region of the composite. The interaction between the different com-
pounding substances, each one with their own constitutive (”base”) model, yields
the behavior of the composite which depends on the percentage volume occupied
by each substance and its distribution in the composite.

The third hypothesis is based on the fact that all phases in the mixture
have the same strain field!. The strain compatibility condition must be fulfilled
in the reference and updated configurations for each phase. On the updated
configuration the condition can be written as (Trusdell and Toupin, 1960) (Odiate
et al., 1991):

eij = (€ij); = (€i5)y = - = (€ij),, (61a)
The definition of the stress T of the whole composite is obtained considering
an hyperelastic model (Malvern, 1969) as

LThis assumption is valid in absence of atomic diffusion. The atomic diffusion phenomena
take place at high temperatures. In this analysis a moderate temperature below melting point
is considered.
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oL oY &
— _— = k}c c £ = k:c
T =g = L km G =D k(7). (52)
where k. is the ratio between the volume of the compounding ¢ and the total

volume of the whole composite. The elasto-plastic tangent constitutive tensor is
obtained as (Car et al., 1999)

n

8%y
J:mzz:kc(cT)C (53)

c=1

where (cT )c is the tangent elasto-plastic real anisotropic constitutive tensor. De-
tails of the derivation of the elastoplastic tensor are given in Oller et al., 1994.

Due to the presence of complex phenomena, in the failure of composite materi-
als the classical mixing theory is not enough, i.e. short fiber reinforced composite
materials or debonding phenomena. This phenomena takes place in composite
materials when there is a relative slip between compoundings and the maximum
shear stress of the interface is greater than its yield value. In this case the matrix
is not able to transfer the loads to the fiber, so the fiber can not increase its
stress state because the matrix-fiber interface can not resist it. The modification
in the constitutive model to take into account these phenomena is based on the
ideas that the transfer of loads between matrix and fiber change when the matrix
plastifies. This model is considered a ”non-local material” model. It is based on
defining the stress state in the fiber at the time the matrix reaches the plastic
state. Then the fibers increase their stress state according to a new constitutive
tensor which is a function of the frictional forces between matrix and fibers.

The classical mixing theory is valid only for materials with a parallel behavior,
i.e. composite materials with large fibers. In the case of composite materials with
short fibers the compatibility equation (eq.(51a)) is not valid. Therefore, in this
case it is necessary to modify the compatibility equation (Oller et al., 1995b) or
make a correction in the properties of each compound preserving the compatibility
equation (Car et al., 1998). This method leads to a simpler formulation.

To take into account such phenomena, it is necessary to change the compati-
bility equation through the modification of the properties of the-compounds. For
short fiber composite materials, or composite materials with debonding phenom-
ena the compatibility equation can be written as

eij =m (e + efy) =na (& +€f;),= .. =nn (e + ), (54)
\ - 7 N\ — 7 N——— e

(es), (eis), (eis).
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Figure 4: Constitutive model for bi-phase reinforced composite material
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Eq. (54) expresses that the strains in each point and component e; is n; times
the deformation of the whole material e. Factor n; is a function of the internal
strains variables. With this hypothesis, the stress in a compound is computed as

(T); = (e' - e"’)i :&E/: (e—eP), (55)

C;

The proportionality factor n; define a new constitutive tensor c; which allows
to compute the stress of the ith compound in terms of the overall strains in the
composite.

It is important to note that the elasto-plastic constitutive model presented in
Section 2.3 is one of the "base” models used in the mixing theory above described.

In particular, in fiber reinforced composites a constitutive model for each
phase is considered. A standard isotropic plasticity model has been chosen for
the matrix material, whereas the behavior of the fiber reinforcement is modelled
by the anisotropic elasto-plastic model proposed here.

Figure 4 shows an schematic flow diagram for the non-linear finite element
analysis of a bi-phase material. The matrix phase is considered to be an isotropic
material and the reinforcement fibers are modeled as an anisotropic material.

4 Numerical example. Shear test of a composite
specimen

In this section, an application example using the proposed model is presented.
The example consists of the study of the non linear behavior of a specimen made
of a bidirectional laminated composite material (+45° —45°)gs subjected to a
plane shear state according to ASTM D4255 (American Society for Testing and
Material, 1994). The matrix of the composite is a RS-3 Policinato resin and the
reinforcement are carbon fibers XN-50 with volumetric participations of 40% and
60% respectively.

In the numerical simulation the resin behaves like an isotropic material with
an elasto-plastic constitutive law, while the fibers behave as an anisotropic elasto-
plastic material.

The mechanical properties of the epoxi resin and XN-50 fiber are given in
Tables land 2.

The dimensions of the specimen and the position on the testing machine are
shown in Figure 5. Prescribed vertical displacements are considered on the test
which induce a plane shear stress state.
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Figure 5: a) Geometry of the specimen b) Testing machine

The simulations have been carried out using a finite element mesh of standard
3 node plane stress triangular finite elements with 2074 elements, 1114 nodes and
2228 degrees of freedom. Figure 6 shows the finite element mesh used in the
numerical simulations.

In Figure 7 the boundary conditions applied to the finite element mesh are
shown. Figure 7a shows the detail of the boundary conditions of the left hand
side holes in which a displacement in the vertical (y) direction is imposed. Figure
7b shows the boundary conditions in the right hand side holes where there are
not imposed displacement. An incremental analysis considering 200 displacement
increments was performed.

Figure 8 shows the deformation of the specimen in the final state. Displace-
ments have been amplified three times to show the local effect produced on each
hole. Deviation effects on deformed mesh during the development of the test can
also be observed.
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Young modulus 3170 Mpa
Poisson Coefficient 0,35
Yield Stress 75,53 Mpa
Post yield behavior law | exponential with softening
Fracture Energy 1,47TN/m
Vi 40%

Table 1: Material properties of epoxi resin

Young modulus 507.177 Mpa
Poisson Coeflicient 0,0
Yield Stress 3183.34 Mpa

Post yield behavior law | linear with hardening

Vs

60%

Table 2: Material properties of XN-50 fiber

Figure 6: Finite element mesh
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Figure 7: Boundary conditions used in the numerical simulation. a) Left holes.

b) Right holes

In Figure 9 contours of the displacement module is presented. It is observed
that in the central area of the specimen the displacement field presents a high
gradient due to the relative displacements produced by the aluminium rails (See
figure 5)

Contours of the o, stress in the central area of the composite are plotted in
Figure 10a. The maximum shear stress was reached in two zones of the central
area. Figure 10b shows the plastic shear strains in the central area of the com-
posite. Plastic shear strains are also concentrated in the center of the specimen.
The irreversible plastic strain gives an idea of the diffuse fracture on the sample.
(See Figure 11)

In Figure 11 the comparison between the tested specimen and the numerical
simulation is displayed. In Figure 1la, the photograph of the tested specimen
is shown. In the tested specimens two cracks can be observed with an angle of
45° with respect to the longitudinal axis of specimen. In the central area there is
another crack. Figure 11 b shows the equivalent plastic strains contours obtained
which indicate a diffuse fracture region (?) (Oller, 1991). The first fracture
band appears in the central area of the specimen whereas two other fracture
bands progress at 45° with respect to the longitudinal axis of the specimen.
Figure 12a shows a detail of the cracks in the central area of the specimen and
Figure 12b shows a detail of the first crack. In both figures it is possible to see
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Figure 8: Shear test ASTM D4255. Deformation 3:1

the delamination phenomena taking place in the specimen. This is due to the
presence in the composite of a high modulus phase: the fiber, and a low modulus
phase: the matrix.

The curve in Figure 13 shows the total load vs. the displacement imposed
at the left side holes. Results obtained with the mixing theory considering a
linear behavior of each phase under small and large strains are compared with
those obtained with the proposed non-linear model. Results using the small
strain linear elastic model provide upper limit values. In this figure a non linear
response of the composite is appreciated. One of the reasons of the non linear
behavior of reinforced composite materials is due to the propagation of cracks
in the matrix and the relative displacement between fibers and matrix. The
phenomena of matrix cracking and debonding or slip between fibers and matrix
reduces the global stiffness and leads to inelastic and not recoverable strains.
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Figure 9: Test of Policinato RS-3 - XN-50 specimen. Contour of displacement

5 CONCLUDING REMARKS

The conventional techniques used for the analysis of simple isotropic materials
are not valid for the non linear study of composites structures. It is therefore
necessary to introduce new theories which account for the complex phenomena
that take place in composite materials behavior.

An extension of the classic isotropic plasticity theory to multiphase anisotropic
materials undergoing large strains has been presented. The anisotropic theory is
based on the concept of mapped tensors from the real anisotropic space to a ficti-
tious isotropic space. The use of an auxiliary fictitious isotropic space simplifies
both the formulation of the non linear constitutive model and the computational
implementation into standard non linear finite element codes.

Also in this work, and as an alternative to more standard composite models,
the non linear behavior of composites is modelled by means of a modified mixing
theory, acting on the anisotropic elasto-plastic model formulated in large strains
developed in the paper.

The example presented shows that the constitutive model developed is appro-
priated for the analysis of composite materials in linear and non-linear regimes.
The formulation is quite general and it allows to reproduce complex non linear
phenomena in composite materials such as anisotropy, large strains, plasticity
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a) b)

Figure 10: Test of Policinato RS-3 - XN-50 specimen. a) Contour of shear stress
04y b) Contour of plastic shear strains e?

and fracture.
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Figure 11: Test of Policinato RS-3 - XN-50 specimen. a) Photograph of tested
specimen. b) Equivalent plastic strains contour

Figure 12: Test of Policinato RS-3 - XN-50 specimen. a) Detail of central area.
b) Detail of a crack
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