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ABSTRACT 

 
The trading and investment decision processes in financial markets becomes ever more 

dependent on the use of valuation and risk models. In certain, cases such as risk 

management, modelling practice has become so homogeneous that one is led to ask about 

the effect this has on the price formation process. Furthermore, should stable price 

patterns emerge from this, can sophisticated investors who have private information about 

the use and characteristics of these models make superior gains? The aim of this article is 

to test this hypothesis in a stylised market environment, where a strategic trader who trades 

on information about the valuation and risk management models used by competitors. 

Results show that for our particular market setting, such a strategy has an advantage over 

those that do not use this information. 

 

Key words: Financial markets, Multi-agent simulation, Performativity, Higher-order 

strategies 

 

1. Introduction 

 

Recent advances in financial mathematics and the ready availability of computer power 

have led to an explosive growth in the use of simulation techniques in investment 

decision making. Investors, traders, and fund managers have grown accustomed to back 

up their decisions using valuation models and risk management systems. More so, 

hedge funds and proprietary desks take advantage of mathematical models to scan 

markets for profitable trade opportunities and nowadays automatic trading systems even 

act autonomously in financial markets, with only minor intervention from human actors. 

 

As the use of mathematical models for valuation, forecasting, and risk measurement 

becomes more pervasive, it appears not at all unreasonable to speculate about the effect 

this might have on markets practice and price dynamics. MacKenzie (2004) talks here 

about the performativity of finance theory, in the particular case when well-established 

                                                 
1 First version submitted to the Internacional Conference on Modelling and Simulation – ICMS’04 
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models are not merely describing market behaviour, but are instrumental in bringing 

into existence what they mean to describe. In a similar vane, it is possible to argue that 

as investment strategies in certain markets become ever more dependent on the usage of 

valuation and risk management models, price patterns will no doubt exhibit regularities 

that have not existed as such before, and which should become more pronounced the 

more market participants adopt a coarse grained or homogeneous set of modelling tools. 

 

The aim of this article is to test this hypothesis in a stylised market environment similar 

to the one discussed in (Farmer, 1998), but with the addition of a strategic trader who 

utilises information on the valuation and risk management models used by the other 

market participants. Consequently as the decision making process of those relying 

heavily on models becomes more structured, sophisticated players such as our strategic 

trader might have a chance to take advantage of this by adjusting their strategies to take 

the pervasive model usage into account. Alternatively, a market regulator could use this 

knowledge with the intention of counteracting the negative externalities such a wide-

spread, homogenous use of models could have in financial markets. We will however at 

this point not follow that particular line of inquiry. 

 

 

2. Higher-Order Simulations 

 

2.1 Exploiting Counterperformativity 

 

In a recent article, MacKenzie (2003) noted that in the context of the 1998 liquidity 

crisis, modern risk management practice, and notably value-at-risk techniques, induced 

market interdependencies that lead to heightened price instability – a phenomenon that 

has also been commented on elsewhere (IMF, 1998; BIS, 1999; Mayer, 1999) – and, in 

some well-publicised cases, to large losses for the involved institutions. Although these 

problems have been put down by some commentators to inaccurate modelling 

hypotheses, it seems that in this particular case, risk models were counterperformative 

(MacKenzie, 2004) in the sense that they were a determining factor in creating market 

instability. Assuming a slightly relaxed definition of performativity, one can argue that 

the widespread, homogeneous use of any financial models, independently of their 

accuracy or correctness, ought to be constitutive of the price formation process, which, 

in some cases, generate adverse systemic responses. 

 

 

In (Peffer, 2004; Llacay and Peffer, 2004) we have analysed the counterperformative 
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effect that a widespread use of value-at-risk techniques has on the price dynamics and on 

the evolution of a trader population. In this article, we link (counter)performativity of 

valuation and risk management models to that of model-based investment strategies and 

in particular to the possibility of using higher-order strategies to gain a competitive 

advantage in tightly model-structured financial markets. Generally, agent interaction in 

financial markets is not strategic, which Morris and Shin (2000) associate with the fact 

that in normal times, financial markets are like roulette wheels, where the odds of 

placing a bet by a single player does not affect the riskiness of the gamble2. However, 

performativity – or more correctly counterperformativity – can severely affect or even 

invalidate these normality assumptions. And particularly in situations where investor 

behaviour is tightly linked to certain valuation and risk management models, market risk 

might take on a quality that is not adequately reflected in these very models. The 

question is then if in that case the counterperformative nature of some financial models, 

by reducing generic uncertainty and creating what Morris and Shin (2000) have called 

strategic uncertainty, allows sophisticated investors to make superior gains on their 

improved knowledge of the market structure. 

 

2.2 Simulations of Simulations 

 

The idea of directing one’s actions based on competitors’ strategic behaviour is not 

new, of course, and has been extensively dealt with in the game theory literature. 

Unfortunately, investment theory has little to say on strategic interaction in financial 

markets, although (Allen and Morris, 2001) discusses some noted exceptions. In fact, 

most models used in financial valuation, in particular those drawing on econometric or 

time series analysis, seem to dispense of the economic actor and its behavioural 

characteristics altogether or aggregate this into a number e.g. the counterparty credit 

risk. One of the many reasons why strategic interaction is apparently immaterial for 

such models is that in competitive markets, investors are considered mere price takers 

who cannot influence prices with their own trading activities anyway, and decisions 

therefore do not have to be based on competitors’ strategies. 

 

In financial practice however, situations where market participants behave strategically 

with regard to others’ expectations are not uncommon. In a so-called sunspot panic for 

instance, a bank can become insolvent if depositors withdraw their cash solely because 

they think others will do so, and since in that case withdrawing one’s own funds is 

                                                 
2 It should however be noted that the analogy with competitive financial markets is not complete since the 

actions of market participants are constitutive of the outcome – the price in this case – although the 

decision process does not account explicitly for the beliefs about other investors' strategies and beliefs. 
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rational (Diamond and Dybvig, 1983). Asset bubbles are a further example of such 

phenomena and are brought about by beliefs, not founded in economic fundamentals, 

about future economic gains. There has been some interest recently in what are called 

global games (Morris and Shin, 2003), which acknowledge the importance of higher 

order beliefs (one’s beliefs about others’ beliefs about others’ beliefs and so on) in 

determining equilibrium outcomes of games with incomplete information. 

 

To develop our argument, we start out from the idea of global games and apply it to 

situations where significant information is available about the structure of such beliefs. 

In particular, we assume that a large proportion of market participants’ beliefs about 

future events are closely related to the output from the valuation and risk measurement 

models they use. We view valuation, forecast, and risk models that investors and traders 

run on their computers as being simulations and, since we want to assess their market 

impact and strategic potential, make them the target of our own simulations. Following 

the notion of higher-order beliefs, we refer to such simulations of simulations as higher-

order simulations, a concept that allows us to explore what market impact investors’ 

decisions have that are guided by simulations of other market participants’ behaviour, 

which in turn is guided by their own simulations. 

 

 

3. The Methodology 

 

The dominant modelling paradigm in economics and some areas of social sciences 

draws on the pivotal concept of rational choice, in which optimisation of agent 

satisfaction, conceptualised in the theory of expected utility and the consumer choice 

theory, plays a central role. However, representing half-way realistic investment models 

would be an onerous, if not impossible task inside a theoretic-analytical framework and 

we therefore pursue a different approach here altogether. 

 

A growing number of researchers in the social sciences has moved their attention to 

multi-agent systems as a promising framework to model complex social interactions 

(Sawyer, 2003), and there has been some interest in employing this innovative approach 

to explain phenomena observed in financial markets (Chan et al., 1999; LeBaron, 1998). 

The most discernible feature which distinguishes MABS from other simulation 

techniques such as system dynamics modelling or Monte Carlo simulation lies in its use 

of multi-agent system as the fundamental reference framework within which to 

formulate models and run simulations. 
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Hence, to effectively address the question of higher order simulations in investment 

decision making, we present a simple multi-agent model of a stylised bond market 

where investment funds and relative value traders make investment decisions based on 

their proper valuation models and risk measurement techniques. 

 

 

4. The Model 

 

4.1 The Economic Environment 

 

We consider a financial market for two bonds )1(B  and )2(B  in unrestricted supply, 

where IFN  investment funds (IFs), RRVTN  reactive relative value traders (RRVTs), and 

SRVTN  strategic relative value traders (SRVTs) are actively trading both securities using 

different valuation models. We assume that both bonds are substitutes in terms of their 

specifications but that for particular reasons which we won’t specify further, both trade 

at a price spread relative to each other. The investment funds act as fundamental 

investors, deriving the perceived value for both bonds from a private, exogenous signal 

they receive before each trading period. The liquidity of the bonds is given by )1(  and 
)2(  and their initial prices are set to )1(

0B  and )2(

0B  respectively. 

 

Agents place orders at discrete trading intervals where they decide how to change the 

make up of their portfolio based on the valuation models and, in the case where portfolio 

risk limits apply, on the Value-at-Risk (VaR) models. The capital that trading agents 

invest into the trading opportunities at each trading period is proportional to either a 

given constant or a utility-dependent factor c. In the latter case, agents gauge their past 

success based on a regret measure which will allow them to adjust the investment capital 

for the upcoming trading period. 

 

Since the strategy of the relative value traders is based on the price difference between 

both instruments, we define the linear price spread as 

 
)2()1(

ttt BBs  . 

 

4.2 The Market Price Dynamics 

 

Prices )1(

tB  and )2(

tB for both bond issues are set by a market maker in accordance with 

the following linear price formation rule, whereby prices have to rise (fall) in the 

presence of over-demand (over-supply) by an amount that is inversely proportional to 
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the liquidity of the traded security 
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1)(

)()(
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t
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i

i

t

i

t
NNN

BB  





 (4.1) 

 

where )(

1

i

t  is the total time- t  excess order – the sum of all orders emitted in the time 

interval )1] t,t  – of bond i and )(i  is a constant liquidity factor that accounts for the 

depth of the market in the bond i. The disadvantage with this linear formulation is that 

prices can become negative, which could be avoided by using a log-price formulation 

for the price formation rule. Outstanding orders in any given trading interval are always 

filled at the quoted prices and the market maker absorbs the excess or covers the 

shortfall, adjusting the prices according to the impact function (4.1). 

 

4.3 First and Second Order Trading Strategies 

 

In our model, a strategy is a rule by which an agent A determines the next-period order 

vector )(

1

A

t  based on the information I he has 

 

t

A

tI ΘS )(: . 

 

Zero-order strategies are those that take only information from the system environment 

into account. In the context of financial markets, zero order strategies may not seem 

particularly interesting but they are exemplified in those decisions where for instance 

macro-economic factors play a role. However, traders in our model will not use such 

strategies. Second order strategies are strategy rules that depend not only on information 

from the environment, but also on aggregation and individual, agent-related information, 

such as the type of valuation models competitors use. Between the zero and second 

order strategies lie those that are most pervasive in financial markets, namely the first 

order strategies that use macro-level, aggregate or systemic information to direct the 

agents’ decision process. Here, price and volatility information are perhaps the two most 

important market aggregates. 

 

In the following we will introduce three types of market agents, two of which use first-

order valuation strategies and a third type which uses second-order strategies based on 

the knowledge of models the other traders use.  

 

4.3.1 Investment Funds (IFs) 

Investment funds are so-called fundamental traders, who are not interested in historical 
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price patterns of the securities, but in their intrinsic value. Each investment fund jIF  

updates his perceived fundamental value of the bond i in accordance with an exogenous 

random walk of the form 

 
),(

1

),(),(

1
jjj IFi

t

IFi

t

IFi

t vv     

 

where the 
),(

1
jIFi

t  are drawn from the normal distribution ),(
),(),( jj IFiIFi

N  , with agent-

specific, time-independent drift and variance. In particular, investment funds’ value 

perception 
),(

1
jIFi

tmv 


 is modelled as a moving average over the past m  fundamental values 

 






 
1

2

),(),(

1

1 t

mtk

IFi

k

IFi

tm
jj v

m
v


. 

 

The initial value 
),(

0
jIFi

v  is set to the price )(

0

iB  of bond i. Using a MA(m) price dynamics 

also allows the SRVT to make reasonably accurate value forecasts. Investment funds 

emit orders, whose magnitude is proportional to the difference between the actual price 
)(i

tB  and the perceived value 
),(

1
jIFi

tmv 


, and is also proportional to the available investment 

capital for their strategy 

 

 ),(

1

)()(),(

1
jjj IFi

tm

i

t

IFIFi

t vBc  


 . 

 

The capital factor 
)( jIF

c  is either a constant or inversely proportional to a measure of 

regret, which we introduce in section 4.4. Once the agents have calculated the bond 

orders for the current trading interval, they update their positions in both bonds 

 
),(

1

),(),(

1
jjj IFi

t

IFi

t

IFi

t qq    . 

 

In section 4.5, we will introduce VaR risk limits for the investors portfolios, which may 

restrict the total position the investment fund can take in bond i.  

 

4.3.2 Reactive Relative Value Traders (RRVTs) 

Reactive relative value traders are a special creed of momentum traders and hence 

belong to the class of technical traders. Their strategy is quite simple, and is based on the 

change in price spread )2()1(

ttt BBs   between the two bonds. As in the case of the 

investment fund, the relative value trader places orders that are proportional to the 

capital factor 
)( jRRVT

c , which is either constant or reflects his idiosyncratic risk aversion 

and the confidence he places into his trading strategy 
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 1

)(),1(

1   tt

RRVTRRVT

t ssc jj . (4.2) 

 

The order of the second bond is determined so that the net cash outlay in the trade is 

zero 

 

)2(

)1(
),1(

1

),2(

1

t

tRRVT

t

RRVT

t
B

B
jj    . (4.3) 

 

Once the RRVT has determined the orders for both bonds, he will proceed to update the 

total portfolio positions according to 

 
),(

1

),(),(

1
jjj RRVTi

t

RRVTi

t

RRVTi

t qq    . 

 

4.3.3 Strategic Relative Value Traders (SRVTs) 

Strategic relative value traders base their trading strategy on a forecast of the orders of 

investment funds and reactive relative value traders. In the model as it stands at the 

moment, the strategic traders have knowledge of the past m orders 
),(

,,1
jIFi

tmtk   placed by 

each one of the investment funds jIF  and know the capital factor 
)( jIF

c  each fund is 

using in their strategy. Given the past orders, the SRVT can infer the values 
),( jIFi

tkv   and 

hence calculate the expected value of the MA(m) indicator 

 


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, (4.4) 

 

from which the investment fund will calculate his next-period order, and where the 

‘tilde’ denotes a random variable. Taking expectations on both sides of expression (4.4) 

then leads to the MA(m) estimate the SRVT uses to calculate the orders issued by the 

investment funds 
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The estimated total order issued by the investment funds is then determined by 
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The strategic relative value trader will then calculate the orders by the RRVTs in the 

current time period, which, knowing their capital factors, can be determined exactly and 

thus are equal to the one the RRVTs are calculating using (4.2) and (4.3). The total 

number of orders by RRVTs for both bonds is hence equal to 

 




 
RRVT

kk

N

k

RRVTi

t

RRVTi
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1

),(

1

),(

1 
. 

 

In some of the simulations where agents use VaR risk limits (see section 4.5  for details), 

order constraints can apply which the SRVT can take into account when estimating the 

orders the IFs and the RRVTs are likely to issue. In that case, the SRVT needs to 

estimate the next-period position of agent jA  and determine whether a risk limit is likely 

to apply or not, based on the next-period forecast jA

t

,
ˆ


  of agent jA ’s portfolio 

volatility. 

 

Having determined the current period forecasts of the orders for both the investment 

funds and the reactive relative value traders, the SRVT will estimate the next-period 

prices )1(

1tB  and )2(

1tB  using the price dynamics discussed in section 4.2. 
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and a trend adjustment so that the final price estimate is equal to  
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The strategic relative value trader issues orders for bond )1(B and 
)2(B  based on the same 

spread momentum strategy used by the RRVTs, but with a next-period spread estimated 

using the bond price forecast (4.5) 
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Their next-period portfolio position is thus 
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4.4 Regret Adjustment of Agent Strategies 

 

The market dynamics resulting from the trading activities in different agent populations 

is analysed in detail in sections 5.1 and 5.2 for the strategies outlined in the previous 

section. Up to this point, agents invested into their trading strategy independently of the 

actual success of that strategy. Since agents in our model cannot choose alternative 

strategies if theirs fail, they will want to reduce the capital outlay once it becomes 

apparent that the risk of loss is too great. To model this behaviour, we adjust the hitherto 

constant capital factor with an expected regret measure of the form 
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where )( 1



t  is the mean of total accumulated profits,   is a scaling factor, )( 1



t  is 

one minus the strategy’s confidence level,   is a measure for the investor’s risk 

aversion, and   (  ) stands for the frequency of loss (profit). Using the expected regret 

measure r, agents will determine at each trading interval the capital – represented by the 

factor c – they are prepared to invest into the trading opportunity 
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In order to determine the regret measure (4.6), agent jA  first calculates the accumulated 

time-t profit 
)(

1
jA

tG   of his portfolio 
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after which the confidence level is calculated following two different methods, a direct 

calculation of the profit frequency of a given strategy and a calculation in which we 

make the normality assumption for the accumulated profit. 

 

With the direct method, agents determine their confidence level w.r.t. their strategy by 

calculating the ratio of profits to total traded volume 
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where ),0max()( xx  . In the case of the normality assumption, agent jA  calculates 

the mean )(
)( jA

tG  and variance )(
)( jA

tG  of the accumulated profit and constructs a 

normal distribution in order to determine his confidence level 

 

)0(1  tt XP , 

 

with ))(),((~
)()( jj A

t

A

tt GGNX  . 

 

4.5 Portfolio VaR Limits 

 

We are now adding a risk model to the set of models used by agents in their investment 

decision making process, with the intention of inducing a certain irregularity into the 

price dynamics in the bond market, thereby possibly increasing the possibilities for the 

strategic trader to gain an advantage compared to the two other types of traders, and in 

particular to the reactive relative value traders, since their strategies are comparable. 

 

Currently agents determine the number of bonds they wish to buy or sell in a given trade 

interval using the strategy assigned to them. Since the market risk of their portfolio 

increases with the net position and the price volatility, we will impose VaR position 

limits which in effect curtail the risk of future losses. Value-at-Risk is a widely 

employed method to measure market risk of an investment portfolio based on the 

positions, volatilities, and correlations of the assets in the portfolio. Assuming that for a 

given portfolio   and time horizon ttt hh   the P&L3 
tV

~
  is distributed normally 

with mean 0  and normalised variance 2)(  t , we obtain the following estimate for 

the maximum loss within a confidence interval VaR  

 

htt tqVVaR  
 )( , 

 

such that VaRh VaRtV   })({P . After having determined their respective orders 
),( jAi

t , the time-t-1 change in value 
1 tt VV  of the portfolio of agent jA  is equal to 
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t
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tit BBqV    . Given a maximum loss limit 
)( jA

L  for agent 

jA , the upper bound on the time-t value of the portfolio is equal to  

                                                 
3 Profit and loss 
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where we will use a confidence level of 99% or, equivalently, set 33.2)( q . If this 

condition is not satisfied, the agent will reduce the time-t-1 orders to a level where the 

VaR risk limit condition is met and in a way that the proportion of the bonds in the 

portfolio does not change. Suppose that the time-t value of the portfolio exceeds the 

maximum permitted and that the difference between 
tV  and the maximum time-t value 

and the residual value is denoted by  tV , and that we need to reduce the time-t-1 orders 

with the asset proportionality factor defined as )1()2( qq . In that case, the orders will 

have to be reduced by the following amounts 
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so that the VaR condition is satisfied for both bonds. The volatility of the two-bond 

portfolio  t  is calculated taking into account the historical correlation between both 

bonds 
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with 
),( jAi

tq  being the relative size of the position of asset i , and the bond volatility at 

time t calculated over a window of size   using the following standard expression 
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and the correlations are calculated in the same window using a standard expression as in 

the case of the bond volatilities. 
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5. Market Simulations 

 

By using a multi-agent simulation of the market described above, our aim is twofold. 

First, we want to illustrate the impact that a widespread use of valuation and risk models 

have on price formation and market stability. Second, and more importantly, we want to 

address the question of using simulations of competitors’ decision models to inform 

one’s investment strategies. In particular, we would like to appraise the effectiveness of 

using higher order simulations in the investment process for our particular market. 

 

5.1 Case 1: A Population of Investment Funds and Reactive Relative Value Traders 

 

In a first series of simulation experiments, we consider a trading context without the 

presence of higher order strategies, and hence a population consisting only of investment 

funds and reactive relative value traders. In each of the cases, the variable parameters of 

which are listed in table 5.1 below, 20 investment funds and RRVTN  reactive relative 

value traders buy and sell the two available bonds, and market prices are updated by a 

market maker absorbing order excesses and shortfalls as they arise over time. The 

number of trading intervals in each round is equal to 200 and a total of four experiments 

E1.1 – E1.4 have been carried out4. The initial price for both bonds is 2,1,10)(

0  iB i , 

the size of the volatility window for VaR calculations is 25 , the drifts of the agent-

specific, exogenous value processes are drawn from the uniform distribution 

)03.0,03.0(U , and the volatility is equal to 0.2 for all the processes. All experiments 

have been carried out with both the capital factor set to 1 and with making it dependent  

 

 

 

 

 

 

 

 

 

 

on the regret measure discussed in section 4.4. The scaling factor   used in the 

expression for the expected regret has been set to 2/)001.0ln(  in all experiments and 

the risk aversion   of each agent is equal to 2 . No moving average is used to model 

                                                 
4 Each experiment uses the same set of random numbers so that the results remain comparable 

 

Experiment )2()1( ,  RRVTN  VaR  

E1.1 1.1 1 no 

E1.2 4 1 no 

E1.3 1.1 20 no 

E1.4 1.1 20 
)( jA

L  = 0.5 
 

              VaR: agents using VaR position limits 

              Table 5.1: Parameter settings for case 1 
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the investment funds’ perceived fundamental value – or, equivalently, the window size 

has been set to 1m . The constant parameters have been chosen so that the price 

dynamics is reasonable and no results have been included where prices diverge since our 

aim is to analyse higher-order strategies in a working market environment. 

 

5.1.1 Single RRVT, Low Liquidity, and no VaR (E1.1) 

In this first experiment, a low liquidity environment increases price volatility and 

because of the overwhelming presence of investment funds, prices closely follow the 

random walk of the value process. In such an environment with erratically changing 

prices, relative value traders have little chance to make a living with their momentum-

based spread strategy. 

 

 

 Figure 5.1: Bond prices and price spreads for IFs and RRVTs 

It is clear from the results that the relative value trader accumulates losses with passing 

time and that investment funds on average gain. However it should be noted that the IF-

accumulated gains in figure 5.2 are averaged over all investment funds and that this can  

 

give the misleading impression that the IFs have a winning strategy, a fact which can be 

more clearly discerned from the strategy confidence levels shown in figure 5.2. In fact, 

 

 Figure 5.2: Accumulated profits and confidence level for IFs and RRVTs 
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as can be seen from the standard deviation of accumulated profits in figure 5.3, profits 

for individual investment funds are quite volatile and the confidence level seems to 

settle at around 0.5, the limit for a zero-sum game. The relative value trader’s 

confidence in his strategy however tends to zero as his loss making is gaining 

momentum. 

 

In figure 5.3 one can observe that as the mean of accumulated profits for investment 

funds rises, so does the average standard deviation. Hence, although average profits for 

the investment funds rise, chances to make a loss at any given trading interval are only 

slightly smaller than those to make a profit, and the probability that the loss exceeds a 

given limit increases with time. 

 

 

 Figure 5.3: Mean and standard deviation of accumulated profits for IFs and RRVTs 

If instead of a constant capital factor, agents apply a variable, regret-dependent capital 

outlay, the profit outlook changes for the relative value trader and investment funds 

alike. Looking at the price time series for bond )1(B  and )2(B , we can see that the price 

does not follow the value as closely as it did in the case where the capital factor was 

constant. In fact, comparing the average orders for bond )2(B of this case with those of  

 

 

 Figure 5.4: Bond prices and value processes for both bonds 
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the case where 1c , clustering of order excess and shortfall becomes apparent (figure 

5.5). 

 

In a rising market, investment funds that have consistently believed that the asset is 

undervalued will have entered long positions, which in turn will have generated 

substantial profits for them, led to heightened confidence in their strategy and therefore 

contributed, through an increase in their capital factor, to even larger positions. Funds 

that on the other hand have, in the same rising scenario, believed that the asset is 

overvalued, will have entered a short position in the hope to make a profit when the 

prices return to their perceived valuation levels. In the meantime however, these funds  

 

will loose money and therefore reduce the capital they invest into the fundamental 

strategy. As shown for bond )1(B  in figure 5.4, the influence of the longs in such an 

 

environment can be so strong that they manage to push prices far beyond average 

valuation levels. The reason for this is that upward movements in prices increase 

demand in the asset by longs more than decreases in prices are able to increase the 

supply by shorts, because of the asymmetry created by the differing capital factors. 

Short-lived downward moves also do not alter significantly the confidence of longs in 

their strategy despite their making losses. If the downward pressure persists however, 

longs with substantial positions will reduce their marginal capital investment in the 

strategy and their influence fades, while the confidence of shorts will recover and their 

influence on prices will rise. 

 

 Figure 5.5: Shortfall and excess clustering for IFs 
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 Figure 5.6: Average confidence levels and capital factors for IFs and RRVTs 

Comparing the RRVT confidence levels for a constant capital factor (figure 5.2) with the 

levels obtained in the case of agents making regret-adjusted marginal investment 

decisions (figure 5.6), one finds a noticeable increase in the proportion of positive 

payoffs for the relative value strategy to the point where it reaches the average level of 

investment funds. This is in stark contrast to the rapidly declining levels of confidence 

of the RRVT in the case of the constant capital factor. Although the RRVT is still 

making losses at the beginning of the trading round, these do not persist as in the 

constant factor case and profits recover after around 140 trading intervals. 

 

The dynamics of the capital factors for the investment fund is more complicated 

altogether and shows a behaviour that is in line with our discussion on the regret-

adjusted capital factor above. The left-hand graph in figure 5.7 shows all individual 

 

 

 Figure 5.7: IFs and RRVT capital factors and two individual paths 

capital factors for the IFs and the RRVT. The right-hand graph shows the paths for the 

capital factors of two investment funds, where one can clearly discern how the 

perception of the adequacy of the fundamental strategy shifts from a high-confidence to 

a low-confidence level and vice-versa. 
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5.1.2 Single RRVT, High Liquidity, and no VaR (E1.2) 

Setting the liquidity in the previous experiment of both bonds to higher values will 

smoothen the price time series and improve the profit potential of the relative value 

strategy, mainly because of the improved prediction accuracy of the next-period prices 

(see figure 5.8 below). Maximum absolute errors for instance are approximately five 

times as high in the low-liquidity scenario then in the case where 4 . 

 

 

 Figure 5.8: Comparing forecast errors of RRVT for the two cases of 1.1 and 4  

(constant c) 

Even in the case where the capital factor is constant, the relative value strategy shows 

much improved levels of confidence and accumulated profits do not show the downward 

trend they did in the previous example (see figure 5.9). 

 

 

 Figure 5.9: Accumulated profits and confidence level for 4  and constant capital factor 

 

5.1.3 Multiple RRVTs, Low Liquidity, and no VaR (E1.3) 

In this experiment, the liquidity was reset to the value it had in E1.1 ( 1.1 ) and the 

number of reactive relative value traders was increased from 1 to 20. In the case of a 

constant capital factor ( 1c ), prices tend to over- and undershoot the value process and 
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 the oscillatory behaviour tends to erode the profits of the RRVTs. Setting the capital 

factor proportional to the expected regret measure has a similar effect than it had in 

E1.1. Average accumulated profits and confidence levels are shown in figure 5.10 for 

both investment funds and relative value traders. 

 

5.1.4 Multiple RRVTs, Low Liquidity, and VaR Risk Limit (E1.4) 

Agents will now use value-at-risk position limits to constrain the order the issue at each 

trading interval. We have set the maximum acceptable market risk to levels where this 

induces a marked rise in volatility in the bond price process and acknowledge the fact 

that the oscillations this is provoking might be extreme, but nevertheless underline our 

case. Under such a scenario, bond spreads can change abruptly and even in the case of 

using a variable capital factor, the RRVTs  fare very poorly (see figure 5.11). 

 

 

 Figure 5.11: Price spread and confidence levels when IFs use VaR 

When introducing a strategic relative value trader into our market (see section 5.2), we 

will see that investing into the relative value strategy whilst being able to take into 

account possible future VaR adjustments can drastically improve profit outlook 

compared to the naïve relative value strategy used by the RRVTs. 

 

 Figure 5.10:Accumulated profits and confidence levels for variable capital factor and NRRVT =20 
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5.2 Case 2: Adding a Strategic Relative Value Trader 

 

In this second set of simulation experiments, we will add an additional trading agent 

who uses a higher order relative value strategy to trade on improved knowledge of the 

market structure, in particular of the models that other agents – reactive relative value 

traders and investment funds – use to determine their orders. Similar than in the previous 

case, 20 investment funds trade in each of the experiments E2.1 – E2.4 with RRVTN  

reactive relative value traders, with the main difference that a single strategic relative  

 

Experiment RRVTN  m  VaR  
SRVT knows 

about VaR? 

E2.1 1 1 no N/A 

E2.2 20 15 no N/A 

E2.3 20 15 
)( jA

L  = 0.5 No 

E2.45 10 1 
)( jA

L  = 0.5 Yes 
 

  m: moving-average window size; VaR: agents using VaR position limits 

  Table 5.2: Parameter settings for case 2 

value trader is also actively trading in the market, although in sizes that have only little 

impact on prices. In each trading interval, bond prices are again set by the market maker 

according to the price impact function (4.1). Each experiment6 consists of 200 trading 

intervals, except for E2.4, which compares profits of the SRVT with those of the RRVTs 

over a sample of 10,000 trading rounds (each consisting again of 200 trading intervals). 

The initial price for both bonds is, as in case 1, 2,1,10)(

0  iB i , the size of the 

volatility window for VaR calculations is 25 , the drifts of the exogenous value 

processes are drawn from the uniform distribution )03.0,03.0(U , and the volatility is 

equal to 0.2 in each case. All experiments except E2.4 have been carried out with the 

liquidity factors 1.121   . Simulation runs have been conducted both with a 

constant capital factor equal to 1 and with making it dependent on the regret measure 

discussed in section 4.4. The scaling factor   used in the expression for the expected 

regret has again been set to 2/)001.0ln(  in all experiments. 

 

 

                                                 
5 The liquidity factor   is equal to 2 in this experiment 
6 Experiments E2.1 – E2.3 use the same underlying random number sequences to ensure that the results 

are comparable 



 21 

5.2.1 Single RRVT, small MA (m=1), and no VaR (E2.1) 

Parameters of this first experiment are identical to those in E1.1, however with the 

difference that a strategic relative value trader has been added to the market. The 

strategies of both the RRVT and the SRVT are fundamentally the same, but whereas the 

RRVT uses two past values of the bond price spread to calculate his orders, the SRVT 

makes a prediction of next period’s spread based on the knowledge she has on the 

strategies – or models – used by both the RRVTs and the IFs to calculate her bond 

orders. Results show that confidence levels of the SRVT are lower than those by the 

RRVTs by a factor of 1.5 in the case of a constant capital factor (c =1), although this is 

an exceptional circumstance in all the results that follow. In this particular situation, 

with only one RRVT actively trading in the market and the capital invested in the 

strategy time-invariant, confidence levels are very low and do not exceed 40%, thus 

making both strategies unattractive compared to a fair gamble. 

 

 

 Figure 5.12: Accumulated profits and confidence levels for variable capital factor 

Similar to the previous case, an environment with predominantly investment funds is not 

very conducive for the relative value trading strategy of either the RRVT or the SRVT. 

Given that the prices follow the random walk of the fundamental values closely, there is 

not much room for manoeuvre to exploit the direction of spread movements. 

Nevertheless, we can observe in figure 5.12 that the SRVT has a slight advantage over 

the RRVT and that her confidence in the higher-order strategy is quite high. Hence, 

although average accumulated profits are lower than for the IFs, the little profit they 

make is more certain. We have already mentioned in experiment E1.1 that accumulated 

profit graphs show average values and that profits change considerably from one 

investment fund to another. Confidence levels are only slightly higher then 50% also in 

this experiment so that the IF strategy does not fair much better than a fair game. 
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5.2.2 Multiple RRVT, large MA (m=15), and no VaR (E2.2) 

In this experiment, there are now twenty reactive relative value traders compared to only 

one in the previous experiment E2.1, and investment funds calculate their fundamental 

value forecasts using a moving average window of 15m . The increase in the MA  

 

 

 Figure 5.13: Forecast error for RRVTs and SRVT (constant capital factor) 

window size will induce a certain structure in the market – compared to the random 

walk of the fundamental value – that the strategic trader can exploit. In fact, as can be 

seen in figure 5.13, the price predictions the SRVT does based on a deeper knowledge of 

the strategies used by the other traders are much more accurate than those of the RRVT  

 

 

 Figure 5.14: Accumulated profits and confidence levels for variable capital factor 

who uses a simple historical momentum strategy. While the RRVTs do not seem to 

make any substantial profits, the strategic trader does very well for both constant and 

variable capital factor and her low prediction error allows her to make steady gains 

which in turn pushes her confidence level to 100%. In this second case, when agents 

adjust their investment capital in accordance with the regret measure (4.6), the price 

behaviour becomes much less oscillatory, which is beneficial for the relative value 

traders, and in particular for the SRVT. 
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5.2.3 Multiple RRVT, large MA (m={1, 15}), and VaR Risk Limit (E2.3) 

Our aim with this experiment is to analyse the effect that a VaR risk management model 

for IFs has on the price dynamics and the trade profitability. As we have seen in 

experiment E1.4, relatively low VaR limits tend to lead to a volatile price behaviour, 

which we have seen is affecting in particular the profitability of the relative value trader. 

In this experiment, we will analyse the results obtained by the strategic trader under two 

different scenarios. In a first simulation run the SRVT disregards the fact that the 

investment funds employ a VaR strategy to limit their positions and will face similar 

problems of making a profit than do the reactive relative value trader. In the second 

scenario, the SRVT has knowledge of the investment funds’ VaR strategy and 

incorporates this into her valuation model. 

 

 Figure 5.15: Accumulated profits and confidence levels for variable capital factor (incl. VaR) 

In the first case, figure 5.15 shows that the success of SRVT’s investment strategy 

suffers under the abrupt price changes induced by the use of VaR on behalf of the 

investment funds, even though these use a moving average model of the assets’ 

fundamental value (note that when the IFs used a moving average with a window of 

15m  in experiment E2.2, this was clearly beneficial for the profitability of the higher-

order strategy of the SRVT). 

 

 

 Figure 5.16: Price spread and accumulated profits for variable capital factor 



 24 

However, in the second scenario where the strategic relative value trader includes the 

knowledge of the investment funds’ VaR strategy into her own valuation model, the 

profitability outlook changes drastically (figure 5.16). Even in the case where 1m , the  

SRVT makes a profit. From figure 5.18, one can see that the forecast errors are much 

smaller than for the RRVT, which is also reflected in the 100% confidence level that the  

 

 

 Figure 5.17: Confidence levels for constant and variable capital factor 

 

 

 Figure 5.18: Forecast error for RRVTs and SRVT (constant capital factor) 

 

 

 Figure 5.19: Forecast error for RRVTs and SRVT (variable capital factor) 

higher-order strategy attains in this environment, both with a constant and a regret- 
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dependent capital factor (figure 5.17). Although the forecast errors of the RRVT are 

generally small for a variable capital factor (figure 5.19), they become very large when 

the investment funds adjust their holding in accordance to their VaR position limits (see 

figure 5.16). 

 

5.2.4 Temporal and Cross-Sectional Analysis (E2.4) 

We will now present the results of a simple temporal and cross-sectional analysis of the 

relative performance of both the reactive relative value strategy of the RRVT and the 

higher-order relative value strategy of the SRVT. Furthermore, in a first set of trading 

rounds, the investment funds do not use VaR as a position limit, whereas in a second set, 

the investment funds choose their positions in accordance with the stipulations of their 

VaR risk model. For the purpose of this simple statistical analysis “by inspection”, we 

construct histograms for absolute profit differences between the RRVT and the SRVT 

strategy for both the cases where VaR is used and where no risk position limits are 

enforced. 

 

Both cases with and without VaR are generated by a set of 10,000 trading rounds, each 

consisting of 200 trading intervals. There are 20 investment funds and 10 reactive 

relative value traders trading in the market, where the liquidity factor   has been set 

equal  to 2, and where the VaR limit has been set to 5.0
)(
jA

L  in the cases where 

investment funds use a VaR position limit. The temporal histograms are constructed by 

averaging the differences of RRVT and SRVT profits for two particular paths and 

repeating this procedures for all profit path pairs in the set of 10,000 trading rounds. 

Similarly, the cross-sectional histograms have been generated by summing the 

differences of RRVT and SRVT profits at each time point over all 10,000 paths and 

repeating the averaging procedure for all 200 time buckets. 

 

 Figure 5.20: Temporal and cross-sectional histograms of accumulated profit differences 
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We can see from these results that the higher-order strategy of the SRVT consistently 

outperforms that of the RRVT. The histogram of temporal differences brings perhaps the 

more relevant characteristic of profit differences to the fore. The profit differences 

between two individual paths can be thought of as a “strong” indicator of strategic 

superiority, since unlike in the case of cross-sectional averaging we compare two actual 

realisations of the profit process. The cross-sectional histogram on the other hand 

provides merely a probabilistic picture – it is a “weak” indicator” – of the strategic 

advantage of the SRVT, since it averages profit differences for all paths at each point in 

time. In the case where the IFs are not using a VaR model and price behaviour is not 

erratic because of this, the advantage of the SRVT over the momentum strategy of the 

RRVT is only small. However, as soon as the investment funds use their VaR model to 

set position limits, we see that the SRVT strategy pays off considerably. In particular the 

temporal histogram – our strong indicator – clearly shows that now where the 

investment funds use a VaR limit, the SRVT has gained the upper hand by using a 

higher-order strategy which takes into account the models used by the other market 

players. 

 

 

6. Conclusions and Future Research 

 

In this article we have applied the concept of arbitrary but non-random performativity, 

as a natural extension of MacKenzie’s Austinian performativity, to a situation where 

investors employ higher-order strategies to trade on model-induced price patterns in a 

two-asset financial market. The extended concept of performativity used here includes 

situations where models do not perform their stated hypotheses, but where the resulting 

market practices and patterns assume nevertheless a stable existence and where 

stakeholders are perhaps reluctant to substitute the current technology with a better, but 

less known one. We have demonstrated that in a stylised economic environment in 

which the decision making process of fundamental and relative values traders is tightly 

linked to the use of valuation and risk management models, traders that employ second-

order strategies that explicitly account for the use these models by competitors, can in 

some cases profit from the emerging price patterns. 

 

The exploration of the implications of our market model was done using a somewhat 

watered-down version of what are called multi-agent based simulations – one would 

expect agents at least to engage in some form of communication in a real multi-agent 

simulation, or that they should exhibit a certain level of autonomy. There are initially 

two types of traders operating in the market: investment funds and reactive relative 
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value traders, which employ a fundamental strategy and a technical strategy 

respectively. In conjunction with the simple linear price impact function we have used, 

the combination of the two types of trading behaviour can be viewed as a minimal set-

up in which a reasonable price dynamics emerges. The investment funds – the 

fundamental traders – employs private, stochastic information of the value of the two 

bonds to decide if these are overvalued or undervalued, and to place their orders 

accordingly. Reactive relative value traders on the other side employ a simple spread 

momentum strategy to calculate their orders. Although the RRVT strategy is self-

fulfilling on its own – it always forces prices into a profitable direction – this changes 

when investment funds with their stochastic value process invade the market. The more 

volatile the price process, the worse does the momentum strategy fare in an IF-invaded 

population, which has been demonstrated in the experiments E1.1 – E1.4. 

 

To test the hypothesis of the exploitability of model-induced market structures by 

higher-order strategies, we have then introduced a third type of trader equipped with 

such a strategy into our market. Her strategy was basically the same than that of the 

reactive relative value trader, but instead of constructing a historical measure of spread 

momentum, this strategy included superior knowledge about the other market players’ 

valuation and risk management models and constructed a momentum measure based on 

a forecast of market orders. In case 2, we have seen throughout all experiments that the 

strategic relative value trader not only fares better in terms of absolute profitability than 

the RRVTs, but that the profit she makes with her enhanced strategy is worth more than 

the profit she would make with the naïve relative value strategy since, looking at the 

confidence levels, the risk attached to positive payoffs in the case of the higher-order 

strategy is lower than that of the naïve momentum strategy. In summary, the higher-

order strategy benefits from an increase in the number of RRVTs, a better predictability 

of IF orders (from an increase in the size of the moving average window), a variable 

capital factor, and an increase in price volatility through the use of VaR position limits 

when the use of VaR models is known by the SRVT. 

 

Two directions of future research are indicated at this point. Firstly, the strategy used by 

the SRVT has been chosen arbitrarily and changes in the strategy were not possible, 

except through an adjustment of capital outlay via the regret measure. We need to 

understand better – but always in the context of this stylised market with its particular 

price dynamics – how a successful strategy construction and selection process can be 

integrated in our model. In particular, the implications of the base strategies employed 

by investment funds and RRVTs has to be understood much better in order to gauge the 

results obtained after including a higher-order strategy. The higher-order strategies 
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themselves have to be constructed in a systematic fashion and SRVTs need to be 

equipped with a strategy selection mechanism. Secondly, the model used here is indeed 

very stylistic, and in order to create a more realistic trading environment with 

heterogeneous and possibly (semi-)autonomous agents, we need to move away from the 

equation-based, analytically motivated evolutionary economics framework towards a 

more flexible, multi-agent systems framework which, although embracing working 

concepts from evolutionary economics, also allows for the efficient representation of 

agent autonomy and sociality. 
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