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Abstract

The world of computing simulation has experienced great progresses in recent years and requires
more exigent multidisciplinary challenges to satisfy the new upcoming demands. Increasing the
importance of solving multi-disciplinary problems makes developers put more attention to these
problems and deal with difficulties involved in developing software in this area.

Conventional finite element codes have several difficulties in dealing with multi-disciplinary
problems. Many of these codes are designed and implemented for solving a certain type of problems,
generally involving a single field. Extending these codes to deal with another field of analysis
usually consists of several problems and large amounts of modifications and implementations.
Some typical difficulties are: predefined set of degrees of freedom per node, data structure with
fixed set of defined variables, global list of variables for all entities, domain based interfaces, IO
restriction in reading new data and writing new results and algorithm definition inside the code.
A common approach is to connect different solvers via a master program which implements the
interaction algorithms and also transfers data from one solver to another. This approach has been
used successfully in practice but results duplicated implementation and redundant overhead of
data storing and transferring which may be significant depending to the solvers data structure.

The objective of this work is to design and implement a framework for building multi-disciplinary
finite element programs. Generality, reusability, extendibility, good performance and memory ef-
ficiency are considered to be the main points in design and implementation of this framework.
Preparing the structure for team development is another objective because usually a team of ex-
perts in different fields are involved in the development of multi-disciplinary code.

Kratos, the framework created in this work, provides several tools for easy implementation
of finite element applications and also provides a common platform for natural interaction of its
applications in different ways. This is done not only by a number of innovations but also by
collecting and reusing several existing works.

In this work an innovative variable base interface is designed and implemented which is used
at different levels of abstraction and showed to be very clear and extendible. Another innovation
is a very efficient and flexible data structure which can be used to store any type of data in a
type-safe manner. An extendible IO is also created to overcome another bottleneck in dealing with
multi-disciplinary problems. Collecting different concepts of existing works and adapting them
to coupled problems is considered to be another innovation in this work. Examples are using an
interpreter, different data organizations and variable number of dofs per node. The kernel and
application approach is used to reduce the possible conflicts arising between developers of different
fields and layers are designed to reflect the working space of different developers also considering
their programming knowledge. Finally several technical details are applied in order to increase the
performance and efficiency of Kratos which makes it practically usable.

This work is completed by demonstrating the framework’s functionality in practice. First some
classical single field applications like thermal, fluid and structural applications are implemented and
used as benchmark to prove its performance. These applications are used to solve coupled problems
in order to demonstrate the natural interaction facility provided by the framework. Finally some
less classical coupled finite element algorithms are implemented to show its high flexibility and
extendibility.
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Resumen

El mundo de la simulación computacional ha experimentado un gran avance en los últimos años
y cada d́ıa requiere desaf́ıos multidisciplinares más exigentes para satisfacer las nuevas demandas.
El aumento de la importancia por resolver problemas multidisciplinares hizo poner más atención
a la resolución de estos problemas y a los problemas que éstos implican en el área de desarrollo de
software.

Los códigos convencionales de elementos finitos tienen varias dificultades para enfrentar se con
problemas multidisciplinares. Muchos de estos códigos se diseñan y desarrollan para solucionar
ciertos tipos de problemas, implicando generalmente un solo campo. Ampliar estos códigos para
resolver problemas en otros campos del análisis, normalmente es dif́ıcil y se necesitan grandes
modificaciones. Los ejemplos más comunes son: grados de libertad predefinidos para los nodos,
estructura de datos capaz de guardar sólo una serie de variables definidas, lista global de las
variables para todas las entidades, interfaces basadas en los dominios, capacidad del Input/Ouput
para leer nuevos datos o escribir nuevos resultados y definición del algoritmo dentro del código. Un
método común para resolver estos problemas es conectar varios modulos de calculo a través de un
programa principal que implemente los algoritmos de la interacción y también transfiera datos de
un modulo de calculo a otro. Este método se ha utilizado en la práctica con éxito, pero resulta en
muchas duplicaciones del código y exceso de almacenamiento y tiempo de ejecución, dependiendo
de la estructura de datos de los modulos de calculo.

El objetivo de esta tesis es diseñar e implementar un marco general para el desarrollo programas
de elementos finitos multidisciplinares. La generalidad, la reutilización, la capacidad de ampliación,
el buen rendimiento y la eficiencia en el uso de la memoria por parte del codigo son considerados
los puntos principales para el diseño e implementación de este marco. La preparación de esta
estructura para un fácil desarrollo en equipo es otro objetivo importante, porque el desarrollo de
un código multidisciplinar generalmente requiere expertos en diferentes campos trabajando juntos.

Kratos, el marco creado en este trabajo, proporciona distintas herramientas para una fácil
implementación de aplicaciones basadas en el método de los elementos finitos. También proporciona
una plataforma común para una interacción natural y de diferentes maneras entre sus aplicaciones.
Esto no sólo está hecho innovando, sino que además se han recogido y usado varios trabajos
existentes.

En este trabajo se diseña y se implementa una interface innovadora basada en variables, que se
puede utilizar a diferentes niveles de abstracción y que ha demostrado ser muy clara y extensible.
Otra innovación es una estructura de datos muy eficiente y flexible, que se puede utilizar para
almacenar cualquier tipo de datos de manera ”type-safe”. También se ha creado un Input/Ouput
extensible para superar otras dificultades en la resolución de problemas multidisciplinares. Otra
innovación de este trabajo ha sido recoger e integrar diversos conceptos de trabajos ya existentes,
adaptándolos a problemas acoplado.Esto incluye el uso de un intérprete, diversas organizaciones
de datos y distinto número de grados de libertad por nodo. El concepto de núcleo y aplicación
se utiliza para separar secciones del codigo y reducir posibles conflictos entre desarrolladores de
diversos campos. Varias capas en la estructura de Kratos han sido diseñadas considerando los
distintos niveles de programación de diferentes tipos de desarrolladores. Por último, se aplican
varios detalles técnicos para aumentar el rendimiento y la eficacia de Kratos, convirtiendo lo en
una herramienta muy útil para la resolución de problemas prácticos.

Este trabajo se concluye demostrando el funcionamiento de Kratos en varios ejemplos prácticos.
Primero se utilizan algunas aplicaciones clásicas de un solo campo como prueba patrón de rendimiento.
Después, estas aplicaciones se acoplan para resolver problemas multidisciplinares, demostrando la
facilidad natural de la interacción proporcionada por Kratos. Finalmente se han implementado
algunos algoritmos menos clásicos para demostrar su alta flexibilidad y capacidad.
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Chapter 1
Introduction

The automotive, aerospace and building sectors have traditionally used simulation programs to
improve their products or services, focusing their computations in a few major physical process:
fluid dynamics, structural, metal forming, etc. Nevertheless, the new needs for safer, cheaper and
more efficient goods together with the impressive growth of the computing facilities, demand an
equivalent solution for multi-disciplinary problems. Moreover, new applications in the food, chem-
ical and electromagnetic industry, among others, are not useful at all without a multi-disciplinary
approach.

Some illustrative cases can be found in the design of sails and sailboats where structural and
fluid dynamic computations have to be taken in account, sterilization processes (thermal and fluid
dynamic analysis), strong magnet design (structural, thermal and magnetic analysis) or photo-
voltaic cells (thermal and electrical computations), among many others.

The increasing importance of solving multi-disciplinary problems makes developers put more
attention to these problems and deal with difficulties involved in developing software in this area.

1.1 Motivation

The world of computing simulation has experienced great progresses in recent years and requires
more exigent multidisciplinary challenges to satisfy the new demands.

Due to the industrial maturity of one-purpose codes for the different fields, the production
sector has increased its expectations, as they realize the need for solving in a more realistic way
the problems they deal with, in order to stay competitive. Strong simplifications are the reason
for which difficult problems could be solved in the past. These simplifications lead to a model
as different from the real one, as the severity of the assumptions made. If we add every required
accuracy in a concurrent world, then we need to relax the assumptions and become more general
in the way of solving multidisciplinary problems.

The situation is not really new. What is novel is the need for solving multidisciplinary problems
combining most of the information coming from different fields, obtaining a more precise informa-
tion and therefore better optimization methods. This means solving more complex problems.
There are many strategies to approach the solution of this kind of problems. A simple approach
assumes that existing analysis methods are good and that people should create interfaces between
already existing codes in order to solve multi-disciplinary problems. Unfortunately this strat-
egy will simply not work for the monolithic solution of highly coupled problems and usually has

11
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execution time overhead due to the data format conversion and memory overhead produced by
duplicated data. These shortcomings provide a strong motivation for creating a multi-disciplinary
programming framework which will allow dealing with these kind of problems in a more natural
and flexible way.

It has been also planned to integrate another interesting topic in the multi-disciplinary solutions
such as optimization. The vast amount of research works for the solution of industrial optimization
problems constitutes a strong motivation to provide an affordable library as a numerical engine for
optimization programs.

1.2 Problem

One of the relevant topics in the finite element method nowadays is the combination of different
analysis (thermal, fluid dynamic, structural) with optimization methods, and adaptive meshing
in one global software package with just one user interface and the possibility to extend the im-
plemented solution to new types of problems, as an approach to a multi-disciplinary simulation
environment.

Conventional finite element codes encounter several difficulties in dealing with multi-disciplinary
problems involving the coupled solution of two or more different fields (i.e. fluid-structure, thermal-
mechanical, thermal-fluid, etc.). Many of these codes are designed and implemented for solving a
certain type of problems, generally involving a single field. For example to solve only structures,
fluids, or electromagnetic problems. Extending these codes to deal with another field of analysis
usually requires large amounts of modifications.

A common approach is to connect different solvers via a master program which implements
the interaction algorithms and also transfers data from one solver to another. This approach
has been used successfully in practice but has its own problems. First of all having completely
separate programs results in many duplicated implementations, which causes an additional cost
in code maintenance. In many cases the data transfer between different solvers is not trivial and,
depending on the data structure of each program, may cause a redundant overhead of copying data
from one data structure to another. Finally, this method can be used only for master and slave
coupling and not for the monolithic coupling solution.

Some newer implementations have used the modern software engineering concepts in their
design to make the program more extendible. They usually achieve the extendibility to new
algorithms in their program but extending them to new fields is beyond their intent.

Using the object-oriented paradigm helps in improving the reusability of codes. This is con-
sidered to be a key point for streamlining the implementation of modules for solving new types of
problems. Unfortunately many domain specific concepts in their design restricts their reusability
for other modules.

The typical bottlenecks of existing codes for dealing with multi-disciplinary problems are:

• Predefined set of degrees of freedom per node.

• Data structure with fixed set of defined variables.

• Global list of variables for all entities.

• Domain based interfaces.

• IO restriction in reading new data and writing new results.

• Algorithm definition inside the code.
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These shortcomings require extensive rewriting of the code in order to extend it to new fields.
Many programs have a predefined set of degrees of freedom per node. For example in a three

dimensional structural program each node has six degrees of freedom dx, dy, dz, wx, wy, wz where
d is the nodal displacement and w the nodal rotation. Assuming all nodes to have just this
set of degrees of freedom helps the developers to optimize their codes and also simplifies their
implementation tasks. But this assumption prevents the extension of the code to another field
with a different set of degrees of freedom per node.

Usually the data structure of programs is designed to hold certain variables and historical
values. The main reasons for this design are: easier implementation, better performance of data
structure and less effort in maintenance. In spite of these advantages using rigid data structures
usually need important changes revision to hold new variables from another fields.

Another problem arises when the program’s data structure is designed to hold the same set
of data for all entities. In this case adding a nodal variable to the data structure implies adding
this variable to all nodes in the model. In this implementation adding variables of one domain to
data structure causes redundant spaces to be allocated for them in another domain. For example
in a fluid-structure interaction problem, this design causes each structural node to have pressure
values and all fluid nodes to have displacement values stored in memory. Even though this is not
a restriction, it severely affects the memory efficiency of program.

Additionally, in single purpose programs, it is common to create domain specific interfaces in
order to increase the code clarity. For example providing a Conductivity method for element’s
properties to get the element’s conductivity as follow:

c = properties.Conductivity ()

Though this enhances the code clarity, it is completely incompatible with extendibility to new
fields.

IO is another bottleneck in extending the program to new fields. Each field has its sets of data
and results, and a simple IO usually is unable to handle new set of data. This can cause significant
implementation and maintenance costs that come from updating IO for each new problem to solve.

Finally introducing new algorithms to existing codes requires internal implementation. This
causes closed programs to be nonextensible because there is no access to their source code. For
open source programs, this requires the external developers learn about the internal structure of
the code.

1.3 Objectives

The objective of this work is to design and implement a framework for building multi-disciplinary 
finite element programs. This framework is called Kratos and will help to build a wide variety of 
finite element programs from the simplest formulation, for example a heat conduction problem, to 
the most complex ones, like multi-disciplinary optimization techniques. From one side it will provide 
a complete set of flexible tools for fast implementation of experimental academic algorithms and 
from the other side it must be fast and efficient to be used for real industrial analysis.

Generality is the first objective in our design. A framework can be used if its generality is
sufficient to fit a wide variety of finite element algorithms. The generality becomes more important
when it comes to multi-disciplinary analysis in which, the code structure has to support the wide
variety of algorithms involved in different areas.

Reusability is another objective in this design. Finite element methodology has several steps
that are similar between different algorithms even for different types of problems. A good de-
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sign and implementation can make all these steps reusable for all algorithms. This reduces the
implementation effort and the maintenance cost of the code.

Another objective is providing a high level of extendibility for Kratos. The continuous in-
novation in finite element methodology may result in new algorithms with completely different
requirements in the future. Thus supporting just a large number of current algorithms cannot
guarantee the usefulness of the code in future. The solution is providing some ways to extend
different parts of the code to new cases. For designing a multi-disciplinary code, extendibility
plays an even more important role. Extendibility in a multi-disciplinary code is also necessary to
support new problems in different fields. So extendibility is considered as an important objective
for Kratos.

Good performance and memory efficiency are also objectives of Kratos. Solving multi-disciplinary
industrial problems is the goal of Kratos and requires good performance and also good level of mem-
ory efficiency. Generality and flexibility are against the performance and efficiency of the code. So
it is obvious that Kratos cannot achieve the same performance of a fully optimized single domain
code. But the idea is to keep it as fast as possible and meanwhile increase the total performance in
solving multi-disciplinary problems by reducing the data conversion and transfer between domains.

1.4 Solutions

Applying the object-oriented paradigm has shown to be very helpful in increasing the flexibility and 
reusability of codes. In this work, object-oriented design is successfully used to organize different 
parts of the code in a set of objects with clear interfaces. In this way, replacing one object with 
another is very easy, which increases the flexibility of the code, and reusing an object in some other 
places is also becomes more practical.

Design and implementation of a multi-disciplinary conceptual interface is another solution
provided to previous problems. In the Kratos design, interfaces are defined in a very generic way
and independent from any specific concept. The variable base interface resulting from this design
is very general and solves the interface problems arising when extending the program to new fields.

A flexible and extendible data structure is another solution used to guarantee the extendibility
of the code to new concepts. The proposed data structure is able to store any type of data
associated to any concept. It also provides different ways for global organization of data required
when dealing with multi-domains problems. The same strategy is applied to give flexibility in
assigning any set of degrees of freedom to any node for solving new problems.

An interactive interface is provided in order to increase the flexibility of the code when imple-
menting different algorithms. In this way a new algorithm can be introduced without the need to
be implemented inside the program. This gives a high level of extendibility to the code and it is
very useful for the implementation of optimization and multi-disciplinary interaction algorithms.

An automatic configurable IO module is added to these components providing the complete set
of solutions necessary for dealing with multi-disciplinary problems. This IO module uses different
component lists to adjust itself when reading and writing new concepts originating from different
fields of analysis.

1.5 Organization

This work presents the design of a new object oriented finite element framework. The idea is to 

present a general view of  its  design  and  then  divide the  design  procedure into its main parts while



1.5. ORGANIZATION 15

describing each of them individually in separate chapters. Following this idea the layout of the 
work is organized as follows:

Chapter 2: Background In this chapter a background of finite element programming is given.

Chapter 3: Concepts It starts with a brief description of numerical analysis in general and
continues by explaining the finite element method and its concepts with some detail. Finally
it describes different design patterns used throughout this work and gives a brief description
of some advanced C++ techniques used for writing high performance numerical applications.

Chapter 4: General Structure Explains the object oriented design of Kratos, its main objects,
the code organization and also the separation between kernel and applications.

Chapter 5:Basic Tools Different tools provided to help developers in implementing their pro-
gram are described in this chapter. Design of quadrature methods, linear solvers, and ge-
ometries are explained, and key points in their reusability and generality are mentioned.

Chapter 6:Variable Base Interface (VBI) Presents a new variable base interface to be used
at different levels of the code. First, a motivation for designing the new interface is given.
Then, this new interface is described and some applications are explained. After that there
is a section about its implementation and the ways of designing interfaces using this method.
Finally, some examples are given to show the capability of the VBI in practice.

Chapter 7:Data Structure This chapter first explains the basic concepts in programming con-
tainers and continues by describing different containers. Then presents new containers de-
signed for finite element programming. Finally, a global scheme of data distribution in Kratos
is provided.

Chapter 8:Finite Element Implementation Focuses on the components representing the fi-
nite element methodology implemented in Kratos. It describes the design of elements and
conditions and also explains the structure of processes and strategies in Kratos. Finally it
explains elemental expressions and formulations and their purpose of design.

Chapter 9:Input Output First it explains different approaches in designing IO modules and
presents a flexible and generic IO structure. Then it continues with a part dedicated to
interpreter writing, which consists of a small introduction to concepts and also a brief expla-
nation on the use of related tools and libraries. Finally, it describes the use of Python as the
interpreter with some description about the reasons for using Python, the interface library,
and some examples to show its great abilities.

Chapter 10:Validation Examples It gives some examples of different finite element applica-
tions for multi-disciplinary problems implemented in Kratos. It also includes some bench-
marks to compare the efficiency of Kratos with existing programs.

Chapter 11:Conclusions and Future Work Gives an overview of solutions and their effective-
ness in solving multi-disciplinary problems and explains the future directions of this project.
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Chapter 2
Background

The history of object-oriented design for finite element programs turns back to the early 90’s
or even earlier. In 1990, Forde, et al. [44] published one of the first detailed descriptions of
applying object-oriented design to finite element programs. They used the essential components
of finite element method to design the main objects. Their structure consists of Node, Element,
DispBC, ForcedBC, Material, and Dof as finite element components and some additional objects
like Gauss, and ShapeFunction for assisting in numerical analysis. They also introduced the
element group and the list of nodes and elements for managing the mesh and constructing system.
Their approach has been reused by several authors in organizing their object-oriented finite element
program structures. This approach was focused on structural domain and the objects’ interfaces
reflect this dependency.

In those years other authors started to write about the object-oriented paradigm and its applica-
tions in finite element programming. Filho and Devloo [43] made an introduction to object oriented
design applying it to element design. Mackie [64] gave another introduction to the object-oriented
design of finite element programs by designing a brief hierarchial element. Later he published a
more detailed structure for finite element program providing a data structure for entities and also
introduced the use of iterators [65]. Pidaparti and Hudli [80] published a more detailed object ori-
ented structure with objects for different algorithms in dynamic analysis of structures. Raphael and
Krishnamoorthy [82] also made an introduction to object-oriented programming and provided a
sophisticated hierarchy of elements for structural applications. They also designed some numerical
expressions for handling the common numerical operations in finite element method. The common
point of all these authors was their awareness about the advantages of object oriented programming
with respect to traditional Fortran approaches and their intention to use these advantages in their
finite element codes.

Miller [70, 71, 72] published an object-oriented structure for a nonlinear dynamic finite element
program. He introduced a coordinate free approach to his design by defining the geometry class
which handles all transformations from local to global coordinates. The principal objects in his
design are Dof, Joint, and Element. TimeDependentLoad and Constrain are added to them in
order to handle boundary conditions. He also defines a Material class with ability to handle both
linear and nonlinear materials. The Assemblage class holds all these components and encapsulates
the time history modeling of structure.

Zimmermann, et al. [106, 35, 34] have designed a structure for linear dynamic finite ele-
ment analysis. Their structure consists of three categories of objects. First the finite element

17
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method objects which are: Node, Element, Load, LoadTimeFunction, Material, Dof, Domain, and
LinearSolver. The second category are some tools like GaussPoint, and Polynomial. The third
category are the collection classes like: Array, Matrix, String, etc. They implemented first a pro-
totype of this structure in Smalltalk and after that an efficient one in C++, which latter version
provides a comparable performance respect to a Fortran code.

In their structure Element calculates the stiffness matrix Ke, the mass matrix Me, and the load
vector fe in global coordinates. It also assembles its components in the global system of equations
and update itself after solving. Node holds its position and manages dofs. It also computes and
assembles its load vector and finally update the time dependent data after solving. Dof holds
the unknown information and also its value. It stores also its position in the global system. and
provides information about boundary conditions. TimeStep implements the time discretization.
Domain is a general manager which manages the components like nodes and elements and also
manages the solving process. It also provides the input-output features for reading the data and
writing the results. Finally LinearSystem holds the system of equation components: left hand
side, right hand side and solution. It also performs the equation numbering and implements the
solver for solving the global system of equations.

They also developed a nonlinear extension to their structure which made them redefined some
of their original classes like Domain, Element, Material, and some LinearSystems [69].

Lu, et al. [61, 62] presented a different structure in their finite element code FE++. Their
structure consists of small number of finite element components like Node, Element, Material,
and Assemble designed over a sophisticated numerical library. In their design the Assemble is
the central object and not only implements the normal assembling procedure but also is in charge
of coordinate transformation which in other approaches was one of the element’s responsibilities.
It also assigns the equation numbers. The Element is their extension point to new formulations.
Their effort in implementing the numerical part lead to an object-oriented linear algebra library
equivalent to LAPACK [15]. This library provides a high level interface using the object-oriented
language features.

Archer, et al. [17, 18] presented another object-oriented structure for a finite element program
dedicated to simulate linear and nonlinear, static and dynamic structures. They reviewed features
provided by different other designs on that time and combined them in a new structure adding
also some new concepts.

Their design consists of two level of abstractions. In the top level, the Analysis encapsulates
the algorithms and the Model represents the finite element components. Map relates the dofs in
the model, to unknowns in the analysis and removes the dependency between these objects. It
also transforms the stiffness matrix from the element’s local coordinate to the global one and
calculates the responses. Additional to these three objects, different handlers are used to handle
model dependent parts of algorithm. The ReorderHandler optimizes the order of the unknowns.
The MatrixHandler provides different matrices and construct them over given model. Finally
ConstraintHandler provides the initial mapping between the unknowns of analysis and the dofs
in the model.

In another level there are different finite element components representing the model. Node en-
capsulates a usual finite element node which holds its position, and dofs. ScalarDof and VectorDof
are derived from the Dof class and represent the different degree of freedom’s types. Element uses
the ConstitutiveModel and ElementLoad to calculate stiffness matrix Ke, mass matrix Me, damp
matrix Ce in local coordinate system. LoadCase consists of loads, prescribed displacements, and
initial element state objects and calculates the load vector in the local coordinate system.

Cardona, et al. [25, 53, 54] developed the Object Oriented Finite Elements method Led by
Interactive Executor (OOFELIE) [77]. They designed a high level language and also implemented
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an interpreter to execute inputs given in that language. This approach enabled them to develop
a very flexible tool to deal with different finite element problems. In their structure a Domain
class holds data sets like: Nodeset, Elemset, Fixaset, Loadset, Materset, and Dofset. Element
provides methods to calculate the stiffness matrix Ke, the mass matrix Me, etc. Fixaset and
Loadset which hold Fixations and Loads handl the boundary conditions and loads.

They used this flexible tool also for solving coupled problems where their high level language
interpreting mechanism provides an extra flexibility in handling different algorithms in coupled
problems. They also added Partition and Connection classes to their structure in order to
increase the functionality of their code in handling and organizing data for coupled problems.
Partition is defined to handle a part of domain and Connection provides the graph of degrees of
freedom and also sorts them.

Touzani [96] developed the Object Finite Element Library (OFELI) [95]. This library has an in-
tuitive structure based on finite element methodology and can be used for developing finite element
programs in different fields like heat transfer, fluid flow, solid mechanics, and electromagnetic.

Node, Element, Side, Material, Shape and Mesh are the main components of its structure
and different problem solver classes implement the algorithms. This library also provides different
classes derived form FEEqua class which implement formulations in different fields of analysis. It
uses a static Material class in which each parameter is stored as a member variable. The Element
only provides the geometrical information and finite element implementation is encapsulated via
FEEqua classes. The Element provides several features which make it useful for even complex
formulations but keeping all these members data makes it too heavy for standard industrial im-
plementations.

Bangerth, et al. [22, 19, 21] created a library for implementing adaptive meshing finite element
solution of partial differential equations called Differential Equations Analysis Library (DEAL) II
[20]. They were concerned with flexibility, efficiency and type-safety of the library and also wanted
to implement a high level of abstraction. All these requirements made them to use advanced
features of C++ language to achieve all their objectives together.

Their methodology is to solve a partial differential equation over a domain. Triangulation,
FiniteElement, DoFHandler, Quadrature, Mapping, and FEValues are the main classes in this
structure. Triangulation despite its name is a mesh generator which can create line segments,
quadrilaterals and hexahedra depending on given dimensions as its template parameter. It also pro-
vides a regular refinement of cells and keeps the hierarchical history of mesh. The FiniteElement
encapsulates the shape function space. It computes the shape function values for FEValues.
Quadrature provides different orders of quadratures over cells. Mapping is in charge of the co-
ordinate transformation. DoFHandler manages the layout of degrees of freedoms and also their
numbering in a triangulation. FEValues encapsulates the formulation to be used over the domain.
It uses FiniteElement, Quadrature, and Mapping to perform its calculation and provides the local
components to be assembled into the global solver.

Extensive use of templates and other advanced features of C++ programming language in-
creases the flexibility of this library without sacrificing its performance. They created abstract
classes in order to handle uniformly geometries with different dimensions. In this way they let
users create their formulation in a dimension independent way. Their approach also consists of
implementing the formulation and algorithms and sometimes the model itself in C++. In this way
the library configures itself better to the problem and gains better performance but reduces the
flexibility of the program by requiring it to be used as a closed package. In their structure there is
no trace of usual finite element components like node, element, condition, etc. This makes it less
familiar for developers with usual finite element background.

Patzák, et al. [79] published an structure used in the Object Oriented Finite Element Modeling
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(OOFEM) [78] program. In this structure Domain contains the complete problem description
which can be divided into several Engineering Models which prepare the system of equations for
solving. Numerical Method encapsulates the solution algorithm. Node, Element, DOF, Boundary
condition, Initial condition, and Material are other main object of this structure. This
program is oriented to structural analysis.

2.1 Discussion

A large effort has been done to organize the finite element codes trying to increase their flexibility
and reducing the maintenance cost. Two classes of designing finite element program can be traced
in literature. One consists of using the finite element methodology for the design which leads
to objects like element, node, mesh, etc. Another approach is to deal with partial differential
equations which results in object functions working with matrices and vectors over domains.

The work of Zimmermann, et al. [106, 35, 34] is one of the classical approaches in designing
the code structure considering finite element methodology. However there is no geometry in their
design and new components like processes, command interpreter etc. are not addressed.

The effort of Miller, et al. in order to encapsulate the coordinate transformation in geometry
is useful for relaxing the dependency of elemental formulation to the specific geometry.

Cardona, et al. [25, 53, 54] added an interpreter to manage the global flow of the code in a
very flexible way. The interpreter was used for introducing new solving algorithms to the program
without changing it internally. This code is also extended to solve coupled problems using the
interpreter for introducing interaction algorithms which gives a great flexibility to it. The drawback
of their approach is the implementation of a new interpreter with a newly defined language beside
binding to an existing one. This implies the maintenance cost of the interpreter itself and prevent
them from using other libraries which may have interfaces to chosen script languages.

Touzani [96] designed an structure for multi-disciplinary finite element programs. His design
is clear and easy to understand but uses field specific interfaces for its component which are not
uniform for all fields. This reduces the reusability of the algorithm from one field to the other.

The approach of Lu, et al. [61, 62] is on the line of designing a partial differential solver
with emphasizes on numerical components. Archer, et al. [17, 18] extended this approach to a
more flexible and extendible point and more recently Bangerth, et al. used the same approach in
designing their code. However the structure results from this design can be unfamiliar to usual
finite element programmers. For instance in the latter design there are no objects to represents
nodes and elements, which are the usual components for finite element programmers.

In this work the standard finite element objects like nodes, elements, conditions, etc. are reused
from previous designs but modified and adapted to the multi-disciplinary perspective. There are
also some new components like model part, process, kernel and application are added to cover new
concepts mainly arising in multi-disciplinary problems. A new variable base interface is designed
providing a uniform interface between fields and increasing the reusability of the code. The idea of
using an interpreter is applied by using an existing interpreter. A large effort is also done to design
and implement a fast and very flexible data structure enable to store any type of data coming from
different fields and guarantee the uniform transformation of data. An extendible IO is also created
to complete the tools for dealing with the usual bottlenecks when working with multi-disciplinary
problems.



Chapter 3
Concepts

The objective of this work is to create a framework to implement multi-disciplinary finite element
applications. Before starting, it is necessary to explain some basic concepts of the finite element
method itself, multi-disciplinary problems and their solutions, and programming concepts related
to its design and implementation.

In this chapter a brief introduction to finite element concepts is given first. Then some basic
concepts of coupled systems are described. Finally some programming concepts and techniques
are explained.

3.1 Numerical Analysis

In this section a brief introduction to numerical analysis in general will be given and a short
description to different numerical methods, their similarities and their differences will be presented.

3.1.1 Numerical Analysis Scheme

There are several numerical analysis methods which are different in their approaches and type of
applications. Beside their differences, they rely on a global scheme which make them similar in
their overall methodologies and to some extent mixable or interchangeable. This overall scheme
consists of three main steps as follows:

Idealization Defining a mathematical model which reflects a physical system. For this reason
this step is also referred as mathematical modeling. In this step the governing equations of
a physical system and its conditions are transformed into some general forms which can be
solved numerically. Usually different assumptions are necessary to make this modeling pos-
sible. These assumptions make the model different from the physical problem and introduce
the modeling error in our solutions.

Discretization Converting the mathematical model with infinite number of unknowns, called de-
grees of freedom (dof), to a finite number of them. While the original model with infinite
number of unknown cannot be solved numerically, the resulting discrete model with finite
number of unknowns can be solve using a numerical approach. What is important to mention
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Figure 3.1: Three steps of Numerical analysis process.

here is the approximation involved in this step. This process introduces the discretization er-
ror to the solution which highly depends on the quality of discretization and the methodology
used.

Solution Solving the discrete model and obtaining the dof and other related results. This step
introduces the solution error coming from the inexactness of using algorithms, numerical
precision of machine, or other sources.

Figure 3.1 Shows this global scheme. An important observation here is the existence of different
errors and approximations introduced by different concepts. The accumulation of these errors can
affect the validity of the results obtained by these methods. For this reason the validity of each
step and reduction of the error in each process is one of the main challenges in using a numerical
method.

3.1.2 Idealization

The idealization is the mathematical modeling of certain physical phenomena. The main task of
this step is finding a proper mathematical model for a given physical problem.

Mathematical models are usually based on different assumptions. This dependency makes them
useful for problems in which these assumptions are correct or near to reality. For this reason finding
a good mathematical model requires a good knowledge not only about the problem but also about
the assumptions of the model.

For example in solving a fluid problem the idealization consists of finding the best fluid model
for the certain fluid in the problem. In this case the main questions are: Is this fluid Newtonian?
Is it compressible or not? Is it a laminar flow? etc. Depending on these conditions one model can
be considered more suitable than others for a certain problem. However the selected model may
still introduce certain modeling errors to our solution.

There are different form of mathematical models. Some common ones are:

Strong Form Defines the mathematical model as a system of ordinary or partial differential
equations and some corresponding boundary conditions.

Weak Form It expresses the mathematical equations in a particular modified form using a
weighted residual approximation.

Variational Form In this form the mathematical model is presented as a functional whose sta-
tionary conditions generates the weak form.

Strong Form

As mentioned before the strong form defines the mathematical model as a system of ordinary
or partial differential equations and some corresponding boundary conditions. Considering the
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Figure 3.2: The problem of finding u over a domain Ω.

domain Ω with boundary Γ shown in figure 3.2, this form defines the model by a set of equations
over the domain and the boundary as follows:

{ L(u(x)) = p x ∈ Ω
S(u(x)) = q x ∈ Γ (3.1)

where u(x) is the unknown and L is the operator applied over the domain Ω and S represents the
operator applied over the boundary Γ. The first equation represents the governing equation over
the domain and the second one represents the boundary conditions of this problem. For example,
a thermal problem over the domain of figure 3.3 can be modeled with the following strong form:

⎧⎨
⎩

∇T k∇θ(x) = Q x ∈ Ω
θ(x) = θΓ x ∈ Γθ

q(x) = qΓ x ∈ Γq

(3.2)

where θ(x) is the temperature in Ω, q is the boundary flux, Q is the internal heat source, Γθ is
the boundary with fixed temperature θΓ, and Γq is the boundary with fixed flux qΓ.

Weak Form

Let V be a Banach space, Considering the problem of finding the solution u ∈ V of equation:

L(u) = p u ∈ V (3.3)

q

Figure 3.3: A Thermal domain Ω with fixed temperature boundary Γθ and fixed flux boundary
Γq.
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It can be verified that this problem is equivalent to finding the solution u ∈ V such that for all
v ∈ V holds:

(L(u), v) = (p, v) u ∈ V,∀v ∈ V (3.4)

Which is known as the weak formulation of the problem. The weak form defines the math-
ematical model using the weak formulation of the strong form. Now using the following scalar
product:

(u, v) =
∫

Ω

uvdΩ (3.5)

results in the integral form, which is the weighted integral representation of the model:∫
Ω

L(u)vdΩ =
∫

Ω

pvdΩ u ∈ V,∀v ∈ V (3.6)

This formulation can be applied also to involve the boundary condition. For example, the same
problem represented by equation 3.1 can be rewritten as follows:∫

Ω

r(u)wdΩ +
∫

Γ

r̄(u)w̄dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.7)

where r and r̄ are the residual functions defined over the domain and the boundary respectively:

r(u) = L(u) − p (3.8)
r̄(u) = S(u) − q (3.9)

and w and w̄ are arbitrary weighting functions over the domain and boundary. Usually it is
convenient to use integration by parts in order to reduce the maximum order of derivatives in
the equations and balance it by applying some derivatives to the weighting functions. Performing
integration by parts on equation 3.7 yields:∫

Ω

A(u)B(w)dΩ +
∫

Γ

C(u)D(w̄)dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.10)

Reducing the order of derivatives in A and C respect to r and r̄, allows for a lower order of
continuity requirement in the choice of the u function. However, now higher continuity for w and
w̄ is necessary.

Variational Form

The variational form usually comes from some fundamental quantities of the problem like mass,
momentum, or energy whose stationary states are of interest. This form defines the mathematical
model by a functional in the following form:

Π(u) =
∫

Ω

F (u)dΩ (3.11)

The stationary state of this quantity is required, hence its variation is made equal to zero,
which results in the following equation:

δΠ(u) =
∫

Ω

δ(F (u))dΩ = 0 (3.12)
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Figure 3.4: A regular domain discretized with a finite difference grid.

Deriving the variational equations from conservation laws is attractive for scientists as presents
the same fundamental characteristics of the problem. Finally it is important to mention that the
weak form can also be derived from the stationary state of the variational form.

3.1.3 Discretization

The first step of numerical analysis was the definition of a mathematical or continuous model
corresponding to the real physical problem. In practice the continuous model cannot be solved
analytically except for certain domains and conditions, which is the reason for numerical solution.
The continuous model has an infinite number of unknowns corresponding to points in the domain
and the boundary, and cannot be solved directly using numerical methods. So this second step is
necessary for converting the continuous model to a discrete one with a finite number of unknowns
which can be solved numerically.

There are several ways to perform this conversion which results in different numerical methods.
The appropriate discretization method depends not only on the type of problem but also on the
type of mathematical model describing it. A brief description on proper discretization for different
models is given as follow.

Discretization of the Strong Form

Discretization of strong form is typically performed using the finite difference method. The idea
here comes from the numerical calculation of derivatives by replacing them with differences. For
example the first derivative of function f(x) can be changed to its discrete form as follows:

df(x)
dx

≈ ∆1
h(f, x) =

1
h

(f(x + h) − f(x)) (3.13)

Where the discretization parameter h is the distance of grid points. This method also can be
applied to calculate higher derivatives of a function:

dnf(x)
dxn

≈ ∆n
h(f, x) =

n∑
i=0

(−1)n−k

(
1
h

)n (
n
i

)
f(x + ih) (3.14)

The discretization is simply a cartesian grid over domain. Figure 3.4 shows a sample of grid in
two dimensional space.

This method has been used practically in many fields and implemented in many applications.
Its methodology is simple and also is easy to program. These made it one of the favorite methods
in numerical analysis. However this method has its shortcomings. First, it works well for regular
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domains, but for arbitrary geometries and boundary conditions encounters difficulties. For example
the irregular domain of figure 3.5 (a) can be approximated by the discrete domain shown in figure
3.5 (b). It can be seen easily that this discretization changes the domain boundary for an arbitrary
geometry.

(a) (b)

Figure 3.5: An arbitrary geometry and its finite difference discrete model.

Another disadvantage is its approximated solution, which can be obtained only in the grid
points hence no information is provided on other points within the grid.

Discretization of the Weak Form

Discretization of the continuous mathematical model consists of transforming the working space
to some selected discrete one. Considering the following weak form in the continuous space V :

(L(u), v) = (p, v) u ∈ V,∀v ∈ V (3.15)

This form can be transformed to the discrete space Vh to approximate the solution by uh ∈ V :

(L(uh), vh) = (p, vh) uh ∈ V,∀vh ∈ V (3.16)

As mentioned before, the weak form of the mathematical model can be represented by a
weighted integral as:

∫
Ω

r(u)wdΩ +
∫

Γ

r̄(u)w̄dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.17)

where r and r̄ are the residual functions defined over the domain and the boundary respectively.
w and w̄ are arbitrary weighting functions over the domain and the boundary. Here selecting a
discrete space Vh as our working space results in the following discrete model:

∫
Ω

r(uh)whdΩ +
∫

Γ

r̄(uh)w̄hdΓ = 0 uh ∈ Vh,∀wh, w̄h ∈ Vh (3.18)

where r and r̄ are the residual functions. Equation 3.18 is a weighted integral of residuals.
So this class of approximations is referred as the weighted residual methods. Several well known
methods like the Finite Element Method (FEM), Finite Volume (FV), and Least squares fitting
are subclasses of this method.
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It is common to choose a discrete space Vh made by a set of known trial functions Ni and
define the discrete solution as follows:

uh ≈
n∑

j=1

ajNj (3.19)

where aj are unknown coefficients, Nj are known trial-functions, and n is the number of un-
knowns. Substituting this in equation 3.18 results:

∫
Ω

r(
n∑

j=1

ajNj)whdΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)w̄hdΓ = 0 ∀wh, w̄h ∈ Vh (3.20)

with:

wh =
n∑

i=1

αiwi , w̄h =
n∑

i=1

αiw̄i (3.21)

where αi are arbitrary coefficients, wi and w̄i are arbitrary functions, and n is the number of
unknowns. Expanding equation 3.20 gives:

n∑
i=1

αi

⎡
⎣∫

Ω

r(
n∑

j=1

ajNj)widΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)w̄idΓ

⎤
⎦ = 0 ∀αi, wi, w̄i ∈ Vh (3.22)

As αi are arbitrary, all components of above sum must be zero in order to satisfy the equation.
This results in the following set of equations:

∫
Ω

r(
n∑

j=1

ajNj)widΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)w̄idΓ = 0 ∀wi, w̄i ∈ Vh , i = 1, 2, 3, ..., n (3.23)

There are several set of functions that can be used as weighting functions. Here is a list of some
common choices:

Collocation Method Using Dirac’s delta δi as the weighting function:

wi = δi , w̄i = δi (3.24)

where δi is a function such that:

∫
Ω

fδidΩ = fi (3.25)

Substituting this weighting function in our reference equation 3.23 results in the following
discrete model:

ri(
n∑

j=1

ajNj) + r̄i(
n∑

j=1

ajNj) = 0 , i = 1, 2, 3, ..., n (3.26)
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This method satisfies the equation just in the set of collocation points and gives a set of
discrete equations similar to those obtained by the finite difference method.

Subdomain Method It is an extension of the previous method. It uses a weighting function wi

which is identity in a subdomain Ωi and zero elsewhere:

wi =
{

I x ∈ Ωi

0 x /∈ Ωi
, w̄i =

{
I x ∈ Γi

0 x /∈ Γi
(3.27)

The discrete model can be obtained by substituting this weighting function in the general
weak form of equation 3.23:

∫
Ωi

r(
n∑

j=1

ajNj)dΩi +
∫

Γi

r̄(
n∑

j=1

ajNj)dΓi = 0 , i = 1, 2, 3, ..., n (3.28)

This method provides a uniform approximation in each subdomain and establishes a way to
divide the domain into subdomains for solving the problem.

Least Square Method This method uses the governing operator applied to the trial functions
as its weighting functions:

wi = δL(Ni) , w̄i = δS(Ni) (3.29)

Here is the resulted discrete model by substituting the above weighting function in equation
3.23:

∫
Ω

r(
n∑

j=1

ajNj)L(Ni)dΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)S(Ni)dΓ = 0 , i = 1, 2, 3, ..., n (3.30)

One can verify that the resulting equation is equivalent to minimizing the square of the global
residual R over the domain:

δR = 0 (3.31)

where:

R =
∫

Ω

r2(uh)dΩ +
∫

Γ

r̄2(uh)dΓ = 0 (3.32)

Galerkin Method It uses the trial functions as weighting functions:

wi = Ni , w̄i = Ni (3.33)
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Substituting equation 3.33 in equation 3.23 results in the following Galerkin discrete model:

∫
Ω

r(
n∑

j=1

ajNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)NidΓ = 0 , i = 1, 2, 3, ..., n (3.34)

This method usually improves the solution process because frequently, but not always, leads
to symmetric matrices with some other useful features which makes it a favorite methodology
and a usual base for the finite element solution.

Discretization of the Variational Form

The Rayleigh-Ritz method is the classical discretization method for the variational form of the
continuous model. It also was the first trial-function method. The idea is to approximate the
solution u by ũ defined by a set of trial functions as follows:

ũ =
n∑

i=1

αiNi (3.35)

where αi are unknown coefficients, Ni are known trial-functions, and n is the number of un-
knowns. Now considering the following continuous model in its variational form:

δΠ(u) =
∫

Ω

δ(F (u))dΩ = 0 (3.36)

Inserting the trial function expansion of equation 3.35 into equation 3.36 gives:

δΠ(ũ) =
n∑

i=1

∂Π
∂αi

δαi = 0 (3.37)

As this equation must be true for any variation δα, all its component must be equal to zero.
This results into the following set of equations:

∂Π(ũ)
∂α1

=
∫

Ω

∂(F (ũ))
∂α1

dΩ = 0

∂Π(ũ)
∂α2

=
∫

Ω

∂(F (ũ))
∂α2

dΩ = 0 (3.38)

...
∂Π(ũ)
∂αn

=
∫

Ω

∂(F (ũ))
∂αn

dΩ = 0

Mixed Discretization

Sometimes it is useful to mix two or more types of discretization in order to describe complex
phenomena or just for simplifying some approximations while keeping a more detailed approach
in other aspects of the problem. A typical case of mixing different forms is the modeling of time
dependent problems, where one can use a finite difference discretization in time while using a
weighted residual discretization in space.
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3.1.4 Solution

The last step in the numerical methodology is the solution. This step consists of solving the
discrete model using proper algorithms in order to find the main unknowns and also to calculate
other additional unknowns of the problem. This process includes:

Calculating Components All components of a discrete model (like derivatives in the finite dif-
ference method, integrals in weighted residual or variational methods, etc.) are calculated.

Creating the Global System The discrete model’s components are put together in order to
create the global system of equations representing the discrete model.

Solving the Global System The global system must be solved to calculate the unknowns of the
problem. For some models this leads to a system of linear equations which can be solved
using linear solvers. Some algorithms create a diagonal global system and made the solving
part completely trivial.

Calculating Additional Results In many problems not only the principal unknown, i.e. dis-
placement in structural problems, are of interest, but also some additional results, like stresses
and strains in structural problems, must be calculated.

Iterating In many algorithms some iterations are also needed to determine the unknown or cal-
culate different sets of unknowns. Solving nonlinear problems, calculating time dependent
unknowns, and optimization problems are examples of algorithms where iterations are needed.

3.2 Finite Element Method

In the previous section a brief introduction to numerical methods was given. As this work is based on 
finite element methodology, a brief description of this method and its basic steps are presented.

The finite element method (FEM) in general takes the integral form of the problem and uses
piecewise polynomials as its trial functions. There are a wide range of formulations which lead to
the FEM but the most used one is the Galerkin method, which is used here to describe the FEM
and its basic steps.

3.2.1 Discretization

Considering a continuous problem: { L(u(x)) = p x ∈ Ω
S(u(x)) = q x ∈ Γ (3.39)

and its integral form as follows:∫
Ω

r(u)wdΩ +
∫

Γ

r̄(u)w̄dΓ = 0 u ∈ V,∀w, w̄ ∈ V (3.40)

where r and r̄ are the residual functions defined over the domain and the boundary respectively:

r(u) = L(u) − p (3.41)
r̄(u) = S(u) − q (3.42)
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Defining the discrete finite element space Vh as composition of polynomial functions Ni:

x =
n∑

i=1

αx
i Ni (3.43)

and transforming the equation 3.40 to this space results in:∫
Ω

r(uh)whdΩ +
∫

Γ

r̄(uh)w̄hdΓ = 0 uh ∈ Vh,∀wh, w̄h ∈ Vh (3.44)

where:

uh =
n∑

i=1

αiNi (3.45)

w =
n∑

i=1

βiNi (3.46)

w̄ =
n∑

i=1

βiNi (3.47)

Expanding of equation 3.44 with these definitions results in:

∫
Ω

r(
n∑

j=1

αjNj)
n∑

i=1

βiNidΩ +
∫

Γ

r̄(
n∑

j=1

αjNj)
n∑

i=1

βiNidΓ = 0 α, N ∈ Vh , ∀β ∈ Vh (3.48)

The following alternative form is obtained by taking out the βi from integrals:

n∑
i=1

βi

⎡
⎣∫

Ω

r(
n∑

j=1

αjNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

αjNj)NidΓ

⎤
⎦ = 0 α, N ∈ Vh , ∀β ∈ Vh (3.49)

As βi are arbitrary, all components of above sum must be zero in order to satisfy the equation.
This results in the following set of equations:

∫
Ω

r(
n∑

j=1

αjNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

αjNj)NidΓ = 0 α, N ∈ Vh , i = 1, 2, 3, ..., n (3.50)

An observation here is the equivalence of the discrete form in equation 3.50 with the one in
equation 3.34 obtained by the Galerkin method in section 3.1.3.

Node and Degree of Freedom

In the previous section, the general process of converting the continuous integral form in equation
3.40 to its discrete form in equation 3.50 was explained. In the finite element method, each unknown
value is referred as a degree of freedom (dof) and it is considered to be the finite element solution
uh at a domain point called node.

αi = ai (3.51)
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where ai is the approximate solution uh at node i. Using this assumption the set of equations
3.50 can be rewritten as follows:

∫
Ω

r(
n∑

j=1

ajNj)NidΩ +
∫

Γ

r̄(
n∑

j=1

ajNj)NidΓ = 0 a,N ∈ Vh , i = 1, 2, 3, ..., n (3.52)

This set of equations can be solved to obtain directly the unknowns at each node of the domain.
Substituting equation 3.51 into 3.45 results:

uh =
n∑

i=1

aiNi (3.53)

which relates the approximated solution uh over the domain with the nodal values obtained
from solving the previous set of equations 3.52. In this way, the approximate solution can be
obtained not only at all nodes but also at any other points of the domain.

Shape Functions and Elements

Returning to the equation 3.52 a set of trial functions Ni are necessary to define the problem. In
the finite element method these functions are called shape functions. The correct definition of the
shape functions plays an important role in the correct approximation of the solution and its many
important properties.

The discretization introduced in the previous section reduced the infinite number of unknowns
in equation 3.40 to a finite number n in the set of equations 3.52. This is a big step in making the
model numerically solvable but still is not complete for solving it in practice. The problem comes
from the fact that each equation in set of equations 3.52 involves a complete integration over the
domain and a complete relation between the unknowns in the equations which makes the solution
very costly. To avoid these problems, let us divide the domain Ω into several sub-domains Ωe as
follows:

Ω1 ∪ Ω2 ∪ ... ∪ Ωe ∪ ... ∪ Ωm = Ω , Ω1 ∩ Ω2 ∩ ... ∩ Ωe ∩ ... ∩ Ωm = ∅ (3.54)

where each partition Ωe is called an element. Dividing the integrals in equations 3.52 yields:

m∑
e=1

⎡
⎣∫

Ωe

r(
n∑

j=1

ajNj)NidΩe +
∫

Γe

r̄(
n∑

j=1

ajNj)NidΓe

⎤
⎦ = 0 i = 1, 2, 3, ..., n (3.55)

where Γe is the part of boundary Γ related to element Ωe as shown in figure 3.6. Now let us
define the shape function Ni as follows:

Ni =
{

Ne
i x ∈ Ωe ∪ Γe

0 x /∈ Ωe ∪ Γe (3.56)

where Ωe is a partition of domain called element. Substituting this shape function into equation
3.52 results in the following equation:

mi∑
e=1

⎡
⎣∫

Ωe

r(
mi∑
j=1

ajN
e
j )Ne

i dΩe +
∫

Γe

r̄(
mi∑
j=1

ajN
e
j )Ne

i dΓe

⎤
⎦ = 0 i = 1, 2, 3, ..., n (3.57)
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e

e

Figure 3.6: An element Ωe and its boundary Γe.

Where mi is the number of elements containing node i. In this manner the relation between
unknowns is reduced to those between the neighbors and in each equation the integration must be
performed only over some elements.

Boundary Conditions

Considering the following problem:

{ L(u(x)) = p x ∈ Ω
S(u(x)) = q x ∈ Γ (3.58)

and assuming that L contains at most mth-order derivatives. The boundary condition of such
a problem can be divided in two categories: essential and natural boundary conditions.

The essential boundary conditions SD are conditions that contain derivatives with order less
equal to m−1. These conditions are also called Dirichlet conditions (named after Peter Dirichlet).
For example the prescribed displacement in structural problems is a Dirichlet condition.

The rest of boundary conditions are considered to be natural boundary conditions SN . These
conditions are also referred as Neumann boundary conditions (named after Carl Neumann). For
example in a structural problem the boundary tractions are the Neumann condition of the problem.

Applying this division to equation 3.58 results in:

⎧⎨
⎩

L(u(x)) = p x ∈ Ω
SD(u(x)) = qD x ∈ ΓD

SN (u(x)) = qN x ∈ ΓN

(3.59)

where SD is the Dirichlet condition applied to boundary ΓD and SN is the Neumann condition
applied to boundary ΓN as can be seen in Figure 3.7. Transforming equation 3.59 to its integral
form results:

∫
Ω

r(u)wdΩ +
∫

ΓD

r̄D(u)w̄dΓD +
∫

ΓN

r̄N (u)w̄dΓN = 0 u ∈ V,∀w, w̄ ∈ V (3.60)

where:
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D

N

Figure 3.7: A domain and its Dirichlet and Neumann boundaries.

r(u) = L(u) − p (3.61)
r̄D(u) = SD(u) − qD (3.62)
r̄N (u) = SN (u) − qN (3.63)

If the choice of solution u is restricted to functions that satisfy the Dirichlet condition on
ΓD, the integral over the Dirichlet boundary ΓD can be omitted by restricting the choice of w̄ to
functions which are zero on ΓD. Using these restrictions results in:

∫
Ω

r(u)wdΩ +
∫

ΓN

r̄N (u)w̄dΓN = 0 u ∈ V,∀w, w̄ ∈ V (3.64)

u = ū x ∈ ΓD (3.65)

where ū is the solution over the Dirichlet boundary. Converting the above model to its discrete
form using the same process described before results in the following discrete equations:

∫
Ω

r(
n∑

j=1

ajNj)NidΩ +
∫

ΓN

r̄N (
n∑

j=1

ajNj)NidΓN = 0 a,N ∈ Vh , i = 1, 2, ..., n (3.66)

u = ū x ∈ ΓD (3.67)

3.2.2 Solution

In this section the global flow of a general finite element solution process will be described and
some techniques used to improve the efficiency in practice will be explained.

Calculating Components

Applying the essential condition to equation 3.57 results in:

mi∑
e=1

⎡
⎣∫

Ωe

r(
mi∑
j=1

ajN
e
j )Ne

i dΩe +
∫

Γe
N

r̄(
mi∑
j=1

ajN
e
j )Ne

i dΓe
N

⎤
⎦ = 0 i = 1, 2, ..., n (3.68)

u = ū x ∈ ΓD (3.69)
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If the differential equations are linear we can write the equation above as follows:

Ka + f = 0 (3.70)

where:

Kij =
m∑

e=1

Ke
ij (3.71)

fi =
m∑

e=1

fe
i (3.72)

This step consist of calculating the shape functions and their derivatives in each element and
then perform the integration for each element.

The usual technique here is to calculate these components in local coordinates of the element and
transform the result to global coordinates. Usually the shape functions are defined in terms of local
coordinates and their values and gradients with respect to local coordinates are known. However
the elemental matrices contain gradients of shape functions with respect to global coordinates.
These gradients can be calculated using the local ones and the inverse of some matrix J known
as the jacobian matrix. Considering the global coordinate x,y,z and elemental local coordinates
ξ,η,ζ, it can be seen that the gradients of the shape functions with respect to the local coordinates
can be written in terms of the global ones as follows:⎡

⎢⎢⎣
∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤
⎥⎥⎦

⎡
⎢⎣

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎦ = J

⎡
⎢⎣

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎦

where J is the jacobian matrix. Now the gradients of the shape functions with respect to the
global coordinates can be calculated as follows:

⎡
⎢⎣

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎦ = J−1

⎡
⎢⎢⎣

∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎤
⎥⎥⎦

After calculating the gradients of the shape functions respect to the global coordinates, we can
integrate them over the elements. This can be done by transforming the integration domain from
global to local coordinates as follows:∫

Ωe

fdΩe =
∫

Ωe

f detJ dξ dη dζ (3.73)

Now all elemental matrices can be calculated using local coordinates and transformed to global
coordinates. The usual way to calculate the integrals over the elements is using a Gaussian Quadra-
ture method. This method converts the integration of a function over the domain to a weighted
sum of function values at certain sample points as follows:

∫ b

a

f (x) dx ≈
n∑

i=1

wif(xi) (3.74)
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Figure 3.8: A simple beam example with two elements and three nodes.

This method uses nearly half the sample points to achieve the same level of accuracy of other
classical quadratures. Thus it is an effective method for calculating elemental integrals in FEM.
This method as well as some other integration methods will be explained later in section 5.1.

Creating the Global System

As mentioned earlier for linear differential equations the set of equations 3.68 can be written as a
global system of equations in the form of:

Ka = f (3.75)

where:

Kij =
m∑

e=1

Ke
ij (3.76)

fi =
m∑

e=1

fe
i (3.77)

However the sums in the equation above must be applied to the corresponding coordinates.
Having the elemental matrices and vectors Ke and fe, the procedure of putting them together in
order to create the global system of equation 3.75 is called assembly and consists of finding the
position of each elemental component in the global equations system and adding it to the value in
its position.

This procedure first assigns a sequential numbering to all dofs. Sometimes its useful to separate
the restricted dofs, ones with Dirichlet conditions, from others. This can be done easily at the time
of assigning indices to dofs. After that the procedure goes element by element and adds their local
matrices and vectors to the global equations system using the following assembly operator

⊔
:

Kij

⊔
Ie

Ke
ij = KIe

i I
e
j
+ Ke

ij (3.78)

fi
⊔
Ie

fe
i = fIe

i
+ fe

i (3.79)

where Ie is the vector containing the global position, which is the index of the corresponding
dof, of each row or column. For example considering the beam problem of figure 3.8 with two
elements and the following elemental matrices and vectors:
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K(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(1)
11 K

(1)
12 K

(1)
13 K

(1)
14

K
(1)
21 K

(1)
22 K

(1)
23 K

(1)
24

K
(1)
31 K

(1)
32 K

(1)
33 K

(1)
34

K
(1)
41 K

(1)
42 K

(1)
43 K

(1)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

, f (1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.80)

and:

K(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(2)
11 K

(2)
12 K

(2)
13 K

(2)
14

K
(2)
21 K

(2)
22 K

(2)
23 K

(2)
24

K
(2)
31 K

(2)
32 K

(2)
33 K

(2)
34

K
(2)
41 K

(2)
42 K

(2)
43 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

, f (2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(2)
1

f
(2)
2

f
(2)
3

f
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.81)

Giving sequential indices to dofs a1 to a6, the index vectors I1 and I2 of elements e1 and e2

will be:

I(1) =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ , I(2) =

⎡
⎢⎢⎣

3
4
5
6

⎤
⎥⎥⎦ (3.82)

Finally, assembling the elemental matrices and vectors using the index vectors above results in
the following system:

Ka = f (3.83)

with:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
11 K

(1)
12 K

(1)
13 K

(1)
14 0 0

K
(1)
21 K

(1)
22 K

(1)
23 K

(1)
24 0 0

K
(1)
31 K

(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
13 K

(2)
14

K
(1)
41 K

(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
23 K

(2)
24

0 0 K
(2)
31 K

(2)
32 K

(2)
33 K

(2)
34

0 0 K
(2)
41 K

(2)
42 K

(2)
43 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.84)
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and:

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
1

f
(1)
2

f
(1)
3 + f

(2)
1

f
(1)
4 + f

(2)
2

f
(2)
3

f
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.85)

Another task to be done when building the global system of equations is the application of
essential boundary conditions. This can be done easily by eliminating the rows and columns corre-
sponding to restricted dofs from the global matrix and vector and apply their corresponding value
to the right hand side. This procedure can be done without reordering of equations but it is more
convenient to separate the restricted equations from others in order to simplify the process. Con-
sidering the following equation system where the components corresponding to Dirichlet degrees
of freedom are separated from others:

[
KNN KDN

KDN KDD

] [
aN

aD

]
=

[
fN

fD

]
(3.86)

where aN are unknowns and aD are known dofs with Dirichlet boundary condition and fD
their corresponding boundary unknown. Let us divide the above system in two restricted and not
restricted part as follows:

[KNN ] [aN ] + [KND] [aD] = [fN ] (3.87)
[KDN ] [aN ] + [KDD] [aD] = [fD] (3.88)

Knowing the Dirichlet boundary condition values aD let us move them to the right hand side:

[KNN ][aN ] = [fN ] − [KND][aD] (3.89)

This system of equations can be solved to obtain the unknowns aN . Considering the previous
beam example of figure 3.8. The dofs a1 and a5 are restricted. In order to partition the global
system let us reorder the dofs as follows:

ã = {a2, a3, a4, a6, a1, a5} (3.90)

which results in the following index vectors:

I(1) =

⎡
⎢⎢⎣

5
1
2
3

⎤
⎥⎥⎦ , I(2) =

⎡
⎢⎢⎣

2
3
6
4

⎤
⎥⎥⎦ (3.91)
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Now let us assemble the global matrix K:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
22 K

(1)
23 K

(1)
24 0 K

(1)
21 0

K
(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
14 K

(1)
31 K

(2)
13

K
(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
24 K

(1)
41 K

(2)
23

0 K
(2)
41 K

(2)
42 K

(2)
44 0 K

(2)
43

K
(1)
12 K

(1)
13 K

(1)
14 0 K

(1)
11 0

0 K
(2)
31 K

(2)
32 K

(2)
34 0 K

(2)
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.92)

and vector f :

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
2

f
(1)
3 + f

(2)
1

f
(1)
4 + f

(2)
2

f
(2)
4

f
(1)
1

f
(2)
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.93)

Finally applying the Dirichlet boundary condition using equation 3.89:

KNN =

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(1)
22 K

(1)
23 K

(1)
24 0

K
(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
14

K
(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
24

0 K
(2)
41 K

(2)
42 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.94)

and:

[RN ] = [fN ] − [KND][aD] =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(1)
2

f
(1)
3 + f

(2)
1

f
(1)
4 + f

(2)
2

f
(2)
4

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
21 0

K
(1)
31 K

(2)
13

K
(1)
41 K

(2)
23

0 K
(2)
43

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
a1

a5

]
(3.95)

⎡
⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f
(1)
2 − K

(1)
21 a1

f
(1)
3 + f

(2)
1 − K

(1)
31 a1 − K

(2)
13 a5

f
(1)
4 + f

(2)
2 − K

(1)
41 a1 − K

(2)
23 a5

f
(2)
4 − K

(2)
43 a5

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.96)
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results in the following equation to be solved:

⎡
⎢⎢⎢⎢⎢⎢⎣

K
(1)
22 K

(1)
23 K

(1)
24 0

K
(1)
32 K

(1)
33 + K

(2)
11 K

(1)
34 + K

(2)
12 K

(2)
14

K
(1)
42 K

(1)
43 + K

(2)
21 K

(1)
44 + K

(2)
22 K

(2)
24

0 K
(2)
41 K

(2)
42 K

(2)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a2

a3

a4

a6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

⎤
⎥⎥⎥⎥⎥⎦ (3.97)

Another way to apply the Dirichlet conditions is to use a penalty method. This applies a
big coefficient to the diagonal elements corresponding to the restricted degrees of freedom. This
method is easier to program but is less robust than the previous one. The problem is to find the
correct coefficient because a high number may cause the system to be ill conditioned and a low
one is less realistic.

The global system matrix obtained through the FEM typically has a lot of zeros in it. Holding
all its values in a dense matrix structure, which stores all elements of matrix, implies a large
overhead in memory due to the storage of zero elements. There are several alternative structures
which hold a useful portion of matrix for solving. For example a banded matrix structure holds a
band around the diagonal of a matrix and assumes all element outside the band are zero. There are
also several sparse matrix structures like: compressed sparse row (CSR) which stores the nonzero
elements of each row with their corresponding numbers of columns, or compressed sparse column
(CSC) which is the transposed of compressed sparse row as a column major structure. Another
common structure is the symmetric matrix structure that uses the symmetry property of the matrix
to hold approximately half of the elements and can be combined with a sparse structure to store
half of the nonzeros in matrix.

Solving the Global System

In the previous section the global system of equations was prepared and applying the essential
conditions made it ready to be solved. This system of equations can be solved using conventional
solvers. There are two categories of solvers, direct solvers and iterative solvers.

Direct solvers try to solve the equation by making the coefficient matrix upper triangular,
lower triangular, diagonal, or sometimes decomposing it to upper lower form and calculating the
unknowns using this form of matrices. Solvers like Gaussian elimination [81], frontal solution [23],
LU decomposition [81] for general matrices, and Cholesky [81] for symmetric matrices are examples
of this category.

Iterative solvers start with some initial values for the unknown and try to find the correct
solution by calculating the residual and minimize it over iterations. Conjugate gradient (CG)
[90], Biconjugate gradient (BCG) [90], Generalized minimal residual method (GMRES) [90] are
examples of this category of solvers.

Direct solvers are very fast for small systems of equations and are less dependent on the condi-
tioning of the matrix. The only exception is the existence of pivot, a zero in diagonal, which needs
a special treatment. These solvers are very slow for large systems while the number of operations
grows with order O(N3) where N is the size of system. Algorithms like multi frontal solution [36]
are used to solve big systems in parallel machines taking advantage of using several processors in
parallel. A way to reduce the number of operations needed for solving the problem is to reduce
the bandwidth of the system matrix.

Iterative solvers on the contrary are highly dependent on the condition of the system which
affects considerably their convergence. Usually for small systems the direct solvers are faster while
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for medium to large systems the iterative ones are more suitable, still depending on the condition
of system. These methods are also easier to implement and optimize than direct methods.

As mentioned before the solving cost of direct solvers is highly depended on the bandwidth of
the system matrix. For this reason a procedure called reordering is recommended to reduce the
bandwidth of system matrix. This procedure consists of changing the order of rows and columns
of the matrix in order to reduce the bandwidth before the solution and then permuting the result
back after solving. In practice these algorithms can be applied to renumber the degrees of freedom
in optimum way once they are created and then solve the system as usual. The Cuthill McKee [90]
algorithm is a classical example of these algorithms. Sometimes the reordering process is applied
before using iterative solvers to reduce the cache miss produced by the large sparsity of matrix.

Sometimes it is recommended to prepare the system matrix before solving it using an iter-
ative solver. This procedure is called preconditioning and consists of transforming the system
of equations to and equivalent but better conditioned one for the solution with iterative solvers.
Diagonal preconditioner [90] for diagonal dominant systems, Incomplete LU with tolerance and
filling [90] for general nonsymmetric systems, and Incomplete Cholesky [90] for symmetric systems
are examples of popular preconditioners. Unfortunately, finding the best combination of solver
and preconditioner for a certain problem is a question of experience and there is not a single best
combination for all problems.

Calculating Additional Results

In a linear problem after solving the global system of equations, the principal results are obtained
and in some sense the problem is solved. But in many cases there are some additional results which
are of interest and must be calculated. For example in structural analysis the nodal displacements
can be obtained by solving the global system of equations. However the stress in elements is also
important and has to be calculated. These values usually are calculated using the primary result,
i.e. displacements for each element. For example the elemental stress in a structural problem can
be calculated using the displacement values ae, obtained by solving the global system using the
following equation [75]:

σ = DBae − Dε0 + σ0 (3.98)

where σ is elemental stress, D is the elasticity matrix, B is the strain matrix, ε0 is the initial
strain, and σ0 is the initial stress of element. However the results obtained by this equation are
usually discontinuous over the domain. This means that the stress result for a node from different
elements connected to it is different. For this reason different averaging methods are implemented
to smooth the discontinuous results. An alternative is to use recovery methods which try to
reproduce continuous gradient results with a better approximation [104].

Iterating

One may note that the previous sections where mainly based on linear differential equations. So
what has to be done if the problem is not linear? There are several methods to deal with nonlinear
problems. Unfortunately these methods cannot obtain the results as simply as before and usually
need to perform iterations to find the results. Considering the following nonlinear system of
equations:

K(u)u = f (3.99)
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One can plan an iterative solution procedure where each set of unknowns un is used to calculate
the system of equations and calculate the next set of unknowns un+1:

K(un)un+1 = f (3.100)

There are several methods for accelerating the convergence of this procedure. Some examples
are Newton method, Modified Newton method, Line search [104], etc. As mentioned before all these
methods need iterations over the solution.

3.3 Multi-Disciplinary Problems

The objective of this work is creating a framework to deal with multi-disciplinary problems. So 
before getting any further, it is important to give a general description of these problems and 
describe some important features of them briefly.

3.3.1 Definitions

There are different definitions for multi-disciplinary problems. A multi-disciplinary solutions is
usually defined as solving a coupled system of different physical models together. A coupled system
is assumed to be a collection of dependent problems put together defining the model.

In this work a multi-disciplinary problem, also called coupled problem, is defined as solving a
model which consists of components with different formulations and algorithms interacting together.
It is important to mention that this difference may come not only from the different physical nature
of the problems but also from their different type of mathematical modeling or discretization.

A field is a subsystem of multi-disciplinary model representing a certain mathematical model.
Typical examples are a fluid field and a structure field in a fluid-structure interaction problem.
In a coupled system a domain is the part of a modeled space governed by a field equation, i.e. a
structure domain and a fluid domain.

3.3.2 Categories

The definition given for multi-disciplinary problem includes a wide range of problems with very
different characteristics. These problems can be grouped into different categories reflecting some
of their aspects affecting the solution procedure. One classification can be made by how different
subsystems interact with each other. Another classification can be done reflecting the type of
domain interfaces.

Weak and Strong Coupling

One may classify multi-disciplinary problems by the type of coupling between the different subsys-
tems. Consider a problem with two interacting subsystem as shown in figure 3.9.

The problem is calculating the solutions u1 and u2 of subsystems S1 and S2 under applied
forces F (t). There are two types of dependency between the subsystems:

Weak Coupling Also called one-way coupling where one domain depends on the other but this
can be solved independently. A thermal-structure problem is a good example of this type of
coupling. In this problem the material’s property of the structure depends on the temperature
while the thermal field can be solved independently, assuming the temperature change due
to the structural deformation is very small. Figure 3.10 shows this type of coupling.
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Strong Coupling Also referred as two-way coupling when each system depends on the other and
hence none of them can be solved separately. The fluid-structure interaction problems for
structures with large deformations fall into this category. In these problems, the structure
deforms by the pressure coming from the fluid, and the fluid velocity and pressure depend
on the shape of the deformed structure. Figure 3.11 shows this type of coupling.

Interaction Over Boundary and Domain

As mentioned before one classification of multi-disciplinary problems relies on how subsystems
interact together. Another classification can be done by looking not on how they interact but
where they interact with each other. There are two categories of multi-disciplinary problems using
this criteria [104]:

Class I In this category the interaction occurs at the boundary of the domains. For example in
a fluid-structure interaction problem the interaction occurs at the boundary of the structure
in contact with fluid and vice versa. Figure 3.12 shows an example of this type of problems.

Class II This category include problems where domains can overlap totally or partially. A
thermal-fluid problem is a good example of this class of problems where the domain of
the fluid and the thermal problem overlap. Figure 3.13 shows an example of this type of
problems.

3.3.3 Solution Methods

There are several different approaches for solving multi-disciplinary problems. Finding a suitable
approach for each case, highly depends on the category of the problem and the different details of
each field specially for time dependent problems. In this section an overview of different method-
ologies for solving these problems will be discussed.

Sequential Solution of Problems with Weak Coupling

The solving procedure of one-way coupled problems is trivial. Considering the problem of figure
3.10 with two subsystem S1 and S2 where S2 depends on u1 (the solution of S1). This problem
can be solved easily by solving S1 first and using its solution u1 for solving S2 as shown in figure
3.14. For transient problems this can be done at each time step.

1 2

2

1

Figure 3.9: A general multi-disciplinary problem with two subsystems.
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1

2 1

1

1 2

Figure 3.10: A weak coupled system where the subsystem S2 depends on the solution of subsystem
S1.

1

2 1

1 2

2
1 2

Figure 3.11: A strong coupled system where not only the subsystem S2 depends on the solution
of subsystem S1 but also subsystem S1 depends on S2.

Monolithic Approach

In this approach the interacting fields are modeled together which results in a coupled continuous
model and finally a multi-disciplinary element to be used directly. Consider the problem with
strong coupling in figure 3.11 where not only subsystem S2 depends on the solution of subsystem
S1, but also subsystem S1 depends on S2:

L1(u1, u2, t) = f1(t) (3.101)
L2(u1, u2, t) = f2(t) (3.102)

Applying the discretization over time and space one can rewrite the above equation in the
following form for each time step:[

K1 H1

H2 K2

] [
u1

u2

]
=

[
f1(t)

f2(t)

]
(3.103)

where K1 and K2 are the field system matrices corresponding to the field variables and H1 and
H2 are the field system matrices corresponding to interaction variables. These equations can be
solved at each time step in order to calculate the solutions of both fields. Figure 3.15 shows this
scheme.

Though this approach seems to be very easy and natural, in practice it encounters difficulties.
One problem is the difficulty of the formulation. The multi-disciplinary continuous models, are
usually complex by nature and this complexity makes the discretization process a tedious task.
However by using computer algebra systems like Mathematica [103], and Maple [66], the symbolic
derivation in this approach becomes more feasible.
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Figure 3.12: A class I fluid-structure interaction problem. The interface, shown by the thick black
line, is just at the boundary of the fluid and structure domains.

Figure 3.13: A thermal-fluid interaction problem. Here the thermal domain and the fluid domain
overlap in the heating pipe part.
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1

1

2 1

1

1 22

Figure 3.14: Sequential solving of one-way coupled problems.

1

1

2 1

1 2

2

22

1

Figure 3.15: Monolithic scheme for solving multi-disciplinary problems.

Another problem is the size and bandwidth of the global system. In this method all fields have
to be solved together which make it an expensive approach.

An additional disadvantage is the implementation cost. Implementing the interaction of a
certain field with any new field requires the interface matrices H1 and H2 to be customized to
reflect the new variables. These are not reusable for another interaction of that field. Also any
existing codes, for solving each field individually, cannot be reused as they are and in many cases
severe modifications are necessary for adapting them to this approach.

In spite of these problems, this approach perfectly models the interaction and results in a more
robust and more stable formulation for solving coupled problems.

Staggered Methods

The intention of staggered methods is to solve each field separately and simulate the interaction by
applying different techniques for transforming variables from one field to another. Some common
techniques for staggered methods are described below:

Prediction This technique consists of predicting the value of the dependent variables in the next
step. For example in the two-way coupled problem of figure 3.11 a prediction of the variable
u

(n+1)
2 can be used to solve the S1 subsystem separately. This technique is widely used to

decouple different fields in problems with strong coupling. Figure 3.16 shows the prediction’s
scheme.

There are different methods for predicting the solution for the next step. One common
method is the last-solution predictor which uses the actual value of the variable as the pre-
dicted value for the next step:

u(n+1)
p = u(n) (3.104)
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Another common choice is the prediction by solution gradient which applies a predicted
variation to the actual value of variable to obtain the predicted value in the next step:

u(n+1)
p = u(n) + ∆tu̇(n) (3.105)

with:

∆t = t(n+1) − t(n) (3.106)

u̇(n) =
(

∂u

∂t

)(n)

(3.107)

Advancing Calculating the next time step of a subsystem using the calculated or predicted solu-
tion of other subsystem. Figure 3.17 shows this technique.

Substitution Substitution is a trivial technique which uses the calculated value of one field in
another field for solving it separately. Figure 3.18 shows its scheme.

Correction Considering the S1 subsystem which is solved using the predicted solution u
(n+1)
2p to

obtain u
(n+1)
1 . Advancing the subsystem S2 using u

(n+1)
1 results in u

(n+1)
2 . The correction

step consist of substituting u
(n+1)
2 in place of the predicted value u

(n+1)
2p and solve again S1

to obtain a better result. Obviously this procedure can be repeated several times. Figure
3.19 shows this procedure.

An staggered method can be planed using the techniques above. For example, returning to the
problem of figure 3.11, one can plan the following staggered method:

1. Prediction: u
(n+1)
p = u

(n)
2 + ∆tu̇

(n)
2

2. Advancing: S
(n+1)
1 (u(n+1)

p ) → u
(n+1)
1

3. Substitution: u
(n+1)
1 = u

(n+1)
1 for S2

4. Advancing: S
(n+1)
2 (u(n+1)

1 ) → u
(n+1)
2

2
(n+1)

1
(n+1)

2
(n)

1
(n)

2p
(n+1)

(n) (n+1)

Figure 3.16: The prediction technique consists of predicting the value of the interaction variable
for the next step and use it to solve the other field.
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Figure 3.17: The advancing is calculating the solution of the next time step (S1) using the calculated
or predicted solution of other subsystem (S2).
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Figure 3.18: The substitution technique consists of substituting the calculated interaction variables
in the field S1 into the field S2 to calculate it separately.

Figure 3.20 shows this procedure.
More information about staggered methods and their techniques can be found in [41, 42].
Staggered methods use less resources than the monolithic approaches because in each step solve

only one part of problem. This can be a great advantage in solving large problems. Also this gives
an idea to use the same process for solving large single field problems over several machines in
parallel.

The other advantage is the possibility of reusing existing single field codes for solving multi-
disciplinary problems almost without modification. This can be done by writing an small program
to control the interaction between independent programs for each field. This strategy is referred
as master and slave method and widely used for solving multi-disciplinary problems.

This approach also enables the use of different discretizations for each field. It also lets each
field have its own mesh characteristics. This can be a great added value for solving large and
complex coupled problems.

As usual, beside all advantages there are some disadvantages. Staggered methods require a
careful formulation to avoid instability and obtain an accurate solution. In general the staggered
method is less robust than the monolithic approach and needs more attention in time of modeling
and solving.
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Figure 3.19: The correction consist of replacing the predicted solution with recently calculated one
and resolve the subsystem to obtain a better solution.
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Figure 3.20: An staggered method for solving a coupled system.

3.4 Programming Concepts

Designing and implementing a new software is a hard task. Using proper software engineering
solutions and also advanced programming techniques can significantly increase the quality of the
program. This chapter describes different software engineering solutions and programming tech-
niques which are useful for designing a finite element program.

3.4.1 Design Patterns

Designing usually consists of several decisions that affect the feature reusability, flexibility, and
extendability of the code. However there are several classical problems that appearing during the
design and can be solved easily by applying existing Design Patterns. Design patterns are some
reusable patterns for designing a part of program representing a known problem. In this section a
set of patterns that can be used in designing a finite element program are briefly explained.

Strategy Pattern

Strategy pattern defines a family of algorithms by encapsulating each algorithm in one separate
class and making them interchangeable via a uniform interface established by their base class.
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Figure 3.21 shows this pattern.

Figure 3.21: Strategy pattern’s structure

In this structure Strategy declares the interface for all strategies. User has a reference to a
Strategy object and uses the Strategy interface to call the algorithm. User also may let Strategy
access its data via an interface. Finally each ConcreteStrategy implements an algorithm using
the Strategy interface.

There are many points in finite element program design where this pattern can be used. Linear
solvers, geometries, elements, condition, processes, strategies, etc. Figure 3.22 shows an example
of using this pattern for designing a linear solver’s structure:

Figure 3.22: Structure designed for linear solvers using strategy pattern

Using this pattern each class derived form LinearSolver encapsulates one solving algorithm
separately. This encapsulation makes a library easier to extend. The interface is defined by
the LinearSolver base class and is uniform for all derived solvers. User keeps a pointer to
LinearSolver base class which may point to any member of the solver family and use the in-
terface of the base class to call different procedures.

Bridge pattern

The bridge pattern decouples the abstraction and its implementation in such a way that they can
change independently. Figure 3.23 shows the structure of this pattern.

In this pattern Abstraction defines the interface for the user and also holds the implementor
reference. AbstractionForm create a new concept and may also extend the Abstraction interface.
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Figure 3.23: Bridge pattern’s structure.

Implementor defines the interface for implementation part which is used by abstractions. Each
ConcreteImplementor implements the implementor interface for a concrete case.

Bridge pattern is useful for connecting to concepts with hierarchical structure. In a finite
element program this pattern can be used to connect elements to geometries, linear solvers to their
reorderer, or to connect iterative solvers to preconditioners.

For example, applying a bridge pattern to an Element’s structure results in the structure shown
in Figure 3.24.

This pattern lets each Element combine its formulation to any Geometry.

Composite Pattern

The Composite pattern lets users group a set of object in one composite object and treat individual
objects and compositions of objects uniformly. Figure 3.25 shows the structure of this pattern.

In this pattern Component defines the interface for object operations and also declares the
interface for accessing and managing the child components. It may also define an interface for
accessing the component’s parent in reversible structures. Leaf has no children and implements
just the operation. It can be used as a basic unit in composition. Composite stores its children and
implements the child management interface. It also implements its operation by using operations
of its children. Finally user can use the component interface to work with all objects in composition
uniformly.

This pattern can be used to design processes which can be constructed by a set of processes,
geometries with ability of grouping them in a composite one, or even elements grouping different
elements in one and mixing formulations.

For example applying this pattern to process results in the structure shown in figure 3.26.
This structure lets users to combine different process in one and use it like any other process.

Template Method Pattern

The Template Method pattern defines the skeleton of an algorithm separately and defers some
steps to subclasses. In this way template method pattern lets subclasses redefine certain steps
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Figure 3.24: Element’s structure using bridge pattern.

of an algorithm without changing the algorithm’s structure. Figure 3.27 shows structure of this
pattern.

In this structure AbstractClass defines abstract primitive operations and also implements
the skeleton of an algorithm in a template method. ConcreteClass implements the primitive
operations which will be used by the template method as changed steps of algorithm.

This method is useful in situations when various algorithms differ in some of their steps but
not in global. Strategies can be designed using this pattern to provide a category of algorithms
changeable by schemes or applying this pattern to linear solver design can make them independent
from the matrix and vectors and their operations.

Figure 3.28 shows an example of using this pattern in designing strategies.

Prototype Pattern

The Prototype pattern provides a set of prototypes of objects to be created. User clones the
prototype to create a new object of that type. System is extendible to any new type whose
prototype is available. Figure 3.29 shows the structure of this pattern.

Prototype provides the cloning interface and is the common base class useful to create proto-
types list. Each concrete prototype implements the cloning operation for itself. User creates a new
object by asking its related prototype to clone itself.

Prototype pattern is very useful for designing an extendible IO. IO can use a prototype of new
object and create it without problem. Figure 3.30 shows a use of this pattern in IO for creating
elements.
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Figure 3.25: Composite pattern.

Interpreter Pattern

The Interpreter pattern creates a representation for given grammar and then use it to interpret
the langauge. This pattern has simple structure as shown in figure 3.31.

AbstractExpression defines the Interpret interface for all nodes in syntax tree. TerminalExpression
represents a terminal symbol in grammar and implements the Interpret method for it. For each
terminal symbol in a sentence an instance of it has to be created. NonterminalExpression rep-
resents a nonterminal symbol in context free grammar. It holds instances of all expressions in its
sentence. It also implements the Interpret method which usually consist of calling it members
Interpret method.

Curiously Recursive Template Pattern

The Curiously Recursive Template (CRT) pattern, also called as Barton and Nackman Trick,
consists of giving the derived class to its base class as its template argument. The idea is configuring

Figure 3.26: Applying composite pattern to processes’ structure.
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Figure 3.27: Template Method pattern structure.

Figure 3.28: Template Method pattern applied to solving strategy.

a base class depending on its derived class and providing a type of static polymorphism which can
be much more efficient than usual polymorphism by deriving and overriding the virtual functions.
Figure 3.32 shows this pattern.

Using this pattern lets developer customize the base class without losing efficiency in operation.
This pattern is more effective when the operation is very simple and the overhead of virtual function
calling is considerable. For example a matrix library can use this pattern to let a symmetric matrix
derived class change the operators of a base matrix class. In this way methods like access methods,
assignments, etc. can be overridden without producing performance overhead. Figure 3.33 shows
this pattern applied to the matrix example above.

The patterns described in this section are the ones used in the design of the Kratos. Description
for other patterns and also more detailed explanation of patterns mentioned before can be found
in [45].

3.4.2 C++ advanced techniques

Performance and memory efficiency are two crucial requirement for finite element programs. It has
been shown that an optimized implementation of numerical methods in C++ can provide the same
performance of Fortran implementations [100] and usually the inefficiency of the C++ codes comes
from the developer’s misunderstanding of the language [54]. For this reason it can be helpful to
take a look at different techniques used for implementing high performance and efficient numerical
algorithms in C++. These techniques are used in different parts of Kratos to improve its efficiency
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Figure 3.29: Prototype pattern.

while providing a clear and easy to use interface.

Expression Templates

Expression Templates is a technique which is used to pass expressions to a function argument
in a very efficient way [97]. For example passing a function to an integration procedure to be
integrated. This technique is also used in high performance linear algebra libraries to evaluate
vectorial expressions [98]. In this way expressions consisting of operation over matrices and vectors
can be evaluated without creating any temporary object and in a single loop.

The idea is to create a template object for each operator and constructing the whole expression
by combining these templates and their relative variables. For example, considering the function
f as follows:

f(x, y) =
1

x + y

Converting this function to its expression templates form can be done in three steps. First we
need expressions to represent the constant and variables as follows:

class ConstantExpression {

double mValue;

public:

ConstantExpression(double Constant) : mValue(Constant ){}

double Value (){ return mValue ;}

};

class ReferenceExpression {

double& mReference;

public:

ReferenceExpression(double& Variable) : mReference(Variable ){}

double Value (){ return mReference ;}

};

Then some templates are necessary to handle the operators:
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Figure 3.30: Using prototype pattern in IO for creating elements.

Figure 3.31: Interpreter pattern structure

template <class TExpression1 , class TExpression2 > class

SumExpression {

TExpression1 mExpression1;

TExpression2 mExpression2;

public:

SumExpression(TExpression1 Expression1 ,

TExpression2 Expression2) :

mExpression1(Expression1),

mExpression2(Expression2 ){}

double Value (){ return mExpression1.Value () +

mExpression2.Value ();}

};

template <class TExpression1 , class TExpression2 > class
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Figure 3.32: Curiously recursive template pattern.

DivideExpression {

TExpression1 mExpression1;

TExpression2 mExpression2;

public:

DivideExpression(TExpression1 Expression1 ,

TExpression2 Expression2) :

mExpression1(Expression1),

mExpression2(Expression2 ){}

double Value (){ return mExpression1.Value() /

mExpression2.Value ();}

};

And finally the expression template version can be written using previous components. Con-

Figure 3.33: Using CRT pattern in matrix structure desing.
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verting the x + y expression results in:

SumExpression <ReferenceExpression ,

ReferenceExpression >( ReferenceExpression(x),

ReferenceExpression(y));

Using above expression the whole function can be written as follows:

typedef SumExpression <ReferenceExpression ,

ReferenceExpression > sum_expression;

typedef DivideExpression <ConstantExpression ,

sum_expression > expression;

expression f = expression(ConstantExpression (1),

sum_expression(ReferenceExpression(x),

ReferenceExpression(y)));

Writing these expressions manually is really impractical but fortunately carefully overloaded
operators can do this conversion automatically. As mentioned earlier this technique can be used
to evaluate matrix and vector expressions without creating temporaries and in one pass. A simple
sum operation using overloaded operators over vectors or matrices can result in many redundant
loops and overhead. For example considering the following innocent code:

// a,b,c and d are vectors

d = a + b + c;

This simple code to sum three vectors and assign it to another one using simple overloaded
operators can generate a code equivalent to:

Vector t1 = b + c; Vector t2 = a + t1; d = t2;

In the first step the overloaded operator is used to calculate the sum of two vectors and put
them in the temporary vector t1. Again the overloaded operator is used to calculate the sum
of vector a and temporary vector t1 and the result is stored in another temporary vector t2.
Finally the second temporary vector is assigned to left hand side vector d. It can be seen that this
operation is done by performing three loops over all vector elements and creating two temporary
vectors which make it very inefficient. Using expression templates can eliminate all this overhead
and make it as efficient as a hand coded procedure.

The idea is to overload operators to create the expression without evaluating it. The evaluation
of the expression is postponed to the assigning time. The right hand side of this expression can be
converted to the following form:

class ReferenceExpression {

Vector& mReference;

public:

ReferenceExpression(Vector& Variable) : mReference(Variable ){}

double Value(int i){ return mReference[i];}

};

template <class TExpression1 , class TExpression2 > class

SumExpression {

TExpression1 mExpression1;

TExpression2 mExpression2;

public:
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SumExpression(TExpression1 Expression1 ,

TExpression2 Expression2) :

mExpression1(Expression1),

mExpression2(Expression2 ){}

double Value(int i){ return mExpression1.Value(i) +

mExpression2.Value(i);}

};

typedef SumExpression <ReferenceExpression ,

SumExpression <ReferenceExpression ,

ReferenceExpression > rhs_expression;

d = rhs_expression(ReferenceExpression(a),

SumExpression <ReferenceExpression ,

ReferenceExpression >(b,c));

Now an overloaded assignment operator can complete the procedure:

template <class TExpression >

operator = (Vector& a, TExpression Expression)

{

for(int i = 0 ; i < size ; i++)

a[i] = Expression.Value(i);

}

Passing our rhs expression to this assignment operator results a code equivalent to:

for(int i = 0 ; i < size ; i++)

d[i] = rhs_expression.Value(i);

Inlining the first Value method and references inside it results the following code:

for(int i = 0 ; i < size ; i++)

d[i] = a[i] + SumExpression <ReferenceExpression ,

ReferenceExpression >(b,c).Value(i);

And inlining the second Value method and its all the references results the optimized code:

for(int i = 0 ; i < size ; i++)

d[i] = a[i] + b[i] + c[i];

Template Metaprogramming

Templates were added to C++ for a better alternative to existing macros in old C. Eventually
they didn’t eliminate the usage of macros but gave us much more than anyone could expect. For
example, template meta programming. Everything began when Erwin Unruh tricked the compiler
to print a list of prime numbers at compile time. This extends the algorithm writing from standard
form in C++ to a new form which makes the compiler run the algorithm and results in a new
specific algorithm to run.

The Template Metaprogramming technique can be used to create an specialized algorithm at
the time of compiling. This technique makes compiler interpret a subset of C++ code in order to
generate this specialized algorithm. Different methods are used to simulate different programming
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statements, like loops or conditional statements, at compile time. These statements are used to
tell the compiler how to generate the code for our specific case.

This technique uses recursive templates to encourage the compiler into making a loop. When
a template calls itself recursively the compiler has to make a loop for instantiating templates
until a specialized version used as stop rule is reached.Here is an example of how template meta
programming can be used to make a compile time power function. First a general template function
class is needed to hold the power function class:

template <std:: size_t TOrder > struct Pow {

static inline

double Value(double X)

{

// Calculatin result ...

return result;

}

};

This class takes order as a template argument of the class. Note that TOrder must be a positive
integer and also known at compile time. So it cannot be used as a normal runtime power function.
Now we take a recursive algorithm to compute the n-th power of a value x:

xi = xi−1 ∗ x, i = 2, ..., N (3.108a)
x1 = x (3.108b)

Implementing this using template meta programming is relatively straightforward. Recursive
templates can be used here to make the compiler perform a for loop and in each pass add an x
multiplication to our code. Stoping the loop after repeating k times will generate a code equivalent
to manually written one. First we introduce the recursive part in Value method:

template <std:: size_t TOrder > struct Pow {

static inline

double Value(double X)

{

return X * Pow <TOrder - 1>::Value(X);

}

};

And the stop rule in equation 3.108b as a specialized template

template <> struct Pow <1> {

static inline

double Value(double X)

{

return X;

}

};

Now the power function is ready to use. Here is an example of calling it to calculate x4:

double x = 2.00; double y = Pow <4>:: Value(x); assert(y == 16.00)

In the time of Compiling, the compiler will try to inlining the Value function which results

double y = x * Pow <3>:: Value(x)
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And continuing the recursive calling to order 1

double y = x * x * x * Pow <1>:: Value(x)

At this point the template specialization stop it from going into a infinite loop because Value
method of Pow<1> is not recursive. Compiler tries to inline this Value method and generates the
following code:

double y = x * x * x * x;

There is an advantage using this class. If x is known at compile time y also be calculated in
compile time. This can be used to optimize the code for instance, loops can be unrolled when the
repeat number is a known value and so on.

Template specialization is can also be used to make compiler simulate conditional statements
or switch and cases. These statements can be used to generate different codes according to some
conditions. For example an assignment operator for matrices may change its algorithm depending
on row or column majority of a given matrix:

template <bool c> class Assign {};

class Assign <true > { public:

template <class Matrix1 , class Matrix2 >

Assign(Matrix1& A, Matrix2& B)

{

// Assigning row by row;

}

}

class Assign <false > { public:

template <class Matrix1 , class Matrix2 >

Assign(Matrix1& A, Matrix2& B)

{

// Assigning column by column;

}

}

template <class Matrix2 >

operator = (Matrix2& B)

{

Assign <Matrix2 ::IsRowMajor >(*this , B);

}

In this form the compiler generates an specialized algorithm for each assigning statement.
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Chapter 4
General Structure

In this chapter first the objectives and also the users considered in the design of Kratos are described
then the methodology to design the structure is given.

4.1 Kratos’ Requirements

Kratos is designed as a framework for building multi-disciplinary finite element programs [31].
Generality in design and implementation is the first requirement. Kratos has to provide the
general tools necessary for finite element solution. It also has to remove many restrictions that
exist in other codes in order to achieve enough flexibility to handle a wider variety of algorithms
than before. For example, restrictions like using certain degrees of freedom (dof).

Kratos must provide a flexible structure in order to handle a wide variety of methods and
algorithms. This flexibility has to be provided not only in its global layout and basic assumptions
but also in its implementation details. Minimization of restrictive assumptions is necessary in order
to let developers configure this library as they want at different levels.

Kratos as a library must provide a good level of reusability in its provided tools. The key
point here is to help users develop easier and faster their own finite element code using generic
components provided by Kratos, or even other applications.

Kratos has to be extendible, at different levels of implementation. It must be extendible to
new formulations, algorithms, and concepts. Supporting a wide variety of problems that can be
coupled in a multi-disciplinary problem requires very different formulations and algorithms to be
implemented. These formulations and algorithms may also use new concepts and variables. So
Kratos must provide an extendible design for all of its components in order to support new methods.

Another important requirements are good performance and memory efficiency. This features
are necessary for enabling applications implemented using Kratos, to deal with industrial multi-
disciplinary problems. These requirements are very important and are the reason for most of the
restrictions in Kratos.

Finally it has to provide different levels of developers’ contributions to the Kratos system,
and match their requirements and difficulties in the way they extend it. Developers may want to
just make a plug-in extension, create an application over it, or using IO scripts to make Kratos
perform a certain algorithm. Kratos has to provide not only all these capabilities but also hide the
unnecessary difficulties from each group of developers.

63
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4.2 Users

One of the important factors in design is to determine who will work with the program, what are
their needs and how the program can help them. In essence Kratos is defined to be used by three
groups of users at different levels:

Finite Element Developers Kratos is defined to be used by finite element developers to imple-
ment a multi-disciplinary formulation easily. These developers, or users from Kratos point of
view, are considered to be more expert in FEM, from the physical and mathematical points
of view, than C++ programming. For this reason, Kratos has to provide their requirements
without involving them in advanced programming concepts.

Application Developers Kratos can be used as a finite element engine for other applications.
This ability favors another teams of developers to work with Kratos. These users are less
interested in finite element programming and their programming knowledge may vary from
very expert to higher than basic. They may use not only Kratos itself but also any other ap-
plications provided by finite element developers, or other application developers. Developers
of optimization programs or design tools are the typical users of this kind.

Package Users Engineers and designers are other users of Kratos. They use the complete package
of Kratos and its applications to model and solve their problem without getting involved in
internal programming of this package. For these users Kratos has to provide a flexible external
interface to enable them use different features of Kratos without changing its implementation.

Kratos has to provide a framework such that a team of developers with completely different
fields of expertise as mentioned before, work on it in order to create multi-disciplinary finite element
applications.

4.3 Object Oriented Design

History of object-oriented design for finite element programs turns back to early 90’s, and even
more. Before that, many large finite element programs were developed in modular ways. Industry
demands for solving more complex problems from one side, and the problem of maintaining and
extending the previous programs from the other side, has lead developers to target their design
strategy towards an object-oriented one [44, 43, 64, 80, 82].

The main goal of an object-oriented structure is to split the whole problem into several objects
and to define their interfaces. There are many possible ways to do this for each kind of problem
we want to program and the functionality of the resultant structure depends largely on it. In
the case of finite element problems there are also many approaches such as constructing objects
based on partial differential equations solving methods [22] or in the finite element method itself
[44, 106, 35, 34].

In Kratos we have chosen the second approach and have constructed our objects based on a
finite element general methodology. This approach was selected because our goal was to create a
finite element environment for multidisciplinary problems. Also our colleagues were, in general,
more familiar with this methodology than with physical properties. In addition, this approach has
given us the necessary generality mentioned above in the objectives of Kratos. Within this scope
main objects are taken from various parts of the FEM structure. Then, some abstract objects are
defined for implementation purposes. Finally their relation are defined and their responsibilities
are balanced. Figure 4.1 shows the main classes in Kratos.
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Figure 4.1: Main classes defined in Kratos.

Vector, Matrix, and Quadrature are designed by basic numerical concepts. Node, Element,
Condition, and Dof are defined directly from finite element concepts. Model, Mesh, and Properties
are coming from practical methodology used in finite element modeling completed by ModelPart,
and SpatialContainer, for organizing better all data necessary for analysis. IO, LinearSolver,
Process, and Strategy are representing the different steps of finite element program flow. and
finally Kernel and Application are defined for library management and defining its interface.

These main objects are described below:

Vector Represents the algebraic vector and defines usual operators over vectors.

Matrix Encapsulate matrix and its operators. There are different matrix classes are necessary.
The most typical ones are dense matrix and compressed row matrix.

Quadrature Implements the quadrature methods used in finite element method. For example the
gaussian integration with different number of integration points.

Geometry Defines a geometry over a list of points or Nodes and provides from its usual parameter
like area or center point to shape functions and coordinate transformation routines.

Node Node is a point with additional facilities. Stores the nodal data, historical nodal data, and
list of degrees of freedom. It provides also an interface to access all its data.

Element Encapsulates the elemental formulation in one objects and provides an interface for calcu-
lating the local matrices and vectors necessary for assembling the global system of equations.
It holds its geometry that meanwhile is its array of Nodes. Also stores the elemental data
and interface to access it.

Condition Encapsulates data and operations necessary for calculating the local contributions of
Condition in global system of equations. Neumann conditions are example of Conditions
which can be encapsulated by derivatives of this class.

Dof Represents a degree of freedom (dof). It is a lightweight object which holds the its variable,
like TEMPERATURE, its state of freedom, and a reference to its value in data structure. This



66 CHAPTER 4. GENERAL STRUCTURE

class enables the system to work with different set of dofs and also represents the Dirichlet
condition assigned to each dof.

Properties Encapsulates data shared by different Elements or Conditions. It can stores any
type of data and provide a variable base access to them.

Model Stores the whole model to be analyzed. All Nodes, Properties, Elements, Conditions and
solution data. It also provides and access interface to these data.

ModelPart Holds all data related to an arbitrary part of model. It stores all existing components
and data like Nodes, Properties, Elements, Conditions and solution data related to a part
of model and provides interface to access them in different ways.

Mesh Holds Nodes, Properties, Elements, Conditions and represents a part of model but without
additional solution parameters. It provides access interface to its data.

SpatialContainer Containers associated with spacial search algorithms. This algorithms are
useful for finding the nearest Node or Element to some point or other spacial searches.
Quadtree and Octree are example of these containers.

IO Provides different implementation of input output procedures which can be used to read and
write with different formats and characteristics.

LinearSolver Encapsulates the algorithms used for solving a linear system of equations. Different
direct solvers and iterative solvers can be implemented in Kratos as a derivatives of this class.

Strategy Encapsulates the solving algorithm and general flow of a solving process. Strategy
manages the building of equation system and then solve it using a linear solver and finally is
in charge of updating the results in the data structure.

Process Is the extension point for adding new algorithms to Kratos. Mapping algorithms, Opti-
mization procedures and many other type of algorithms can be implemented as a new process
in Kratos.

Kernel Manages the whole Kratos by initializing different part of it and provides necessary inter-
face to communicate with applications.

Application Provide all information necessary for adding an application to Kratos. A derived
class from it is necessary to give kernel its required information like new Variables, Elements,
Conditions, etc.

The main intention here was to hide all difficult but common finite element implementations
like data structure and IO programming from developers.

4.4 Multi-Layers Design

Kratos uses a multi-layer approach in its design. In this approach each object only interfaces with
other objects in its layer or in layers below its layer. There are some other layering approaches
that limited the interface between objects of two layers but in Kratos this limitation is not applied.

Layering reduces the dependency inside the program. It helps in the maintenance of the code
and also helps developers in understanding the code and clarifies their tasks.
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In designing the layers of the structure different users mentioned before are considered. The
layering are done in a way that each user has to work in the less number of layers as possible.
In this way the amount of the code to be known by each user is minimized and the chance of
conflict between users in different categories is reduced. This layering also lets Kratos to tune
the implementation difficulties needed for each layer to the knowledge of users working in it. For
example the finite element layer uses only basic to average features of C++ programming but the
main developer layer use advanced language features in order to provide the desirable performance.

Following the current design mentioned before, Kratos is organized in the following layers:

Basic Tools Layer Holds all basic tools used in Kratos. In this layer using advance techniques in
C++ is essential in order to maximize the performance of these tools. This layer is designed
to be implemented by an expert programmer and with less knowledge of FEM. This layer
may also provides interfaces with other libraries to take benefit of existing work in area.

Base Finite Element Layer This layer holds the objects that are necessary to implement a
finite element formulation. It also defines the structure to be extended for new formulations.
This layer hides the difficult implementations of nodal and data structure and other common
features from the finite element developers.

Finite Element Layer The extension layer for finite element developers. The finite element
layer is restricted to use the basic and average features of language and uses the component
base finite element layer and basic tools to optimize the performance without entering into
optimization details.

Data Structure Layer Contains all objects organizing the data structure. This layer has no re-
striction in implementation. Advanced language features are used to maximize the flexibility
of the data structure.

Base Algorithms Layer Provides the components building the extendible structure for algo-
rithms. Generic algorithms can also be implemented here to help developer in their imple-
mentation by reusing them.

User’s Algorithms Layer Another layer to be used by finite element programmers but at a
higher level. This layer contains all classes implementing the different algorithms in Kratos.
Implementation in this layer requires medium level of programming experience but a higher
knowledge of program structure than the finite element layer.

Applications’ Interface Layer This layer holds all objects that manage Kratos and its rela-
tion with other applications. Components in this layer are implemented using high level
programming techniques in order to provide the required flexibility.

Applications Layer A simple layer which contains the interface of certain applications with
Kratos.

Scripts Layer Holds a set of IO scripts which can be used to implement different algorithms from
outside Kratos. Package users can use modules in this layer or create their own extension
without having knowledge of C++ programming or the internal structure of Kratos. Via
this layer they can activate and deactivate certain functionalities or implement a new global
algorithm without entering into Kratos implementation details.

Figure 4.2 shows the multi-layer nature of Kratos.
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Figure 4.2: Dividing the structure into layers reduces the dependency.
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4.5 Kernel and Applications

In the first implementation of Kratos all applications were implemented in Kratos and also were
compiled together. This approach at that time produced several conflicts between applications
and was requiring many unnecessary recompiling of the code for changes in other applications. All
these problems lead to a change in the strategy and to separating each application not only from
others but also from Kratos itself.

In the current structure of Kratos each application is created and compiled separately and just
uses a standard interface to communicate with the kernel of Kratos. In this way the conflicts
are reduced and the compilation time is also minimized. The Application class provides the
interface for introducing an application to the kernel of Kratos. Kernel uses the information
given by Application through this interface to mange its components, configure different part of
Kratos, and synchronize the application with other ones. The Application class is very simple and
consists of registering the new components like: Variables, Elements, Conditions, etc. defined
in application. The following code shows a typical application class definition:

// Variables definition

KRATOS_DEFINE_VARIABLE(int , NEW_INTEGER_VARIABLE )

KRATOS_DEFINE_3D_VARIABLE_WITH_COMPONENTS(NEW_3D_VARIABLE );

KRATOS_DEFINE_VARIABLE(Matrix , NEW_MATRIX_VARIABLE)

class KratosNewApplication : public KratosApplication

{

public:

virtual void Register ();

private:

static const NewElementType msNewElement;

static const NewConditionType msNewCondition;

};

Here Application defines its new components and now its time to implement the Register
method:

// Creating variables

KRATOS_CREATE_VARIABLE(NEW_INTEGER_VARIABLE )

KRATOS_CREATE_3D_VARIABLE_WITH_COMPONENT(NEW_3D_VARIABLE );

KRATOS_CREATE_VARIABLE(NEW_MATRIX_VARIABLE)

void KratosR1StructuralApplication :: Register ()

{

// calling base class register to register Kratos components

KratosApplication :: Register ();

// registering variables in Kratos.

KRATOS_REGISTER_VARIABLE(NEW_INTEGER_VARIABLE)

KRATOS_REGISTER_3D_VARIABLE_WITH_COMPONENTS(NEW_3D_VARIABLE );

KRATOS_REGISTER_VARIABLE(NEW_MATRIX_VARIABLE)

KRATOS_REGISTER_ELEMENT("MyElement", msNewElement );

KRATOS_REGISTER_CONDITION("MyCondition", msNewCondition );



70 CHAPTER 4. GENERAL STRUCTURE

}

This interface enables Kratos to add all these Variables, Elements, and Conditions in the list
of components. Kratos also synchronizes the variables numbering between different applications.
Adding new components to Kratos, enables IO to read and write them and also configures the
data structure to hold these new variables.

In the next chapter the basic tools layer will be declared.



Chapter 5
Basic tools

A finite element program has several common procedures that can be implemented as basic tools to
be used by other part of program. Integrating, calculating shape functions and other geometrical
parameters, and linear solvers are some examples of these procedures. Basic tools are defined to
implement these common tasks. Implementing basic tools reduces the implementation task by
removing the duplicated procedure in program and also increases the reusability and compatibility
between different parts of code via their uniform interface.

While many of this tools are used in the most inner part of the code their performance has a
great importance. For example integration tools are called inside the Elements in time of build
and any overhead in their performance will cause a great overhead in program executing time.
From other point of view, a large proportion of executing time, is consumed by these tools. A
good example is the linear solver which take a large amount of execution time just by itself. All
these comments shows the importance of performance tuning in these tools.

Another important requirement for these tools is efficiency in memory. Again in a usual finite
element program, a large proportion of used memory is consumed by these tools. This come from
two facts, first, a large amount of these tools may be necessary to handle a finite element problem
and second, they use a large amount of memory for their operations. For example many geometries
must be created in order to model a real problem. So their efficiency in using memory is crucial
in order to control the total memory used by program.

The last but not least feature is reusability of these tools. While these tools must be used by
different part of the code, their generality and flexibility plays an important role in their successful
usage.

In this section the design and implementation of different tools in Kratos will be explained.

5.1 Integration tools

Integrating some function over the domain or boundary is one of the fundamental operations in the
FEM. Elements, Conditions and sometimes other parts of the code have to perform integration in
an efficient way. All this makes necessary the designing and implementing an efficient integration
tool which can handle different methods of integration with less overhead as possible. Before
starting with designing integration tools let take a brief look to numerical integration methods
used in finite element programs.

71



72 CHAPTER 5. BASIC TOOLS

5.1.1 Numerical Integration Methods

It’s clear that integrating a function analytically in many cases contains difficulties and in general
is not always possible. This made numerical integration, also called quadrature, to be started in
18th and 19th centuries. However use of numerical integration for real problems was postponed to
the time of development of computers.

A typical approach to approximate an integral of a function is to evaluate it in different points,
apply specific weight to them and sum the weighted values to obtain the result.

∫ b

a

f (x) d(x) ≈
n∑

i=1

wif(xi) (5.1)

Many classical method assume that sample points are in the same distance h all the time.

xi = x0 + ih (5.2)

They use different number of sample points and apply different weighting coefficient to obtain
the result. Here there are some examples of methods in this category:

Classical Formulas

A very simple case is trapezoidal rule. It take to sample point and evaluate their corresponding
points on the function then connect them with a line and simply calculate the area of trapezoidal
obtained below this line. In the other word, it use the average of these two values to calculate the
integral:

∫ b

a

f (x) d(x) =
h

2
f(a) +

h

2
f(b) + O

(
h3f”

)
(5.3)

It can be easily seen that this integration is exact for linear function and for other functions
while second derivative is unknown to us just approximate the result

∫ b

a

f (x) d(x) ≈ h

2
f(a) +

h

2
f(b) (5.4)

According to equation 5.1 we can define sample points and weighted for this method:

x1 = a, x2 = b (5.5a)

w1 = w2 =
h

2
(5.5b)

Famous Simpson’s rules are also in this category. They use more sample point to produce
higher order approximation. Here is the first one:

∫ b

a

f (x) d(x) =
h

3
f(a) +

4h

3
f(

a + b

2
) (5.6)

+
h

3
f(b) + O

(
h5f (4)

)



5.1. INTEGRATION TOOLS 73

which is exact for a polynomial up to degree 2. While it approximate other functions better
than trapezoidal rule:

∫ b

a

f (x) d(x) ≈ h

3
f(a) +

4h

3
f(

a + b

2
) +

h

3
f(b) (5.7)

Also we can introduce this in the global form using:

x1 = a, x2 =
a + b

2
, x3 = b (5.8a)

w1 = w3 =
h

3
, w2 =

4h

3
(5.8b)

There are also extension to this methods using the same contest which approximate with higher
order using more sample points. In any case to give exact integral of a polynomial of order n this
methods use 2n + 1 sample points. This make them very expensive while there are other ways to
achieve the same result with just n sample points, which will be described as follow.

Gaussian Quadrature

As mentioned before in previous methods, sample points assumed to be located in the same dis-
tance. If we take this restriction and chose their position in some other manner we can duplicate
the order of approximation. This is the base idea of Gaussian quadrature formulas.

But how this magical method works? Here is a quick review over it. First, lets define a weighted
scalar product of two functions f over g as

〈f | g〉 =
∫ b

a

W (x)f (x) g(x)dx (5.9)

A set of polynomials can be funded which include exactly one polynomial pj(x) of order j, for
each j = 1, 2, 3, .... which are also mutually orthogonal over a given weight function W (x).

Let extend the equation 5.1 to a more general case which is:

∫ b

a

W (x)f (x) dx ≈
n∑

i=1

wif(xi) (5.10)

Here W (x) is added as a known weighting function applied to our integrand. This extension
is to use a powerful feature of Gaussian quadrature where we can make an exact integral over
a polynomial times some known weighting function W (x). This weighting function help us to
discomposing some integrable function to a polynomial and a complex but integrable part to make
an exact integral. Also it can be chosen to remove singularities which are integrable. By the way
we can assume equation 5.1 a special case of 5.10 with W (x) ≡ 1. Choosing this weighting function
results so called Gauss-legendre integration.

Now it’s time to apply the fundamental theorem of Gaussian quadratures, the abscissas of
the N-point Gaussian quadrature formulas with weighting function W (x) in the interval (a, b) are
precisely the roots of the orthogonal polynomial pn(x) for the same interval and weighting function.
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For giving a practical way to find Gaussian weight and abscissas, we use a set of orthogonal
polynomials defined as

p0(x) ≡ 1 (5.11a)

p1(x) = [x − 〈xp0|p0〉
〈p0|p0〉 ]p0(x) (5.11b)

pi+1(x) = [x − 〈xpi|pi〉
〈pi|pi〉 ]pi(x) (5.11c)

− 〈pi|pi〉
〈pi−1|pi−1〉pi−1(x)

It can be shown that each polynomials pj(x) has exactly j distinct roots and also there is exactly
one root of pj−1(x) between each adjacent pair of them. This property comes very useful in the
time of finding roots. A root finding scheme can be applied starting from p1(x) and continuing
to higher orders using interval of previous roots to find all of them. Finally equation 5.10 used to
make a system of equations for finding weights wi. Considering that equation 5.10 must gives the
correct answer for the integral of the first N − 1 polynomials

aijwj = bi (5.12a)
aij = pi−1(xj) (5.12b)

bi =
∫ b

a

W (x)pi−1 (x) dx (5.12c)

i = 1, ..., N, j = 1, ..., N (5.12d)

It can be shown that using the same weights wi the quadrature is exact for all polynomials of
order up to 2N − 1. Also in equation 5.12a it’s easy to verify that bi for i = 2, ..., N is equal to
zero considering the orthogonal nature of pi’s.

There is also another, and more practical, way to find the weights wi, using another sequence
of polynomials ϕi(x)

ϕ0(x) ≡ 0 (5.13a)

ϕ1(x) = p′1

∫ b

a

W (x)dx (5.13b)

ϕi+1(x) = [x − 〈xpi|pi〉
〈pi|pi〉 ]ϕi(x) (5.13c)

− 〈pi|pi〉
〈pi−1|pi−1〉ϕi−1(x)

Where p′1 is the derivative of p1(x) with respect to x. Using these polynomials calculating the
weights is straightforward

wi =
ϕN (xi)
p′N (xi)

, i = 1, ..., N (5.14)
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Also there is a formula just for Gauss-Legendre case

wi =
2

(1 − x2
i )[p

′
N (xi)]2

(5.15)

Multidimensional Integrals

Passing from one dimensional integrals to multidimensional one consist of multiplying number of
sample points and also complexity of applying boundaries. In this part just an easy case with
simple boundary condition will be discussed. In FEM usually we map our geometry functions to
some local coordinates and then reducing the integral to lower dimensionality using simplicity of
boundaries in this local coordinate and also considering smoothness of our function. Considering
a three dimensional case

F ≡
∫ x2

x1

∫ y2(x)

y1(x)

∫ z2(x,y)

z1(x,y)

f(x, y, z)dxdydz (5.16)

It can be reduced in 2 dimensional form

F =
∫ x2

x1

∫ y2(x)

y1(x)

G(x, y)dxdy (5.17a)

G ≡
∫ z2(x,y)

z1(x,y)

f(x, y, z)dz (5.17b)

And finally to one dimensional form

F =
∫ x2

x1

H(x)dx (5.18a)

H(x) ≡
∫ y2(x)

y1(x)

G(x, y)dy (5.18b)

It can be seen that for implementing this we need to calculate subdimensional integrals in each
sample point.

Finally, using Gaussian quadrature in this approach, results

F =
N∑

i=1

N∑
j=1

N∑
k=1

wiwjwkf(xi, yj , zk) (5.19)

5.1.2 Existing Approaches

There are several ways to implement integration methods in a program. They can be implemented
using a very rigid structure or very flexible and dynamic one. In this part different approaches for
implementing integration methods are discussed.

The first and most static and also rigid one is just to introduce manually the integration coor-
dinates and weights in the integrand functions. This approach is used in finite element programs
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to create an array of shape functions values in all integration points or directly into the weak form
to integrate it over element. The advantage is integration will be extremely fast especially for low
order simple elements, while all the values are known at compile time and all the loops can be
eliminated. The drawback is that maintaining these structure for higher order elements is difficult
and the code is not reusable for other formulations or elements. Here is an example:

double f(double x, double y) {

// function body ...

}

double integral_of_f () {

const double x1 = -sqrt (1.00 / 3.00)

const double x2 = sqrt (1.00 / 3.00)

// w = 1.00

return f(x1,x1) + f(x1,x2) +

f(x2,x1) + f(x2,x2);

}

The previous approach can be enhanced by encapsulating the 1 dimensional sample points sets
and their weights in a class and creating any n dimensional instance of it just in the dimension
loops over integrand. In this manner the integration points can be reused in other parts of program
but program still is depended to a set of outer product of 1 dimensional sample points. In other
words having a specific n dimensional points is not supported in this manner.

array <double , 2>

Gauss2 = {-sqrt (1.00 / 3.00) ,

sqrt (1.00 / 3.00)};

double f(Point& x) {

// function body ...

}

double integral_of_f () {

double result = 0;

const int size = Gauss2.size ();

// w = 1.00

for(int i = 0 ; i < size ; i++)

for(int j = 0 ; j < size ; j++)

{

Point g(Gauss2[i], Gauss2[j]);

result += f(g);

}

return result;

}

Another alternative is to encapsulate an array of quadrature points and their weights in a
quadrature class and implement an instance of this class for each set of integration points. This
design is also common and relatively more reusable than previous one. The performance is highly
depended on how these quadratures object are implemented and used but can be optimized as much
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as previous approach. Its weakness is hand coding and also debugging it especially when extending
it from 1 dimension to 2 and 3. In this cases for any set of gaussian integration sample points
different quadrature sets for 1 and 2 and 3 dimensional integration space must be implemented
and tested separately.

class Gauss2D2 : public array <Point <2>, 4> { public:

Gauss2D2 ()

{

// Initializing array with

// integration points

}

};

double f(Point <2>& x) {

// function body ...

}

double integral_of_f () {

double result = 0;

const int size = Gauss2D2 ::size ();

Gauss2D2 gauss_points;

// w = 1.00

for(int i = 0 ; i < size ; i++)

result += f(gauss_points[i])

return result;

}

A good extension to previous design is to automating the construction of 2 and 3 dimensional
integration points sets from their 1 dimensional set. This extension make us a new alternative with
more compact implementation which is easier to extend and also test. In Deal II [21] this approach
is used to implement quadrature classes. The quadrature base class is in charge of expanding 1
dimensional set to its dimension (given by template parameter) and store them while providing
the interface for them. Extensibility is the good point of this structure. Any new set of integration
points can be added just by deriving it from general base class and any n dimensional set created
just by providing abscissas and weights and without changing the library.

5.1.3 Kratos Quadrature Library Design

Kratos quadrature’s structure is very simple and straight forward. It consist of two classes
IntegrationPoint and Quadrature with a set of classes representing array of sample points which
referred as IntegrationPoints.

The library is divided in two parts, one is the library by itself which is not for modifying in
term of extension and other is the extension which is the port for adding new methods in order
to extend the library. This separation allows to encapsulate all difficulties in the library part and
leave the extending part as simple as possible. This was one of the reasons not to use a CRT
pattern in its design.

Each abscise and its corresponding weighting encapsulates in IntegrationPoint class. In
more detail, IntegrationPoint derived from Point class which makes it possible to be passed as
a point to any geometrical function. Also Point by itself is an interface and derived from array 1d
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Quadrature

IntegrationPointsIntegrationPoint

Library part Extending
part

Figure 5.1: Quadrature overall scheme

which physically contains the coordinates value. All these make an IntegrationPoint usable in
places where an array of coordinates or points needed. In Kratos also having a corresponding
weight completes the encapsulation level in terms of storing, passing and using it to integrate a
function. IntegrationPoint is a template with 3 parameters:

• TDimension is an unsigned integer which represents the dimension of this integration point
as a point without weight as an extra dimension.

• TDataType is the coordinate type of integration point which is a double by default.

• TWeightType is the type of integration weight stored at an integration point and also is a
double by default.

+IntegrationPoint()
+~IntegrationPoint()
+Weight()

-mWeight : TWeightType

IntegrationPoint

TDimension, TDataType, TWeightType

+Coordinates()

Point

TDimension, TDataType

-data : T

array_1d

N:unsigned int, T

Figure 5.2: IntegrationPoint class

IntegrationPoints is just an specific set of integration points corresponding to some certain
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integration algorithms. It is also the extending point of the library. Any class containing a set of
user specified integration points can be used as integration points if confirming these conditions:

• Having a Dimension attribute known at compilation time.

• An static size() method must be provided and size must be known at compilation time.

• 0 base indexing is also required.

Figure 5.3: IntegrationPoints class

Quadrature is the engine of the library. Implements the interface for the user and also creates
the integration points for higher dimensions using a Lagrangian multiplier. It can be customized
by its three template parameters which are:

• TQuadraturePointsType is the given integration points to create a quadrature

• TDimension is an unsigned integer which represents the dimension of the quadrature which
by default is the dimension of the given integration points.

• TIntegrationPointType is the integration point type used to create a quadrature. Its default
value is IntegrationPoint with a given dimension.

Figure 5.4: The Quadrature class

5.2 Linear Solvers

Implicit methods for solving finite element problems construct a system of equation representing
the model and solve it with a linear solver. In this section the design of linear solver is discussed.
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5.2.1 Existing Libraries

The independence nature of the solvers and also the essential and massive use of them in many
analyzing methods motivates several groups to create solvers library. In Fortran there are successful
libraries which are really matured and are widely used.

The Linear Algebra PACKage (LAPACK) is a classic library for solving linear system of equa-
tions. This library provides routines for solving a simultaneous systems of equations, eigenvalue
and singular value problems, and least-squares solutions of linear system of equations. This li-
brary is written in Fortran 77 and is used widely in fortran finite element codes. LAPACK95 is
an extension of this library which provides better interface using Fortran 95 features. LAPACK
is designed for running efficiently in shared-memory vector and parallel processors. To be more
portable it uses the Basic Linear Algebra Subprograms (BLAS) for its internal operations. So by
configuring the BLAS for any architecture a corresponding optimized LAPACK is obtained. The
lack of iterative solvers is the only restriction of using this library for solving some big problems.

The Linear Algebra PACKage in C++, (LAPACK++) is an C++ interface for LAPACK. The
original LAPACK++ was abandoned to start its successor Template Numerical Toolkit (TNT)
which didn’t arrive to its functionality. But the original LAPACK++ was improved by another
group of developers and now has several additional features. LAPACK++ wasn’t used in Kratos
because in time of selecting a solver LAPACK++ was in its abandoned period.

There are also several solvers implemented in C or C++ which can be used directly in a C++
program.

The Iterative Template Library (ITL) provides a collection of iterative solvers and a set of
preconditioners to be used with them. It also provides an abstract interface to use different basic
linear algebra codes like Matrix Template Library (MTL) or Blitz++. This library can also use
different type of matrices and vectors thanks to this interface. The first version of Kratos was
implemented using ITL. Its clear structure and interface and its flexibility to handle different type
of matrices was the reason to be selected. Unfortunately its performance was depending very much
on the compiler’s optimizer and basically its poor performance on Visual C++ compiler made us
to put it aside.

Another important library is the Portable, Extensible Toolkit for Scientific Computation (PETSc).
It is constructed over BLAS, LAPACK, and Message Passing Interface (MPI) libraries and pro-
vides a large set of parallel linear and nonlinear equation solvers. The advantages of this library
are its good performance and its support for parallel processing over distributed machines. This
library is written in C and there are lack of C++ features in its structure for clean encapsulating
of its tasks. This library wasn’t used in implementing Kratos because parallelization at that time
was not the objective of Kratos and supporting it for single process computing was too complex,
(compiling and debugging this library specially under Microsoft Windows was a complex task).
However there is an intention to support this library for the parallelization of Kratos in the future.

5.2.2 Kratos’ Linear Solvers Library

In Kratos, a linear solvers library is implemented in order to have an small but efficient set of
solvers to be used without the need to link some external solvers. This library is designed to be
independent from the rest of the program, efficient in its calculation and flexible in the type of
matrices and vectors it uses.

Three set of classes make the linear solvers library. Solvers encapsulate the solving algorithm.
Preconditioners are used by solvers and modifying the equation system for better convergence and
finally perform the inverse process to get the results. Reorderers change the equation order for less
bandwidth or better cache use and also do inverse permutation for results.



5.2. LINEAR SOLVERS 81

Spaces For Encapsulating Operations

One of the main problems to use a linear solver or incorporate a new one is the matrix and vector
types they use which can be incompatible with those used by the application. In order to solve
this problem another layer of abstraction is necessary in order to encapsulate matrices and vectors
operations and to be used as an interface to new matrix and vector types.

The idea used here is the same as used in LAPACK and ITL but with some modifications.
As mentioned before LAPACK implements the solver algorithm and uses BLAS for its algebraic
operations. This structure makes it configurable for different machines. ITL also uses a somehow
similar design. It has a set of functions defined in its namespace that can be overloaded by users
to implement the operation over their matrices and vectors. While ITL uses templates it can also
accept different type of matrices and operate them via customized operations provided by user.

The problem with the LAPACK approach is the type of matrices and vectors that cannot be
changed. For ITL this problem is solved using templates but the interface doesn’t provide the
complete separation of different types of matrices and vectors. For example two developers can
implement two interfaces by overloading the interface methods for two different types of matrices
but using the same vector. In this case operations over vectors are the same in both interfaces and
causes a conflict.

In Kratos this idea is improved by defining Space as a new concept. Space defines a matrix
and a vector and also their operators. Encapsulating definitions and operators in one object lets
different developers to implement their interfaces without any conflict. Space defines a simple
interface with all operations which are required by linear solvers. Table 5.1 shows this interface.
In the table A and B are matrices, X,Y , and Z are vectors, and α and β are scalar constants.

Method Name Operation
Size Returns Size of the vector.
Size1 Return number of rows of matrix.
Size2 Return number of columns of matrix.
Resize Resizes the vector
Resize Resizes the matrix
Copy X → Y
Copy A → B
Dot X · Y
TwoNorm ‖X‖2

Mult A · X → Y
TransposeMult AT · X → Y
RowDot Ai · X
ScaleAndAdd αX + βY → Z
ScaleAndAdd αX + βY → Y
GraphDegree Number of nonzeros in given row.
GraphNeighbors Columns of nonzeros in given row.

Table 5.1: Interface of Space

It is important to mention that not all methods defined in Space has to be implemented for all
user defined spaces. One can implement the sufficient set of them which are used by the solvers
according to their needs.
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Linear Solvers

The first requirement for linear solvers is to be interchangeable with each other. While there are
no best solver for all cases and in general choosing the proper solver depends also to the problem
it has to solve, it is highly desirable for users to change from one solver to other in order to find
the best one for their case. This feature can be provided using the Strategy pattern. Applying
this pattern to linear solvers results in the structure shown in Figure 5.5.

Figure 5.5: Linear solver’s structure using Strategy pattern.

Using this pattern each LinearSolver encapsulates one solving algorithm separately and also
make them interchangeable. In this way, adding a new solving algorithm is equivalent to adding a
new LinearSolver. This encapsulation makes the library easier to extend. User keeps a pointer
to the LinearSolver base class which may point to any member of the solver’s family and use the
interface of the base class to call different procedures.

This structure can be improved by dividing it into two branches, direct solvers and iterative
solvers. Figure 5.6 shows this structure. Separating these two categories from each other allows
special interface to be added to them.

The IterativeSolver class stores the tolerance, number of iterations and also the maximum
number of iteration. It provides also methods for controlling the convergence and needed iterations.
The DirectSolver is just a layer of abstraction without adding any new feature to its base class.

Linear solvers may use reorderers to reduce the bandwidth of the matrix which is important
in the solution cost them using direct solvers. Reordering also can be used by iterative solvers for
improving the use of cache memory. Our design must provide an easy way to add a new reordering
algorithm and also let them to be combined with any linear solver.

Strategy pattern here is used to encapsulate each reordering algorithm in one class with an
standard interface. In this way the extendibility is guaranteed and interchangeability is provided.
Figure 5.7 shows this structure.

Bridge pattern is used to connect linear solvers and reorderers. Using this pattern users can
combine each reorderers with any linear solver without problem. Figure 5.8 shows the resulted
combined structure.

The next step is designing the preconditioners. They are used by iterative solvers for enhancong
the convergence of the solution. Their structure must allow developers to add new preconditioning
algorithms easily. It is also necessary to let users changing one preconditioner to other without
problem. An strategy pattern is used in designing this structure. In this way each preconditioning
algorithm is encapsulated in one object and can be added later independently to the rest of the
program. Also their uniform interface established by Preconditioner base class allows the user
to change one algorithm by another without any problem. Figure 5.9 shows this structure.
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Figure 5.6: Separating direct solvers from iterative solvers.

As mentioned before preconditioners are used by iterative solvers. A bridge pattern is used to
connect these two structure in a way that combining any iterative solver with any preconditioner
will be possible. Figure 5.10 shows the combined structure using the bridge pattern.

All these classes take two spaces as their template parameters. One sparse space for defining
operations over sparse matrices and vectors and a dense space which defines the operator over
dense matrices and vectors which used as auxiliary matrices and vectors or for providing multiple
right hand sides. For solving an small equation with dense matrices one can create these classes
with two dense spaces without problem.

5.2.3 Examples

Here a simple conjugate gradient solver is implemented as an example to show how an algorithm
can be implemented over a given space:

template <class TSparseSpaceType ,

class TDenseSpaceType ,

class TPreconditionerType

class TReordererType >

class CGSolver : public IterativeSolver <TSparseSpaceType ,

TDenseSpaceType ,

TPreconditionerType ,

TReordererType >

{

public:

CGSolver(double NewTolerance ,

unsigned int NewMaxIterationsNumber)

: BaseType(NewTolerance , NewMaxIterationsNumber ){}

CGSolver(double NewMaxTolerance ,
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Figure 5.7: Using the Strategy pattern for designing the structure of reorderers.

unsigned int NewMaxIterationsNumber ,

PreconditionerPointerType pNewPreconditioner)

: BaseType(NewMaxTolerance ,

NewMaxIterationsNumber ,

pNewPreconditioner ){}

virtual ~CGSolver (){}

bool Solve(SparseMatrixType& rA ,

VectorType& rX,

VectorType& rB)

{

if(IsNotConsistent(rA, rX , rB))

return false;

GetPreconditioner ()->Initialize(rA,rX,rB);

GetPreconditioner ()-> ApplyInverseRight(rX);

GetPreconditioner ()->ApplyLeft(rB);

bool is_solved = IterativeSolve(rA ,rX ,rB);

GetPreconditioner ()->Finalize(rX);

return is_solved;

}

private:

bool IterativeSolve(SparseMatrixType& rA,

VectorType& rX,

VectorType& rB)

{

const int size = TSparseSpaceType ::Size(rX);

mIterationsNumber = 0;

VectorType r(size);
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Figure 5.8: Applying the bridge pattern for connecting linear solvers and reorderers.

Figure 5.9: Strategy pattern is used for designing the structure of preconditioners.
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Figure 5.10: Applying the bridge pattern in connecting iterative solvers and preconditioners.

PreconditionedMult(rA ,rX ,r);

TSparseSpaceType :: ScaleAndAdd (1.00, rB , -1.00, r);

mBNorm = TSparseSpaceType :: TwoNorm(rB);

VectorType p(r);

VectorType q(size);

double roh0 = TSparseSpaceType ::Dot(r, r);

double roh1 = roh0;

double beta = 0;

if(roh0 == 0.00)

return false;

do

{

PreconditionedMult(rA ,p,q);
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double pq = TSparseSpaceType ::Dot(p,q);

if(pq == 0.00)

break;

double alpha = roh0 / pq;

TSparseSpaceType :: ScaleAndAdd(alpha , p, 1.00, rX);

TSparseSpaceType :: ScaleAndAdd(-alpha , q, 1.00, r);

roh1 = TSparseSpaceType ::Dot(r,r);

beta = (roh1 / roh0);

TSparseSpaceType :: ScaleAndAdd (1.00, r, beta , p);

roh0 = roh1;

mResidualNorm = sqrt(roh1);

mIterationsNumber ++;

} while(IterationNeeded () && (roh0 != 0.00));

return IsConverged ();

}

}; // Class CGSolver

5.3 Geometry

Solving a problem using finite element method requires the discretization of model which consist
of dividing the model into several small partitions with a defined shape. Geometries are designed
to encapsulate these shapes, manage their data, and calculate their parameters. In this section the
design and implementation of geometries in Kratos is described.

5.3.1 Defining the Geometry

As described in section 3.2 in the FEM a partial differential equation is converted to its equivalent
integral form in discrete space which has a general form:∫

Ω

L1(Na)dΩ +
∫

Γ

L2(Na)dΓ = 0

where N is the shape function and a is the interpolated parameter. This integral form is divided
into sub integrals over domain and boundary and which results in the following elemental form:

ne∑
e

∫
Ωe

L1(Na)dΩe +
nc∑
c

∫
Γc

L2(Na)dΓc = 0

where ne is the number of elements and nc number of conditions. This form consists of integrals
over elements or boundary domain. The value of the shape functions N and their derivatives are
necessary for evaluating the integrals as operators L1 and L2 usually have derivatives operators.
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The derivatives of shape functions are computed via the inverse of the jacobian matrix J as it can
be seen in following equations for the three dimensional space:⎡
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To perform the integration one way is to change from global coordinates to local ones. This
transformation requires the calculation of the jacobian matrix J and its determinant. All this
process is described to define the geometry and help us to identify what can be encapsulated by
the geometry.

Geometry encapsulates all the geometrical information like its dimension, points, edges and
also some auxiliary operations like calculating the center point, area, volume, etc. Beside this
geometrical information, it also provides the integration points and also the value of the shape
functions and their local and global derivatives. It also calculates the jacobian matrix J , the
inverse of the jacobian J−1 and its determinant |J|.

All these operations are encapsulated to enable the element developers to write their Elements
in a generic form and independent from the type of geometry.

5.3.2 Geometry Requirements

First of all Geometry has to be very lightweight and memory efficient. This requirement comes
form the fact that modeling a real problem usually needs to store a large number of geometries
in memory and process them. Having any unnecessary or even less necessary overhead for each
geometry, results a significant overhead in memory used by program.

Geometry also has to be fast in its operations. Elements use geometries to perform calculation
in most inner loops of the code, so their performance severely affects the global performance of
the code specially in time of building equations system. In this way all parameters that can be
calculated once must be kept to be used without recalculations. Also interfaces and algorithms
must be designed and implemented in a way that minimum creation of temporaries be necessary.

Another requirement is enabling users to combine a generic Element with any Geometry without
changing it. To achieve this objective the geometry structure has to provide an standard interface
for all geometries. Doing this changing from one geometry to other will be easy while the interface
to be used will be the same.

Finally adding a new geometry must be done without any need to change other part of the
code. A good encapsulation and clear connection to other part of the code can help to achieve this
objective.

5.3.3 Designing Geometry

Like in the linear solver’s structure, an strategy pattern is used in the geometries structure. Using
this pattern makes them interchangeable via a uniform interface. It also encapsulates all Geometry
data and operations in one object which makes them more independent from each other and easier
to be extended. Figure 5.11 shows this structure.
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Figure 5.11: Designing the geometries structure, using the strategy pattern.

A composite pattern also can be used to let users combine different geometries to form a
complex geometry. This structure may be useful in some situations where a complex geometry has
to be defined. Figure 5.12 shows proposed structure.

Figure 5.12: Composite pattern lets users combine different geometries in one complex geometry.

There are different ways of implementing geometries. Some common ways are to defined them
as a set of points and constructive rules. The other way is an hierarchy form in which a three
dimensional shape is defined by its two dimensional edges. These edges like any other two dimen-
sional geometry are defined by their 1 dimensional edges. Finally these edges are defined by points.
Geometries implemented in this form provide a complete set of information to users and are useful
in situations that detailed information about the geometry and its edges is required.

In Kratos this implementation is considered to be too sophisticated and the first approach is
used. There are two main reason for this decision. Algorithms implemented in Kratos work with
geometry points (Nodes for Element geometry). For this reason a fast access to Nodes is more
important than to its edges. The second reason is the memory overhead for holding all hierarchy
is considerable and redundant for usual elemental algorithms. All these made us to use the first
approach but keeping an empty place in geometry for inserting edges data base. Geometry is
derived from points array. This approach lets users to operate with geometry like an array of
points. For example move it just by moving all points in a loop or applying C++ standard library
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Method Information
Dimension Dimension of the geometry
WorkingSpaceDimension Dimension of space which geometry is definied
LocalSpaceDimension Geometries local dimension
PointsNumber Number of points creating geometry
Length Length of 1 dimensional geometries
Area Area of 2 dimensional geometries
Volume Volume of 3 dimensional geometries
DomainSize Length, area, or volume depending to dimension
Center Center point of geometry
Points Geometries’ points
pGetPoint Pointer to i-th point of geometry
GetPoint i-th point of geometry
EdgesNumber number of edges of this geometry
Edges Edges of geometry
pGetEdge Pointer to i-th edge of geometry
GetEdge i-th edge of geometry
IsSymmetric True if geometry is symmetric

Table 5.2: Geometry methods implementing geometrical operations.

to it using its point iterator.
The interface of Geometry reflects all operations provided by it. Table 5.2 shows methods

implementing geometrical operations and table 5.3 shows methods providing finite element opera-
tions.

In order to optimize the performance of Geometry all interface which produces results in form
of vector, matrix, or tensor accept their results as an additional argument. Here is an example:

Matrix& Jacobian(Matrix& rResult ,

IndexType IntegrationPointIndex) const

{

// Calculating the jacobian ...

return rResult;

}

The alternative design is getting parameters as arguments and return the calculated results.
Here is the previous example using this alternative design:

Matrix Jacobian(IndexType IntegrationPointIndex) const

{

Matrix result;

// Calculating the jacobian ...

return result;

}

This alternative seems to be more elegant but produces a significant overhead in Geometry
performance due to creating several unnecessary temporaries.

The information provided by Geometry can be divided in two different categories:
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Method Information
HasIntegrationMethod True if implements the integration method
IntegrationPointsNumber Number of integration points
IntegrationPoints Array of integration points
GlobalCoordinates Global coordinates related to given local one
Jacobian Jacobian matrix J
DeterminantOfJacobian Determinant of jacobian |J|
InverseOfJacobian Inverse of jacobian J−1

ShapeFunctionsValues shape functions’ values in integration points
ShapeFunctionValue Value of shape function i in integration point j
ShapeFunctionsLocalGradients
ShapeFunctionLocalGradient
ShapeFunctionsFirstDerivatives
ShapeFunctionsSecondDerivatives
ShapeFunctionsThirdDerivatives

Table 5.3: Geometry methods providing finite element operations.

Constants Information which depends only to the type of geometry and are equal for all geome-
tries with the same type. Dimension, integration points, shape functions values, and shape
functions local gradients are examples of operations in this category.

Nonconstants The second category contains the rest of information which can change from one
geometry to another. For example points, jacobian, and shape functions gradients are in this
category.

In order to optimize even more the performance of geometry, the different nature of these two
categories must be considered. First, constant information can be calculated once and stored to be
used if there are necessary. Also there is no need to access this information using virtual methods.
Virtual functions can reduce the performance due to their function call delay specially for methods
with small operations like returning a value. So making these methods no virtual can increase
their performance.

As mentioned earlier constant information can be calculated once and stored to be used later.
The draw back of this idea is the memory required by pointers pointing to these data for each
geometry. While the memory used by these pointers is relatively small, but creating a large number
of geometries makes it considerable. A good solution to this problem is creating an auxiliary object
and put all constant information in it. In this way only one pointer in each geometry is necessary to
point to this object and access all constant information. GeometryData is defined and implemented
to hold all constant information in geometry. Figure 5.13 shows this class and its attributes.

Geometry keeps a reference to the geometry data and use it to provide constant information
by its no virtual methods. Figure 5.14 shows the complete structure.

For each type of geometry an static variable of GeometryData is created and its reference is
given to geometry in construction time.
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Figure 5.13: GeometryData class and its attributes.

Figure 5.14: Geometry uses GeometryData for providing constant information and its derived
classes only implement the rest of operations.



Chapter 6
Variable Base Interface

6.1 Introduction

Finite element codes has been changed a lot during the evolution of the Finite Element Method, In
its early times, finite element applications were developed to solve a certain type of problems in an
specific domain. Many applications for solving shells, plates, stokes fluid etc. were created in this
period. By the time, engineers began to apply FEM in engineering problems which mostly consist
of more than one type of problem. First they tried to solve it by separating the problem and solve
each part by one module meanwhile developers began to gather previous small modules related
to the same domain in a domain specific application which could handle more complex problems.
Following this line various applications for solving structural, fluid and other problems created.

Applying FEM to solve a coupled problem was a natural step forward from single domain
problems. Reusing the existing codes and connect them via an interface is the most common and
approved way to deal with these problems. In this way complexity reduced and existing modules
for solving each domain can be reused to solve coupled problem. But what happen if the interfaces
are inconsistent? Writing a file and reading it in another module is a common way while there
is more elegant way to do it using libraries which can handle objects in a generic way. There are
many successful examples using file interface or libraries like CORBA [101] or omniORB, though
using them can cause big overheads in the performance of the code. The latency time of invoking
a request on a CORBA object is approximately 500-5000 times higher than doing it by a function
call in C++ [58].

In these days still developing and extending finite element applications to solve new and more
complex problems is a challenge. Also using FEM in any new area creates a new demand for
developing an application to make the method applicable in practice. So flexibility, extensibility
and reusability are the key features in the design and development of modern finite element codes.

Though the previous strategy to chain different modules in an application works fine, the level
of reusability is respectively low. The reason is that in this manner we can reuse the whole module
but not a part of it. For example each module has its own data structure and IO routines which
cannot be used by another method or new modules in the same way. This is the motivation to
establish a variable base interface which can be used at high and low levels in the same manner.

93
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6.2 The Variable Base Interface Definition

In many connection points between different parts of a finite element program we are asking a value
of some variable or mapping some variables and so on. The methodology to design this interface
is sending each request with variable or variables it depends on. It sounds simple and natural,
meanwhile it is a powerful trick to make generic algorithms and modules using variables.

First let us see what we need in general to create some finite element generic algorithms:

• Type of a variable is an important information while many operation and also storing mech-
anism are depended to it

• Sometimes we need also the name of variable, (i.e. to print the results).

• While each variable can be identified by its name but using name in checkpoints give a big
unnecessary overhead (comparing two strings is respectively slow) so an identifier number is
essential, for example in case of fast searching and database working.

• Another useful information is a zero value. Though this information seems unnecessary but
it helps a lot in case of initializing zero vectors and matrix with the correct size.

• Also in some modules we may need to work just with some component of a variable. In such
a cases we need a mechanism to identify the components owner.

• Another useful feature is to work with raw pointers. This can be useful specially in the case
of connecting external modules and extracting value form pointer passed by modules.

Keeping in mind all above requirements now a global design is possible. In this variable base
interface:

• A variable encapsulate all information needed by different objects to work in a generic way
over different variables. Doing this helps to simplifying modules interfaces. Considering a
PrintNodalResult module which normally need result name, an index to retrieve nodal
results and a zero value if some Nodes don’t have results. All this information can be passed
by one variable in this design.

• Each module must configure itself in term of variable or variables given to it.

• Type-safety reached by statically typing variables.

• Each instance of variable class has the same name as its represented variable name. This is
a great added value to code readability.

6.3 Where Can be used?

As mentioned earlier, in a multi-disciplinary application always there is a need to exchange data
between different domains. So one important point is to exchange data in a robust and safe
way. Developing different modules by the VBI (Variable Base Interface) make data exchanging
between them trivial, though each domain has different data stored and sometimes the internal
data structure may be different. For example a fluid application may have velocities and pressures
stored while a thermal domain just temperature. When using variables the interface provides the
means to recover their values as well as to store new values for given variable.
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VariableData

Variable

VariableComponent

Figure 6.1: Variable classes structure

Now let us go one level down, by developing a set of generic algorithms and data structures
in a VBI conforming manner. This can boost up reusability of the code. Also code management
becomes easier while any new extension can be done without changing the interface. There are
several algorithms which can be equipped with VBI. For example:

Data Structure First and more important place is to store and then retrieve a value in data
structure. Here type, id and zero value are needed to create a typesafe data container. All
this information is represented by a variable. The interface is GetVAlue or SetValue and so
on for given variable.

Reading input file Each variable has its type and name, so they can be used to validate tokens.
In this way the input interpreter can be extended to read new data just by defining a variable
presenting this new data.

Printing output Printing output needs name of variable and its value and zero in case of no
data. Using a data structure with VBI, and sending a request to print a variable gives all
information to print even for new variables.

Mapping or interpolating Again using a VBI conforming data structure we can generalize, or
map and interpolate algorithms.

6.4 Kratos variable base interface implementation

In Kratos VariableData and its derivatives Variable and VariableComponent represent interface
information.

6.4.1 VariableData

VariableData is the base class which contains two basic information about the variable it repre-
sents; Its name mName, and its key number mKey.

VariableData has trivial access methods for these two attributes while also has virtual and
empty methods for raw pointer manipulation. The reason of not implementing these methods here
is the fact that VariableData has not any information about the variable type it represents. Lack
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+VariableData()
+~VariableData()
+Key()
+Name()
+Clone()
+Copy()
+Assign()
+AssignZero()
+Destruct()
+Delete()
+Print()

-mKey
-mName

VariableData

Variable

VariableComponent

Figure 6.2: VariableData class

of type information in VariableData make it unsuitable and less usable to pass it in many parts
of the interface but the idea of this class is to provide a lower level of information which is common
between all types of variables and their components and use it as a place holder when there is no
distinction between variables and their components. Also in this implementation we use a virtual
method base to dispatch various operations on raw pointers. This may result a poor performance
in some cases while the function call overhead seems to be considerable.

6.4.2 Variable

Variable is the most important class in this structure. It has information represented by VariableData
which is derived from it. Also it has another important information which is the type of variable
representing.

Using C++ as implementing language Variable has its data type as a template parameter. In
this manner interface can be specialize for each type of data and also type-safety can be achieved.
Another important advantage of having variable in template form with its data type as template
parameter is to have a restriction form in interface. If we want to restrict a method to accept
just matrices for instance, then by passing a variable<Matrix> as its argument we can prevent
users to pass another type by mistake. This feature shows to be important especially in some
cases which there are different types representing the same variable. (Constitutive matrix and its
corresponding vector is a good example of this case). Variable data type TDataType must satisfy
following requirements:

• Copy constructible.
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VariableData

VariableComponent

+Variable()
+~Variable()
+Zero()
+StaticObject()
+Clone()
+Copy()
+Assign()
+AssignZero()
+Destruct()
+Delete()
+Print()

-mZero
-msStaticObject

Variable

TDataType

Figure 6.3: Variable class

• Assignable.

• streaming operator defined

In Variable by knowing the data type raw pointer manipulating methods are implemented.
These methods use raw pointers to perform basic operations over its type:

• Clone create a copy of this object using copy constructor of class. It takes a void* as its
argument and returns also void* which is pointing to the memory allocated for cloned object.
Clone is useful to avoid shallow copying of complex objects and also without actually having
information about variable type.

• Copy is very similar to Clone except that destination pointer also passed as a void* argument
to it. it is a helpful method specially to create a copy of heterogeneous data arrays .

• Assign is very similar to Copy. It just differs in using assignment operator beside copy
constructor. Copy is to create a new object while Assign do the assignment for both existing
objects.

• AssignZero is a special case of Assign which variable zero value used as source. This method
is useful for initializing arrays or resetting values in memory.

• Delete removes an object of variable type from memory. It takes a void* as its argument
which is the location of object to be removed. Delete calls destructor of object to prevent
memory leak and frees the memory allocated for this object assuming that object allocated
in heap.
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• Destruct is to destruct an object maintaining the memory it is using. It takes a void* as
its argument which is the location of object to be destructed. It calls destructor of object
but unlike Delete it does nothing with memory allocated for it. So it is very useful in case
of reallocating a part of memory.

• Print is an auxiliary method to produce output of given variable knowing its address. For
example writing an heterogenous container in output stream can be down using this method.
This method assumes that streaming operator is defined for the variable type.

All this methods are available for low level usage. They are useful because they can be called
by a VariableData pointer and equally for all type of data arranged in memory but maintaining
typesafety using these methods is not straightforward and needs special attention.

Zero value is another attribute of Variable, stored in mZero. This value is important specially
when a generic algorithms needs to initialize a variable without losing generality. For example
an algorithm to calculate the norm of a variable for some Elements must return a zero if there
is no Element at all. In case of double values there is no problem to call default constructor of
variable type but applying same algorithm to vector or matrix values can cause a problem because
default constructor of this types will not have the correct size. But returning a zero value instead
of default constructed value keeps generality of algorithms even for vectors and matrices, assuming
that variables are defined properly.

There is another method which is StaticObject. This method just returns None which is an
static variable of this type with None as its name and can be used in case of undefined variable
(like null for pointers). It is just an auxiliary variable to help managing undefined, no initialized
or exceptional cases.

6.4.3 VariableComponent

As mentioned before, there are situations that we want to deal with just component of a variable
but not all of it. VariableComponent implemented to help in these situations.

VariableComponent like Variable derived from VariableData.
VariableData is a template taking an adaptor as its argument. Adaptor is the extending point

of component mechanism. For any new type’s component a new adaptor needed to be implemented.
This adaptor type requirements are:

• GetSourceVariable method to retrieve parent variable.

• GetValue method to convert extract component value from source variable value.

• StaticObjec used to create none component.

Unlike Variable, VariableComponent has not been implemented to have zero value or raw
pointer manipulators. A zero value can be extracted from the source value so there is no need
to have it here. Operations over raw pointers are not allowed here by purpose. This interface
manages variables entirely and not just some part of them. In fact a part of an object cannot be
copied, cloned, deleted or destroyed. So these methods are not implemented to protect objects
from unsafe memory operations.

Having adaptor as template parameter helps compiler to optimize the code and eliminating
overheads. In this manner adaptor’s GetValue method will be inlined in VariableComponent’s
one so there won’t be any overhead due to decomposition while extensibility reached.
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VariableData

Variable

+VaribleComponent()
+~VarialbeComponent()
+GetSourceVariable()
+GetAdaptor()
+GetValue()
+StaticObject()

-mAdaptor
-msStaticObject

VariableComponent

TAdaptorType

Figure 6.4: VariableComponent class

6.5 How to Implement Interface

Sending any request with variables is the way this interface works. But to make the things working
in real world a uniform way to getting and setting variables value in objects must be defined.

6.5.1 Getting Values

In many interfaces there are methods like GetDisplacement or Flux to get values of for example
displacement or thermal flux. This cannot work for a generic interface while the variables to
be accessed can be completely different from one domain to another. The idea is to specify the
variable not by the method name but by the variable passed to a generic method. In this manner
any previously defined algorithm can be reused for new domain and new variables using this generic
access method.

Having a GetValue method is essential for each class which contains a data to be processed.
Note that the name of this method doesn’t change with the variable we want to get . For classes
with just one type or few types of data it can be written as a normal method using specific variable

+GetSourceVariable()
+GetValue()
+StaticObject()

-mSourceVariable
-msStaticObject

Adaptor

Figure 6.5: Adaptor class
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type as argument:

DataType GetValue(VariableType const &) const

DataType const& GetValue(VariableType const &) const

DataType& GetValue(VariableType const &)

These three versions are different in returning the values which make them usable in different
places.

The first version is more suitable for returning some calculated and not stored value and also
for small objects like doubles.

The second one is useful for an internal value access method returning just a reference to the
internal variable without any cost.

The third version is for left value representation of an internal variable via this interface. The
returned reference is not constant so the value can be changed and can be used as a left value.

In the case of classes containing arbitrary type variables like heterogenous containers GetValue
can be implemented in template form maintaining generality of the code

template <TDataType > TDataType GetValue(Variable <TDataType > const &)

const

template <TDataType > TDataType const& GetValue(Variable <TDataType >

const &) const

template <TDataType > TDataType& GetValue(Variable <TDataType >

const &)

In this way the interface is open to not only any new variable but also to any new type
of variables. Here template member specialization can be used as a very useful tool to define
exceptional cases and also to optimize the code using different specialized implementations.

Sometimes it is necessary to take a variable component and not hole variable. Note that
VariableComponent is not convertible to Variable therefore cannot be pass as argument in above
patterns. So to make this possibility another set of methods with VariableComponent as their
argument needed to be implemented. As before, an specific implementation can be done using
known adaptor for specific component:

DataType GetValue(

VariableComponentType const &) const

DataType const& GetValue(

VariableComponentType const &) const

DataType& GetValue(VariableComponentType const &)

Also template implementation for more generic interface:

template <TAdaptorType > typename TAdaptorType ::Type GetValue(

VariableComponent <TAdaptorType > const&

) const

template <TAdaptorType > typename TAdaptorType ::Type const&

GetValue(
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VariableComponent <TAdaptorType > const&

) const

template <TAdaptorType > typename TAdaptorType ::Type& GetValue(

VariableComponent <TAdaptorType > const &)

In above patterns having the type of component defined in adaptor used to specify the type of
return value. In this manner adaptor is responsible to specify the return value type and extensibility
guaranteed.

Finally methods for getting variables and those for getting components can be combined in one
set of methods creating a uniform interface:

template <TVariableType > typename TVariableType ::Type GetValue(

TVariableType const &) const

template <TVariableType > typename TVariableType ::Type const&

GetValue(

TVariableType const &) const

template <TVariableType > typename TVariableType ::Type& GetValue(

TVariableType const &)

6.5.2 Setting Values

This part of the interface has the same characteristic of getting values. Though the third version of
getting values can be used to setting it as a left value but in some cases a separate set of methods
needed to ensure generality of the interface.

To set a value of a variable it is necessary to pass both the variable and its value as SetValue
argument. Again implementation depends on the variety of variables that have to be accessed via
this interface. For few variable types accessing SetValue method can be implemented by knowing
data type and its variable type:

void SetValue(VariableType const&,

DataType const &)

Not that here we have just one version, due to the fact that SetValue method cannot be
constant. Again to implement a more general version templates are useful:

template <TDataType > void SetValue(VariableType const&,

TDataType const &)

In the case of setting a component the two above versions must be modified in order to accept
a VariableComponent instead of Variable.

void SetValue(VariableComponentType const&,

DataType const &)

or template version using adaptors:

template <TAdaptorType > void SetValue(VariableComponentType

const&,

typename TAdaptorType ::Type const &)

Finally the uniform version combining variables and their components in the same method:
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template <TVariableType > void SetValue(TVariableType

const&,

typename TVariableType ::Type const &)

6.5.3 Extended Setting and Getting Values

In some cases there are additional information needed to access a variable inside a class. For simple
cases an additional index is enough to indicate solution step or Node’s number which are passed
as extra argument.

In more complex interfaces an information object with a VBI interface also is passed as argument
to extend its generality. In this way any new information just passed through existing interface
and can be retrieved by the interface.

template <TVariableType > typename TVariableType ::Type

GetValue(TVariableType const&,

InfoType const &) const

template <TVariableType > typename TVariableType ::Type const&

GetValue(TVariableType const&,

InfoType const &) const

template <TVariableType > void SetValue(TVariableType

const&,

typename TVariableType ::Type const&,

InfoType const &)

Using the variable base interface to extending itself is a very powerful trick to create extremely
flexible interfaces without sacrificing the clarity of the code. In this way not only the type and the
variable to be passed is extendible but also the number and type of arguments to be passed can
be arbitrary extended.

6.5.4 Inquiries and Information

Not all the time we need to transfer data by the interface and there are some situations where an
inquiry is needed or some information about an object respect to a certain variable is required.
Assuming that in this operations the type and components of a variable are not important, the
base class VariableData can be used in interface to deal with all kinds of variables and their
components in the same way.

6.5.5 Generic Algorithms

Now it is time to implement generic algorithms using this interface. In general algorithm interface
can use any forms described above for getting and setting specially the extended ones. In fact each
algorithm is very different in the arguments it accepts but what is important here is the variable
or variables needed which are passed through the interface. The point is to use the the interface
of objects inside algorithms using variables passed to it. In this way the algorithm is transparent
to the working variable and can be applied generally to any new variable in new domains.

Many algorithms can be generalized in this way, reading inputs, print results, mapping and
interpolating values, calculating norms and errors, etc. All these algorithms have a common
property: they operate over the value of some variable. A carefully implementation of these
algorithms can free them from knowing really which variable they are working on. They just work
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on the variable which the user passes to them and use that to extract values it is needed. In other
word, algorithms are implemented between two layer of interfaces.

The idea looks simple, but in practice results in reusable algorithms which can be used in any
new area of work with a new set of variables.

6.6 Examples

To see how above idea works in practice and also to make some details more clear, some examples
from different levels of interface are presented next.

6.6.1 Nodal interface

A very first example is to access nodal values in a finite element program. We will consider that
any new extension to the program may introduce new set of variables to access. Using variable
base interface can be a solution for extensibility needed in these cases. A basic get and set value
interface implemented to give basic accessibility is as follow:

// Getting a reference

template <class TVariableType > typename TVariableType ::Type&

Node:: GetValue(TVariableType const &) {

// Accessing to database and

// returning value ...

}

// Getting a constant reference

template <class TVariableType > typename TVariableType ::Type const&

Node:: GetValue(TVariableType const &) const {

// Accessing to database and

// returning value ...

}

template <class TVariableType > void Node:: SetValue(TVariableType

const&, typename TVariableType ::Type const &) {

// Accessing to database and

// setting value ...

}

It can be seen that the uniform version of the interface adapts here perfectly and prevent us
from having different versions of GetValue and SetValue for variables and variables components.
And finally overwriting the [] operators make the syntax easier to use:

template <class TVariableType > typename TVariableType ::Type&

Node:: operator []( const TVariableType &) {

return GetValue(rThisVariable );

}

Also some inquiries can be implemented to see if the variable exists:

template <class TDataType > bool Node::Has(Variable <TDataType >

const &) const {

// Check if the variable

// stored before ...

}
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template <class TAdaptorType > bool

Node::Has(VariableComponent <TAdaptorType > const &) const {

// Check if the variable component

// stored before ...

}

Here, the separate variable and components methods used to implement this part of interface.
As mentioned before, This can be done just by using the VariableData in the interface:

bool Node::Has(VariableData const &) const {

// Check if the variable

// stored before ...

}

Note that, to use the VariableData version a uniform search by key id is required from the
internal containers.

Now it is easy to use this Node in the code and access any variable through interface:

// Getting pressure of the center node

double pressure = center_node[PRESSURE ];

// Setting velocity of node 1

Nodes [1][ VELOCITY] = calculated_velocity;

// Printing temperature of the

// nodes to output

for(IteratorType i_node = mNodes.begin() ;

i_node != mNodes.end() ; i_node ++)

{

std::cout << "Temperature of node #"

<< i_node ->Id()

<< " = "

<< i_node ->GetValue(TEMPERATURE)

<< std::endl;

}

// Setting displacement of nodes to zero

Vector zero = ZeroVector (3); for(IteratorType i_node =

mNodes.begin() ;

i_node != mNodes.end() ; i_node ++)

{

i_node ->SetValue(DISPLACEMENT , zero);

}

Accessing to history of nodal variable is an example of a simple extended interface. Keeping
previous arguments for GetValue and SetValue an additional parameter can be passed to indicate
for example time step needed.

template <class TVariableType > typename TVariableType ::Type&

Node:: GetValue(const TVariableType&,
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IndexType SolutionStepIndex)

{

// Accessing to database and

// returning value ...

}

template <class TVariableType > typename TVariableType ::Type const&

Node:: GetValue(const TVariableType&,

IndexType SolutionStepIndex) const

{

// Accessing to database and

// returning value ...

}

Also () operator can be overridden to provide an easy interface. (Note: [] operator cannot
accept more than one argument and cannot be used here)

template <class TVariableType > typename TVariableType ::Type&

Node:: operator ()( const TVariableType&,

IndexType SolutionStepIndex)

{

return GetValue(rThisVariable ,

SolutionStepIndex );

}

In practice this interface can be more complicated due to the fact that the history must not
be stored for all variables and it is useful to have separate containers to store historical and
not historical variables. For example in Kratos there are two sets of access methods to give the
possibility of storing only needed history and not all of them.

6.6.2 Elemental Interface

In Elements, access methods can be implemented like Nodes. it is better to keep the interface as
unchanged as possible to avoid extra effort due to the inconsistence interfaces. So let’s leave the
access methods as before and take some other methods to make examples.

Methods to calculate local matrices and vectors also can be implemented using VBI. But
what is the advantage of using VBI here? There are several additional parameters needed for
calculating local contributions of each Element, like time step, current time, delta time and so on.
These arguments can be completely different from one formulation to the other and passing all of
them as individual arguments is somehow impossible. An approach is to create a helper class to
encapsulate these arguments and pass all of them through this helper class. Again the VBI can
be used here to make a uniform interface also at this level of working. In Kratos there is a helper
class named ProcessInfo which is passed to the methods which calculating the local systems as
follows:

virtual void SomeElement :: CalculateLocalSystem(

MatrixType& rLeftHandSideMatrix ,

VectorType& rRightHandSideVector ,

ProcessInfo& rCurrentProcessInfo)

{

// Getting process information

double time = rCurrentProcessInfo[TIME];
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// Calculating local matrix and

// vector ...

}

6.6.3 Input-Output

Writing a generic input-output with enough flexibility is a complex task. Making extensions causes
problems in many codes while the IO is not flexible enough to process new variables.

In modern applications a parser used to read the input file and understand the input grammar
[54, 77]. Normally this input file parser is a complex part of the code and modifying it for any
new variable added by extensions is expensive and not free of bugs. A good solution is to make
the parser work with a list of variables and change the list each time reading a new variable is
needed. Doing this adding new extensions to the input parser can be much easier while the parser
itself won’t be changed. The input file parser is too big to add here as an example and interested
readers can find a working version of it in Kratos DatafileIO class.

Writing output files like reading inputs can be generalized using variables. In this way any new
extension to the library can write its results using existing output procedures. Here is an example
of using variables to write a generic output procedure for GiD [84, 83]:

void GidIO :: WriteNodalResults(Variable <double > const& rVariable ,

NodesContainerType& rNodes ,

double SolutionTag ,

std:: size_t SolutionStepNumber)

{

GiD_BeginResult( (char *)( rVariable.Name (). c_str ()),

"Kratos",

SolutionTag ,

GiD_Scalar ,

GiD_OnNodes , NULL , NULL , 0, NULL );

for(NodesContainerType :: iterator i_node = rNodes.begin ();

i_node != rNodes.end() ; ++ i_node)

GiD_WriteScalar( i_node ->Id(),

i_node ->GetSolutionStepValue(rVariable ,

SolutionStepNumber ));

GiD_EndResult ();

}

void GidIO :: WriteNodalResults(Variable <Vector > const& rVariable ,

NodesContainerType& rNodes ,

double SolutionTag ,

std:: size_t SolutionStepNumber)

{

GiD_BeginResult( (char *)( rVariable.Name (). c_str ()),

"Kratos",

SolutionTag ,

GiD_Vector ,

GiD_OnNodes , NULL , NULL , 0, NULL );

for(NodesContainerType :: iterator i_node = rNodes.begin ();

i_node != rNodes.end() ; ++ i_node)
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{

array_1d <double , 3>& temp =

i_node ->GetSolutionStepValue(rVariable , SolutionStepNumber );

GiD_WriteVector( i_node ->Id(), temp[0], temp[1], temp [2] );

}

GiD_EndResult ();

}

In above examples the GiD interface has different rules for scalar and vectorial variables. Know-
ing the type of variable helps to implement customized versions of WriteNodalResults for each
type of variable. This is an important feature of this interface which can handle exceptional cases
for certain types and handle them with a uniform syntax for users:

// Writing temperature of all the nodes

gid_io.WriteNodalResults(TEMPERATURE , mesh.Nodes(), time , 0);

// Writing velocity of all the nodes

gid_io.WriteNodalResults(VELOCITY , mesh.Nodes(), time , 0);

Each variable as mentioned before has its name which can be accessed via Name method. This
gives us necessary information to print the variable in output. In this way there is no need to pass
the name of the variable as an argument by itself. Though This wouldn’t be difficult, it keeps the
simplicity of the interface.

6.6.4 Error Estimator

Writing an error estimator is another example of making a generic and reusable code using VBI.
Here is an example of a simple recovery error estimator [104] implemented in a generic way:

virtual void EstimateError(const VariableType& ThisVariable ,

ModelPart& rModelPart)

{

mpRecovery ->Recover(ThisVariable , rModelPart );

double e_sum = double ();

typedef ModelPart :: ElementIterator iterator_type;

for(iterator_type element_iterator = rModelPart.ElementsBegin ();

element_iterator != rModelPart.ElementsEnd ();

++ element_iterator)

{

double error = CalculateError(ThisVariable ,* element_iterator );

element_iterator ->GetValue(ERROR) = error;

e_sum += error;

}

SetGlobalError(e_sum);

}

double CalculateError(const VariableType& ThisVariable ,

Element& rThisElement)

{
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Element :: NodesArrayType& element_nodes = rThisElement.Nodes ();

if(element_nodes.empty ())

return double ();

double result = 0.00;

typedef Element :: NodesArrayType :: iterator iterator_type;

for(iterator_type node_iterator = element_nodes.begin () ;

node_iterator != element_nodes.end() ; ++ node_iterator)

{

TDataType error = CalculateError(ThisVariable ,

rThisElement ,

*node_iterator );

result += sqrt(error * error );

}

result *= rThisElement.GetGeometry()->Area ();

return result / element_nodes.size ();

}

TDataType CalculateError(const VariableType& ThisVariable ,

Element& rThisElement ,

Node& rThisNode)

{

TDataType result = rThisNode[ThisVariable ];

result -= rThisElement.Calculate(ThisVariable , rThisNode );

return result;

}

In this manner the error estimator is not depended to the domain and can work in the same
way with thermal flow or pressure gradient.

6.7 Problems and Difficulties

As usual nothing is perfect and the VBI is not excluded from that. There are some difficulties and
problems still arising using this interface. Though they are not so important in some cases but in
some other ones they need more attentions.

A problem is to store a variable which can be replaced with a component. Where can this
happen? Any process which works over variables or their components in the same way and wants
to store the variable or component causes some difficulties. A typical example is a process over
some doubles, like calculating the norm, and applied to a double variable, like temperature, or a
component of a vector, velocity x, which also wants to keep a given variable to work on it after.
In many cases this can be easily solved just by replacing the data type template parameter with a
variable type parameter. The pattern can be same to the uniform template version of GetValue
and SetValue methods.

But still there are some cases which above method cannot solve so easily. Storing the variable
of a dof is a complex task. Assuming that each dof wants to store its variable and then search
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database to find its value for example to update the results:

// Updating

typedef EquationSystemType :: DofsArrayType :: iterator iterator_type;

for(iterator_type i_dof = equation_system.DofsBegin () ;

i_dof != equation_system.DofsEnd () ; ++ i_dof)

{

if(i_dof ->IsFree ())

i_dof ->GetSolutionStepValue () =

equation_system.GetResults ()[i_dof ->EquationId ()];

}

In this case giving different template parameters to Dofs prevent us to use them in a normal
array and using virtual functions is not allowed due inner loop usage of these methods in finite
element code. So what to do? In Kratos an indexing mechanism is used to decide if the variable is
a component or not and the some traits [99] are used to dispatch and select the proper procedure.
This solution is not so clean and applying it is not so encapsulated yet. Further work to improve
these tasks remains to be done in the future.

TDataType& GetReference(VariableData const& ThisVariable ,

FixDataValueContainer& rData ,

int ThisId)

{

switch(ThisId)

{

KRATOS_DOF_TRAITS

}

KRATOS_ERROR(std:: invalid_argument , "Not supported type for Dof" , "");

}
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Chapter 7
Data Structure

Data structure is one of the main parts of a finite element program. Many restrictions in function-
ality of finite element codes comes from their data structure design. The Kratos’ data structure
has to provide the high flexibility, necessary for dealing with multi-disciplinary problems.

In this chapter first, a brief description of different concepts in data structure programming
is given. Then, some classical containers are explained and their advantages and disadvantages
are discussed. It continues with design and implementation of new containers suitable for multi-
disciplinary finite element programming. After that, some common organization of data in finite
element programming is explained and finally the organization of the data structure in Kratos is
described.

7.1 Concepts

In this section a brief description of common concepts in data structure programming is given.
More information about the concepts described here and also other concepts in this field can be
found in [55, 14, 46].

7.1.1 Container

Container is an object which stores another objects and gives some method to access these objects,
add new objects, or remove some objects from it. Each object stored in a container is referred as
an element of it. Container must provide some methods for creating and modifying it and also
some access method to its element. Here is a list of some common methods:

Access Gives the element in given position. Depending on the container the access may be
implemented via position or by some reference key. Usually the [] operator provides this
interface for container.

Insert Inserts a given element after given position. Adding elements to a container increases its
size.

Append Adds given element to the end. Adding elements to a container increases its size.

Erase Removes the element in given position. This operation reduce the size of container by the
number of erased elements.

111



112 CHAPTER 7. DATA STRUCTURE

Find Searches for an element with given specification in container.

Size To get size of the container.

Resize Changes the size of container.

Swap Swaps the content of the container with a given one.

Some containers may not provide all these methods due to their structure and some other
may provide some more methods for their specific uses. Also the performance of these operations
depends highly on the internal structure of container. So before using a container it is very
important to study its performance in term of the operations needed by algorithm.

7.1.2 Iterator

Usually a pointer referred as an iterator is used to access elements of a container. Here is an
example of using a pointer as a C array iterator to print its contents:

double data [10];

// putting values in data

// ...

// now printing data using an iterator

double* data_end = data + 10;

for(double* i = data ; i != data_end ; i++)

std::cout << *i << std::endl;

The Iterator pattern defines a generalized pointer to access elements of a container sequentially
without exposing its internal structure. An iterator can be used to traverse element by element the
container in a general way and without knowing how they are really stored in memory. Changing
the C array of previous example to a container gives an example of using iterator in a general form:

ContainerType data;

// putting values in data

// ...

// now printing data using an iterator

typedef ContainerType :: iterator iterator_type;

for(iterator_type i = data.begin() ; i != data.end() ; i++)

std::cout << *i << std::endl;

In this example any container which provides an iterator and two methods to indicate its begin
and end position can be used to print its contents.

Iterator can be designed to traverse the container in different manner. For example a matrix
can have different iterators:

iterator iterates over all members from a11 to amn

row iterator iterates over rows of the matrix.

column iterator iterates over columns of the matrix.

nonzero iterator iterates over all nonzero element.
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This makes iterator a very powerful tool to access a container in a generic way. For algorithms
using iterators there is no need to know about the container itself and this make them more generic.

Depending on the structure of container there are certain traversing is impossible or meaning-
less. So different containers use different category of iterators due to their restrictions. Here are
the main categories of iterators:

Forward Iterator A simple iterator which allows just moving to the next element. This iterator
cannot be used to go backward. For example to see the previous element of iterator position.
Forward iterator can move only one element forward in each step and cannot be used to jump
by a certain offset.

Bidirectional Iterator Unlike forward iterator this iterator can be used to traverse back the
container. But still can move on step forward and backward each time.

Random Access Iterator This iterator can move freely forward and backward and also jump
to any other position given by an offset.

7.1.3 List

List is a sequence of elements that can be linearly ordered according to their position on the list.
A list is usually represented by a comma separated sequence of element:

a1, a2, ..., ai−1, ai, ai+1, ..., an

What is important in a list is the relative position of elements. All the elements are in the same
level and the only relation between them is to be the next element or previous one. For example
the element ai−1 is before ai and ai+1 is the next one.

There are several structure representing a list. Each of them store its elements in a different
way and provides different properties as we will see later.

7.1.4 Tree

Tree is a hierarchical collection of elements referred as nodes. Unlike the list the elements of the
tree are not in the same level and some of them considered to be the parent of some other. In each
tree there is a node called root which is the parent of whole tree.

7.1.5 Homogeneous Container

A container which is able to store only one type of elements is a homogeneous container. For
example a C array of doubles is homogeneous while can store only double variables.

double homogeneous_array_of_doubles [3];

Even an integer must be converted first to double and then it can be stored in this array. The
C++ standard containers are homogeneous and can store only one type of elements.

7.1.6 Heterogeneous Container

A container considered to be heterogeneous if is able to store different types of elements. Figure
7.1 shows an heterogeneous container in memory.

Usually a heterogeneous container is implemented to accept any type of data but in some
cases its more convenient to implement a container which is also heterogeneous but can only store
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1 2 3 4
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Figure 7.1: An heterogeneous container in memory storing a double, a matrix, an integer, a vector
and also an string.

certain types of elements. In this work this type of containers will be referred as quasi heterogeneous
containers.

7.2 Classical Data Containers

In this section some classical data containers which are usually used in finite element programs are
briefly described and their advantage and disadvantages are also discussed. Further information
about data containers and their implementation can be found in [55, 14, 46, 102].

7.2.1 Static Array

Static array is an implementation of a list which puts its elements sequentially in memory without
any gap between them. Figure 7.2 shows an array in memory.

n1 2 3

Figure 7.2: Array elements sequentially stored in memory

Static array can store certain number of element given in time of construction. For example
the following array of doubles can hold up to 10 doubles:

double results [10];

This restriction makes static array unusable for variable size and growing containers.

Interface and Operations

The interface of an array is very simple due to its restricted functionality.

Access Usually, operator [] is used to access elements of an array. Accessing is very fast and is
constant time respect to the position and also size of the array. This means that the time to
access any element in an array is not dependent on its position and neither on the number of
elements in container. Accessing an element is done by offsetting the base pointer by position
index as shown in figure 7.3.

Size To provide size interface the array must store its size which implies an overhead specially in
the case of small arrays. For some implementations this overhead can be eliminated as we
will see later.
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i0 1 2 n-1

Figure 7.3: Array indexing

Swap In general swapping can be down element by element which causes swapping time to be
linear respect to the size of the container. In some cases this can be down via pointers which
make it a constant time operation because two arrays just change their pointing sequence
and not all elements one by one.

As mentioned before the size of an array cannot be changed so there is no resize interface for
the static array. For same reason there are no insert, append and erase interfaces while these
interfaces will change the size of container.

Advantages

• Very good use of system cache. The sequential nature of array makes it very cache efficient
which can make a large increase in its performance.

• Iterating over an array is very fast. In any moment the next and previous elements are known
and using cache memory makes iteration extremely fast.

• Each element is accessible very fast by its sequence number because knowing this number is
enough to know its position without iterating over array.

• loop over elements of an static array can be optimized more for small arrays by unrolling the
loop while the number of elements can be known in compilation time.

• No memory overhead per element. In some implementations even no memory overhead per
container. This makes it a very good choice when a large amount of small containers is
needed.

Disadvantages

• There are no way to insert a new element or erase an exiting one. This makes it unsuitable
for variable size sequences.

• The size of an array must be known in time of creation which makes it unusable for growing
sequences of elements.

In general static is well suited for small and rigid containers. For example a 3 dimensional point
can be implemented as an static array of 3 elements.

Implementation

C (and consequently C++) provides an static array by itself. This array is the minimum im-
plementation of an array which provides a pointer to iterate over it and a [] operator to access
its data. C array do not provide size information which implies users to provide this additional
information to any algorithms they pass a C array.

The simple C array can be improved using C++ templates as follows:
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template <class TDataType , std:: size_t TSize >

class array

{

TDataType mElements[TSize];

public:

// type definitions

typedef T value_type;

typedef T* iterator;

typedef const T* const_iterator;

typedef T& reference;

typedef const T& const_reference;

typedef std:: size_t size_type;

typedef std:: ptrdiff_t difference_type;

// iterator support

iterator begin () { return mElements; }

const_iterator begin() const { return mElements; }

iterator end() { return mElements+TSize; }

const_iterator end() const { return mElements+TSize; }

// access operator []

reference operator []( size_type i)

{ return mElements[i]; }

reference operator []( size_type i) const

{ return mElements[i]; }

static size_type size() { return TSize; }

// element by element swap (linear complexity)

void swap (array <T,TSize >& y)

{

std:: swap_ranges(begin(),end(),y.begin ());

}

// c array representation

T* c_array () { return mElements; }

};

This implementation provides the size of array without any storage overhead. Also it is STL
compatible and can be passed to STL algorithms which gives another added value to it. In this
project the boost [3] implementation of the array is used which announced to be a part C++
standard draft.

7.2.2 Dynamic Array

There are many situations in which the exact size of array is not known but a maximum size can
be given. This maximum size can be used as capacity of the array. So the array can be constructed
with a given capacity and used to store any number of elements less than the capacity. Here an
additional pointer, pointing to the tail of stored elements, is necessary to indicate the actual size
of the array. Figure 7.4 shows this implementation of the array.
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n1 2

Figure 7.4: Array constructed with given capacity

Interface and Operations

Access Usually, operator [] is used to access elements of an array. Like static array accessing
is very fast and is constant in time. This means that the time to access any element in an
array is not dependent on its position neither on the number of elements in the container.
Accessing an element is done by offsetting the base pointer by position index starting from
zero as shown in figure 7.5.

i0 1 2 n-1

Figure 7.5: Array indexing

Insert Inserting an element in a position can be done by shifting all elements after that position
to their next position in order to make room for a new element and then put the element
in the prepared position. This operation is linear respect to the number of elements to be
shifted. Figure 7.6 shows this procedure.

n-20 1

20 1 n-1 n

n-1

0 1 n-2 n-1

Figure 7.6: Adding an element in second position which causes all the rest of elements to move
one step forward to make room for new one

Obviously this procedure is valid until the capacity of the array is more than its size. Oth-
erwise a resize procedure is required.

Append Unlike inserting, appending an element to the end of array do not need any shifting and
takes constant time independent of the size of array. Figure 7.7 shows this procedure. Again
if the array is full append causes resizing with capacity changing which make it less efficient.
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n-20 1 n-1

n-20 1 n-1 n

Figure 7.7: Appending an element to the end of array

Erase To erase an element in the middle of array again a shifting process is necessary to reconstruct
the continuity of array. Erasing consist of removing the element and then shift the rest of
element one step back to fill the gap. Figure 7.8 shows this procedure.

n-20 1

20 1 n-1 n

n-1

0 1 n-2 n-1

Figure 7.8: Erasing the second element of array

Size The size of the array can be calculated by the distance of begin and end of array or it can
be stored depending on the implementation. In general it is a fast process which is constant
in time respect to the size of container.

Resize Resizing without changing capacity is simple and efficient but changing the capacity is
more complex and inefficient. Changing the capacity of an array implies reallocation of
memory. If there is free memory after this array reallocation can be done without copying
but if the memory is allocated then whole array must be copied to some other places with
sufficient space as shown in figure 7.9. This causes the pointers to elements of array to be
invalidated while they are still pointing to the previous position of the array in memory.

0 1 n

0 1 n-1

Figure 7.9: Resizing an array beyond its capacity when there is no space after array to grow

Swap In general swapping can be down element by element which causes swapping time to be
linear respect to the size of the container. But in some cases this can be down via point-
ers which make it a constant time operation because two arrays just change their pointing
sequence and not all elements one by one.
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Array Advantages

• Very good use of system cache. The sequential nature of array makes it very cache efficient
which can make a large increase in its performance.

• Iterating over an array is very fast. In any moment the next and previous elements are known
and using cache memory makes iteration extremely fast.

• Each element is accessible very fast by its sequence number because knowing this number is
enough to know its position without iterating over array.

• No memory overhead per element. There is just an small overhead of storing to pointer for
each container.

Array Disadvantages

• Inserting elements in the middle of array is relatively slow due to the shifting procedure.

• Increasing the capacity of vector requires reallocating of memory which makes it slow. Re-
serving extra memory solves this problem with the cost of memory overhead.

• Shifting and reallocating invalidate pointers to the elements of an array, which makes element
referencing a difficult task. Though using vector with sequence number instead of direct
referencing can solve this problem.

• Array do not reduce the capacity automatically. For example removing elements from the
array will not reduce the memory used by the array.

Interface and Operations

Access Usually, the operator [] is used to access elements of an array. Accessing is very fast and
is constant time respect to the position and also size of the array. This means that the time
to access any element in an array is not dependent on its position neither to the number of
elements in container. Accessing an element is done by offsetting the base pointer by position
index starting from zero as shown in figure 7.10.

i0 1 2 n-1

Figure 7.10: Array indexing

Insert Inserting an element in a position can be done by shifting all elements after that position to
their next position in order to make room for new element and then put element in prepared
position. This operation is linear respect to the number of elements to be shifted. Figure
7.11 shows this procedure.

Obviously this procedure is valid until capacity of array is more than the size. Otherwise a
resize procedure is required.
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n-20 1

20 1 n-1 n

n-1

0 1 n-2 n-1

Figure 7.11: Adding an element in second position which causes all the rest of elements to move
one step forward to make room for new one

Append Unlike inserting, appending an element to the end of array do not need any shifting
and takes constant time independent of the size of array. Figure 7.12 shows this procedure.
Again if the array is full, append causes resizing with capacity changing which make it less
efficient.

n-20 1 n-1

n-20 1 n-1 n

Figure 7.12: Appending an element to the end of array

Erase To erase an element in the middle of array again a shifting process is necessary to reconstruct
the continuity of array. Erasing consist of removing the element and then shift the rest of
element one step back to fill the gap. Figure 7.13 shows this procedure.

n-20 1

20 1 n-1 n

n-1

0 1 n-2 n-1

Figure 7.13: Erasing the second element of array

Size The size of array can be calculated by distance of begin and end of array or it can be stored
depending on implementation. In general its a fast process with constant time respect to the
size of container.

Resize Resizing without changing capacity is simple and efficient but changing the capacity is
more complex and inefficient. Changing the capacity of an array implies reallocation of
memory. If there is free memory after this array reallocation can be done without copying
but if the memory is allocated then whole array must be copied to some other places with
sufficient space as shown in figure 7.14. This causes the pointers to elements of array to be
invalidated while they are still pointing to the previous position of the array in memory.
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0 1 n

0 1 n-1

Figure 7.14: Resizing an array beyond its capacity when there is no space after array to grow

Swap In general swapping can be down element by element which causes swapping time to be
linear respect to the size of the container. But in some cases this can be down via point-
ers which make it a constant time operation because two arrays just change their pointing
sequence and not all elements one by one.

Implementation

As mentioned before new elements can be appended to the tail of list very easily but inserting an
element in the middle of the list requires all following elements to shift and make room for new
one. Also removing elements from tail also is easy while removing from the middle is more complex
due to the shifting procedure of following elements to close the gap. The shifting procedure causes
inserting and removing elements in the middle of the list to be slower. It also invalidates all the
pointers to the shifted element. This causes problem in accessing array elements via pointers. For
example the following code for removing the negative values from given data will not work because
removing each element changes the position of last element and so the end of sequence.

double* begin = data.begin ();

double* end = data.end (); // Will be invalidated by remove !!

for(double* i = begin ; i != end ; i++)

if(*i < 0.00)

data.remove(i); // Invalidates the end pointer !!

Adding any element to an already full array requires increasing the capacity. This operation
is slow and doing it for every added element over capacity, results poor performance. Reserving
more to be used later is a common approach to this problem. Each time an increasing is needed
an additional memory is allocated to avoid reallocation for next elements. Though this approach
effectively solves the performance problem but applies a memory overhead. Larger buffer provides
better performance and also larger memory overhead. All this can be avoided by creating an array
with correct capacity.

vector class provides the array implementation in C++ standard library.

vector <class T, class Alloc = Allocator <T> >

The first template parameter T is the type of element to be store and second is the allocator
which manages the memory used by vector. vector adjust its capacity automatically and also
reserves an extra memory to improve the oversize inserting performance. The buffer size varies
from one implementation to other but usually is 50% or 100% of vector size. This may cause
unacceptable overhead for some cases and must be avoided by assigning correct capacity to the
vector.
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7.2.3 Singly Linked List

Singly linked list is a set of elements chained to each other by pointer. The main idea is giving each
element a pointer to the next one. So having the first element the list can be traversed by going
from each element to the next known position. Figure 7.15 shows a singly linked list in memory.

1 2 n

Figure 7.15: Singly linked list stored individually each element with a link to the next element

Interface and Operations

Access Accessing an element in singly linked list knowing its sequence number is not as easy as
array. For accessing an element one must start from head of the list and go through the list
to arrive to given position. For example to find fifth element of the list first the head must
be used to find the first element, then first element have an associated pointer to the second
one. Going to second one we can get the pointer to third element and from third to forth
and finally to the fifth position. This searching nature makes indexing in a singly linked list
a very slow procedure. Some implementations even do not provide access by position.

Insert Inserting a new element after given element is fast with no need to shifting. The inserting
procedure consist of making new element pointing to the element the given one is already
pointing and making the given element pointing to new one as its next element. Figure 7.16
shows this procedure.

1 2 n

1 2 n

Figure 7.16: Inserting a new element after first element of the list

Append For a linked list append and insert has the same nature and can be done in the same
way. The only difference is that there is no pointing element at the end so appending is to
make the last element point to the new one as can be seen in figure 7.17.

Erase Like inserting a new element erasing an existing one is very simple and efficient. To erase an
element after a given one is enough to make given element pointing to the element after the
removing one and then delete it from memory as shown in figure 7.18. The time complexity
of erasing an element is constant respect to its position and also to the size of array.

Size Getting the size of a linked list is not as easy as an array. In fact to find out how many
element are connected together a complete traverse of list is necessary. So its convenient to
accept the overhead and store the size of list for increasing its performance.
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1 2 n

1 2 n

Figure 7.17: Appending a new element after last element of the list

Figure 7.18: Erasing an element from list

Resize While a list do not have a maximum size or any restricted size, this process consist of
adding new element or erase some others to achieve given size of the list.

Swap Swapping two lists is very simple and consists of swapping only the head pointer of the two
lists. Figure 7.19 shows this procedure.

1 2 n

1 2 n

1 2 n

1 2 n

Figure 7.19: Swapping two list by changing their head pointer

Singly Linked List Advantages

• Fast inserting a new element after a given one.

• Efficient removing of an element.

• A linked list can grow smoothly by adding new elements and without the need to resize it or
creating a buffer like dynamic arrays.
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• Removing elements from lists automatically reduces its size in memory which avoids the
corresponding overhead or the manual controlling of its size.

Singly Linked List Disadvantages

• Singly linked list cannot be traversed in reverse direction because each element only knows
its next neighbor but not the previous one. So this container cannot be used for algorithms
which needs to traverse forward and backward the container.

• Accessing by position is a very slow task and has to be avoided. This accessing can be
reduced by keeping the pointer to the necessary elements of the list for future use.

• Lists are used to be less cache efficient due to the fact that its elements can be arbitrary
distributed in the memory. This makes them less attractive as fast iterating containers in
practice.

A singly linked list is therefore suitable for highly variable data structure subjected to proce-
dures with a lot of element inserting and deleting statements.

Implementation

Unfortunately C++ standard library do not support this container. There are some extensions to
standard the library which provide slist [28, 8] as singly linked list variant of the standard list
container.

In Kratos a modified version of a singly linked list is implemented in the ProcessInfo class to
keep track of its history during a finite element procedure.

7.2.4 Doubly Linked List

As mentioned above a singly linked list has the drawback that cannot be traversed in reverse order.
Doubly linked list solves this problem by adding another pointer to its elements which links them
to their previous elements. In this way a doubly linked list can be traversed in both ways but causes
an overhead of one pointer per each element. Figure 7.20 shows a doubly link list in memory.

1 2

Figure 7.20: A doubly linked list in memory

Interface and Operations

Access Accessing an element in a doubly linked list knowing its sequence number requires the
same procedure as for the singly linked list one. Again for accessing an element one must
start from the head of the list and go through the list to arrive to the given position. For
example to find the fifth element of the list first the head must be used to find the first
element, then the first element has an associated pointer to the second one. Going to the
second one we can get the pointer to the third element and from the third to the forth and
finally to the fifth position. This searching nature makes indexing in a doubly linked list a
very slow procedure. Some implementations even do not provide access by position.
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Insert Inserting a new element after given element is fast with no need to shifting. It consists of
linking the element in the given position to the new one and also the new one to the next
element of the given position. Figure 7.21 shows this procedure.

1 2

1 2

Figure 7.21: Inserting a new element after first element of the list

Append For a linked list append and insert has the same nature and can be done in the same
way. The only difference is that there is no pointing element at the end so appending is just
making the last element point to the new one as shown in figure 7.22.

1

1 2

2

Figure 7.22: Appending a new element after last element of the list

Erase Like inserting a new element erasing an existing one is very simple and efficient. To erase
an element after a given one is enough to make the given element pointing to the element
after the removing one and then delete it from memory as shown in figure 7.23. The time
complexity of erasing an element is constant respect to its position and also to the size of
the array.

Figure 7.23: Erasing an element from the list

Size Getting the size of a linked list is not as easy as an array. In fact to find out how many
elements are connected together a complete traverse of list is necessary. So its convenient to
accept the overhead and store the size of the list for increasing its performance.
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Resize While a list does not have a maximum size or any restricted size, this process consist of
adding new elements or erase some others to achieve the given size of the list.

Swap Swapping two lists is very simple and consist of swapping only the head pointer of the two
lists. Figure 7.24 shows this procedure.

1 2 3

1 2 3

1 2 3

1 2 3

Figure 7.24: Swapping two list by changing their head pointer

Doubly Linked List Advantages

• Fast inserting a new element after or before a given one.

• Efficient removing of an element.

• A linked list can grow smoothly by adding new elements and without the need to resize it or
creating buffer like for dynamic arrays.

• Removing elements from lists automatically reduces its size in memory which avoid the
corresponding overhead or manual controlling of its size.

• Doubly linked list can be traversed in both way which makes it usable for a wider range of
algorithms than the singly linked list.

Doubly Linked List Disadvantages

• Accessing by position is a very slow task and has to be avoided. This accessing can be
reduced by keeping the pointer to the necessary elements of the list for future use.

• Lists are used to be less cache efficient due to the fact that its elements can be distributed
arbitrary in the memory. This makes it less attractive as a fast iterating container in practice.

• The overhead of two pointers per element can be noticeable when elements are small. For
example for a list of doubles these pointers can duplicate the memory in 32 bit compiling
and even worse when compiling in 64 bit.

This container is suitable for storing data with high amount of insert and erase in the middle.
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Implementation

C++ standard library provides a list class to represent the doubly linked list. This class is param-
eterized by template to accept different types.

list <class T, class Alloc = Allocator <T> >

7.2.5 Binary Tree

A binary tree is a tree in which every node has either no children, only a left child, only a right
child, or both left child and right child. In the other words each node in a binary tree has two
descending branches, left and right, which can be empty or not. Figure 7.25 shows a binary tree.

Figure 7.25: A binary tree

It is important to mention that the order of left and right child is part of the tree specification
and swapping the left child and the right child of a node results in another binary tree deferent
from the original one. For example trees in figure 7.26 are not equivalent due to the change of
child positions.

Figure 7.26: Two different binary trees because the position of node b is changed from being left
child to be right child

Binary tree can be used for ordering data respect to a binary comparison operator which returns
true or false. For example a less than operator < can be used to order a set of numbers in a binary
tree as can be seen in figure 7.27. In this tree each node is greater than all values in its left subtree
and less or equal to all values in its right subtree. This ordering can be used later for searching a
value in the tree.
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Figure 7.27: A binary tree containing a set of numbers ordered respect to the less than operator <

Interface and Operations

Access In a binary tree its not usual to give access by position and access is usually done by
finding a key in the tree.

Insert Inserting a new element in a tree consists of finding its place and then add it there. In
some implementations a given position is also accepted but as a hint to find faster the correct
places. This searching is necessary to guarantee the ordering of the tree. The procedure of
finding the right place to insert starts from the root and compares the new element key with
the root. If the result is true goes to the left child and if it is false goes to the right child and
repeat the comparison. This procedure is repeated until an empty child is founded which is
the position to insert the element. Having this position inserting is only pointing the parent
to this new element like inserting in linked lists. Figure 7.28 shows this process for inserting
the value 7 in the ordered tree of figure 7.27.

Figure 7.28: Inserting a new value in the tree.

Find To find a value in a tree one can began from root and compare the value with it. If comparison
returns true means the value must be in left subtree and if it is false, means that the value
must be in right subtree. Having the corresponding subtree the procedure can be repeated
to see which subtree should has the value. This process will arrive either to our desirable
variable or to an empty branch which indicates that the value does not exist. The ordering
and hierarchial nature of the tree makes the finding algorithm very efficient. The number of
comparisons required for this search is guaranteed to be O(lnN) which is much lower than
the O(N) comparison required for searching in an unordered normal array, specially for big
number of entities N . Figure 7.29 shows this procedure in finding value 9 in the ordered tree
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of figure 7.28.

Figure 7.29: Finding a value in a binary tree

Erase Erasing an element of a binary tree requires some replacements of elements in order to
keep the ordering of the tree. As mentioned earlier the ordering ensures that comparison of
a node value with all the values in its left subtree is true and that with all its right subtree
is false. In the case of using the less than operator < for comparison it can be said that all
values in left subtree are smaller than node value and all value in right subtree are greater
than it. It can be seen that to keep this ordering we must take the minimum value, or the
left most value of the right subtree and put it in the place of the removed node. For example
removing 6 from the binary tree of figure 7.29 consists of first, finding the left most node of
the right subtree which is 7 and put it in the place of 6. Then filling the empty place of the
moved minimum node with its right child which is empty in this case. The resulting binary
tree can be seen in figure 7.30.

Figure 7.30: The binary tree after erasing an element

Iterating Unlike arrays and linked lists, iterating over an ordered binary tree is not so trivial and
consist of ascending and descending the tree structure to keep track of the elements sequence.
The idea is to take the start node and go into its right subtree, In each subtree the iterator
finds the left most element and tries to go from left to right by going up and down in the
tree layers. Figure 7.31 shows the iterator path from element 1 to element 12.

Size Like linked lists getting the size of a binary tree is not easy and needs a traverse over the tree.
It is therefore convenient to accept the overhead and store the size of the tree in a member
variable for increasing its performance.
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Figure 7.31: Iterator path from elements 1 to 12

Swap Swapping two binary trees is very simple and consist of swapping only the root pointer of
two trees.

Binary Tree Advantages

• Keeping elements in order all the time is an important feature specially for working with
variable set of elements.

• Fast finding procedure. The hierarchical structure and order nature of binary trees enable
us to make a very efficient binary search also over very large number of elements.

• Relatively fast inserting a new element while keeping the ordering of elements.

• Relatively efficient in removing elements again without altering the ordering of elements.

Binary Tree Disadvantages

• There is no access by position in general. They are specialized for accessing by key and not
by position.

• Binary lists are not cache efficient because their elements are not stored sequentially in
memory.

• Iterating over a binary tree is a complex and consequently not efficient process.

• The overhead of three pointers per element can be noticeable when elements are small.

Implementation

Fortunately the C++ standard library provides various classes representing binary trees in different
ways. The first one is set which is an ordered binary tree of its template argument type. It also
takes an optional comparison operator which make it more generic. set uses this comparison to
understand the order of an element.
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Figure 7.32: In a general quadtree each node has up to four children

7.2.6 Quadtree

Quadtree is a specific type of tree in which every node has zero to four children. Figure 7.32 shows
a general quadtree.

This structure is very useful for organizing data in two dimensional spaces because it can be
used to handle the partitioning information which defines the cells in space in hierarchial form.
Figure 7.33 shows a domain divided by quadtree. For this reason the names of children in a
quadtree node come from their relative positions in a two dimensional map: NW, NE, SW and SE.

As mentioned above, a binary tree can be used for organizing data in one dimension. Quadtree
does the same in a two dimensional space. It can be used with two comparison operators to order
points respecting their coordinates. For example using two less than operators < results in an
order quadtree in which the coordinate x of each node is greater than all coordinates x in its NW
and SW subtrees and its y coordinate is greater than all coordinates y in SW and SE subtrees, as
can be seen in figure 7.34.

Interface and Operations

Access In a quadtree accessing to an element is done by finding a pair keys, for example two
coordinates of a point, in the tree.

Insert Inserting a new element in a quadtree consists of finding its place and then add it there.
Sometimes a given position is accepted as a hint to find faster the correct position. The
procedure is similar to binary tree but using two comparison to find the correct branch. It
starts from root and goes through branches until a branch leads to an empty child. Having
this position inserting is only pointing the parent to this new element.
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Figure 7.33: Quadtree can be used to partition a domain into layers of sub-domains.

Find Finding procedure starts from root and compares the keys, for example the point’s coordi-
nates, if matches to it the result is found and if not goes to the branch which is corresponding
to the comparison result. The procedure is repeated for the node in the branch and keeps
going until finding the entity or an empty leaf which indicates that the entity does not exist.

Different types of the quadtree and detail description of each type can be found in [91, 92]

7.2.7 Octree

Octree implements the same concept of quadtree but in a three dimensional space. In octree
each node has 8 branches which may lead to a child or not. Considering the octree like the three
dimensional extension of quadtree, all operations done by quadtree in two dimensions and using
two comparison operators, now can be done by octree in three dimensions using three comparison
operators.

n n

n nn n

n n n n

Figure 7.34: Ordering two dimensional points in quadtree.
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Figure 7.35: Partitioning a two dimensional domain using k-d tree.

7.2.8 k-d Tree

K-d tree is a generalized approach to deal with k dimensional spaces using only two-way branching
at each node. Figure 7.35 shows a k-d tree used to handle the partitioning of a two dimensional
domain.

7.2.9 Bins

A simple but effective data structure for storing and finding objects in two and three dimensional
spaces is Bins. It divides the domain into a regular nx × ny × nz sub-domains and holds an array
of buckets storing its elements. Figure 7.36 shows a two dimensional domain divided by the bins
and figure 7.37 shows the structure of this bins.

This structure provides a fast spatial searching when entities are more or less uniformly dis-
tributed over the domain. The good performance for well distributed entities and simplicity make
bins one of the popular data structure in different finite element applications [59].

7.2.10 Containers Performance Comparison

As mentioned before, each container respecting to its internal structure provides different perfor-
mances in its operations and memory consuming. This difference has been described as advantage
and disadvantage of each container. However this respective performance is also depends on the
size of the container and can change radically in terms of the size. In this section a brief comparison
between containers on certain operations is provided. This comparison gives some experimental
results, indicating the behavior of different containers in practice.

It is important to mention that in these tests no manual optimization is performed and only
the automatic optimization of compilers is set to its highest value.
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Figure 7.36: Partitioning a two dimensional domain using bins.

Figure 7.37: Bins structure.

Memory usage of containers

In this comparison different containers are initialized to different sizes and the memory used by
each of them is measured. Figure 7.38 shows the results of this comparison.

It can be seen that vector uses less memory than other contatiners. The reason is the memory
used to store the pointers in elements.

Another benchmark is done to see the memory used by different containers respecting to their
sizes. For this reason an array of size n = 100000 is created with different containers and the
memory used by each of them is shown in figure 7.39.

Construction and Destruction

In this test the construction and destruction time of different containers are compared. Figure 7.40
shows the construction time comparison for different containers.

It can be seen that the constructing time for vector is far less that for other containers. The
reason is its simpler internal structure than the list or set. Figure 7.41 shows the destruction
time for different containers.

Again vector is far faster than other containers. This makes vector a good choice for situations
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Figure 7.38: Memory use comparison a) Comparing memory use of vector<double>,
list<double> and set<double> b) Comparing memory use of vector<pair<int,double> >,
list<pair<int, double> > and map<int,double>
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Figure 7.39: Memory use comparison between arrays with size n = 100000 of different containers.
a) Comparing memory use of vector<double>, list<double> and set<double> b) Comparing
memory use of vector<pair<int,double> >, list<pair<int, double> > and map<int,double>
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Figure 7.40: Construction time for different containers. a) Comparing construction time
for vector<double>, list<double> and set<double> b) Comparing construction time for
vector<pair<int,double> >, list<pair<int, double> > and map<int,double>
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Figure 7.41: Destruction time for different containers. a) Comparing construction time
for vector<double>, list<double> and set<double> b) Comparing construction time for
vector<pair<int,double> >, list<pair<int, double> > and map<int,double>
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that a container has to be created and deleted immediately.
Another test is to compare the construction and destruction time of containers as local variables

allocated in stack memory. While it is usual to create containers as local variables in procedures
it is important to see their time overhead for construction and destruction them each time the
procedure is called. Figure 7.42 shows this comparison.
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Figure 7.42: Construction and destruction time of containers defined as local vari-
ables and allocated in stack. a) Comparing construction/destruction time for double*,
vector<double>, list<double> and set<double> b) Comparing construction/destruction time
for vector<pair<int,double> >, list<pair<int, double> > and map<int,double>

This time the C static array shows far better performance even respecting to vector. The
reason is the overhead of allocating dynamic memory for the vector while the C static array is
allocated completely in stack. Consequently, implementing the small local containers in procedures
as static arrays can significantly increase the performance of the code.

Iterating

Many finite element algorithms are used to iterating over containers. For this reason good per-
formance in iterating is an important factor in selecting a container. This benchmark consists of
iteration over all elements of sample containers with different sizes. The time is measured for 109

steps of iterations and the results are shown in figure 7.43. Each step consists of an access to the
iterator content to be sure that the optimizer will not eliminate the loop.

This benchmark shows the bad performance of containers with tree structure like set and map.
Surprisingly vector shows to be more robust in optimizing the iteration time than the C array and
it seems that c array needs manual optimization to get its best performance.

Inserting

The first benchmark shows the results of pushing back elements to different containers. The test
consist of pushing back 104 elements to each container several times and measuring the average



138 CHAPTER 7. DATA STRUCTURE

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

Container Size

T
im

e 
(S

ec
on

d)

vector<double>
list<double>
set<double>
double*

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

Container Size
T

im
e 

(S
ec

on
d)

(b)

Figure 7.43: Iterating time for 109 steps of iterations with different containers. a) Comparing
performance of double*, vector<double>, list<double> and set<double> b) Comparing per-
formance of vector<pair<int,double> >, list<pair<int, double> > and map<int,double>

time of this operation. Figure 7.44 shows the results of this benchmark.
The second benchmark shows the push front operations for vector and its linear complexity with

respect to the size of the container. Other containers has the same performance as the push back
operation and are significantly faster as expected. Figure 7.45 shows the result of 104 pushfront
to vectors with different sizes.

Copying

Another important operation is the copying of containers. This benchmark shows the result time
for copying different containers with different sizes. The test consists of calling the copy constructor
of container several hundred times and calculating the elapsed time for 100 times calling the copy
constructor. Figure 7.46 shows the results of this benchmark.

It can be seen that again vector has better performance to others due to its simple structure
which leads to less overhead in time of copying than the others.

Find

Finding an element in a container is another typical operation to be compared. The benchmark
compares the performance of the brute-force search over unsorted containers with binary search
over sorted containers. The first test is to find a value in container, using brute-force over an
unsorted vector and an unsorted list, a binary search over a sorted vector and the tree search
of set. The second test is an integer key finding using brute-force over an unsorted vector and
an unsorted list and the tree search of map. Figure 7.47 shows the results of this comparison.

This benchmark shows how inefficient the brute-force algorithm becomes when the size of
container increases. Also it can be seen that using a binary search over a sorted vector can lead
to the same performance of searching in a tree like set.

Figure 7.48 shows the same results but focusing only on small containers. Here it can be seen
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Figure 7.44: Time comparison for 104 elements pushback to different containers. a) Comparing
performance of vector<double>, list<double> and set<double> b) Comparing performance of
vector<pair<int,double> >, list<pair<int, double> > and map<int,double>
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Figure 7.45: Time comparison for 104 pushfronts to vectors with different sizes. a) vector<double>
b) vector<pair<int,double> >
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Figure 7.46: Time comparison for 100 calls to copy constructor. a) Comparing perfor-
mance of vector<double>, list<double> and set<double> b) Comparing performance of
vector<pair<int,double> >, list<pair<int, double> > and map<int,double>
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Figure 7.47: Time comparison for different searching algorithms over sorted and unsorted contain-
ers a) Comparing performance of vector<double> with brute-force, list<double> with brute-
force, set<double> binary tree search and sorted vector<double> with binary search. b) Compar-
ing performance of vector<pair<int,double> > with brute-force key finding, list<pair<int,
double> > with brute-force key finding and map<int,double> binary tree search.
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Figure 7.48: Time comparison for different searching algorithms over sorted and unsorted small con-
tainers a) Comparing performance of vector<double> with brute-force, list<double> with brute-
force, set<double> binary tree search and sorted vector<double> with binary search. b) Compar-
ing performance of vector<pair<int,double> > with brute-force key finding, list<pair<int,
double> > with brute-force key finding and map<int,double> binary tree search.

that using a brute-force algorithm for small containers can lead to better performance than other
algorithms. This feature will be used later in finding values in small data containers.

7.3 Designing New Containers

It can be seen that standard C++ containers are homogeneous due to the static typing of C++
language. This means that using one of this containers to store doubles cannot be reused to
store vectors and matrices without decomposing them to double values. This restriction makes
developers to separate their containers for different types of data or to implement heterogeneous
containers. In this part some new containers capable to store different types of data are introduced.

In previous chapter a Variable Base Interface (VBI) was introduced and its advantages were
mentioned. In this part VBI is used to unify the interfaces of different containers and also to
provide them with a generic interface capable to storing any new variable without rewriting them.

7.3.1 Combining Containers

Finite element developers usually work with integers, reals, vectors and matrices as their data. In
some other fields like electro magnetic formulations complex numbers are also used. So making
a new container capable to hold just these data types can cover a large part of finite element
programming needs. A very fast an easy way to implement a quasi heterogeneous container holding
above data types is to take different containers and put them together as a new container. Figure
7.49 shows an example of this container.



142 CHAPTER 7. DATA STRUCTURE

Figure 7.49: Combining containers for holding doubles, vectors, matrices and complex numbers.

Interface and Operations

Access For accessing to an element this container first has to see what is the type of this element
and then access in corresponding container. Usually this access consists of a find process
for a given key. However access by position can be done by giving a pseudo order to the
containers.

Insert Inserting a new element like accessing an existing one requires switching over element type.
The process is simply finding the corresponding container and insert the new element in it.

Find Mainly depends on the sub-containers inside the compound one. Again this container only
dispatches the request to the corresponding sub-container using type of data and the proce-
dure of finding must be done by the underlying container.

Erase Simply removes an element from the container holding this type of element. Efficiency of
this procedure also depends on the type of container holding this data.

Iterating The same iterating mechanism of sub-container can be reused to iterate over a certain
type of data.

Combining Containers Advantages

• Fast and easy implementation. Standard containers can be reused here and make the imple-
mentation task very easy.

• Very rigid and errorless structure. There is no chance in inserting wrong data type or getting
data which is not of the expected type. Everything relies on C++ static type checking
without dangerous type casting and raw pointer manipulation.

• Keeping separated different types of data lets more specialization for each case. For example
in time of copying the containers for built in types can be copied directly in the memory and
so on.

• Less searching time because the number of data in each container is less than the total number
of data in container. In other words dividing container to sub-containers reduces the time
for searching. Though the searching time is highly dependent on the type of sub-containers.

Combining Containers Disadvantages

• Extra memory overhead is needed for supporting any new type. As mentioned in previous
section, each container has a memory overhead. So using more containers to keep the same
number of element increases the overhead per element. This factor may cause problems
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for very small number of data per container. For example a container for holding doubles,
vectors, matrices and complex numbers has a fix overhead of 8 pointers or more. So using
this container to hold a double and a vector of 3 doubles causes at least 100% memory
overhead. Supporting any new data type still increases more this overhead which may cause
this container unusable for some problems.

• Adding new types needs modifying the container, though this modification is very small. A
good implementation can minimize this modification but cannot make it automatic to accept
any new type of data. This makes it unacceptable for a library with unspecified using field.

Implementation

Combining containers is an easy task. Any classic container described in previous section can be
use here to store one type of data. There is no restriction to have same containers for all types
but usually this is the good choice while the nature of data and algorithms are not dependent on
the type of element. However in some cases a type specific optimization can be implemented using
different algorithms and containers for the data types.

As mentioned before a container provides interface for accessing, inserting, erasing and also
iterating. Even though these are the common interfaces for standard containers, their type de-
pendency given them a different nature. A simple way to overcome this problem is to implement
separate methods for each type. Figure 7.50 shows an example of the accessing methods for the
container of figure 7.49 using separate methods for each type.

Figure 7.50: Implementing separate access interface for each type in a compound container

It can be seen that this interface design causes a big overhead in implementation cost. This
can be avoided using a template access method with a dummy argument indicating the type of
data. Here is an example of a template access method:

template <class TDataType >

TDataType& GetValue(TDataType const& Dummy ,

... more data information)

{

return CorespoundingContainer.Get (...);

}

Using this interface implies introducing a dummy variable just to help the container which is
not elegant. In previous chapter the VBI was introduced and its generic way to deal with different
data type was also discussed. Now it is time to use this concept to create a generic and extendible
interface for our containers. VBI provides a uniform template model for accessing an element by
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variable. This model uses the variable type parameter to distinguish the type of element without
the need of dummy argument. In this manner the access method can be written in this new form:

template <TVariableType >

typename TVariableType ::Type& GetValue(TVariableType const &)

{

return CorespoundingContainer.Get (...);

}

A variable not only gives information about the type of element but also gives information
about how to find it by providing its unique index and also its name. This information can be used
to find the element without passing extra arguments to the access method. So this access method
can be written in the following way:

template <TVariableType >

typename TVariableType ::Type&

GetValue(TVariableType const& ThisVariable)

{

return CorespoundingContainer.Get(ThisVariable.Key ());

}

This encapsulation of element information in a variable simplifies the interface and its usage
by the users. Now a user can get a value only by giving the variable represent it as follows:

// Without VBI user must know exactly the type of

// data and also its index in container. Here is

// an example of accessing acceleration with index

// 3 in container

acceleration = mData.GetValue(array_1d <double , 3>(), 3);

// Using VBI , user just need to specify the previously

// defined variable

acceleration = mData.GetValue(ACCELERATION );

VBI also prevents users from making trivial errors by giving wrong type or information. For
example:

// Error! acceleration type is array_1d <double , 3>

// but given type is std:: vector

acceleration = mData.GetValue(std:: vector (3) ,3);

// Error! displacement is in position 0 and not 3

displacement = mData.GetValue(array_1d <double , 3>(), 3);

Keeping this form a basic interface for our heterogeneous container can be implemented in the
form below:

// Accessing to a value in container

template <TVariableType >

typename TVariableType ::Type&

GetValue(TVariableType const& ThisVariable );

// Readonly access to the container

template <TVariableType >

typename TVariableType ::Type const&
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GetValue(TVariableType const& ThisVariable) const;

// Setting a value in container

template <TVariableType >

void

SetValue(TVariableType const& ThisVariable

typename TVariableType ::Type& Value);

// To see if the variable exist in container

template <TVariableType >

bool

Has(TVariableType const& ThisVariable );

This interface can be used in this form without problems but can be improved even more.
In finite element applications there are many situations where there is a need for accessing a
component of an array or matrix. For example to assign a value to a degree of freedom representing
Y component of displacement, a direct access to the component value in data structure is easier
than extracting the whole displacement vector and assign to it manually, as shown in the following
code:

void UpdataDofValueInContainer(Dof const& rThisDof , double Value)

{

if(Dof.Variable () == DISPLACEMENT_X)

mData(DISPLACEMENT )[0] = Value;

else if(Dof.Variable () == DISPLACEMENT_Y)

mData(DISPLACEMENT )[1] = Value;

else if(Dof.Variable () == DISPLACEMENT_Z)

mData(DISPLACEMENT )[2] = Value;

}

Having direct access to components makes above example as easy as follows:

void UpdataDofValueInContainer(Dof const& rThisDof , double Value)

{

mData(Dof.Variable ()) = Value;

}

It can be seen that the first form with manual accessing to components is not even general
and works only for displacement components while the second form can be used for any defined
component without problem. As a consequence we will implement the direct component access for
our container.

Interface must be modified to distinguish a variable and a component of variable. In VBI this
is an easy task while two different classes, Variable and VariableComponent, represent them. So
interface can distinguish a variable from a component just by type of given argument. Overloading
each method to accept either a Variable or a VariableComponent separates the implementation
for this two concepts. It is very important to mention here that this separation is in compilation
time and does not causes any cost due to type checking or other type recognizing mechanism. The
first part of interface is related to get a variable of given type and process it. The type of variable
is specified by a template parameter, to keep the generality of the interface.

// Accessing to a variable in container

template <TDataType >

TDataType&

GetValue(Variable <TDataType > const& );
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// Readonly access to a variable in container

template <TDataType >

TDataType const&

GetValue(Variable <TDataType > const& ) const;

// Setting a variable in container

template <TDataType >

void

SetValue(Variable <TDataType > const&,

TDataType& );

// To see if the variable exist in container

template <TDataType >

bool

Has(Variable <TDataType > const& );

The second part of interface consists of the same methods overloaded to accept a VariableComponent
instead of a normal Variable.

// Accessing to component of a variable in container

template <TAdaptorType >

typename TAdaptorType ::Type&

GetValue(VariableComponent <TAdaptorType > const& )

// Readonly access to component of a variable in container

template <TAdaptorType >

typename TAdaptorType ::Type const&

GetValue(VariableComponent <TAdaptorType > const& ) const

// Setting a component of a variable in container

template <TAdaptorType >

void

SetValue(VariableComponent <TAdaptorType > const& ,

typename TAdaptorType ::Type& );

// Ask if container has this component which usually is

// equivalent to see if the variable holding this component

// is exist.

template <TDataType >

bool

Has(Variable <TDataType > const& );

Next we will implement the container. One way is implementing the container with sub-
containers as its attributes. Figure 7.51 shows an example of this container with three sub-
containers.

It can be seen that for each supported type an overloaded version of the interface methods is
needed to call manually the corresponding container. For example the GetValue method must be
overloaded for each type to call the GetValue method of sub-container which contains this type of
data as follows:

// Accessing to a double in container

double GetValue(Variable <double > const& rThisVariable)

{
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Figure 7.51: Container with three sub-containers as its attributes.

return mDoubles[rThisVariable.Key ()];

}

// Accessing to a Vector in container

Vector& GetValue(Variable <Vector > const& rThisVariable)

{

return mVectors[rThisVariable.Key ()];

}

// Accessing to a Matrix in container

Matrix& GetValue(Variable <Matrix > const& rThisVariable)

{

return mMatrices[rThisVariable.Key ()];

}

This manual switching must be done for all other methods working with different types of data
like GetValue const, SetValue, Has and overloaded operators which makes this implementation
strategy difficult to maintain.

Another approach is using multiple hierarchy to group different containers in a combine one.
Figure 7.52 shows this approach for implementing the container of the previous example.

The big difference between this approach and the previous one is the container switching mech-
anism. In this way there is no need to manually overload each method for any acceptable type.
Now a template method simply does the work. The mechanism is simple, each method is imple-
mented as a template of the element type which accepts the corresponding variable and calls the
related container automatically by calling the proper base class interface. Here is an example of
this implementation:

class CombinedContainer : public BaseContainer <double >,

BaseContainer <Vector >,

BaseContainer <Matrix >

{

public:

/// Default constructor.

CombinedContainer (){}
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Figure 7.52: Combining different containers using multiple hierarchy.

/// Copy constructor.

CombinedContainer(const CombinedContainer& rOther) :

BaseContainer <double >( rOther),

BaseContainer <Vector <double > >(rOther),

BaseContainer <Matrix <double > >(rOther)

{

}

template <class TDataType >

TDataType&

GetValue(const Variable <TDataType >& rThisVariable)

{

return BaseContainer <TDataType >:: GetValue(rThisVariable );

}

};

Now supporting any new variables only needs another parent class to be added and modification
in some other methods like copy constructor to incorporate the new base class.

Direct access to the components of variables can be done easily using tools provided by VBI. As
mention in the previous chapter each component knows about its parent variable and also knows
how to extract itself from it. So to extract a component is only necessary to access the parent
variable value and give it to the component to extract itself form it. Here is an example of the
component access method:

template <class TAdaptorType >

typename TAdaptorType ::Type&

GetValue(const VariableComponent <TAdaptorType >& rThisVariable)

{

typedef typename TAdaptorType :: SourceType source_type;

return rThisVariable.GetValue(

BaseContainer <source_type >:: GetValue(

rThisVariable.GetSourceVariable ()));

}
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It can be seen that all switching and accessing algorithms are implemented via templates, which
make them very efficient. In time of compilation all variables and components types are known
so the compiler can get the conversion algorithm provided by component and inline it inside the
access code to eliminate the function call overhead. Finally optimizer will reduce all this code to
the direct access method provided by adaptor which is equivalent to the hand written code.

Finding stored variables by their keys require searching in container. map provides a searching
mechanism by given keys and can be used to find any variable key without any implementation
cost. The BaseContainer can be implemented using map as follows:

template <class TDataType >

class BaseContainer

{

public:

typedef map <VariableData ::KeyType , TDataType > ContainerType;

TDataType&

GetValue(const Variable <TDataType >& rThisVariable)

{

return mData[rThisVariable ];

}

private:

ContainerType mData;

}

So a very first version of a container with VBI can be made by putting all above components
together. This implementation was used in the first version of the Kratos code to develop a reliable
container with minimum cost.

This container can be improved by changing the basic container from map to a vector. There
are two major advantages in using vector instead of map:

• Less memory is needed to store a vector of indexed data than a map. In fact this container
will be used to store nodal or elemental data, so any reduction in memory will deeply affect
the overall memory used by the application. In the previous section the big difference in use
of memory has been shown. For small containers map needs about 2 to 5 times more memory
than vector. This overhead can be eliminated completely using vector.

• The vector searching time is also faster than map using even brute-force when the size of
container is very small. Again respect to the fact that the amount of data to be stored for
each Node or Element is small, so changing to vector can also make searching process faster.

The implementation is relatively easy. Each data will be stored in a pair combined with its
key. So to find any data one must iterate over vector and compare the key with given one. A simple
container called VectorMap can help us to encapsulate all these operations and reuse previous code
by changing the standard map with it.

7.3.2 Data Value Container

A quasi heterogeneous container can be used successfully to hold data with small variety in their
types. But to hold more different data types a heterogeneous container is more useful. Data value
container is a heterogeneous container with a variable base interface designed to hold the value for
any type of variable.
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Figure 7.53: Heterogenous container uses different handlers to access data.

Usually a container needs to do some basic operations over its data. Creating, copying and
deleting are examples of this operations. Unfortunately this operations may vary from one type
to other. For example removing a double can be done by just removing it form container but
removing a vector may consists of first freeing its memory and then removing it from container. So
a heterogenous container needs a mechanism to handle each different type with its corresponding
process. For example copy a double by copying its value and a vector by calling its copy constructor.

A common way to deal with this problem is to encapsulate all necessary operation into a handler
object and associate it to its corresponding data. In this way the container only uses this handlers
by their unique interface to do different tasks without any problem. Figure 7.53 shows this relation.

In our approach the variables are used as the handlers to help the container in its data op-
erations. The data value container uses the Variable class not only to understand the type of
data but also to operate over it via its raw pointer methods. Figure 7.54 shows the relationship of
container and the Variable class.

Interface and Operations

Access Container first uses the key of given variable and finds the location of its value in memory.
Then return this position as a reference with the type of variable. It is important that
the type recognition can be done in compilation time in order to eliminate its overhead in
runtime.

Insert Inserting a new element consist of allocating memory and copying correctly the object.
Finding the correct position and allocating strategy depends highly on the internal imple-
mentation of data. By knowing the type of data, copying can be done easily by calling its
copy constructor.

Find Mainly depends on the internal structure of the container and consists of searching the key
of variable in the container. Unlike the compound container, the finding process does not
need the type switching and the type of data is important only in time of down casting of
returned value.

Erase Removing data consists of two parts. First calling the destructor of the object using the
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Figure 7.54: Data value container uses the Variable class to process its data.

type specification of the variable and then freeing the memory holding the value from internal
data. The first part is an easy task as the type of variable is known at compilation time.
The efficiency of the second part depends on the container’s internal structure of data.

Copy Copying of this container is not a trivial task, as copying the memory block, or shallow
copying, is not sufficient for copying some type of data. For example objects containing a
pointer may need a deep copy of the pointed data and not the pointer itself. So the container
goes element by element and uses the corresponding variable to copy the data. This procedure
makes the process to be slower than for a homogeneous container.

Clear Clearing consists of first calling the destructor of each object and then freeing the memory.
Container uses the variable to call the correct destructor of data and correctly remove it
from the memory. This procedure is necessary because simply freeing the memory will not
call the destructor of an object by itself. This causes problems specially when objects have
some memory allocated internally and removing them without calling to destructor results
in memory leaks in the system. Again this process is slower than for a homogeneous clearing
due to the function calling overhead for each element.

Data Value Container Advantages

• Extendibility to store any type of data without any implementation cost. Adding new types to
data value containers is an automated task without changing the container or even reconfigure
it. One can store virtually any type of data, from simple data like an integer to a complex
one like a dynamic array of pointers to neighbor elements.

• Usually extensive use of void pointers and down casting make heterogeneous container open to
type crashing. Using the variable base interface protects users from unwanted type conversion
and guarantees the type-safety of this container.

Data Value Container Disadvantages

• Heterogeneous containers are typically slower than homogeneous ones at least in some of
their operations. The type recognition make them slower than for a homogeneous container.
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Implementation

The first step to implement this container is designing the structure of data in memory. One
approach is to group each data with a reference to its variable and put them in a dynamic array
as shown in figure 7.55.

Figure 7.55: A data value container with continuous memory.

In this approach iterating over elements is somehow like a link list. For each element the variable
knows the size of it and therefore the offset necessary for going to the next element. Having a
pointer to each variable and not copying it is necessary to eliminate the unnecessary overhead of
duplicated variables.

Another approach is to allocate each data separately and keep the pointer to its location in the
container. Figure 7.56 shows a container with this structure in memory.

Figure 7.56: A data value container with discontinuous memory.

The first approach is typically more efficient in use of cache because accessing an element does
not need a memory jump by a pointer. But adding new data to it may invalidate all references
to its elements, as mentioned before for dynamic arrays. The second approach lets user to get a
reference of its data once and use it several time without worrying about its validness. In this
work the second approach is used because of its advantage in reducing the repeated accesses to the
container which can increase significantly its overall performance in practice.

Using this memory structure the implementation is relatively easy. First a pair object is used
to group the variable reference with a void pointer to its data:

// Grouping Variable reference with a pointer to its data

typedef std::pair <const VariableData*, void*> ValueType;
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Now the internal data container can be implemented easily by putting these pairs in a vector:

// Type of the container used for variables

typedef std::vector <ValueType > ContainerType;

For inserting a new data in this container, first a new pair must be created which holds a
reference to its variable and a pointer to the memory location holding the copy of the value.
Adding this pair to the end of the vector finishes the inserting process:

mData.push_back(ValueType (& rThisVariable ,new TDataType(rValue )));

Access methods use Variable or VariableComponent as data information as described for VBI.
Each access consist of a find process for given variable key and then convert the data to the given
variable type.

template <class TDataType >

const TDataType&

GetValue(const Variable <TDataType >& rThisVariable) const

{

typename ContainerType :: const_iterator i;

i = std:: find_if(mData.begin(),

mData.end(),

IndexCheck(rThisVariable.Key ()))

if (i != mData.end ())

return *static_cast <const TDataType *>(i->second );

}

The access method can be also configured to return zero if the given data does not exist yet in
the container as follows:

template <class TDataType >

const TDataType&

GetValue(const Variable <TDataType >& rThisVariable) const

{

typename ContainerType :: const_iterator i;

i = std:: find_if(mData.begin(),

mData.end(),

IndexCheck(rThisVariable.Key ()))

if (i != mData.end ())

return *static_cast <const TDataType *>(i->second );

return rThisVariable.Zero ();

}

Its important to mention here that using VBI not only increases the readability of the code but
also protects users from unwanted type crashing. To see the difference of these two approaches let
us make an example of an access method without using VBI:

void* GetValue(KeyType Key) const

{

typename ContainerType :: const_iterator i;
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i = std:: find_if(mData.begin(), mData.end(), IndexCheck(Key))

if (i != mData.end ())

return i->second;

return &( rThisVariable.Zero ());

}

Also considering the IO part of the application reads some data with different types from input
and store them in the container as follows:

// Defining keys

int acceleration_key = 0;

int elasticity_key = 1;

int conductivity_key = 2;

// Reading data

array_1d <double > acceleration;

matrix <double > conductivity;

symmetric_matrix <double > elasticity;

input >> acceleration >> elasticity >> conductivity;

// And store them in data value container

data.SetValue(acceleration_key , acceleration );

data.SetValue(conductivity_key , conductivity );

data.SetValue(elasticity_key , elasticity );

In some other part of the code this variables are necessary and user will retrieve them from the
container without specifying their types or with different types:

// The following innocent code simply will not compile!

// Error: There is no * operator which takes a double

// and a void as its arguments

Vector v = delta_time * *data.GetValue(acceleration_key) + v0;

// The following erroneous code compiles without

// problem but crashes in runtime due to the type

// crashing of converting conductivity matrix to a

// double representing the conductivity coefficient!

double k = *( double *)data.GetValue(conductivity_key );

// Again the following code will compile fine but crashes

// mysteriously in run time! Because the elasticity

// was stored as a symmetric matrix

Matrix* d = (Matrix *)data.GetValue(elasticity_key );

The first statement calculates the velocity and store it as Vector v. This statement seems to
be errorless, however simply will not compile because compiler has not any information about the
type of acceleration.

The second statement is worse because it compiles without any problem but will not work as
expected. So the application gives wrong results due to this type crashing and user has to debug
it in order to find this simple error.

The third and more erroneous statement of taking a symmetric matrix pointer as a pointer to
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Matrix also will be compiled and even worse than second statement, may also work mysteriously
or crash unfaithfully depending on the order of internal data in Matrix.

Now let see how using VBI protects user from simple errors by compilation time type checking:

// The following code works as it must while the return

// type of GetValue method is a reference to acceleration

// array. So the multiplication can be done correctly.

Vector v = delta_time * data.GetValue(ACCELERATION) + v0;

// The following code will not compile due to the type

// mismatch.

Matrix& d = data.GetValue(ELASTICITY );

// Again the following code will not compile due to the

// type mismatch.

double k = data.GetValue(CONDUCTIVITY );

The first statement compiles without problem and also works as expected. A reference to the
acceleration array is passed to the expression and the velocity vector will be calculated correctly.

Unlike the previous approach, the second statement will not compile because the compiler
cannot convert a reference of symmetric matrix type to a reference to Matrix type. This error in
compiling protects users from unwanted type crashing. Also there is a possibility for users to copy
correctly the elasticity symmetric matrix into a normal matrix for some subsequent operations.

Finally the third statement causes another compiling error and protects the user from erroneous
type conversion.

Copying the container as mentioned before cannot be done by just copying the memory as this
shallow copy results in the uncorrect copy of some objects, specially for ones with pointers to their
individual data. For example let us consider a dynamic vector with the following implementation:

class Vector

{

int mSize;

double* mData;

public:

// copy constructor

Vector(Vector& Other)

{

mData = new double[Other.mSize ];

memcpy(mData ,Other.mData ,mSize );

}

// access

double operator [](int i)

{

return mData[i];

}

}

Shallow copying of this vector will result in the mData pointer taking the address in mData of
the source vector and pointing to the source data as can be seen in figure 7.57. So any change in
the elements of vector vc will change the elements of the source vector v!

But copying the same vector using its copy constructor will duplicate the allocated memory
and safely uses the memcpy to copy the contents of the source vector to the copy one, as shown in
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Figure 7.57: Shallow copying a pointer results in shared data for source and copied vectors.

figure 7.58.

Figure 7.58: Deep copying results in an individual copy of source vector.

Data value container uses variables to call the copy constructor for each element at copying
time in order to avoid errors produced by shallow copying. Here is the implementation for the
copy constructor.

/// Copy constructor.

DataValueContainer(DataValueContainer const& rOther)

{

for(ConstantIteratorType i = rOther.mData.begin () ;

i != rOther.mData.end() ; ++i)

mData.push_back(ValueType(i->first , i->first ->Clone(i->second )));

}

Unfortunately the Clone method of the Variable class must be virtual and its function call
overhead makes this operation slower than normal copying.

Destructing a data value container also need to be done carefully because freeing its memory
can results memory leak for objects with internally allocated memory or result in unfinished jobs
for some other objects. To avoid all these problems it is necessary to call the destructor of objects
before removing them from memory. Data value container uses Delete method of Variable to call
the destructor of each object in order to remove them correctly.

void Clear ()

{

for(ContainerType :: iterator i = mData.begin() ;

i != mData.end() ; i++)

i->first ->Delete(i->second );

mData.clear ();

}

This operation also consists of a function call in its loop which reduces its efficiency.
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7.3.3 Variables List Container

In finite element programs it is common to store same set of data for all Nodes of one domain. For
example in a fluid domain each Node has to store velocity and pressure. Also each type of Element
has to store an specific set of historical data at each integration point. The previous heterogeneous
container can be used to store these data due to its flexibility to store any type of data. However
the searching procedure in order to access data in this container makes it inefficient. To solve this
problem another container is designed which stores only a specific set of data but with an efficient
access mechanism.

The main idea is to use an indirection mechanism to access the elements of the container. A
shared variable list gives the position of each variable in the containers sharing it. The mechanism
is very simple. There is an array which stores the local offset for each variable in the container and
assigning the value −1 for the rest of the variables. Offsets are stored in the position of variables
key using a zero base indexing. In other words if the key of a variable is k, then its offset is stored as
the k+1’th element of this array. This offset can be used to access the data in memory by offsetting
the data pointer. For example to find temperature in this container, the key of the TEMPERATURE
variable, in this example 2, indicates that the third element of the offset array contains the offset
for temperature which is 1. Then this offset is used to get the value of temperature in the data
array. Figure 7.59 shows this procedure.

Figure 7.59: Accessing to a value in the variables list container.

Interface and Operations

Access This container first uses the key of a given variable and gets the necessary offset from the
variables list. This offset is used to access its value in memory. Then return this position as
a reference with the type of variable. Its important that the type recognition can be done in
compilation time in order to eliminate its overhead in runtime. If the inserting in container is
enabled, a control is necessary to see if the requested variable is really stored in the container
or not.

Insert Inserting a new element consist of allocating memory and copying correctly the object and
also adding it to the variables list. This means that adding a new variable to a container
virtually adds it to all the other containers sharing the variable list with it. Using an array
for data in this container implies that all references to elements of any container sharing the
variables list can be invalidated by inserting a new element.
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Find Finding is done via indirection and is a fast procedure. A variable key is enough to find it
efficiently and only the type of data is needed for correctly casting the results of the search.

Erase Removing data is very complicated. It can be done by giving a removed tag to the variable
in list and then each container has to update itself for new list. All these makes erasing
practically unacceptable.

Copy Copying this container is similar to the DataValueContainer. Again the container goes
element by element and uses the corresponding variable to copy the data. This process needs
a virtual function call which reduces its performance.

Clear Clearing this container is also similar to the DataValueContainer. The container uses the
variable to call the correct destructor of data and correctly remove it from memory. This
procedure is necessary because simply freeing the memory will not call the destructor of
object by itself. This causes problems specially when objects have some memory allocated
internally and removing them without calling to destructor results in memory leaks in the
system. Obviously this process is slower than an homogeneous clearing due to the function
calling overhead for each element.

Variables List Container Advantages

• The accessing and finding processes are very efficient because only two indexing are necessary
to find each value.

• Extendibility to store any type of data without any implementation cost. Adding new types
to this container is an automated task without changing the container or even reconfigure it.

• Usually extensive use of void pointers and down casting make heterogeneous containers vul-
nerable to type crashing. Using the variable base interface protects users from unwanted
type conversion and guarantees the type-safety of this container.

Variables List Container Disadvantages

• Having a shared variable list imposes an extra effort to group related containers and man-
age them in different groups. Practically this makes the object using this container less
independent.

• Erasing a variable from this container is a complex and difficult task. For this reason variables
list container cannot be used in problems with temporal variables.

Implementation

The first approach to implement this container is to put everything in the container and taking
a simple list of variables to work. This approach looks attractive by encapsulating everything in
the container and using an standard vector for the variable list. Unfortunately this design requires
recalculation of the offset for each access which imposes an unacceptable overhead. So let us change
the design to remove this unnecessary overhead.

Another approach is to divide the mechanism in two parts. One part for calculating the position
and another for handling the memory. In this design the VariablesList class keeps the list of
variables to be stored and also provides their local position by giving the necessary offset for each
one. The container is in charge of allocating memory, copying itself and clearing the data in a
correct way using a variables list. Figure 7.60 shows this structure.
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Figure 7.60: The VariablesList class provides the list of variables and their local positions for
the VariablesListDataValueContainer.

An important decision here is to let container add new variables to the shared list or not?. How
this feature affects our implementation? When each container is enable to add a new variable to
the list of stored variables, this list also changes for all other containers sharing it. This change
implies that for each access to a container, it must check if the list is changed or not and, in the
case of new variables, update itself. This procedure introduces an overhead in all accesses to the
container’s elements. Also this updating invalidates all references to its elements which complicates
more its use and increases the number of accesses to its data.

In Kratos the inserting was enabled to make this container compatible with previous ones.
In practice the problem was not only the check and updating overhead. The updating makes
debugging a difficult task. References are not reliable because there is no guarantee that some
other container has not changed the list. This can be even worse in case of parallel computation
because this change can happen in another thread just after a reference is taken. So finally the
inserting feature was removed from this container to reduce problems using it.

Without the inserting ability the implementation of this container is very easy. Constructing is
done by allocating the memory with data size provided by a given variables list. VariablesList
is in charge of calculating the required memory to store its variables. To improve the portability of
the code, the memory is divided into some blocks with a configurable specific size. VariablesList
determines the number of blocks needed to store each variable and calculates the total size by the
sum of the required blocks of memory. An additional step in the constructing process is assigning
an initial value to elements in order to avoid uninitialized value problem. This can be done by using
the AssignZero method of given variable which assigns its zero value to the allocated element in
the container. The following list shows a default constructor for this type of container:

/// Default constructor.

VariablesListDataValueContainer ()

: mpData (0), mpVariablesList (& msVariablesList)

{

int size = mpVariablesList ->DataSize ()* sizeof(BlockType );

// Allocating data using size provided by variables list.

mpData = (BlockType *) malloc(size);

// Initializing elements with zero value given by each

// variable.

VariablesList :: const_iterator i_variable;

for(i_variable = mpVariablesList ->begin() ;

i_variable != mpVariablesList ->end() ;
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i_variable ++)

{

std:: size_t offset = mpVariablesList ->Index(* i_variable );

i_variable ->AssignZero(mpData + offset );

}

}

The copying process for this container depends on its source. If the source is empty this just
implies the clearing of the container. If it is not empty but sharing the same variables list, there is
no need to perform the deallocation and allocation procedure of elements and the process consists
of just assigning the values using the variables in the variables list. Finally for a source with
different variables list it is necessary to clear the container and reallocating the memory for the
new elements. The following code shows the assignment operator:

/// Assignment operator.

VariablesListDataValueContainer&

operator =(const VariablesListDataValueContainer& rOther)

{

// if the source container is empty call clear.

if(rOther.mpVariablesList == 0)

Clear ();

// if other container uses the same variables list

// assigns the container element by element.

else if(mpVariablesList == rOther.mpVariablesList)

{

// Assigns other elements value using variable ’s assign

// method.

AssignElements(rOther );

}

else

{

// Destruct previous elements by calling their

// destructors

DestructElements ();

// Updates variables list

mpVariablesList = rOther.mpVariablesList;

// Reallocating the memory for new size

int size = mpVariablesList ->DataSize ()* sizeof(BlockType );

mpData = (BlockType *) realloc(mpData , size);

// Copying other elements value to new allocated memory

// using variable ’s copy method.

CopyElements(rOther );

}

return *this;

}

Like the previous container clearing the container consists of manually calling the destructor
of each variable and then freeing the memory. Using the appropriate member of the variable class
simplifies this procedure as seen before.
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7.4 Common Organizations of Data

Different ways of distributing the data are used in finite element programs. Each of them has its
advantages and disadvantages and can be useful for some cases while imposing difficulties to other
problems. In this section some of the existing data distributions are explained and their properties
are emphasized.

7.4.1 Classical Memory Block Approach

An old standard form of keeping data in memory is an indexed block memory container. Old
fortran codes usually use this approach due to the restriction of old fortran compilers. Also some
new codes are still using it because of its great performance.

In this approach each category of data is stored in a block of memory. The ordering of data
in this block of memory depends on the algorithm uses the data. Some algorithms take one Node
or Element and work over their data and then go to another one. In this case data of each Node
and Element must be stored sequentially to minimize the cache miss while operating over a Node
or an Element. Figure 7.61 shows this alignment of data.

Figure 7.61: Grouping all variables of one Node or Element in order to reduce the cache miss in
nodal and elemental operations.

Some other algorithms take one variable, for example the displacement, and then perform some
operations over this variable for all Nodes or Elements. For these algorithms an efficient alignment
is to store the values of each variable in different Nodes or Elements sequentially. In this way the
cache missing is minimal and the vectorization of the process for parallel computing can be done
more effectively. Figure 7.62 shows this alignment of data.

Figure 7.62: Storing values of each variable in different Nodes or Elements sequentially to optimize
the data structure for algorithms working with one variable over the domain.

An extension of this alignment is to group the variable components for algorithms working with
components separately as can be seen in figure 7.63.

This structure is simple to implement but requires the programmer to know the exact number of
variables per node or gauss points and also the size of the buffer which can be difficult to determine
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Figure 7.63: Separating the components of each variable for algorithms working with each compo-
nent separately.

in some cases. By having all these information a block of memory for each group of entities can be
allocated and all the data can be stored easily. Also a matrix indexing system can be established
to help accessing a certain variable of an entity like a Node or an Element.

Advantages

• Very easy to program and to use. Normally indexing is used to access inside the data (via a
global pointer) and there is no extra pointer to allocate and deallocate so it is easy to create
and use and also to clear.

• Very fast and efficient in using system cache. Having all data together makes it easy to keep
the system cache full in runtime. This advantage is more apparent when we have a loop over
a data for all entities.

• Operation over these data structures can be easily parallelized for shared memory platforms.

Disadvantages

• The structure is rigid for adding new variables. Also having different variables in different
Nodes or Elements makes a big unnecessary overhead. For example when we attempt to
introduce a new variable to some Nodes we have to add a new row (or column) to this block.
This means that we have to allocate memory equally for this variable in all Nodes, wether
they have that variable or not. This overhead in some codes is not big but for some other
codes can be very important.

• This container is homogeneous and hence is not suitable for cases when we need a container
to store different data types in it.

• Adding or removing Nodes or Elements causes big reallocation in this data structure, this
makes it less interesting for problems where number of Nodes and Elements is changing
continuously.

7.4.2 Variable Base Data Structure

This is an step forward from the previous data structure. In this approach the data related to
each nodal or elemental variable are stored in a separate array. For example the structure has four
arrays to store nodal coordinates, displacements, velocities and accelerations. So in this approach
a variable can be added, allocated or removed from memory anytime its needed.

In this approach any algorithm operating over some entities not only has to take an array of
entities as its arguments but also needs different arrays of data which are required for its operation.
This makes the input and output of method more readable in the code but puts more restriction
for some generic methods. However one can create a table of all variables and their names and
pass them as an additional argument to guarantee the extendibility of the methods.

Many fortran codes as well as several C and C++ codes use this format for storing their data.
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Advantages

This container has a many advantages which makes it popular in finite elements codes.

• Good performance in adding new variables or removing existing ones. In this approach cre-
ating new variables or removing some existing ones makes no changes in the global structure
and will not affect other parts of the data structure.

• Very fast and efficient in using system cache for algorithms which are oriented to work with
variables over the domain.

• Capable of adding new types. This structure can be used to store different types of data
without any problem. Also adding new types of variables makes no difficulties because each
variable’s data are stored in a different array which can have any type of data.

• Easy to program and to use. Creating this data structure is relatively easy with less require-
ments than for the memory block approach. It is also easy to use as accessing is only via one
indexing without any redirection or searching.

• Like the previous approach, the operation over these data structures can be easily parallelized
for shared memory platforms.

disadvantages

• Fair performance in removing some entities’ data from the container. For problems involving
Node inserting and removing or Element inserting and removing this type of container can
introduce a large overhead. To avoid this problem, one can assign a removed flag for entities
and update the data structure once, however this method also has its own complexities.

• Not very efficient for using in algorithms working entity by entity. In this structure different
data related to one entity can be stored in very far places from each other in memory. This
results in cache misses which reduces the performance of the algorithm.

7.4.3 Entity Base Data Structure

In an abstract point of view we can assume this container as the transpose structure of variable
base container. In this structure we put all the data related to one entity in the same group. For
example all data related to a certain Node are stored together. But unlike the memory block there
is no guarantee that the blocks of nodal data are sequentially stored in memory.

A rigid but very fast implementation is to make each variable of an entity a member of it. In
this way the locality of data is guaranteed, which increases the performance of the application.
The problem is the rigidness of this implementation. Each new variable must be added to the
entity in programming time. For example Node has to have all variables of different problems
that the application can solve. For this reason in multi-disciplinary codes this approach cannot be
used.Figure 7.64 shows this structure.

Another approach is to allocate a block of memory for the data related to each entity and giving
to the entity a reference to its data. A practical way is to define a generic container as the member
of each entity where it can store its data. This implementation is more flexible but less efficient
because separating the block of data from the entity produces a jump in memory for accessing it
and produces cache missing. Figure 7.65 shows this implementation.

Using this structure, algorithms operating over entities just has to take the array of the entities.
Because each entity knows how to access its data so algorithm can access its necessary data from
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Figure 7.64: In an entity base data structure all data related to one entity can be stored with
entity as its members.

Figure 7.65: Each entity has a reference to its container or block of data.

the entity and there is no need to give its input and output as additional arguments. This reduces
the number of arguments while maintaining the extendibility of the code.

Advantages

• Good performance in adding an entity or removing an existing one. The data related to each
entity are grouped together separately to other data, so any new group of data related to a
new entity can be added without affecting other parts of the data structure. Also removing
data related to one entity can be done independently without any problem.

• Separating data in this way makes parallelization of the application over distributed memory
architectures easier. In this way there indexing is not necessary to find the data of an entity.
This independency is handy for dividing data over machines.

• Good use of cache memory when used in algorithms which operate on entities. The algorithm
can access several data of one entity to do its operation and then goes to the next entity.
This structure has a good performance because keeps all the data in one block of memory
and significantly reduces the cache misses.
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Disadvantages

• Fair performance in adding new variables or removing existing ones. In this approach intro-
ducing new variables or removing some existing ones requires an entity by entity resizing of
data, which makes it less efficient than the previous approach.

• Less efficient in using system cache for algorithms which are oriented to work with variables
over the domain. Making a loop over a variable holds in entities produces jumps in memory
when going from one entity to another. This make it less efficient in using the cache memory
and therefore reduces the performance of the algorithm.

7.5 Organization of Data

In a finite element program several categories of data has to be stored. Nodal data, elemental
data with their time histories and process data are examples of these categories. Also in a multi-
disciplinary application, Nodes and Elements can be stored in different categories representing
domains or other model complexities. In this section the global distribution of data in Kratos will
be discussed.

7.5.1 Global Organization of the Data Structure

In previous section some common ways to organize data in finite element application were described
and their advantages and disadvantages were discussed. It was seen that both variable base and
entity base structure offer good features but for two very different type of algorithms. The first
structure is optimized for domain based algorithms and also when some variable has to be added
or removed from data structure. While the second structure is better for entity based algorithms
and is more flexible for adding or removing entities.

Kratos is designed to support an elemental-based formulation for multi-disciplinary finite ele-
ment applications and also started with mesh adaptivity as one of its goals. So the entity based
data structure becomes the best choice. First because elemental algorithms are usually entity
based and can be optimized better using this type of structure. The second reason is the good
performance and flexibility this structure offers, in order to add or remove Nodes and Elements.
Beside this entity base structure Kratos also offers different levels of containers to organize and
group geometrical and analysis data. These containers are helpful in grouping all the data neces-
sary to solve some problems and for simplifying the task of applying a proper algorithm to each
part of the model in multi-disciplinary applications.

Nodal, elemental and conditional data containers are the basic units of this entity base structure.
In Kratos each Node and Element has its own data. In this manner an Element can access easily
the nodal information just by having a reference to its Node and without any complications.
Properties also is a block of this structure as a shared data between Elements or Conditions.
Figure 7.66 shows these basic units and their relations to different entities.

Separate containers for Nodes, Properties, Elements and Conditions are the first level of
containers defined in Kratos. These containers are just for grouping one type of entity without any
additional data associated to them. These containers can be used not only to work over a group or
entities but also to modify their data while each entity has access to its own data. These containers
are useful when we want to select a set of entities and process them. For example giving a set of
Nodes to nodal data initialization procedure, sending a set of Elements to assembling functions,
or getting a set of Conditions from a contact procedure. Figure 7.67 shows these containers and
their accessible data.
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Figure 7.66: Nodal, elemental and conditional data containers with properties are the basic units
of Kratos data structure.

Figure 7.67: Separate containers for Nodes, Properties, Elements and Conditions can be used
to group each type of entities and then process themselves or their accessible data.

Mesh is the second level of abstraction in the data structure which hold Nodes, Elements and
Conditions and their Properties. In other word, Mesh is a complete pack of all type of entities
without any additional data associated with them. So a set of Elements and Conditions with
their Nodes and Properties can be grouped together as a Mesh and send to procedures like mesh
refinement, material optimization, mesh movement or any other procedure which works on entities
without needing additional data for their processes. Figure 7.68 shows Mesh with its components.

The next container is ModelPart which is a complete set of all entities and all categories of
data in the data structure. It holds Mesh with some additional data referred as ProcessInfo.
Any global parameter related to this part of the model or data related to processes like time step,
iteration number, current time, etc. can be stored in ProcessInfo. ModelPart also manages the
variables to be hold in Nodes, Elements and Conditions. For example all the Nodes belonging to
one ModelPart sharing the nodal variables list hold by it. From another point of view ModelPart
is the nearest container to the domain concept in the multi-disciplinary finite element method.
Figure 7.69 shows the ModelPart with its components.

In the first implementation, ModelPart was able to keep the history of data and also the Mesh
if it is changing. But in practice this capability became the bottleneck of Kratos performance
and was also considered to be unnecessary for our problems. So this feature was removed from
ModelPart. However each ModelPart still can hold more than one Mesh which comes from the
first implementation and can be used for representing the partitions in parallel computation.

Finally Model is a group of ModelPart’s and represents the finite element model to be analyzed.
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Figure 7.68: Mesh is a complete pack of all types of entities without any additional data associated
with them.

Figure 7.69: ModelPartholds Mesh with some additional data referred as ProcessInfo

It can be useful for some procedures that requires the whole data structure like saving and loading
procedures. As processes in Kratos use ModelPart as their work domain, this container is not
implemented yet but it is necessary to complete the data structure of Kratos.

Spatial containers are separated so can be used just when they are needed. This strategy also
allows Kratos to use external libraries implementing general spatial containers like Approximate
Nearest Neighbor (ANN) library [74].

7.5.2 Nodal Data

The first implementation of Kratos had a buffer of data value containers to hold all the nodal
variables. This nodal container was very flexible but with considerable memory overhead for
nonhistorical variables. For example for saving two time steps in history (a buffer with size 3)
there were two redundant copies of all nonhistorical variables in memory as shown in figure 7.70.
It also had fair access performance due to the searching process of the container. All these made
us to redesign the way data are stored in Nodes.

The new structure is divided into two different containers: nodal data and solution step nodal
data. Figure 7.71 shows this nodal data structure. A data value container is used for the nodal
data (no historical data) and a variables list container is used for the solution step nodal data
(historical data). In this way the memory overhead is eliminated because no redundant copy is
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Figure 7.70: Using buffer for all variables results memory overhead due to redundant copies of no
historical variables.

produced. Also accessing to historical variables is much faster than before due to the indirection
process of accessing in the variables list container instead of the searching process in the data value
container. This structure offers good performance and also is memory efficient but is slightly less
robust and somehow less flexible to use.

Figure 7.71: The first improvement is dividing nodal data structure into two different containers,
nodal data (no historical data) and solution step nodal data (historical data).

Using the variables list container for historical variables, requires the user to define its historical
variables in order to construct the nodal data container. For example a fluid application must define
velocity and pressure as its historical variables at program startup. The rest of variables can be
added any time during the program execution as a no historical variable, but not as a historical
one.

The first implementation of this structure was done by creating a buffer of the variables list
container to reduce the implementation task and test it in a real problem. After obtaining successful
results it was the time to optimize it more. The buffer of variables list containers produces several
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jumps in memory which reduces its cache efficiency. Also some mesh generators like TetGen [93, 7]
require an array of nodal data as the argument to make the interpolation. For these reason in the
current structure the buffer is moved inside the solution steps container. In this way the cache
misses is reduced and the data array can be given to other application without any conversion.
Figure 7.72 shows this structure.

Figure 7.72: The current structure allocates all buffer data in a block of memory to reduce the
cache misses produced by memory jumps and also to provide a compatible data with other libraries.

In the first structure all the data were stored in the same container. So there was one place
to store them and also one place to recover them. Dividing the nodal data in two categories also
changes the access interface to data. Now the user has to know were to put each variable, and
more important, where to retrieve them afterward. A sophisticate interface is needed in order to
provide a clear and complete control over these two categories of data. In general, three type of
accessing methods are necessary:

• Methods for accessing only historical data. These methods guarantee to give the value of
the variable if and only if it is defined as a historical variable and produce error if it is not
defined. These methods are very fast because they do not need to search in the data value
container and also give error for logical errors in the code.

• Methods for accessing only no historical data. Another set of methods are implemented to
give access only to no historical data. Due to the flexibility of the data value container any
variable can be added at any time as a nodal variable using these methods.

• Hybrid accessing also can be done using another set of methods. These methods try to find
the variable in the solution steps container and if it does not exist they provide access to the
nodal data container. These methods are helpful for accessing to some input variables that
may come from input files as nodal data, or variables which are calculated in another domain
and stored as a solution step variable. For example temperature for structural problem can
be a parameter coming from the input data or calculated by the thermal elements and stored
in Nodes. This method guarantees the access to the proper temperature stored at each Node.

The following methods are implemented to provide above access ways to nodal data:

GetSolutionStepValue Takes a variable or a variable’s component and the solution step index
and returns its value in solution step data if exists, otherwise sends an error. Solution step
index starts from 0 for the current step and then increases for past steps. For example
1 is for the previous step, 2 is for one step before the previous one, etc. An overloaded
version accept only the variable or a variable’s component and returns its current value. In
all overloaded versions accessing to a variable which is not declared in the solution steps
variables list produces an exception.
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GetValue There are different overloaded versions of this method. One with the requested variable
as its argument, gives an access to nodal data without looking to the solution steps data.
Giving a solution steps index as an additional argument makes it look into nodal data and if
it does not exist takes it from the solution steps container. It will find any existing value in
the nodal data structure for given variable but searching in data makes it slow in accessing
to the solution steps data.

7.5.3 Elemental Data

Another basic unit of Kratos data structure is the elemental data. Elemental data is divided into
three different categories:

properties All parameters that can be shared between Elements. Usually material parameters
are common for a set of Elements, so this category of data is referred as properties. But
in general it can be any common parameter for a group of Elements. Sharing these data
as properties reduces the memory used by the application and also helps updating them if
necessary.

data All variables related to an Element and without history keeping. Analysis parameters and
some inputs are elemental but there is no need to keep their history. These variables can be
added any time during the analysis.

historical data All data stored with historical information which may be needed to be retrieved.
Historical data in integration points are fall in this category. These data must be stored with
a specific size buffer.

As mentioned above Properties are shared between Elements. For this reason the Element
keeps a pointer to its Properties. This connection lets several Elements to use the same Properties.

A DataValueContainer holds no historical data in the Element. Using a DataValueContainer
provides flexibility and robustness which is useful in transferring elemental data from one domain
to another. It is important that these no historical data are not the most used during the analysis
and flexibility here is more critical than performance. On the contrary, historical data are more
used during the analysis and efficiency in accessing to them is more critical than their flexibility.
These data are specified by formulation and other processes do not change them. For this reasons
the Element do not provide any container for them and these containers can be implemented by
element developers. In this way, the customized container will be more efficient and the overhead
of any generic container will be eliminated.

7.5.4 Conditional Data

Conditional data is very similar to elemental data and is also divided into three different categories:

properties As for Elements, all parameters that can be shared between Conditions is referred
as properties. Again sharing these data as properties reduces the memory used by the
application and also helps updating them if it is necessary.

data All variables related to the Condition and without history keeping. Analysis parameters
and some inputs are different for each Condition but there is no need to keep their history.
This variables can be added any time during the analysis.
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historical data All data stored with set of its history to be retrieved. Historical data in integra-
tion points are in this category. These data must be stored with a specific size buffer of their
previous values to be used later.

Condition like Element keeps a pointer to its Properties which is shared by other Conditions
or Elements.

The Condition has a DataValueContainer as its member to hold all data related to Condition
without keeping its history. Any Condition derived from this class can use this container to hold
its data without any additional implementation. This base class also provides an standard interface
to these data which make it helpful for transferring some data from one Condition to another, for
example in the interaction between two domains.

For Conditions, historical data is considered to be an internal data because is very related to
its formulation and usually is used only by formulation inside and not from outside. So to minimize
unnecessary overhead and also to increase the performance, no general container is provided for
historical data and each Condition has to implement one for itself if necessary.

7.5.5 Properties

As mentioned before Properties is a shared data container between Elements or Conditions. In
finite element problems there are several parameters which are the same for a set of Elements and
Conditions. Thermal conductivity, elasticity of the material and viscosity of the fluid are examples
of these parameters. Properties holds these data and is shared by Elements or Conditions. This
eliminates memory overhead due to redundant copies of these data for each Element and Condition
as can be seen in figure 7.73.

Figure 7.73: Different Elements or Conditions use Properties as their share data container. This
avoids redundant copies of data in memory.

It can be seen that changing any data in Properties will affect all Elements or Conditions
sharing it. This feature can also be useful in situations when a common parameter is changing
during the analysis. The parameter can be changed only in Properties and each Element or
Condition will get the new value by accessing to Properties. In this way there is no need to
update all elemental and conditional value for this data each time its changing.



172 CHAPTER 7. DATA STRUCTURE

Properties also can be used to access nodal data if it is necessary. It is important to mention
that accessing the nodal data via Properties is not the same as accessing it via Node. When
user asks Properties for a variable data in a Node, the process starts with finding the variable
in the Properties data container and if it does not exist then get it from Node. This means
that the priority of data is with the one stored in Properties and then in Node. For example
considering that TEMPERATURE is stored in Properties as a material temperature with value 24.4
and also there is a TEMPERATURE nodal data stored in Node with value 79.3. Now getting the value
of TEMPERATURE variable from Properties gives 24.4 while getting it from Node gives 79.3

7.5.6 Entities Containers

Let us go one level higher in the Kratos data structure. The next level consists of four entities
containers:

• Nodes Container

• Properties Container

• Elements Container

• Conditions Container

In a finite element program, there are several procedures which take a set of entities and operate
over them or their data. These containers are created to help users in grouping a set of entities and
work with them. For example to put all Nodes in the boundary in a Nodes container and change
some of their data in each step. As mentioned before, each entity has access to its data, so having
a set of entities in a container also gives access to their data which make these containers more
useful in practice.

Another use of these containers is finding an entity by its index. Indexing is an standard way of
identifying entities in finite element programs. For example Nodes have their indices to be identified
by them. The index of each Node is given by the user as input and can be consecutive or not. A
user will use these indices later to define the elemental connectivity. In time of creating Element,
it is necessary to find the Node with a given index and give its pointer to the Element. Supporting
the indexing system and providing a searching mechanism is very useful for implementing such a
processes in a simple and efficient manner.

According to all uses mentioned before, a suitable container for holding entities must provide
the following features:

Sharing Entities There are some situations when an entity may belong to more than one set
of entities. For example a boundary Node belongs to the list of all Nodes and also to the
list of boundary Nodes. So the Nodes container has to share some its data with other Nodes
containers. In general, sharing entities is an important feature of these containers.

Fast Iterating As mentioned before, one important use of these containers is to collect some
entities and pass them to some procedures. Usually these procedures have to make a loop
over all the elements of a given container and use each element or its data in some algorithms.
So these containers must provide a fast iterating mechanism in order to reduce the time of
element by element iteration.

Search by Index Finding an entity by an index is a usual task in finite element programs. So
entities containers must provide an efficient searching mechanism to reduce the time of these
tasks.
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Method Name Operation
NumberOfNodes Returns the number of Nodes in the Mesh.
AddNode Add given Node to its Nodes container.
pGetNode Returns a pointer to the Node with the given identifier.
GetNode Returns a reference to the Node with the given identifier.
RemoveNode Removes the Node with given Id from the Mesh.
RemoveNode Removes the given Node from the Mesh.
NodesBegin Returns a Node iterator pointing to the beginning of the Nodes.
NodesEnd Returns a Node iterator pointing to the end of the Nodes container.
Nodes Returns the Nodes container.
pNodes Returns a pointer to the Nodes container.
SetNodes Sets the given container as is Nodes container.
NodesArray Returns the internal array of Nodes.

Table 7.1: Interface of Mesh for accessing Nodes

Sharing entities is the first feature to be provided by containers. Holding pointers to entities
and not entities themselves can solve this problem. Different lists can point to the same entity
without problem. Using an smart pointer [37] instead of normal pointer increases the robustness
of the code. In this way entities which are not belong to any list anymore will be deallocated
from memory automatically. So a container of smart pointers to entities is the best choice for this
purpose.

As mentioned above arrays are very efficient in time of iterating. So using an array to hold
pointers to entities can increase the iteration speed. In contrary, trees are very slow in time of
iterating but efficient for searching by index hence using them can increase the searching perfor-
mance of the code. A good solution to this conflict can be an ordered array. It is fast in iteration
like an array and also fast in searching like a tree. Its only draw back is that its less robust and
constructing it can take considerable time depending on the data. For example constructing an
array of Nodes with Nodes given by inverse order can take a very long time. Fortunately most
of the time the entities are given in the correct order and this eliminates the constructing time
overhead for these containers. Also, for the worst cases a buffer of unordered data can significantly
reduce the construction overhead. So an ordered array can fit properly into our problem.

PointerVectorSet is a template implementation of an ordered array of pointers to entities.
This template is used to create different containers to hold different type of entities.

7.5.7 Mesh

The next level in Kratos’ data structure is Mesh. It contains all entities containers mentioned
before. This structure makes it a good argument for procedures that work with different entities
and their data. For example an optimizer procedure can take a Mesh as its argument and change
geometries, nodal data or properties. Mesh is a container of containers with a large interface that
helps users to access each container separately.

First of all Mesh provides a separate interface for each type of entity it stores. Tables 7.1, 7.2,
7.3 and 7.4 show its interfaces for handling different components.

Mesh holds a pointer to its container. In this way several Meshes can share for example a Nodes
or an Elements container. This helps in updating Meshes of different fields in multidisciplinary
applications but over the same domain. Figure 7.74 shows this ability of sharing components
between Meshes.
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Method Name Operation
NumberOfProperties Returns the number of properties in the Mesh.
AddProperties Add given properties to its properties container.
pGetProperties Returns a pointer to the properties with the given identifier.
GetProperties Returns a reference to the properties with the given identifier.
RemoveProperties Removes the properties with given Id from the Mesh.
RemoveProperties Removes the given Properties from the Mesh.
PropertiesBegin Returns the begin iterator of the properties container.
PropertiesEnd Returns the end iterator of the properties container.
Properties Returns the properties container.
pProperties Returns a pointer to the properties container.
SetProperties Sets the given container as is properties container.
PropertiesArray Returns the internal array of properties.

Table 7.2: Interface of Mesh for accessing properties

Method Name Operation
NumberOfElements Returns the number of Elements in the Mesh.
AddElement Add given Element to its Elements container.
pGetElement Returns a pointer to the Element with the given identifier.
GetElement Returns a reference to the Element with the given identifier.
RemoveElement Removes the Element with given Id from the Mesh.
RemoveElement Removes the given Element from the Mesh.
ElementsBegin Returns the begin iterator of the Elements container.
ElementsEnd Returns the end iterator of the Elements container.
Elements Returns the Elements container.
pElements Returns a pointer to the Elements container.
SetElements Sets the given container as is Elements container.
ElementsArray Returns the internal array of Elements.

Table 7.3: Interface of Mesh for accessing Elements

Method Name Operation
NumberOfConditions Returns the number of Conditions in the Mesh.
AddCondition Add given Condition to its Conditions container.
pGetCondition Returns a pointer to the Condition with the given identifier.
GetCondition Returns a reference to the Condition with the given identifier.
RemoveCondition Removes the Condition with given Id from the Mesh.
RemoveCondition Removes the given Condition from the Mesh.
ConditionsBegin Returns the begin iterator of the Conditions container.
ConditionsEnd Returns the end iterator of the Conditions container.
Conditions Returns the Conditions container.
pConditions Returns a pointer to the Conditions container.
SetConditions Sets the given container as is Conditions container.
ConditionsArray Returns the internal array of Conditions.

Table 7.4: Interface of Mesh for accessing Conditions



7.5. ORGANIZATION OF DATA 175

Figure 7.74: Different Meshes can share their entities’ containers.

7.5.8 Model Part

ModelPart is created with two different tasks in mind. The first task is encapsulating all entities
and data categories of Kratos which makes it useful as an argument of global procedures in Kratos.
The second task is managing the variables lists of its components.

ModelPart can hold any category of data and all type of entities in Kratos. It can hold
several Meshes. Usually just one Mesh is assigned to it and used in the computations, however this
ability can effectively used for partitioning the model part and send it for example to the parallel
processes. Beside holding different Meshes, it also stores the solution information encapsulated in
the ProcessInfo object. Figure 7.75 shows the structure of ModelPart.

ProcessInfo holds not only the current value of different solution parameters but also stores
their history. It can be used to keep variables like time, solution step, non linear step, or any other
variable defined in Kratos. Its variable base interface provides a clear and flexible access to these
data. ProcessInfo uses a linked list mechanism to hold its history as shown in figure 7.76.

ModelPart uses pointers to its Meshes. In this way it can share them with any other model
parts if necessary. A typical use of this feature is defining two different domains over the same

Figure 7.75: ModelPart’s structure.
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Figure 7.76: ProcessInfo’s linked list mechanism for holding history of solution.

Meshes. Figure 7.77 shows this sharing mechanism.

Figure 7.77: ModelPart can share its Meshes with other model parts.

ModelPart manages the variables lists of its components. In section 7.3.3 the mechanism of
the variables list container has been described, where we also mentioned that a shared variables
list specifies the data which can be stored in them. ModelPart holds this variables list for all its
entities. In other words, all entities belonging to a model part sharing the same list of variables.
For example all Nodes in ModelPart can store the same set of variables in their solution steps
container. It is important to mention that this variables list is assigned to the entities which
belong to the model part and is not changed when that model part share them with other model
parts. Figure 7.78 shows this scheme.

Figure 7.78: ModelPart manages the variables list for its entities.

7.5.9 Model

Model is the representation of whole physical model to be analyzed via the FEM. The main purpose
of defining Model is to complete the levels of abstraction in the data structure and a place to gather
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all data and also hold global information. This definition makes it useful for performing global
operations like save and loading. It holds references to model parts and provides some global
information like the total number of entities and so on. It can be seen that a ModelPart created
over given model can do most of these operations by itself. This was the reason that Model itself
has not been used yet in Kratos. Its practical use would be at the time of implementing the
serialization process or other global operations.
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Chapter 8
Finite Element Implementation

8.1 Elements

Elements and Conditions are the main extension points of Kratos. New formulations can be
introduced into Kratos by implementing a new Element and its corresponding Conditions. This
makes the Element an special object in our design.

8.1.1 Element’s Requirements

An Element is used to introduce a new formulation to Kratos. To guarantee the extendibility of
Kratos, adding an Element must be an easy task and without large modifications in the code.
Encapsulating all data and procedures necessary to calculate local matrices and results in one
object and using a clear interface is required to achieve this objective.

A user may use different Elements for different parts of the model and then assemble them
separately or together. For example in modeling a multi floor structure, the user would use beam
elements for frames and shell elements for floors. So these Elements must be compatible to be
solved together as a complex system. For this reason the ability to use any Element in any part,
or even mix them, is another requirement to be considered in the Kratos design.

Element has to have a very flexible interface due to the wide variety of formulations and different
requirement they have. For example, some formulations need to calculate the stiffness matrix and
also the righthand side vector in each solution step. Some others just need to calculate the stiffness
matrix once and right hand side for each step. Sometimes having the damping matrix separately is
needed to handle different time dependent strategies. These formulations are not only different in
their local matrices, but also they need different data for their calculations. For example some need
time and time step, some other the number of nonlinear iterations, or other parameters depending
on the strategy chosen for analysis.

Easy to implement is another requirement for an Element. Finite element developers are usually
less familiar with advanced programming language features and they would like to focus more on
their finite element developing tasks. For this reason the main intention in designing Kratos is
to isolate this parts from working with memory or an excessive use of templates. The idea is to
provide a clear and simple structure for an Element to be implemented by finite element developers
wishing to introduce a new formulation to Kratos.

179
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Performance is a very important point to be considered at the time of designing an Element. In
a finite element code Elements methods are called in nearly most inner loops of code. This means
that any small fault in Element’s performance can cause great overhead in the program execution
time. It is obvious that performance of a new Element is highly depended on its implementations,
but sometimes a weak design can lead to serious bottlenecks in the performance of all Elements.
We will see later how an elegant but not optimized interface can highly decrease the performance
of Elements.

Memory efficiency is also important for Elements. Modeling a real problem with the FEM
usually needs a large number of Elements to be created. For this reason any unnecessary overhead
in memory used by each Element can cause a significant overhead in the whole memory used
by program. This overhead, by the way, can restrict the maximum size of the model that can
be analyzed in a machine. So efficiency in memory is considered to be very important and less
important features must be reduced to keep Element as small as possible.

8.1.2 Designing Element

After reviewing the Element’s requirements, the next step is to design it. In Kratos an Element
is an object which holds its data and calculates elemental matrices and vectors to be assembled
and also can be used to calculate local results after the analysis. For example a thermal element
calculates the local stiffness matrix and the mass matrix (if necessary) and give it to Kratos for
assembly process. Also it can be used to calculate thermal flow after solving the problem. This
definition provides a good isolation for Element related to rest of the code which is helpful for the
proper encapsulation of Element.

Elements must be designed to be implemented independently and added easily to Kratos in
order to guarantee the extendibility of Kratos. Also they must be compatible with each other in
order to let users interchange them or even mix them together in a complex model. According to
these two requirements the strategy pattern described in section 3.4.1 is what we are looking for.
Applying this pattern to our problem results in the Elements’ structure shown in Figure 8.1.

Figure 8.1: Elements’ structure using strategy pattern.

Using this pattern each Element encapsulates one algorithm separately and also make them
interchangeable as we want. User keeps a pointer to Element class which may point to any member
of Element’s family and use the interface of Element to call different procedures.

The next concept in Elements design is its relation with the geometry. As described in section
5.3 a geometry holds a set points or Nodes and provides a set of common operations to ease the
implementation of Elements and Conditions. Each Element has to work with geometry and from
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many points of view its an extended geometry with a finite element formulation as it is extension
part. This relation can be translated in an object oriented philosophy as a parent and derived class
relationship as can be seen in figure 8.2.

Figure 8.2: Deriving Element from geometry requires several Elements with same formulation but
different geometries to be created.

This structure has the advantage that Elements access to geometry data is fast and increases
the performance of elemental procedures. Beside this advantage there are two main disadvantages
that make this structure unsuitable for our purpose. The first disadvantage is that applying a
formulation to different geometries, requires several Elements to be implemented. The second
drawback is that Elements with different formulation cannot share a geometry in memory.

In this structure each Element can be implemented to add a formulation to the geometry which
is derived from. So different Elements must be implemented to extend a formulation to different
geometries. For example a triangular plane stress element is derived from a triangle and has a plane
stress formulation. Applying the same formulation to a quadrilateral requires another Element,
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with nearly the same structure but derived from a quadrilateral to be written. This results in a
significant overhead in the implementation and also in maintenance of Elements.

In a multi-disciplinary problem there are some situations when two interacting domains use the
same mesh. In order to implement this possibility, different Elements should be able to share the
same geometry. In this way the data transfer is minimized and the interpolation cost is eliminated.
A simple example is a thermal and structural interaction. Mesh is used to create thermal elements
and calculate the temperature over the domain. Then the same mesh is used to create structural
elements and calculate the stresses and deformations in domain using the previously calculated
temperature for temperature dependent materials. Without sharing geometries, a copy of all
geometries must be created so that each set of geometries can be assigned to one domain. This
increases the memory used by the application that can be avoided easily by sharing the geometries
in mesh.

The alternative design is to use a bridge pattern. Introducing this pattern to our Element’s
structure design results in the structure shown in Figure 8.3.

Figure 8.3: Element’s structure using the bridge pattern.

This pattern allows each Element to combine its formulation with any geometry. In this way
less implementation is needed. Also having a pointer to geometry allows an Element to share its
geometry with other ones. The only drawback of this structure is the time overhead comes from
pointer redirection in memory. Having a pointer to geometry beside deriving from it creates a small
overhead in accessing geometries’ data respect to a direct derived Element. Though the efficiency
in Element is crucial the complexity of the first approach imposes accepting the small different
in performance and therefore we have implemented this second approach. A better solution is to
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make Element a template of its geometry. Using templates provides good performance and also
enough flexibility but it was considered to be too complex to be used by finite element users. As
mentioned earlier an Element has to be easy to program with the less possible advanced feature
of programming language. So finally the current structure with bridge pattern was selected.

There are some designs in which different Elements can be composed to create a more complex
Element [70]. This approach can be simulated here using a Composite pattern. However this
structure is not implemented yet in Kratos.

After designing the global structure now it is time to define interfaces. Here the finite element
methodology helps in designing a generic interface. According to the finite element procedure,
the strategy asks Element to provide its local matrices and vectors, its connectivity in form of
equation id, and after solving also calls Element to calculate the elemental results. So Element
has to provide three set of methods:

Calculate Local System The first set of methods are required to calculate local matrices and
vectors.

Assembling Information These methods give information about the position of each row and
column of the local system in the global system. This information comes from dof and
Element provide it by giving its dofs or just their equation id.

Calculate It is used to calculate any variable related to an Element which usually are the results
depending on gradients within the element.

An important issue here is the efficiency of these methods. An attractive form is to make these
methods take their necessary parameters as their arguments and return their results as their return
values:

Matrix CalculateLeftHandSide(ProcessInfo& rCurrentProcessInfo)

{

// calculating stiffness matrix

return stiffness_matrix;

}

// Assembling

for(int i = 0 ; i < number_of_elements ; i++)

Assemble(elements[i]. CalculateLeftHandSide(process_info ));

It can be seen that this design is very natural and easy to use, but in practice produces a
significant overhead in performance. Calling each method consists in creating a new matrix or
vector, fill it an finally pass it by value as result. Creating a dynamic matrix or vector is a very
slow process and passing them by value needs temporaries to be created which is time consuming.
All these steps make this design very slow and therefore unacceptable. A better idea is passing the
result matrix or vector by reference to these methods as additional arguments. In this way there
are no temporaries for passing by value and there is no need to create a variable for the result
inside each calculation method. A performance issue for this new design is the resizing of result
matrices and vectors. In practice resizing dynamic matrices and vectors results to be very slow. A
simple control of a given matrix or vector size before resize it can reduce the resizing overhead for
cases that the given size is correct.

A set of methods are necessary for calculating local system matrices and vectors. Different
procedures in finite element methods require different information in different analysis points from
Element. For example a simple linear strategy requires the local matrices and vectors once to
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assemble the global system. So a method which calculates local system components is enough
to handle this strategy. But for a non-linear analysis, the strategy needs to get also the right
hand side to calculate convergence. For these cases a method to calculate this right hand side
component is necessary. Also there are some cases that the right hand side is not changing during
the analysis and strategy only needs to update its left hand side component which requires a
method for calculating only left hand side components.

Implementing only the first method to calculate local system components results in a calculation
overhead for non-linear cases. For example calculating the convergence of the solution with a
residual criteria, only needs the right hand side components to be updated and calculating all
components can apply an unacceptable overhead to this procedure. Keeping only the interface for
the left and right hand side components also produces calculation overhead. Usually for calculating
each part of, local system the jacobian of the elements must be calculated which is a time consuming
operation. Calculating right and left hand side components separately implies that jacobian must
be calculated twice. So an optimum design is to keep both interfaces in parallel.

The drawback of this decision is the need for implementing duplicated methods. This problem
can be solved by a more carefully implementation. One can create two private auxiliary methods:
LeftHandSide and RightHandSide to calculate left hand side and right hand side matrices and
vectors with the calculated jacobian as their input. Then CalculateLocalSystem can calculate
the jacobian once and call these methods with this jacobian to calculate local system components.
Also CalculateLeftHandSide and CalculateRightHandSide would calculate the jacobian and call
their related method to calculate the local contribution. Here is an example of this implementation:

class MyElement

{

public:

virtual void

CalculateLocalSystem(MatrixType& rLeftHandSideMatrix ,

VectorType& rRightHandSideVector ,

ProcessInfo& rCurrentProcessInfo)

{

Matrix jacobian;

Jacobian(jacobian );

LeftHandSide(rLeftHandSideMatrix , jacobian ,

rCurrentProcessInfo );

RightHandSide(rRightHandSideVector , jacobian ,

rCurrentProcessInfo );

}

virtual void

CalculateLeftHandSide(MatrixType& rLeftHandSideMatrix ,

ProcessInfo& rCurrentProcessInfo)

{

Matrix jacobian;

Jacobian(jacobian );

LeftHandSide(rLeftHandSideMatrix , jacobian ,

rCurrentProcessInfo );

}

virtual void
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CalculateRightHandSide(VectorType& rRightHandSideVector ,

ProcessInfo& rCurrentProcessInfo)

{

Matrix jacobian;

Jacobian(jacobian );

RightHandSide(rRightHandSideVector , jacobian ,

rCurrentProcessInfo );

}

private:

void LeftHandSide(MatrixType& rLeftHandSideMatrix ,

Matrix& rJacobian ,

ProcessInfo& rCurrentProcessInfo)

{

// Calculating left hand side matrix using given jacobian.

}

void RightHandSide(VectorType& rRightHandSideVector ,

Matrix& rJacobian ,

ProcessInfo& rCurrentProcessInfo)

{

// Calculating right hand side vector using given jacobian.

}

};

Also it is important to mention that Elements not necessarily have to implement all these
interfaces and they can be compatible with just one way and not providing the other. By the way,
calling two separate methods in CalculateLocalSystem method of Element class can keep more
compatible the Elements which are not providing the CalculateLocalSystem method and just
provide CalculateLeftHandSide and CalculateRightHandSide methods.

Another issue is optimizing for symmetric or diagonal matrices. In Kratos local system matrices
are defined as dense matrices in order to be more general. Elements with symmetric formulation
also have to fill this dense matrix. The optimization can be done at the strategy level by assembling
only half of this matrix in a symmetric global matrix to reduce memory usage and also assembling
time. However the redundant time of filling all components of the dense matrix is unavoidable
in order to keep Elements compatible with nonsymmetric strategies. Diagonal matrices can be
treated as symmetric ones by keeping the optimization level in strategy and not in Element.

This interface is designed to be generic but its flexibility to support new algorithms also depends
on its ability in passing different parameters necessary for different formulations. For this reason
a variable base container is used to enable users pass any parameter to an Element using the
VBI described before. ProcessInfo can be used to pass any parameter which is necessary for
calculating local systems in an Element. The usual parameters are time, time increment, time
step, non-linear iteration number, some global norms which are calculated over the domain, etc.
Using ProcessInfo guarantees the flexibility which is necessary for the Element to be an extension
point of Kratos.

According to the previous comments the following methods are designed:

CalculateLocalSystem This method calculates all local system components. It takes a left hand
side matrix and a right hand side vector to put its result in them. ProcessInfo is passed to
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provide the analysis parameters.

CalculateLeftHandSide This method calculates only the left hand side matrix. It takes a ma-
trix to put its result in it. ProcessInfo is passed to provide the analysis parameters.
ProcessInfo which provides analysis parameters.

CalculateRightHandSide Calculates right hand side component of local system. It takes a vector
to put its result in it. ProcessInfo is passed to provide the analysis parameters.

Element also has to provide assembling information for Strategy. It has to provide the corre-
sponding position of each local system row and column in the global equation system. Strategy
then uses this information to properly assemble the local matrices and vectors in global equation
system. This information comes from the Dof associated with each row or column of local system.
Strategy by itself cannot find these equation because each Element may have different dofs and
also may arrange them in different order. For example an structural element can define a local
system with all displacement’s components for the first Node then second Node and so on. Another
structural element can arrange its local system by placing first the displacement’s x component of
all Nodes, then the y components and their z components. So an Element’s task is to give its local
system arrangement to Strategy.

Element can give an array of Dofs with the same order that local system is constructed, or
get their associated equation ids and give them to Strategy as an array of indices. Strategy
uses these indices to assemble a given local system into the global equation system. This part of
Element’s interface consists of two methods:

EquationIdVector This method is used to directly give the global equation id related to each row
or column of local system matrices and vectors. For example giving a vector i = {24, 5, 9}
means that the first element of the right hand side vector must be added to the 24th row of
global system’s right hand side or component k23 of the local stiffness matrix must be added
to the component K59 of the global left hand side matrix. A ProcessInfo is passed to this
method to provide any addition parameter needs for this procedure.

GetDofList This method gives Element’s Dofs in the same order as local system is defined.
Strategy can use this list to extract the equation id related to each local position and
then use them to assemble the Element’s local system components correctly. Like the previ-
ous method, it takes a ProcessInfo object as its argument which can be used to pass any
additional information needed for this procedure.

It can be seen that both methods take ProcessInfo as their argument. This argument seems
to be redundant but in practice there are situations that is really necessary. For example in solving
a fluid using a fractional steps method [26], Element must know which is the current fractional
step for providing the corresponding list of dofs or equation ids. Passing a ProcessInfo to these
methods provides these additional parameters and guarantees the generality of the design.

Here is an example of EquationIdVector implemented for a generic structural element which
can be used with different geometries in 2D and 3D spaces:

virtual void EquationIdVector(EquationIdVectorType& rResult ,

ProcessInfo& rCurrentProcessInfo)

{

unsigned int number_of_nodes = GetGeometry (). size ();

unsigned int dimension = GetGeometry (). WorkingSpaceDimension ();
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unsigned int number_of_dofs = number_of_nodes * dimension;

if(rResult.size ()!= number_of_dofs)

rResult.resize(number_of_dofs );

for (int i = 0 ; i < number_of_nodes ; i++)

{

unsigned int index = i * dimension;

rResult[index] =

GetGeometry ()[i]. GetDof(DISPLACEMENT_X ). EquationId ();

rResult[index + 1] =

GetGeometry ()[i]. GetDof(DISPLACEMENT_Y ). EquationId ();

if(dim == 3)

rResult[index + 2] =

GetGeometry ()[i]. GetDof(DISPLACEMENT_Z ). EquationId ();

}

}

The third category of methods are devoted to calculating elemental variable which are used
mainly for calculating post-analysis results. A simple example is calculating stresses in structural
elements after obtaining the displacements in the domain. Users can ask Element to calculate
additional results using its internal information and solving results. A flexible interface here is
very important and can increase the generality of the code. A VBI can be used to provide a
clear but flexible interface for these methods. Element developers can define a set of methods to
calculate variables related to its Element and users can use them for specifying the variable they
wants to calculate. Similarly to methods for calculating the local system, the result is passed as
an additional argument in order to increase the performance and eliminate the redundant time
necessary to create temporaries. Two sets of methods are defined for this task:

Calculate Can be used to calculate elemental variables. These methods are overloaded to sup-
port different types of variables to be calculated. Element developer can override them to
implement the procedure necessary to calculate each elemental variable. They take the vari-
able which a user wants to be calculated as their argument. If the variable is supported by
Element it will give the result and it will do nothing if the variable is not related to this
Element. The result also is passed as an additional argument to increase the performance
and eliminate the overhead produced by creating temporary objects. Passing ProcessInfo
to these methods provides a generic way to pass additional calculation parameters.

CalculateOnIntegrationPoints This set of methods calculate variables not for the whole Element
but specifically at each integration point. The interface is the same as for previous methods.
The variable to be calculated is given as an argument and the results as another argument.
ProcessInfo provides any additional information necessary for calculation procedure.

Providing an standard way to access neighbors of Elements can be very useful for some al-
gorithms. The problem is that for the rest of algorithms keeping the list of neighbors results in
large overhead in total memory used. Keeping in mind the importance of memory efficiency in
Elements these features are considered to be optional. So the first solution was to have arrays for
neighbor Nodes and neighbor Elements which are empty and fill them when they are necessary.
This implementation was good but still the empty containers was producing memory overhead for
simple Elements. In the current implementation these containers are omitted and neighbor Nodes
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and Elements are stored inside the elemental data container. In this way the overhead of empty
containers are eliminated and the existing container is reused to hold this information. This solu-
tion can be used for any other feature that must be provided optionally but without any overhead
for other Elements.

8.2 Conditions

Condition is defined to represent the conditions applied to boundaries or to the domain itself.
In many codes conditions or specially boundary conditions are represented by an element with a
formulation modified for boundary conditions. In Kratos also Conditions are designed very similar
to Elements. They interact with Strategy in the same way as Elements. Strategy ask their local
system components and also information for assembling process. The reason of using a different
type and not Element itself is to clarify the different purpose of these two objects. In a usual finite
element model, there are much more Elements than Conditions. For this reason some features
that are considered to be too expensive in performance or memory consuming for Elements can be
used for Conditions. Making Element and Condition two independent types allows additional
features to be added to Condition without affecting Element.

8.2.1 Condition’s Requirements

Condition like an Element is used to introduce new formulations into Kratos. So adding a new
Condition must be an easy task and without great modification in code. Encapsulating all data
and procedures necessary to calculate local matrices and results in one object and using a clear
interface is required to achieve this objective.

A complex model usually has different type of Conditions in its boundary or domain. This
requires Conditions to be compatible with each other in order to be assembled and solved together
in a complex system. Another design point is to let users change Conditions or mix them in the
model without problem.

Like Element, Condition has to have a very flexible interface due to the wide variety of al-
gorithms and their different requirement. For example, most Conditions are applied to the right
hand side component of the system but in some cases, like thermal radiation, they affect also the
left hand side matrix of equation system. For this reason creating the interface only for right
hand side component results in sever restriction in adding some Conditions. Conditions are not
only different in local components, but also they need different data for they calculations. Hence
a generic interface is necessary to guarantee the flexibility required for implementing different
Conditions.

Condition must be easy to implement. Finite element developers are usually less familiar with
advance programming language features and they like to focus more on their finite element devel-
oping task. For this reason excessive use of templates or other difficult concepts of programming
language cannot be used for the Condition’s implementation. The idea is to provide a clear and
simple structure for a Condition to be filled by finite element developers easily.

For Condition performance is important but not so crucial as for Element. Its performance is
important because it is usually called in very inner loops of global procedure. So any small fault in
Condition’s performance can cause large overhead in the program execution time. However its less
important than the performance of Element because there are less Conditions in the model and
the global overhead is less. So in designing Condition the intention is to avoid features producing
bottleneck in the performance.
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Memory efficiency is another design point to keep in mind. As mentioned before Elements
have to avoid any redundant memory usage due to their large quantity in a model. Number of
Conditions in a model usually is far less than number of Elements. This lets Conditions to
provide features that are considered too expensive for Elements. However abusing memory by
Condition can also produce a large overhead in memory usage and has to be avoided.

8.2.2 Designing Condition

Condition is very similar to Element, and hence the same methodology is used to design it.
Condition is defined as an object which holds its data and calculates its local matrices and vectors
to be assembled and also can be used to calculate local results after analysis. Defining Condition
in this way isolates it from the rest of the code and helps towards its encapsulation.

Like Elements, Conditions must be designed to be implemented independently and added
easily to Kratos in order to guarantee the extendibility of Kratos. Also they must be compatible
with each other in order to let users mix them together in a complex model. The same strategy
pattern used for Element is reused here. The figure 8.4 shows the structure for Condition applying
the strategy pattern.

Figure 8.4: Condition’s structure using strategy pattern.

In this structure each Condition encapsulates one algorithm separately and also make them
interchangeable as we want. The interface established by the Condition base class also make its
derived class compatible with each other and enable user in mixing them together to model a
multi-disciplinary problem.

Condition has a close relation to geometry. As explained for Element, deriving Condition
from geometry, can increase the performance of geometries’ data access but requires different
Conditions to be implemented for a formulation applied to different geometries and also prevents
Condition to share a geometry with Elements or other Conditions.

This structure reduces the flexibility of geometry and also produces unnecessary implementation
overhead. So this structure is considered to be unsuitable because for Condition the flexibility is
more important than a small increase in performance.

The alternative design is to use the bridge pattern. Introducing this pattern to our design,
results in the structure shown in Figure 8.5.

This pattern allows each Condition to change its geometry and omits the strong relation of
previous design. In this way less implementation is needed. Also having a pointer to geometry
allows Condition to share its geometry with other Conditions or even with Elements without
problem. The only drawback is the time overhead coming from pointer redirection in memory.
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Figure 8.5: Condition’s structure using bridge pattern.

Having a pointer to geometry beside deriving from it produces an overhead in accessing geometries’
data. There are other alternatives in designing Condition’s structure with enough flexibility
and better performance but requires introducing advance features of programming language to
Condition which are not acceptable in our design.

The interface of Condition is similar to the one designed for Element. Again here there are
three categories of methods:

Calculate Local System The first set of methods are required to calculate local matrices and
vectors.

Assembling Information These methods give information about the position of each row and
column of the local system in the global system. This information comes from dof and
Condition provide it by giving its dofs or just their equation id.

Calculate Is used to calculate any variable related to this Condition which usually are the results
depending on gradients in the condition.

As described before in designing the Element interface, passing calculation parameters to
Condition methods and getting the result as their return value produces a significant reduc-
tion the performance. To avoid this problem the result variable is also passed to each method.
Passing the result vector or matrix by reference prevents the program from making temporaries
and increases the performance. Also controlling the size of a given result matrix or vector and
resize them if necessary can optimize the code performance.
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Condition uses the same set of methods as Element to calculate the local system’s matrices
and vectors. ProcessInfo is used to pass any parameter which is necessary for calculating the
local system in Condition. All methods are defined for working with dense matrix and strategies
working with symmetric or other types of matrices must use a dense matrix to communicate with
Condition. This part of the interface is defined by the following methods:

CalculateLocalSystem This method calculates all local system components. It takes a left hand
side matrix and a right hand side vector to store the results and a ProcessInfo which
provides the analysis parameters.

CalculateLeftHandSide This method calculates only the left hand side matrix. It takes a matrix
to store the results and a ProcessInfo which provides the analysis parameters.

CalculateRightHandSide Calculates right hand side component of local system. It takes a vector
to store the result and a ProcessInfo which provides the analysis parameters.

The second set of methods provide assembling information for Strategy which is the corre-
sponding position of each local system row and column in global equation system. Condition can
give an array of Dofs with the same order that local system is constructed, or get their associated
equation ids and give them to strategy as an array of indices. Strategy uses these indices to assem-
ble the local system into the global equation system. This part of Condition’s interface consists
of two methods:

EquationIdVector This method is used to directly give the global equation id related to each row
or column of local system matrices and vectors. A ProcessInfo is passed to this method to
provides any additional parameter needs for this procedure.

GetDofList This method gives Condition’s Dofs in the same order as the local system is defined.
Strategy can use this list to extract the equation id related to each local position and then
use them to assemble the Condition’s local system components correctly. Like the previous
method, it takes a ProcessInfo object as its argument which can be used to pass any
additional information needed for this procedure.

Like Element, Condition uses its data container to store references to its neighbor Nodes,
Elements, or Conditions. This solution also can be extended to store the references to nearest
Element or Condition in contact problems or other similar information.

8.3 Processes

Creating a finite element application consists of implementing several algorithms for solving dif-
ferent problems. In practice, each set of problems has their own solving algorithms. For example
an steady state analysis algorithm is not the same as a transient algorithm. A one domain process
is also different from a multi domain one and so on. While these algorithms are the heart of the
code and flexibility and power of the code is depended on them, a good design to handle them in
a generic way becomes very important.

A possible approach to handle algorithms in a finite element code is to provide some high level
classes to handle different tasks in the code [33]. In Kratos, the Process class and its derived classes
are defined to implement different algorithms and handle different tasks. Different processes may
be used to handle a very small task like setting a nodal value to some complex one like solving
a fluid structure interaction problem. Grouping some processes in a bigger one is also helpful
specially to make a pack of small processes in order to handle a complex algorithm.
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8.3.1 Designing Process

Process can be considered as a function class. Process is created and executed just like a function
is called. The strategy pattern is used to design the family of processes. Figure 8.6 shows this
pattern applied to Process structure.

Figure 8.6: Process structure using strategy pattern.

Applying this pattern lets a Process to encapsulate an algorithm independently and also pro-
vide an standard interface which makes them to be replaceable with each other. Encapsulating
each algorithm in one Process without modifying other parts of the code makes adding a new
Process very easy and increases the extendibility of the library to new algorithms. The compati-
bility of processes with each other helps to customize the program flow and is useful in cases when
user wants to interchange some algorithms.

Another feature to be provided by Process is the ability to combine different processes in one
and use the resulting Process like a normal one. The composite pattern can be used to achieve
this requirement. Applying this pattern to Process results in the extended structure shown in
figure 8.7.

Figure 8.7: Applying composite pattern to the Process structure.

This structure allows users to merge different process in one and use it like an ordinary process.
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In practice this structure is considered to be too sophisticated for our purpose. The composite
pattern provides an interface for changing the children of each composite object. In order to
simplify the implementation of new processes and the total implementation of the structure, the
interface for changing sub-processes has been removed and CompositeProcess must get all its
sub-processes with their other parameters at creation time. However this interface can be added
in the future. Figure 8.8 shows the reduce structure.

Figure 8.8: The reduced composite structure for Process.

The process interface is relatively simple. Execute method is used to execute the Process
algorithms. While the parameters of this method can be very different from one Process to other
there is no way to create enough overridden versions of it. For this reason this method takes no
argument and all Process parameters must be passed at construction time. The reason is that
each constructor can take different set of argument without any dependency to other processes or
the base Process class.

8.4 Solving Strategies

After designing Process and its derived classes, we will focus in an important family of processes
which are dedicated to manage the solving task in the program.

The SolvingStrategy is the object demanded to implement the “order of the calls” to the
different solution phases. All the system matrices and vectors will be stored in the strategy, which
allows to deal with multiple LHS and RHS. Trivial examples of these strategies are the linear
strategy and the Newton Raphson strategy.

SolvingStrategy is derived from Process and use the same structure as shown in figure 8.9.
Deriving SolvingStrategy from Process lets users to combine them with some other processes
using composition in order to create a more complex Process. The strategy pattern used in this
structure lets users to implement a new Strategy and add it to Kratos easily which increases the
extendability of Kratos. Also lets them selecting an strategy and use it instead of another one in
order to change the solving algorithm, which increases the flexibility of Kratos.

Composite pattern is used to let users combining different strategies in one. For example a
fractional step strategy can be implemented by combining different strategies used for each step in
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Figure 8.9: SolvingStrategy uses the structure designed for Process.

one composite strategy. Like for Process, the interface for changing the children of the composite
strategy is considered to be too sophisticated and is removed from the Strategy. So a composite
structure can be constructed by giving all its components at the constructing time and then it can
be used but without changing its sub algorithms.

The interface of SolvingStrategy reflects the general steps in usual finite element algorithms
like prediction, solving, convergence control and calculating results. This design results in the
following interface:

Predict A method to predict the solution. If it is not called, a trivial predictor is used and the
values of the solution step of interest are assumed equal to the old values.

Solve This method implements the solving procedure. This means building the equation system
by assembling local components, solving them using a given linear solver and updating the
results.

IsConverged It is a post-solution convergence check. It can be used for example in coupled
problems to see if the solution is converged or not.

CalculateOutputData Calculates non trivial results like stresses in structural analysis.

Strategies sometimes are very different from each other but usually the global algorithm is the
same and only some local steps are different. The template method pattern helps to implement
these cases in a more reusable form. As mentioned before, this pattern defines the skeleton of an
algorithm separately and defers some steps to subclasses. In this way the template method pattern
lets subclasses redefine certain steps of an algorithm without changing the algorithm’s structure.
Applying this pattern to SolvingStrategy results in the structure shown in figure 8.10.

This structure is suitable when the algorithm is not changing at all but in our case the algorithm
varies from one category of strategies to another. For this reason in order to reduce the dependency
of the algorithm and its steps a modified form of the bridge pattern is applied to this structure.
Different steps for solving template methods are deferred to two other objects which are not derived
from Strategy: BuilderAndSolver and Scheme. Figure 8.11 shows this structure.

The main idea of using these two additional set of objects was to increase the reusability of
the code and prevent users from implementing a new Strategy from scratch. In practice this
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Figure 8.10: Template Method pattern applied to solving strategy.

Figure 8.11: Deferring different parts of the algorithm to BuilderAndSolver and Scheme.

structure can support usual cases in finite element methodology but still advanced developers have
to configure their own Strategy without using BuilderAndSolver or Scheme. For this reason in
the current structure both approaches can be used to implement a solving algorithm.

8.4.1 BuilderAndSolver

The BuilderAndSolver is the object demanded to perform all of the building operations and the
inversion of the resulting linear system of equations. The choice of grouping together the solution
and the building step is not necessarily univocal. This choice was made in order to allow a future
parallelization of the code, which should involve both the linear system solution and the Building
Phase.

Due to its features BuilderAndSolver covers the most computational intensive phases of the
overall solution process. This will clearly require low level tuning in order to ensure high per-
formance. A typical user is not required to understand the implementation details for this class.
Nevertheless the comprehension of the role of this object is necessary.

BuilderAndSolver needs a linear solver to solve its constructed equation system. In order to
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give the possibility of assigning any linear solver to any BuilderAndSolver a bridge pattern is
used to connect these two sets of classes. In this way BuilderAndSolver can use any linear solver
available.

The interface of BuilderAndSolver provides a complete set of methods to build the global
equation system or its components separately. It also provides methods for building the system
and solving it or rebuilding just the left hand side or the right hand side and solve the updated
equation system. This interface consists of the following methods:

BuildLHS Calculate the left hand side matrix of the global equation system.

BuildLHS CompleteOnFreeRows Builds the rectangular matrix related to all free dofs, adding also
the columns related to fixed dofs.

BuildLHS Complete Gives the complete left hand side matrix regardless to fixed dofs.

BuildRHS Calculates and gives the right hand side vector of the global equation system. This
method is useful in cases that left hand side matrix is the same for different solution steps
but the right hand side is changing.

Build Builds the whole equation system. This method gives the possibility to calculate both sides
at the same time and avoids duplicated calculation that must be done when calculating each
component separately.

ApplyDirichletConditions In some strategies, for example for standard linear solutions, the
Dirichlet condition can be applied efficiently by some operation over Dirichlet partition of
the equations system. This can be done by this method.

SystemSolve Uses the linear solver to solve the prepared equation system.

BuildAndSolve Calling this method is equivalent to calling Build and then SystemSolve for most
algorithms. It can be also used to implement algorithms that build the system while solving
it, like the advancing front solution method.

BuildRHSAndSolve This methods is useful for updating just the right hand side and solve the
equation system.

CalculateReactions Calculates the reaction at fixed degrees of freedom.

There are also several methods for initializing the internal system matrices and vectors and
also to remove them from memory if it is necessary. Strategy can use this interface to implement
its algorithm using any of the procedures defined above.

8.4.2 Scheme

Scheme is designed to be the configurable part of Strategy. It encapsulates all operations over the
local system components before assembling and updating of results after solution. This definition
is compatible with time integration schemes, so Scheme can be used for example to encapsulate
the Newmark scheme. By the way definition is more general and can be used to encapsulate other
similar operation over solution component.

According to the template method pattern the important steps of the solving procedure in
usual finite element strategies is used to design the interface of scheme. Usually a finite element
solving strategy consists of several steps like: initializing, initializing and finalizing solution steps,
initializing and finalizing non linear iterations, prediction, update and calculating output data.
Considering the steps mentioned before, the interface of Scheme is designed as follows:
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Initialize This method is used for initializing Scheme. This method is intended to be called just
once when Strategy is initializing.

InitializeElements Is used to initialize the Element by calling its Initialize method when
Strategy is initializing.

InitializeSolutionStep Strategy calls this method at the beginning of each solution step.
This method can be used to manage variables that are constant over time step. For example
time-scheme constants depending on the actual time step.

FinalizeSolutionStep This method is called by Strategy at the end of a solution step.

InitializeNonLinIteration It is designed to be called at the beginning of each non linear iter-
ation.

FinalizeNonLinIteration This method is called at the end of each non linear iteration.

Predict Performs the prediction of the solution.

Update Updates the results value in the data structure.

CalculateOutputData This method calculates the non trivial results.

8.5 Elemental Expressions

Finite element methodology usually consists of first converting the governing differential equation
to its weak form, then its discretization over an appropriate approximation space, and finally the
derivation of matrix forms as elemental contributions. Zimmermann and Eyheramendy [107, 39,
40, 38] have developed an environment for automatic symbolic derivation from the variational form
to matrix form and integrate it into a unified environment with modeling tools [105]. Nowadays
several computer algebra systems like Matlab [68], Mathematica [103], and Maple [66] can do this
type of symbolic derivations. In Kratos the first part of changing the variational equation to weak
form is dedicated to previous tools and only a set of tools is designed and implemented to help
users converting their weak form to matrix form as elemental contributions.

Elemental expressions are designed and implemented to help users in writing their weak form
expressions in Element. The main idea is to create a set of classes and overloaded operator to
understand a weak form formulation and calculate the local matrices and vectors according to it.

For example in a simple heat conduction problem the governing equation is:

−∇T k∇T + Q = 0

where T is the temperature over domain and Q is the heat sources over domain. Converting
this equation to its weak form results in the following equation [104]:

ST + f = 0

where the elemental matrix S is:

Sij =
∫

Ω

(∇Ni)T k∇NjdΩ

and the elemental right hand side vector f is defined as follows:
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fi =
∫

Ω

NiQdΩ +
∫

Γq

Niq̄dΓ

For an isotropic material the conductivity k can be extracted from the integral and the resulting
equation is:

Sij = k

∫
Ω

(∇Ni)T I∇NjdΩ

or:

Sij = k(∇iNl,∇jNl)

This equation can be implemented in Element by the following code:

for(int i=0 ; i < nodes_number ; i++)

for(int j=0 ; j < nodes_number ; j++)

for(int l=0 ; l < integration_points_number ; l++)

{

Matrix const& g_n = shape_functions_gradients[l];

for(int d=0 ; d < dimension ; d++)

rLeftHandSideMatrix(i,j) += k * g_n(i,d)*g_n(j,d) * w_dj;

}

Using elemental expressions the same formulation can be written in a simpler form as:

KRATOS_ELEMENTAL_GRAD_N(i,l) grad_Nil(expression_data );

KRATOS_ELEMENTAL_GRAD_N(j,l) grad_Njl(expression_data );

noalias(rLeftHandSideMatrix) = k * (grad_Nil , grad_Njl) * w_dj ;

It can be seen that the later form is conforming with the symbolic notation of equations which
makes it much easier to implement. The overloading operators provided in C++ is the start point
for implementing the code necessary to understand this notation, but simple overloading results,
poor performance due to the redundant temporary objects that creates. Expression template
technique described in section 3.4.2 can be used to convert above expression to previous hand
written form automatically. Template metaprogramming described in section 3.4.2 also is used to
impose the tensorial notation. All these techniques are used to evaluate the symbolic notation and
generate an specialized code for each case. Here are examples of vector ”,” overloaded operators:

template <unsigned int TIndex1 ,

unsigned int TIndex2 ,

class TExpression1 ,

class TExpression2 ,

class TVectorType1 ,

class TVectorType2 >

typename result_type

operator ,( Elemental1DExpression <TIndex1 ,

TExpression1 ,

TVectorType1 > const& rVector1 ,

Elemental1DExpression <TIndex2 ,

TExpression2 ,

TVectorType2 > const& rVector2)

{

return outer_prod(rVector1 ()(), rVector2 ()());
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}

template <unsigned int TIndex1 ,

class TExpression1 ,

class TExpression2 ,

class TVectorType1 ,

class TVectorType2 >

double

operator ,( Elemental1DExpression <TIndex1 ,

TExpression1 ,

TVectorType1 > const& rVector1 ,

Elemental1DExpression <TIndex1 ,

TExpression2 ,

TVectorType2 > const& rVector2)

{

return inner_prod(rVector1 ()(), rVector2 ()());

}

The first overloaded version will be used in cases when two vectors have different indices and
implements an outer product of these two vectors. While the second version will be used when
two given expressions have a same index and implements an inner product of these two vector. It
is important to mention that the first version returns the expression and not the calculated matrix
and uses the expression template technique to optimize its efficiency.

There are similar operators implemented to handle different cases of matrix operations de-
pending on their indices. Also the integration over domain is added for simplifying the elemental
expressions even further.

In the current version of Kratos, elemental expressions are still in experimental phase. However
some benchmarks have shown that their efficiency is comparable with hand coded Elements as
supposed to be.

8.6 Formulations

Kratos was designed to support elemental approaches in finite element methods. For some prob-
lems elemental approach results to be less suitable than other approaches like nodal formulations.
Formulation is defined as a place for implementing all these approaches. Formulation is not
implemented yet, but is considered to be one of the future features of Kratos.
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Chapter 9
Input Output

In general most of the finite element applications have to communicate with pre and post processors
,except in some special cases in which the application generates its own input. This makes the
input output (IO) an essential part of the application.

In this chapter, first different approaches in designing application’s IO are discussed and a
flexible and generic IO structure is presented. It follows a part dedicated to interpreter writing,
which consists of small introduction to concepts and also brief explanation on the use of related
tools and libraries. Next the use of Python as the interpreter is described and the reasons of using
Python are explained. Finally a brief description of using boost python library is given.

9.1 Why an IO Module is Needed?

A typical finite element procedure consists of getting data from input sources, analyze it and send
the result to an output. There are some applications which use the embedded IO structure. This
means that they have their IO routines implemented in subroutines where an IO operation is
needed. For example, element reads its properties directly from input file when they are needed
and so on.

This approach is quite simple and easy to implement and in some cases eliminates some part
of data storing overhead. However some cases exist in which an embedded IO approach introduces
some difficulties in implementations or restrains the flexibility of the program.

In complex problems previous simple scheme changes to a repeating or multi input output
scheme. These changes in strategy may introduce new IO statements, change some of them or
invalidate some existing ones. This may result in many IO methods in different parts of the code
which basically do the same things but with different objectives. Creating an IO module and use
it in all of these statements help us to unify these efforts and simplify the maintenance of the code.

For a finite element program the possibility for connecting different programs is a great added
value. The use of different pre and post processors or connecting different finite element applications
are some typical examples. Connecting to each program means reading its output with given
format, (in the case of pre processors) and generating their inputs also in their recognizable format
(in the case of post-processors). It is obvious that each program may have an incompatible format
with others. Using an embedded IO approach causes the program to be very rigid and difficult for
extending to any new type of IO. In this approach a global revision of the code is needed to add
any new interface and all the IO statements must be modified to include a new format. Placing

201



202 CHAPTER 9. INPUT OUTPUT

Figure 9.1: A Console IO interface

an IO module in the middle can solve this problem. Any request from inside or outside passed
through IO, which is in charge of translate an outside format to inside one and vice versa. Now
any new connection can be added by a new IO object.

Creating an IO module eases the team developing of an application. Without it each developer
may put an IO statement in its part and cause conflicts in using files with others. In the same
concept, easy file managing is another reason to use an IO module. IO module can open the file
once, work with it and also close it at the end of work. If there is some problem with file opening
it may report and try again. Finally handling multiple files is also simplified in this way.

As a conclusion it is useful to have a separate and robust IO module to handle the input and
output tasks of the program for all different scheme with any format without problem. In this way
flexibility guaranteed and extendibility can be achieved.

9.2 IO Features

Before starting with designing IO it is important to classify different aspects and features of IO
for different programs. This helps to collect the IO features needed for a generic multi-disciplinary
program.

9.2.1 IO Medium Type

People working in finite element analysis area are used to have files as input and output medium.
This is correct for many cases but it is not always true. In general, an IO medium can be a
file, some console stream, sockets for network communication or any other medium. Sometimes
the difference in media comes from platforms and operating systems. For example opening a file
and writing to it in Linux can be different from Windows. This make them virtually, more from
implementation point of view, different media to interact.

This point of view to IO creates a set of open questions to be answered to before the designing
phase. Does IO want to interact just with one type of medium or more? Is it supposed to be
extendable in term of interacting with new media in future.

Our design can be depended on this questions. Working with just one type of media simplifies
the IO interface and reduce implementation effort respect to the multiple media support. This
difference can be large or small depending on the design, implementation and also to the type of
supporting media and the way they are deferent. Let’s make an example, considering a console IO
as the first medium to interact. An interface to this medium just needs a Read and Print method
to communicate. Assuming here that the console stream is always available. Figure 9.1 shows this
simple interface.
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Now let us add a file as a new medium. Here Read and Write methods provided for file
accessing. Unfortunately a file is not always available to read or write as console is. We need to
open it before any access and also close it at the end of procedure. This nature of file IO introduces
two new methods to our interface, Open and Close. Figure 9.2 shows the interface for file IO.

Figure 9.2: A file IO interface

Now, for having a multi-media IO a union of given interfaces is provided to interact with both
media without problem.

Figure 9.3: A multi-media interface

It is obvious that having the file interface, and unifying the Print and Write methods, no
extra method is needed to handle the console IO. The intention of this example was to show the
difference nature of each medium and not a serious design problem.

Handling each new medium may introduce the need for some new methods in interface, and
making it extendable requires adding new layer to it. In other words, to do this another level of
encapsulation is needed to separate different IO modules while keeping the established interface
for all of them. Now, let’s redesign our previous example and see how it can be organized to be
extendible. Figure 9.4 shows the new structure.

Having above structure, any new medium can be supported using an IO interface via the new
encapsulation level as shown in figure 9.5
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Figure 9.4: An Extendible IO interface

Figure 9.5: Extended IO

9.2.2 Single or Multi IO

A simple finite element procedure consists of getting data from an input source, analyze it and
send the result to an output medium as shown in figure 9.6. A static structural analysis program
is a good example of single IO.

This simple scheme also can be applied to some more complex problems in which there are var-
ious IO statements for certain points of program flow. Transient thermal problems, fluid dynamics
and structural dynamics are typical examples of these type of solutions. In all of them program
first reads the model data, then starts analyzing and meanwhile writes results for each time step.
From the designing point of view this scheme is similar to the previous one as the IO statements
are always the same. There are no changes due to the algorithm in reading or writing points.

In advanced problems there are some situations where IO statements change due to the nature
of the algorithm. In other words the algorithm reads data or write them depending on the state
of the problem. For example looking to some convergence criteria or displacement norms and not
only in some certain points like the beginning of the analysis or the end of time steps. Optimization
and interaction algorithms fall in this category. This situation implies more encapsulation of IO
in time of designing. The reason is the extra flexibility needed to deal with these situations which
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Figure 9.6: A single IO procedure

Figure 9.7: Repeating IO procedure

causes IO to be more independent.

9.2.3 Data Types and Concepts

The main task of IO is transferring data. A finite element program usually works with different
types of data, like double, vector, matrix, etc. Also each data represents a concept like displace-
ment, temperature, node’s id and so on. Again there are decisions to be taken respect to data
types and concepts to be supported. Which data types needed to be supported by IO? Is it needed
to be extendible for new types? Does it supports new concepts?

These decisions are related to formats. Also they affect deeply the implementation of IO. From
the designing point of view interfaces are affected by these decisions. Now, let us present some
examples to explain these relations.

A simple thermal application is a good example of rigid IO. It has to read integers, doubles,
vectors and matrices from input for concepts such as nodal information, elements information,
properties like thermal conductivity and temperature and thermal flux as conditions and initial
values. Output handles doubles and vectors needed to write temperature and fluxes. So in this
case all the types are known and all the concepts are also defined as shown in table 9.1

It has to be mentioned that one can just handles doubles and treat all above types by their
components as doubles and simplify more the IO. For the input part a column based format is well
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Figure 9.8: Complex IO procedure

Types Concepts
int Id, Connectivity
double Temperature
vector Thermal flow
Matrix Thermal conductivity

Table 9.1: Thermal application types and concepts

suited and also makes implementation very simple.

# Format: NodeId X Y Z Temperature IsFixed
1 0.00 2.00 0.00 0.00 0
2 1.00 1.00 0.00 1.00 0
3 2.00 4.00 0.00 0.00 0
4 3.00 5.00 0.00 0.00 0
5 4.00 0.00 0.00 2.50 1
......

Implementation of IO for this example can be done easily and extremely efficiently by normal
streaming or line by line scanning. Finally the interface can be defined very simply (although is
very rigid) while all the types and concepts are known.

Read(NodesArray Nodes , ElementsArray Elements)

Write(vector Temperature , matrix ThermalFlows)

A more sophisticate interface can be designed to provide more control on IO sequences. for
example

Read(NodesArray Nodes , ElementsArray Elements)
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ReadNodes(NodesArray Nodes)

ReadElements(NodesArray Nodes , ElementsArray Elements)

Write(vector Temperature , matrix ThermalFlows)

WriteTemperature(vector Temperature)

WriteThermalFlow(matrix ThermalFlows)

Next example is a laplacian domain application. This refers to any problem govern by laplace
equation like thermal, potential flow, low frequency electromagnetic, seepage problems or any
combinations of them and solve it. In this example concepts are changing from one problem to
other, or sometimes from one element to another, but the types of inputs are always the same. The
input format gets more complex respect to previous example because concept definitions must be
added to it. Here a tag mechanism helps to distinct the different concepts to be read.

# Format: NodeId X Y Z initialvalues IsFixed
1 0.00 2.00 0.00 VELOCITY_X 0.00 0
2 1.00 1.00 0.00 VELOCITY_X 1.00 1
3 2.00 4.00 0.00 TEMPERATURE 0.00 0
4 3.00 5.00 0.00 TEMPERATURE 0.00 0
5 4.00 0.00 0.00 TEMPERATURE 2.50 1
......

Flexibility in concepts introduces an extra cost in the implementation. A lookup table is needed
to handle reading different variables via the names given and assign them internally. The lookup
table to be used here can be a simple one with each variable name and their unique indices as
shown in table 9.2.

Name Index
TEMPERATURE 0
VELOCITY X 1
VELOCITY Y 2
THERMAL FLOW 3
THERMAL CONDUCTIVITY 4

Table 9.2: A sample part of lookup table

The interface design also must be changed due to these new features. First an initialize method
is needed to pass the lookup table and setting the IO. Then Write method must be modified to
get the variable to write as its argument. This is necessary because in this example the variable is
not always Temperature and its Flow and the name of method cannot depend on it.

Initialize(Table LookupTable)

Read(NodesArray Nodes , ElementsArray Elements)

Write(string VariableName , double Value)
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Write(string VariableName , vector Value)

Write(string VariableName , matrix Value)

Or the more complete version:

Initialize(Table LookupTable)

Read(NodesArray Nodes , ElementsArray Elements)

ReadNodes(NodesArray Nodes)

ReadElements(NodesArray Nodes , ElementsArray Elements)

Write(string VariableName , double Value)

Write(string VariableName , vector Value)

Write(string VariableName , matrix Value)

It can be seen that in this interface Write is overloaded for all different types handled by the
output.

The final example is a generic IO module which the concepts and types both are extendible to
new ones. In this case the type information and some basic operations must be included in the
lookup table. This complicates even more the situation. To see this let us add a type extendibility
to the previous example and use it for introducing a complex number to IO.

IO to handle new types needs to know how to perform some basic operations over them. For
example, how to convert and string to them and viceversa, and also how to create them. So for
each new types is necessary to give it some helper functions. These functions will help IO to
manipulate the new types. These functions releasing IO from knowing anything about the new
types. One can group all these helper functions in a TypeHandler class and pass it once to IO.
Figure 9.9 shows this structure.

Figure 9.9: Using handlers to extend type supporting

The previous interface also changes due to this new mechanism. For example writing an inter-
face can be changed to this new form:



9.2. IO FEATURES 209

Write(string VariableName , void* Value ,

TypeHandler& ThisTypeHandler)

Now, the Write method does not know about the type of the variable and just gets a void
pointer and then handle it by a given type handler. This solution will work, but it is not type safe
and leaves a possibility for serious errors. An example is to pass an integer value and a matrix
type handler. This make Write method to write garbage and Read method may cause the system
to crash by violating the memory. There is a more elegant way to handle this problem using
templates. In this way the casting to void pointer is not necessary and the type of given data will
be checked in compiling time.

template <class TTypeHandler >

void Write(string VariableName ,

typename TTypeHandler :: DataType& Value ,

TTypeHandler const& ThisTypeHandler)

Going one step further, this TypeHandlers can be added to the lookup table for making this
mechanism more automatic. In this manner, IO for each concept checks the lookup table as before
and gets all the tools to handle this concept, even if is a new type of information.

It is important to mention that a variable base interface greatly helps in overcoming all these
complexities and in designing a generic interface maintaining clarity and flexibility as explained in
a later section.

9.2.4 Text and Binary Format

A text file is a sequence of characters stored as a file which depend on its content is human
readable. Generally these files contains ASCII characters, where ASCII (American Standard Code
for Information Interchange) is a character encoding based on English alphabet.

Writing strings to a text file is simple because there is no conversion needed. But for writing
a number, first it has to be converted to a string format and then it can be written to the file.
For example to write an integer variable which stores 1234567890 as its value, first it has to be
converted from its binary form in memory which is 0100 1001 1001 0110 0000 0010 1101 0010
to its representative sting which is "1234567890" and then stored in file (Figure 9.10).

In time of reading again strings are read directly but numerical values must be converted from
the string (Figure 9.11).

Binary format on the other hand, works with the binary value of each object and not with its
representative string like a text file. In this manner a string or a number dump in the same way
to the file. For example for the same above integer variable it is just enough to write the binary
value 0100 1001 1001 0110 0000 0010 1101 0010 to the file directly (Figure 9.12).

Similarly for the reading just the sequence of bytes are read and put directly in the variable
(Figure 9.13).

The advantage of the text format is its human readability. This makes it a good choice for
small and academic applications because the aspect of input data can be verified and even changed
manually and the output can be checked without any post-processor. For example to see if all
results are zero. Disadvantage of this format is its latency time in read or write numbers due
to the conversion time from and to its representative string. Another disadvantage is the large
overhead in storing data size for numerical data. This comes from the fact that in most cases the
representative string of a number occupies more memory than the number. Looking to our previous
example, the integer 1234567890 occupies 4 bytes in memory like any other integer. Converting
this to a string takes 10 bytes, one byte per character, without null at the end which is 150%
overhead. However for small numbers, less than 4 digits, the representative string is smaller but
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Figure 9.10: Writing a number to text format

in general finite element data usually consist of longer numerical data. These two problems make
difficult the use of text format for very large problems in finite element applications.

The first advantage of using binary format is the direct read and write of data which increases
the performance respect to text file format. Having no overhead in stored data respect to their
real size is another advantage of using the binary format. These two advantages make this format
a good choice for large problems data storing. Binary format is not human readable and using it
as an input our output format complicates the debugging process and prevents users from manual
checking of data for any obvious error, like having all coordinates equal to zero or so on. Finally,
because there is no interest to open and read binary files, they can be compressed to occupy even
less space than they normally need.

Using Ascii or binary format affect more the implementation details than its design. The
interface and structure can be the same and the implementation details can be hiden via IO
module. So using one or the other will not affect the implementation costs and the choice depends
only on which is more suited to our needs.

9.2.5 Different Format Supporting

The previous section started with formatting concepts by describing two different category of
formats, text and binary. In this section the concept is viewed from the format supporting point
of view.

Format is the way data is represented and organized in a medium. Any variation in the data
representation way or its organization creates a new format of data. As described in the previous
section text and binary formats are different in the way they put their data. In the same manner,
changing data organization in each one causes new format either binary or text.

Nowadays, a large number of data formats are defined and used by programs in different areas.
Some of them are popular while many of them are just for specific programs. Also each different
format has some advantages and disadvantages as seen before for the text and binary formats. All
these aspects makes it necessary to take some decisions before starting the implementation. Using
an existing format or creating a new one? Supporting an additional format or one is just enough?
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Figure 9.11: Reading a number from text format

Figure 9.12: Writing a number as binary format

Can IO be extendible to support a new format in the future or not?
Most these decisions affect the design and implementation in the same way as for supporting

media. The first choice is to support only one format. Choosing this option makes both design and
implementation very simple. The interface for this case can be very simple without any argument
or method to specify the format. Implementation also is simple while there are neither switch and
case to handle a given format and there is not a duplicated method for different formats. Figure
9.14 shows an example of interface for an IO which supports only text formats.

It is important to mentioned that the simplicity of implementation mentioned above is respect
to global design aspects and not the cost of handling each specific format which may cost a complete
parser to be implemented.

To take advantage of more than one format, the previous design must be modified to handle
each format separately. Interface must provide some way for users to set their format. A simple
approach for small amount of formats to handle is to create separate methods. This leads a very
clear interface and in some cases eases the implementation. This design from one side keeps each
format support implementation separate and hence it increases the maintainability of the code.
However it makes it more rigid and static. Figure 9.15 shows an example of this interface for a dual
format supporting. The clarity and readability can be seen, while it is obvious that for supporting
some more formats this approach is not suitable.

There is a more elegant approach which just passes a flag through interface to identify which
format is being used. In this manner the interface is clear and adding a new format is easy while
using it via hierarchy is not very helpful. Figure 9.16 shows the previous example with a new
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Figure 9.13: Reading a number from Binary format

Figure 9.14: IO single format example

interface. Now the interface is simple and more dynamic than before.
Let us go now one step further and give flexibility to add new formats without changing previous

ones. This can be done with the same methodology as before for the extendibility of media. A
new layer of encapsulation takes place in the IO structure to unify the interface and the support
for each format is encapsulated separately. This design provides a flexible structure which adding
new format will not change any other part of the code and grantees the extendibility. This design
imposes that all supported formats must use a unique interface. So to complete this structure a
generic interface needs to handle all formats in the same way without critical restrictions. Reusing
previous examples for applying the new design, results in a more flexible structure. Figure 9.17
shows this new structure.

Now supporting a new format implies adding another part without any modification of other
the IO parts. Figure 9.18 shows the extended version.

9.2.6 Data IO and Process IO

It is usual for single purpose finite element applications to get data from the input, process it and
write the results on an output. These applications always use their own implemented algorithm to
solve the problem. They also give some options to the user to modify some aspects of algorithms
via input data but not the algorithm itself. A typical input for these programs contains nodes,
elements, conditions, properties and some algorithm parameter like convergence criteria, maximum
number of iterations and so on. Some other codes also give the possibility to choose some parts of
the algorithm by some given options, like changing the solver, static or dynamic strategies, etc.

For more complex problems and for multi-disciplinary programs the previous approach is too
rigid to be applicable to all problems. For example for a thermo-mechanical application sometimes
the mechanical solution is wanted not from the beginning, but from a certain time. So a mech-
anism is necessary to start solving the mechanical part from a certain time to avoid unnecessary
calculation overhead. Another example is a fluid structure interaction problem, which may cause
the program to change its global strategy depending on the type of structure and fluid interacting
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Figure 9.15: IO dual format example with specialized methods

Figure 9.16: IO dual format example with passing type as argument

with each other. All these makes developers to implement their codes to get not only data from
users but also the process necessary for the solution.

The first approach is to create a semi-language like input data which controls the order of
execution of code blocks and also gives option to add processes in specific statements of algorithms.
In this manner the user can define the global layout of the program flow by choosing when to read,
write, solve, etc. via the input file. Also it can put some extra process in certain places like at the
beginning of each time step and so on. Limiting the flexibility of modifying a program’s algorithm
imposed by this approach comes from two facts. First the lack of a good interpreter in the input
part makes it impossible to introduce a whole algorithm. Second is the internal design of the code
which is not well split and can limit the way one can put different algorithms together in order to
create a new algorithm.

Usually codes written in fortran use previous approaches to handle different algorithms due to
their limited facilities to write an interpreter.

Another approach is to implement a high level language interpreter as input in order to manage
the global flow of the program. This gives a great flexibility to the code and new algorithms can be
easily implemented. A working example of this approach is the Object Oriented Finite Elements
method Led by Interactive Executor (OOFELIE) [77] developed by Cardona, et al. [25, 53, 54]
which has its own command interpreter to deal with different algorithms in multi-disciplinary
problems.The advantage is the flexibility in input language syntax. One can define a very minimal
language which adopts well to its needs. This can give a clear and powerful input format for certain
type of applications. The backward of this approach is the implementation cost. Writing a good
interpreter is hard work and maintaining it is even worse. C++ programmer are more motivated
to write their own interpreters because there are a lot of available libraries which can help them
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Figure 9.17: Multi format extendible IO example

Figure 9.18: Extended IO to a new format

[67, 6, 2, 5]. Even though using libraries and compilers creating tools, implementing an interpreter
for a finite element program can introduce a great overhead to its cost. Also many finite element
programmer do not have compiler writing knowledge in their background and learning or hiring
some specialist causes again extra cost for the program.

The last option is to use an already implemented interpreter and not to write a new one.
The first advantage of this approach is omitting cost and time overhead needs to develop a new
interpreter. Another good news is the freedom from knowing how to write a compiler. Also an
existing language has its documentations like tutorials, reference manuals and so on. This reduces
the program IO documentations just to documenting the extended part of the language and its
specific commands. However this approach has its backwards too. First is the effort to connect the
program to the interpreter can be significant depending on the programming language of the FE
code and the interpreter chosen. Second disadvantage is the generic concept of popular languages
which may prevent them from fitting well into finite element concepts. Another backward is their
overhead in memory and performance. After all there are good news again. A good selection of
language and its interpreter can reduce or effectively remove these disadvantages. There are many
industrial applications using this approach, for example ABAQUS [10, 11] uses Python [89, 63] or
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ANSYS [1] uses TCL/TK.

9.2.7 Robust Save and Load

Programs manipulating any kind of document usually have to provide some mechanism to save and
load again their documents. In computer science an object which keep its state after the execution
of program is referred as a persistence object. Also persistence is known as the program ability to
store and retrieve its data. Finite element applications usually do not need to save their model in
the same way they read it. On the contrary, they just read the model and write the results. Pre
and post processors are responsible to store the model and processed results for future use. Still
there are some situations that save and load features are needed for a finite element solver. For
example to analyze big problems is sometimes useful to stop the process and resume it sometimes
later due to some resources schedule. A typical reason is working with computers that are available
at night. This makes necessary for the code to store its state before ending the process and retrieve
it next time it is executed to be started from the last state.

There are different ways to implement persistency. Two typical approaches are object persis-
tency and global or database persistency.

Object persistency follows the idea that each object knows how to store and retrieve itself using
certain interface. This approach is also known as serialization. This comes from the fact that data
is stored and retrieved serially in this mechanism. To implemented a serialization mechanism first
an interface is introduced to all objects that provide a unified form of save and load their state.
For example including a Serialize method for each of them. Then each object implements its
manner of storing and retrieving its data. For objects consisting of simple data this can be done
simply by storing the data sequentially and read it back also sequentially in the same order. Save
and load for a complex object of some other object and also some simple data, consist of putting
simple data as they are and calling Serialize method of all member objects sequentially and
then load them again in the same order also by calling the members Serialize methods. The
important point is calling the Serialize method of each component, which cause each part to
serialize its data and call again Serialize of its components. In this way starting from top of
the data pyramid and start to save or load, system will traverse to the bottom automatically and
cover all data from top to bottom.

An example will this method. Let us implement a serialization mechanism for a simple Mesh
class containing Nodes and Elements and each Element has its Properties as shown in Figure
9.19.

The first step is to create the necessary interface by adding a Serialize method to all objects.
Figure 9.20 shows this interface.

Now let us implement the Serialize methods. While the Mesh does not have any simple data
by itself it just call the Serialize methods of all Nodes and Elements and also some additional
information for retrieving itself.

Serialize(File , State) {

if(State == IsRead ){

File >> NumberOfNodes;

File >> NumberOfElements;

CreateNodesArray(NumberOfNodes );

CreateElementsArray(NumberOfElements );

}

else{

File << NumberOfNodes;

File << NumberOfElements;
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Figure 9.19: A simple Mesh class and its components

}

for(int i = 0 ; i < NumbreOfNodes ; i++)

NodesArray[i]. Serialize(File , State);

for(int i = 0 ; i < NumbreOfElements ; i++)

ElementsArray[i]. Serialize(File , State);

}

Node’s Serialize method is very simple and just transfer its two simple data, Id and Coordinates.

Serialize(File , State) {

if(State == IsRead ){

File >> Id;

File >> Coordinates [0] >> Coordinates [1] >> Coordinates [2];

}

else{

Figure 9.20: Adding the Serialize method to create necessary interface
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File << Id;

File << Coordinates [0] << Coordinates [1] << Coordinates [2];

}

}

But Element has simple data like its Id and also a component which is the Properties. To
handle them the Serialize method will be something like:

Serialize(File , State) {

if(State == IsRead ){

File >> Id;

File >> NodesIds [0] >> NodesIds [1] >> NodesIds [2];

}

else{

File << Id;

File << NodesIds [0] << NodesIds [1] << NodesIds [2];

}

Properties.Serialize(File , State);

}

And finally the Serialize method of Properties finishes by adding its data to the file.

Serialize(File , State) {

if(State == IsRead ){

File >> Id;

File >> Conductivity;

}

else{

File << Id;

File << Conductivity;

}

}

Figure 9.21 Shows the global scheme of the implemented example.
Now to save the Mesh we just need to call its Serialize method with a writing flag:

mesh.Serialize(File , IsWrite );

This causes all Nodes and Elements write themselves in the output file and also each Element
causes its Properties to write itself too. Figure 9.22 shows the sequence of data written in the
output file.

To retrieve data from the file its just necessary to call again the Serialize method of the Mesh
but this time with the reading flag:

mesh.Serialize(File , IsRead );

This method takes first Mesh information and then begin to load Nodes and after that Elements,
as shown in the above pseudo code. Looking to the written data’s sequence shown in Figure 9.22, it
can be easily verified keeping the same order for writing and reading, results in the same structure.

In this simple example the Mesh creates the object by knowing there are Node or Element. In
practice there are many cases which the type of object is not known before reading. For example
a real mesh can have various type of elements. So how can we create them before calling there
Serialize method? There are two ways to solve this problem. The first way is using C++ Run
Time Type Identification (RTTI) to store the object name and create an object using this name.
The second way is to name each object manually and store it as a reference name in order to create
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Figure 9.21: Pseudo implementation of Serialize methods.
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Figure 9.22: Data sequence in output file resulting from the Mesh serialization example

it again. The first method is very robust and easy to use. It is applicable to any type of classes
and is very extendible. The second one is less robust because names are given manually and any
coincidence may cause a problem but it is more tunable because different names can be given to
different states of a class. Both approaches need a registry database which for any given object
name indicates the registered way of create it.

Now let us take a look at pointer management and serializing pointers. Considering an element
class which keeps pointers to its nodes instead of their indices. Applying our standard method will
save the memory address of nodes stored in pointers. While the objects after restoring can be in
other position of memory, this stored address is completely useless to recover the node. A more
careful implementation can save a copy of the pointed node, but this results duplicated nodes and
still it is not what we want. The solution is to give a unique index to each object and store and
retrieve pointed objects by these indices. In our finite element case nodes and elements’ indices fit
well for this purpose.

Serialization is very much dependent on the internal structure of the program. Any time a
component of objects changes the previous stored data will be invalidated. Using versions and
retrieve data by their version solves this problem and it helps to use it in practice.

Serialization in general is very extendible and well suited as a generic solution in saving and
loading tasks. There are libraries which provides a good implementation of serializing libraries
and can be used in other codes to give persistency with minimal effort. XParam [9] and Boost
Serialization library [4] are examples of these libraries. Microsoft Foundation Class (MFC) library
also includes a serialization mechanism but using it introduces a platform dependency on the code
and makes it not portable to other platforms.
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Database persistency on the other hand, comes from the idea that a database must know how
to save and load its data. This approach is less extendible but it works well for working with
databases. Any new object which can be stored in a given database even by its component can
be stored and restored via existing IO without modification. This is the great advantage of this
approach.

9.2.8 Generic Multi-Disciplinary IO

After a short introduction to each different features in IO, now let us see which is necessary and
which can be useful for a generic multi-disciplinary IO.

Supported Media Supported media can be considered as an optional feature. However in order
to add portability to our code or to make it a usable library in some cases it can become neces-
sary. Treating media like formats can give an effective solution to maintain the extendibility
to new media without putting extra effort on it.

Single or Multi IO It is obvious that at the time of designing a generic IO there is no clue about
how it will be used. This increases the amount of encapsulation in our design which is also
the key point to make it usable in multi IO schemes. Also many multi-disciplinary algorithms
are working with multi IO schemes which makes it an essential part of our design.

Data Types and Concepts Making IO extendible to new concepts is essential for a generic
library and also for a multi-disciplinary one. Extendibility to new types is essential for
generic library to guarantee the ease of using it.

Different Format Supporting Though supporting different formats is not a necessary feature,
it is a great added value for any generic library. To develop a generic library having an
extendible interface to new formats increases the use of the generated library because any new
user can make it work with its already existing format. All these makes format extendibility
a part of our IO features to be implemented.

Text or Binary Format Selecting one format depends on the use of the program and not on
the multi-disciplinary nature of it. Deciding to have a extendible multi-format IO opens the
way to implement text or binary formats when they are necessary.

Data or Process IO Process IO is one of the essential features for a multi-disciplinary IO. The
variety of algorithms in solving different problems is source of constant changes in the code
without process IO. Giving the user the ability to change the algorithms or introduce new al-
gorithms without modifying the code dramatically increases the extendibility and reusability
of the library.

Serialization As mentioned earlier, serialization can help to store the state of process to resume
it later. This is a useful feature but in many cases is not necessary. The intention is to use an
existing library (like Boost Serialization) without altering the IO design respect to it. After
all the database approach is always available to add save and load features to the program.

9.3 Designing the IO

In previous section a quick review of differen IO features was presented. Also a brief description
of their influence in design and implementation was given and finally a list of the selected features
was prepared. The next step is to design an IO module considering all those features.
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9.3.1 Multi Formats Support

Let us take the multi formats supporting feature to start the design process. The first goal is
to make an extendible multi format IO. As mentioned before a proper design is to establish an
interface and encapsulate each format support in a separate class. The strategy pattern is what
we are looking for. As mentioned in section 3.4.1, this pattern defines a family of algorithms and
make them interchangeable via encapsulating each one separately, which is what we are looking
for. Applying this pattern to our problem results in the IO structure shown in Figure 9.23.

Figure 9.23: Multi format IO structure

9.3.2 Multi Media Support

Multi media support can be added as the second component for designing IO. The first approach is
to assume that each medium can be used to store any format without dependency. In this case the
bridge pattern can be used to decouple these two concepts and cut their dependencies. Introducing
this pattern to the previous design results in the structure shown in Figure 9.24.

The other approach is treating media like formats and put them in the same structure. This
approach simplifies very much the structure and its implementation. Beside this advantage it
makes strong relation between formats and media and having the same format in two media may
duplicate the code. Figure 9.25 shows this simple modification.

This seems to be too rigid but it can be improved to be more flexible with some minor changes.
Also the independency of medium and format interfaces is guaranteed by the bridge pattern is not
highly necessary in our case and comes at the cost of complicating the structure. In practice big
variety of finite element formats are used to create files, and other types of media are used to work
with other class of formats. So a simplified approach is to work with the second simpler structure
and enrich it via templates or multiple hierarchy as shown in figure 9.26.

9.3.3 Multi IO support

This structure by itself provides multi IO support. In any places where an IO statement is needed,
one can create any IO object and perform its IO without duplicating code. Also in time of
implementation providing some controls can reduce conflicts. Only exception, which is related to
the layering nature of Kratos, is that IO statements cannot be in Node, Element or Conditions
because it violates the layer order as it requires to place upper layer objects in lower layer ones.



222 CHAPTER 9. INPUT OUTPUT

Figure 9.24: Multi format and multi media IO structure

Figure 9.25: Multi format and Medium IO structure
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Figure 9.26: Extended Multi format and Medium IO structure

9.3.4 Multi Types and Concepts

The next feature to add is the extendibility to new types and concepts. As mentioned before this is
an essential feature for a generic multi-disciplinary library. Here the variable base interface comes
handy and it is used to generalize the IO.

The first step is providing IO extendibility to new concepts. As described earlier this can be
done by introducing a lookup table which relates the concept names and their internal handlers.
A simple list of Variables is enough for IO to take as its lookup table. Each Variable knows
its name and also its reference number. In time of reading IO reads a tag and searches in the list
for the Variable whose name coincides with the tag. Then use the variable to store the tagged
value in the data structure. For example, when IO reads a "TEMPERATURE=418.651" statement
from input, takes the "TEMPERATURE" tag and searches in the list to find the TEMPERATURE variable.
Having this variable is enough to use the variable base interface of the data structure to store the
value in it. For writing results there is no need to search in the table. IO can use the variable to get
its value in the database and use its name as the tag. Here is an example of WriteNodalResults
method.

template <class TDataType >

void WriteNodalResults(Variable <TDataType > const& rVariable ,

NodesContainerType& rNodes ,

std:: size_t SolutionStepNumber)

{

for (NodesContainerType :: iterator i_node = rNodes.begin ();

i_node != rNodes.end() ; ++ i_node)

Output << rVariable.Name()

<< "="

<< i_node ->GetSolutionStepValue(rVariable ,

SolutionStepNumber) )

<< std::endl;

}

Now the IO is extendible to new concepts, but what about new Elements and Conditions?
Each new Element or Condition also is a new type which implies that the IO does not know how
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to create it. Again the idea of lookup tables comes handy. Here we need a table for each Element
or Condition and their relative factory method. Prototype pattern helps to manage this situation
in a generic way. Here we reuse each object as its prototype by adding a Clone method to it.
Figure 9.27 shows the Element prototyping mechanism used by IO.

Figure 9.27: Using prototype pattern in IO for creating Elements.

IO uses lookup table to find the object prototype for any component name. This table consists
of representative names and their corresponding prototype. Encapsulating this table introduces
the new KratosComponents class to our structure. KratosComponents class encapsulates a lookup
table for a family of classes in a generic way. Prototypes must be added to this table by unique
names to be accessible by IO. These names can be created automatically using C++ RTTI or given
manually for each component. In this design the manual approach is chosen, so shorter and more
clear names can be given to each component and also there is a flexibility to give different names
to different states of an object and create them via different prototypes. For example having,
TriangularThermalElement and QuadrilateralThermalElement both as different instances of
2DThermalElement initializing with a Triangle or a Quadrilateral.

This structure allows us to create any registered object just by knowing its representative name.
But sometimes it is useful to know the family which an object belongs to. For example at the
time of reading Elements there is no need to search in Variables and Conditions and put all of
them together can slow down the parsing process unnecessarily. Dividing the lookup table to three
family of classes: Variables, Elements and Conditions helps to distinguish them in the time of
search. Doing this also eliminates unnecessary type casting and makes the implementation easier
and clearer. Figure 9.28 shows the resulting structure.

Unfortunately storing Elements and Conditions using their prototyped name requires each
Element and Condition to store their names. This introduces an unnecessary overhead and it is
better to use the RTTI and not manual prototyping.

Conflict arises between accepting new types and multi format supporting. The restriction
comes from format which not only have to support the type but also to indicate the type to IO.
In fact Elements and Conditions provide a uniform initializing interface which is not possible for
different data values. So Variable can create data or clone it from some existing sources but the
IO to set the value of a given Variable needs its type information. However in finite element
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Figure 9.28: Using KratosComponents in IO

formats usually few number of types are available and one can handle them separately at the time
of implementing the input.

9.3.5 Serialization Support

As mentioned before this feature gives new abilities to the program but it is not a very essential
part of IO in our design. Serialization can be implemented separately and parallel to our design.
So it is possible to use an external serialization library without changing our design as shown in
figure 9.29.

9.3.6 Process IO

Understanding a given process by IO needs an interpreter which constructs dynamically the al-
gorithm statements and executes them. The interpreter concept and its design will be described
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Figure 9.29: Using an external serialization library

later. But the important point to mention here is the difference of interpreting inside or outside
the program.

One can implement an interpreter inside any IO subclass and use it in concepts of the IO
module. In this way any application which uses this library can use the interpreter and accepts
scripts without calling any other executable. Also encapsulating the interpreter in IO allows
to implement and use more than one interpreter simultaneously. This allows the user to use
subprograms written in languages different than the main script itself.

Another approach is to implement or use an interpreter like an application with close binding
to our library. In this approach more complex interpreters can be used easier while there is even
no need to compile them. This makes the library more portable and easier to compile.

Finally in practice there is no such a difference between the two approaches. The implemen-
tation cost in both cases is more or less the same. Also modern interpreters can run another
interpreter which make it indifferent to put them inside IO or not. Usually it is better to put the
small interpreters inside the IO and binding to the complex ones as an external application. In
Kratos both approaches are used however this can be changed easily in future.

After designing the main structure of IO, now it is time to go through more details. The first
part will be input interface designing and following that will be the output interface description.

9.3.7 Designing an Input Interface

Looking to the global scheme of a finite element application it can be seen that Nodes, Properties,
Elements, Conditions and initial values are the common input data. So a straightforward design
for input interface consist of methods to extract these objects from an input source. However,
providing these methods is sufficient to start working but still the interface can be extended more
to ease its use. In a finite element program reading data usually consists of filling some finite
element container like Mesh or Modelpart. So it is useful to include also some methods to handle
directly this containers which eases the use of IO and in some cases increases the performance.
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As mentioned before the IO class represents the interface to be implemented in derived classes.
The input part of its interface is defined as shown below:

ReadNode Retrieves the next Node from the input and stop reading. This is useful in manually
reading of especial Nodes. This method gets a reference to the Node to be read and set it by
input information.

ReadNode(NodeType& rThisNode)

ReadNodes Reads all the Nodes in a source until the end of sequence is reached. Normal reading
of Nodes array can be performed using this method. It gets a Nodes array and puts all the
input Nodes inside it.

ReadNodes(NodesContainerType& rThisNodes)

ReadProperties Reads the next Properties from the input and stops reading. It is useful
to update a Properties. For example to read a modified Properties in an optimization
procedure. It takes a Properties and put given information inside it.

ReadProperties(Properties& rThisProperties)

ReadProperties Reading different Properties from input can be done by this method. This
method reads all the Properties until the end of sequence. It takes an array of Properties
and put all the given Properties inside it.

ReadProperties(PropertiesContainerType& rThisProperties)

ReadElement Reads the next Element in the input. This method recognizes any Element regis-
tered in Kratos and reads the first one given as input. This method needs an array of Nodes
and Properties to extract the necessary information to create an Element. It also takes an
Element pointer and assigns it to the new created Element.

ReadElement(NodesContainerType& rThisNodes ,

PropertiesContainerType& rThisProperties ,

Element :: Pointer pThisElement)

ReadElements Elements reading method. This method recognizes any Element registered in
Kratos and reads all the Elements given in the input. This method needs an array of
Nodes and Properties to extract necessary information to create Element. It also takes an
Elements array to put created Elements in it.

ReadElements(NodesContainerType& rThisNodes ,

PropertiesContainerType& rThisProperties ,

ElementsContainerType& rThisElements)

ReadCondition Reads the next Condition in the input sequence. Like the ReadElement method,
needs an array of Nodes and Properties to extract the necessary information to create a
Condition. It also takes a Condition pointer and if the read Condition is not Dirichlet
type, it assigns it to the new created Condition.

ReadCondition(NodesContainerType& rThisNodes ,

PropertiesContainerType& rThisProperties ,

Condition :: Pointer pThisCondition)
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ReadConditions Conditions reading method. This is very similar to ReadElements but look for
Conditions instead of Elements. This method also reads Dirichlet type conditions given as
input. Also like ReadElements it takes arrays of Nodes and Properties to create Conditions.
The generated Conditions are placed in the given Conditions array.

ReadConditions(NodesContainerType& rThisNodes ,

PropertiesContainerType& rThisProperties ,

ConditionsContainerType& rThisConditions)

ReadInitialValue Reads the next initial value from the input and puts it in data structure. It
takes Nodes, Elements and Conditions and assign them their initial values.

ReadInitialValues(NodesContainerType& rThisNodes ,

ElementsContainerType& rThisElements ,

ConditionsContainerType& rThisConditions)

ReadInitialValues Reads all initial values and put them in the data structure. It takes Nodes,
Elements and Conditions to assign their initial values given by input.

ReadInitialValues(NodesContainerType& rThisNodes ,

ElementsContainerType& rThisElements ,

ConditionsContainerType& rThisConditions)

ReadMesh Reads all Nodes, Properties, Elements and Conditions and store them in the given
Mesh. This method is the easiest way to fill the Mesh at the beginning of program.

ReadMesh(MeshType & rThisMesh)

ReadModelPart Reads all Nodes, Properties, Elements and Conditions and store them in the
given ModelPart. It also initialize the ModelPart name and its attributes.

ReadModelPart(ModelPart & rThisModelPart)

It is important to mention that above methods are just the interface and each derive class may
implement all or just a set of them. So to avoid unexpected problems it is useful to put an error
message in all IO methods and inform the user about calling some unimplemented feature in the
derived class.

virtual void ReadModelPart(ModelPart & rThisModelPart)

{

KRATOS_ERROR(std:: logic_error ,

"Calling base class member. Please check the ...", "");

}

9.3.8 Designing the Output Interface

The output interface is defined by IO and output format is encapsulated in IO derived classes. The
first part of the interface is devoted to writing basic objects. These methods are helpful for example
to write a restart file. Also methods to write finite element containers are provided. These methods
are useful in term of exporting the model or giving additional information to thepost processors.
Finally there is a part of the interface dedicated to writing results. Here is the list of available
output methods:
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WriteNode Writes given Node into the output. This method may also write nodal data if the
output format require it.

WriteNode(NodeType const& rThisNode)

WriteNodes This method writes an array of Nodes into the output. It can be used also to create
the restart file. Its argument is simply a Node container.

WriteNodes(NodesContainerType const& rThisNodes)

WriteProperties Takes a Properties and writes it into the output. This method is useful to
communicate some Properties or communicate it via an interface.

WriteProperties(Properties const& rThisProperties)

WriteProperties Writes all given Properties to the output. Takes a Properties container
and write all of them. This method can be used to create restart file by giving writing all
Properties in it.

WriteProperties(PropertiesContainerType const& rThisProperties)

WriteElement Writes an Element into the output. It takes an Element as its argument. It is
useful to do a selective writing between Elements.

WriteElement(Element const& rThisElement)

WriteElements This method takes a container of Elements and write all of them into the output.
So it is a useful method to write a restart file by passing all Elements to it.

WriteElements(ElementsContainerType const& rThisElements)

WriteCondition Writes the given Condition into the output.

WriteCondition(Condition const& rThisCondition)

WriteConditions Takes a container of Nodes and writes the Dirichlet conditions assigned to each
Node. This method can be used to write the restart file.

WriteConditions(NodesContainerType const& rThisNodes)

WriteConditions An overload of previous method which takes a container of Conditions and
write them into the output. This method also is useful to write the restart file.

WriteConditions(ConditionsContainerType const& rThisConditions)

WriteMesh This method writes all the Nodes, Properties, Elements and Conditions in the
given Mesh to the output. This makes it one of the best methods to write the restart file or
it can be also used to create additional information for post processing task.

WriteMesh(MeshType const& rThisMesh)

WriteModelPart Writes all the Nodes, Properties, Elements and Conditions for a given
ModelPart into the output. This method also puts the ModelPart attributes into the output.
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WriteModelPart(ModelPart const& rThisModelPart)

WriteNodalResults This method writes the nodal value of a given Variable for all given Nodes
into the output. This method can be used to write nodal results for post processing. It takes
the variable to be written and a container of Nodes which their values must be written. Also
it takes a ProcessInfo which gives extra information for writing results, like the time step.

WriteNodalResults(VariableData const& rVariable ,

NodesContainerType& rNodes ,

ProcessInfo & rCurrentProcessInfo)

WriteElementalResults This method writes the elemental value of given variable into the out-
put. This method can be use to write elemental results for post processing. It takes the
variable to be write and a container of Elements which their values must be written. Also it
takes a ProcessInfo which gives extra information for writing results, like the time step.

WriteElementalResults(VariableData const& rVariable ,

ElementsContainerType& rElements ,

ProcessInfo & rCurrentProcessInfo)

WriteIntegrationPointsResults This method writes the result calculated on integration points
of given Elements into the output. It takes the variable to be write and a container of
Elements which their integration points values must be written. Also it takes a ProcessInfo
which gives extra information for writing results like time step.

WriteIntegrationPointsResults(VariableData const& rVariable ,

NodesContainerType& rNodes ,

ProcessInfo & rCurrentProcessInfo)

There is an important detail to be mentioned here. It can be seen that the last three methods are
taking VariableData as their argument and not a typed variable or components. In C++ template
function cannot be defined as virtual. This prevent us to make these methods a template. So to
have it still extendible to new type the interface provide just a very general interface and each
implementation has to check the type of variable via RTTI and then dispatch it to the proper
implementation.

9.4 Writing an Interpreter

This section describes a step by step approach to write an interpreter. First the global structure
and its components will be commented. Then creating an interpreter by using two different tools
is described.

9.4.1 Global Structure of an Interpreter

An interpreter usually is divided into two parts as shown in figure 9.30.
The first part is the lexical analyzer. This part reads the input characters, for example a source

file or given command line statement, and converts it to a sequence of tokens, like digits, names,
keywords, etc., usable for parser. Since white spaces (like blank, tab and newline characters) and
comments are not used in parsing the code, there is a secondary task for a lexical analyzer to
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Figure 9.30: Global structure of an interpreter

eliminate all white spaces and also comments during the analysis. The lexical analyzer may also
provide additional information for the parser to produce more descriptive error messages.

A token is a sequence of characters having a logical meaning or making a unit in our grammar.
One can divide tokens in different categories depending on the grammar working with. Table 9.3
shows some examples of tokens.

Token’s Type Examples
INTEGER 1 34 610
REAL 0.23 4.57 2e-4
IF if
FOR for
LPARENTHESES (
RPARENTHESES )

Table 9.3: Some typical tokens with example of matching sequences

If more than one sequence of input characters matches to a token then this token must provide
a value field to store the input data represented by it. To clarify the concept of token and lexical
analyzer let make an example. Considering a simple C if statement:

if(x > 0.00)

return 0;

passing it to a C lexical analyzer would result in the sequence of tokens:

IF LPARENTHESES ID(x) GREATER REAL(0.)
RPARENTHESES RETURN INTEGER(0) SEMICOLON

The second part is the parser. Parser does the syntax analysis. Takes the tokens from lexical
analyzer and tries to find their relation and meaning due to its grammar. Parser produces a parse
tree by putting together recognized statements and their sub-operations. This tree can be used to
execute the given source. For example passing above sequence of tokens to a C parser would result
in a parse tree as presented in figure 9.31.

There are several reasons to separate the lexical analyzer from the parser. The first one is
simplifying the design and reducing parser complexity. Creating a parser over separated tokens
without any comments or whitespaces is easier than a parser over input characters. The second
reason is improving the performance of the interpreter. Large amount of interpreter time spent to
do the lexical analysis, separating it and using techniques like buffering can increase significantly
the performance. Another reason is related to portability and reuse ability of the interpreter. Any
problem due to the different character maps in different devices can be encapsulated in the lexical
analyzer without changing the parser.

In some cases, the lexical analyzer is also divided into two phases. A scanner which does simple
tasks like removing comments and whitespaces, and analyzer which does the real complex job.
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Figure 9.31: Parse tree for if statement example

Now let us go inside the each part and see how to implement it.

9.4.2 Inside a Lexical Analyzer

A lexical analyzer uses some patterns to find tokens in a given sequence of characters. Usually
these patterns are specified by regular expressions. So before starting with the lexical analyzer
pattern a brief description of regular expressions is necessary.

Regular expressions

A language can be considered as a set of strings with some special properties. So it is important
to describe exactly these properties to define a language. Regular expressions are the common
notation to define these concepts in a generic way.

This notation consist of some rules which let regular expression r denoting the language L(r) and
also some other rules to combine different expressions together in different ways. This combination
rules makes it very powerful in term of dividing complex definition to simpler ones or to reuse some
expressions to make a more complex one.

Regular expressions rules consist of symbol collective rules from a set of symbols called alphabet,
which regular expression is defined over it. Here are the rules which define the regular expression
over alphabet Σ:

Epsilon ε is a regular expression to denote the language {ε} containing just the empty string .

Symbol For a symbol a in Σ, the regular expression a denotes the language {a}, whose only string
is a.

Alternative Alternative operator written with a vertical bar | combines two regular expressions
r and s into new regular expression r|s. This expression represent the language L(r)

⋃
L(s)

that contains all strings contained by either r or s. For example a|b represents the language
{a, b}.

Concatenation Two regular expressions r and s can be combined into a new regular expression
r · s using the concatenation operator ·. This new expression denotes the language L(r)L(s)
that contains all strings αβ for all α ∈ L(r) and β ∈ L(s). For example a · b denotes the
language {ab}. In some notations the · symbol is simply omitted and putting two expressions
simply one after other means concatenation, a · b ≡ ab.

Repetition Repetition operator ∗, or Kleene star, applied to a regular expression r represents the
language L(r)∗ that contains strings with zero or more instances of any symbol in L(r). For
example, (a|b)∗ represents the language {ε, a, b, aa, ab, ba, bb, aaa, aab, ...}.
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Parentheses Parentheses can be use to group an operation and applying it to a single rule will
not change the expression rule.

There is also some conventions in precedence of operators which helps to reduce ambiguities:

• Kleene star has the highest precedence.

• Concatenation has the second precedence.

• Alternative operator has the lowest precedence.

• All these operators are left associative.

Finally there are some abbreviations for frequent expressions which eases its use in practice:

Positive closure The positive closure operator + is left associative and applied to the regular
expression r denotes the language L(r)+ which contains one or more instances of any symbol
in L(r). This operator has the same precedence as the repetition operator ∗. r∗ = r+|ε
and r+ = rr∗ equations describes the relation between the positive closure operator and the
repetition operator. For example, (a|b)+ represents the language {a, b, aa, ab, ba, bb, ...}.

Zero or one instances Applying the unary operator ? to the regular expression r denotes the
language L(r)

⋃{ε} which contains zero or one instance of any symbol in L(r). This operator
is the abbreviation of r|ε. For example, (a|b)? represents the language {ε, a, b}.

Character classes For alphabet symbols a,b,...,z The notation [abc] is equivalent to a|b|c and the
[a− z] is equivalent to a|b|...|z. This two abbreviations can also be combined. For example a
C identifier can be any letter followed by zero or more letters or digits. This definition can
be written using regular expression [A − Za − z][A − Za − z0 − 9]∗.

After a brief description of regular expressions, now it is time to take a look at the lexical
analyzer itself.

Lexical Analyzer

As mentioned before a lexical analyzer is in charge of converting a sequence of characters as its
input to a sequence of tokens as its output using some patterns. Usually regular expressions are
used to specify these patterns. For example to read the following node statements:

// A typical Node Statement

Node (1 ,1.00 ,0.00 ,0.00)

The lexical analyzer need to understand the Node keyword, integer, real parenthesis and also
comments. Here are the regular expressions defining legal tokens and their corresponding actions
for this case:

Node {return NODE_TOKEN}

[0-9]+ {return INTEGER_TOKEN}

([0 -9]+"."[0 -9]*)|([0 -9]*"."[0 -9]+) {return REAL_TOKEN} "//"("

"|[A-Za-z0 -9])*"\n" {/* It is just comment */} "

"|"\n"|"\t" {/* white spaces */}

These rules are somehow ambiguous. For example reading the x coordinate 1.00 can create
a problem while the first 1 can be recognized as an integer and the .00 as a double after it! To
reduce this ambiguities lexical analyzers use two additional rules:
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Figure 9.32: Finite automata example

Longest match Analyzer tries to find the longest sequence of input characters that can match
to one of the patterns.

Pattern priority For a particular longest string which can much, the first regular expression
which matches to it has priority to determine its type.

The idea here is to create a mechanism to convert a given regular expressions to a lexical
analyzer automatically. The method is to convert given regular expressions to a graph which can
be implemented easily.

First the regular expression has to be converted to finite automata. The finite automata is a
graph consisting of finite set of states connected by edges and each edge is labeled with a symbol.
This graph shows the way a sequence of character can traverse all states to be matched to a regular
expression. Finite automata is deterministic if all its states have a maximum of one edge going
out for a symbol and any state with more than one outward edge for a symbol converts it to a
nondeterministic finite automata.Figure 9.32 shows a finite automata of the regular expressions in
previous example.

Now let us combine all these separate finite automata in a single one which represents our lexical
analyzer. For this small example this can be down manually but in practice manual combination
can be impossible. Fortunately there are some ways to do this automatically. These methods are
consist of converting the regular expressions to nondeterministic finite automata (NFA) and then
reduce them to a deterministic finite automata (DFA) plus some optimizations. Detail information
about automatic converting procedure of regular expressions into deterministic finite automata can
be found in [12, 13, 16]. Here the manual combination is used to create the complete graph shown
in figure 9.33.

Finally this combined graph can be converted to a transition table. This table consists of several
rows, one for each state and also several columns, one for each symbol. Each field contains the
target state number for its row state giving its column symbol.

Having a transition table, analyzing an algorithm is very easy to implement. The program first
reads a character and goes to the field corresponding to the state 1’s row and to this symbol’s
column. This field contains the target state which is for example state 7. Then it reads the next
character and goes to state 7’s row and to this new symbol’s column to find the next step and so
on. An auxiliary array which maps the state numbers to actions is also necessary to verify if a
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Figure 9.33: Combined finite automata example

pattern is matched what is the action to perform. To find the longest match is just need to store
the last match found and update it each time a new match is found. This procedure continues
until a dead state is reached. In this time the last match case, if there is any, is returned or if there
is no match an error can be send.

9.4.3 Parser

A lexical analyzer prepares tokens to be analyzed by the parser and create the parse tree to be
executed. The parser tries to match a given sequence of tokens to a pattern. Here a context free
grammar is used to specify the patterns. So let see what it is before continuing with the parser.

Context Free Grammar

The idea of this notation is to group basic parts in some more complex ones like regular expres-
sions and also to make a recursive use of symbols to enable recursively construction of complex
statements.

A context free grammar consists of terminals, nonterminals, productions and also a start sym-
bol.

Terminal Terminals are the basic units of grammar. In grammars for programming languages
terminals are equivalent to tokens. In our case each token is a terminal in the context free
grammar.

Nonterminal Nonterminals are syntatic variables that represents a group of terminals or nonter-
minals as a part of a language syntax.

Production Production is the manner of defining a nonterminal by combination of terminals and
nonterminals. Production has a general form of:

nonterminal → sting of terminals and nonterminals

In some notations symbol ::= is used instead of the arrow.
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Start Symbol It is a nonterminal that is selected as a start symbol and denotes the language
defined by the grammar.

To make this definition clear let is create a grammar to define the previous node input file
language:

• statement → statement | node creator

• node creator → Node ( integer , coordinates)

• coordinates → real , real , real

The third line creates a pattern of coordinates with three reals separated by a comma. The
second line gives the pattern for construction a Node. Finally the first line define the statement
which is constructing the Node or itself. This leads parser to recurse and reads all the node
statements comes statements comes after.

It can be verified that every regular expression set is a context free grammar by itself. This may
introduce a question, Why use regular expression to define lexical patterns and not the context
free grammar by itself. Here are some reasons:

• Regular expressions are enough to define the syntax and there is no need to deal with the
complexity of context free grammars.

• Regular expressions are easier to understand and they define a token more clear.

• Lexical analyzer can be automatically optimized to be more efficient when constructed over
regular expression rather than a generic grammar.

Designing a Parser

To design a parser the Interpreter pattern is what we are looking for. A context free structure can
be represented by this structure and then used to create the parse tree to execute the source code.

In general there are various ways to implement a parser in the literature [12, 13, 16]. Also
there are some tools to generate parser. Here we will use this tools without going into the parser
implementation details.

9.4.4 Using Lex and Yacc, a Classical approach

There are several tools to create a parser. Among these, Lex and Yacc are two classic ones.
Lex is a lexical analyzer generator. It takes a lexical specification as input and produces a lexical

analyzer written in C. Lexical specification contains regular expression defining each token and also
an action that will be executed when an input sequence is matched to a regular expression. These
actions are normal C statements and usually returning the token for their case. The backward
of Lex is its performance. Fast lexical analyzer generator (Flex) is significantly faster than Lex
[16] and solves the problem of performance, But still it generates a C code. Though there is no
problem in binding a C code to a C++ program, this still pollutes the scope by using several global
variables and functions. This also make it difficult to maintain more than one lexical analyzer in
the same code. In this work a C++ variation of Flex named Flex++ is used to generate the lexical
analyzer.

Yet Another Compiler-Compiler (Yacc) is a classic and widely used parser generator. There
are several compilers implemented using Yacc. Bison is another parser generator which is more
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modern than Yacc but is upward compatible with it. Both generate parsers which are implemented
in C language. In this work Bison++ is used which is a variety of Bison that generates parsers
implemented in C++.

Using Flex

Flex++ like Lex uses lexical specifications to generate the lexical analyzer. This specifications must
be prepared by creating an input file usually with extension ”l”, like ”input.l”, and consists of
three parts separated by %%:

%{

C++ Definitions

%}

Lex Definitions

%%

Regular expressions and their actions

%%

Auxiliary procedures

The first part is for definitions which is also divided in two parts, C++ definitions part which
is enclosed between %{ %} symbols and Lex definitions parts. FLex++ simply puts the C++
declaration part above the generated output file. This part usually contains the necessary include
files and some macro definitions to customize the generated code. In our case the C++ declaration
part is:

%{

#define YY_DECL \

int Kratos :: InputCScanner ::yylex(yy_InputCParser_stype &yylval)

#include <iostream >

#include <malloc.h>

#include "includes/input_c_parser.h"

#include "includes/input_c_scanner.h"

int yyFlexLexer :: yylex (){ return 0; }

%}

The lex definition part is to put macros for lex or conditions to be used afterwards. Here is an
example of macro definition:

DIGIT [0-9]

ID [a-z][a-z0 -9]*

In this case only a condition for comments is defined here:

%x COMMENT

The second part is to define rules. Each rule is a regular expression and its corresponding
action. In Kratos four groups of rules are defined:

• Rules to handle comments. C++ comments are accepted in this format. One point here is
to keep line numbering inside the comments. Another point is to give a warning in case of
comments in comments.



238 CHAPTER 9. INPUT OUTPUT

\n { ++ mNumberOfLines; }

"//".*$ /* remove one line coments */

"/*" { BEGIN COMMENT; }

<COMMENT >"/*" { Warning("Comment in comment."); }

<COMMENT >\n { ++ mNumberOfLines; }

<COMMENT >[^*/\n]* ;

<COMMENT >"*"+[^*/\n]* ;

<COMMENT >"/"+[^*/\n]* ;

<COMMENT >"*"+"/" { BEGIN INITIAL; }

• The second group are symbols. Most of them are passed as they are. In more formal way
each symbol must be passed by a representative token which is not done here for simplicity.

\[|\]|"("|")"|"{"|"}" { return yytext [0]; }

"=" { return yytext [0]; }

","|";"|"."|":" { return yytext [0]; }

"<"|">" { return yytext [0]; }

"==" { return InputCParser :: EQUAL_TOKEN; }

"!=" { return InputCParser :: NOT_EQUAL_TOKEN; }

" <=" { return InputCParser :: LESS_EQUAL_TOKEN; }

" >=" { return InputCParser :: GREATER_EQUAL_TOKEN ;}

"+"|"-" { return yytext [0]; }

• After symbols there are rules to define Kratos variables. Here are some examples of these
rules:

TEMPERATURE {

yylval.double_variable = &TEMPERATURE;

return InputCParser :: DOUBLE_VARIABLE_TOKEN;

}

VELOCITY {

yylval.vector_double_variable = &VELOCITY;

return InputCParser :: VECTOR_DOUBLE_VARIABLE_TOKEN;

}

• And finally rules for keywords:

NODES { return InputCParser :: NODES_TOKEN; }

PROPERTIES { return InputCParser :: PROPERTIES_TOKEN; }

Node { return InputCParser :: NODE_TOKEN; }
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Fix { return InputCParser :: FIX_TOKEN; }

ElementsGroup { return InputCParser :: ELEMENTS_GROUP_TOKEN; }

ELEMENTS { return InputCParser :: ELEMENTS_TOKEN; }

LinearSolver { return InputCParser :: LINEAR_SOLVER_TOKEN; }

SolvingStrategy { return InputCParser :: SOLVING_STRATEGY_TOKEN; }

Smooth { return InputCParser :: SMOOTH_TOKEN; }

Map { return InputCParser :: MAP_TOKEN; }

DataMapper { return InputCParser :: MAPPER_TOKEN; }

for { return InputCParser :: FOR_TOKEN; }

Solve { return InputCParser :: SOLVE_TOKEN; }

MoveMesh { return InputCParser :: MOVE_MESH_TOKEN; }

Print { return InputCParser :: PRINT_TOKEN; }

Execute { return InputCParser :: EXECUTE_TOKEN; }

CreateSolutionStep {return InputCParser :: CREATE_SOLUTION_STEP_TOKEN; }

CreateTimeStep { return InputCParser :: CREATE_TIME_STEP_TOKEN; }

There are also some other rules defines to scape white spaces our returning not matches words.
The third part of Flex input is to put the auxiliary procedures which in this case is left empty.
Flex++ takes these information to generate the transition tables and also a generic code to be

called by Bison++ later.

Using Bison++

Like Flex++, specifications for Bison++ must be prepared in a file but usually with extension
”y”, like ”input.y”. This file again consists of three parts separated by %%:

%{

C++ Definitions

%}

Parser Definitions

%%

grammar rules

%%

Auxiliary codes
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The C++ definition here is important because all definitions of the abstract tree classes goes
there:

%{

Kratos :: String block_name;

class Statement{

public:

Statement (){}

virtual void Execute(Kratos :: Kernel* pKernel ){}

virtual int Value(Kratos :: Kernel* pKernel ){ return 0;}

};

class BlockStatement : public Statement {...};

class GenerateNodeStatement : public Statement {...};

template <class TDataType >

class GeneratePropertiesStatement : public Statement {...};

class SetElementsGroup : public Statement {...};

class GenerateElementStatement : public Statement {...};

class FixDofStatement : public Statement {...};

template <class TDataType >

class SetSourceStatement : public Statement {...};

class GenerateLinearSolverStatement : public Statement {...};

class GenerateSolvingStrategyStatement : public Statement {...};

class GenerateMapperStatement : public Statement {...};

class SolveStatement : public Statement {...};

class MoveMeshStatement : public Statement {...};

class ProcessStatement : public Statement {...};

class ForStatement : public Statement{

Statement* mpFirst;

Statement* mpSecond;

Statement* mpThird;

Statement* mpForth;

public:

ForStatement(Statement* pFirst , Statement* pSecond ,

Statement* pThird , Statement* pForth) :

mpFirst(pFirst), mpSecond(pSecond),

mpThird(pThird), mpForth(pForth) {}
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~ForStatement (){

delete mpFirst; delete mpSecond;

delete mpThird; delete mpForth;

}

void Execute(Kratos :: Kernel* pKernel ){

for(mpFirst ->Execute(pKernel ); mpSecond ->Value(pKernel) ;

mpThird ->Execute(pKernel ))

mpForth ->Execute(pKernel );

}

};

template <class TDataType >

class PrintStatement : public Statement {...};

template <class TDataType >

class PrintOnGaussPointsStatement : public Statement {...};

template <class TDataType >

class SmoothStatement : public Statement {...};

template <class TDataType >

class MapStatement : public Statement {...};

class CreateTimeStepStatement : public Statement {...};

class CreateSolutionStepStatement : public Statement {...};

template <class TFunction , class TDataType >

class LogicalStatement : public Statement {...};

template <class TDataType >

class ValueStatement {...};

template <class TDataType >

class ConstantValueStatement : public ValueStatement <TDataType > {...};

template <class TDataType >

class VariableStatement : public ValueStatement <TDataType > {...};

template <class TFunction , class TDataType >

class BinaryVariableStatement : public ValueStatement <TDataType > {...};

template <class TDataType >

class AssigningVariableStatement : public Statement {...};

template <class TDataType >

class AssigningNodalVariableStatement : public Statement {...};

%}

The class implementations are removed to reduce the size of the document. The second division
is for parser definitions. Macro definitions with all tokens and nonterminal declarations are placed
here:
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%define CONSTRUCTOR_PARAM Kratos :: Kernel* ...

%define CONSTRUCTOR_INIT : mInputCScanner(pNewInput , ...

%define YY_InputGid_CONSTRUCTOR_CODE

%define LEX_BODY { return mInputCScanner.yylex(yylval ); }

%define MEMBERS Kratos :: InputCScanner mInputCScanner ;...

%token <integer_value > INTEGER_TOKEN

%token <double_value > DOUBLE_TOKEN

%token <string_value > WORD_TOKEN

%token <double_variable > DOUBLE_VARIABLE_TOKEN

%token <vector_double_variable > VECTOR_DOUBLE_VARIABLE_TOKEN

%token <matrix_variable > MATRIX_VARIABLE_TOKEN

%token OPEN_BRACKET_TOKEN

%token CLOSE_BRACKET_TOKEN

%token NODES_TOKEN

%token NODE_TOKEN

%token PROPERTIES_TOKEN

%token ELEMENTS_GROUP_TOKEN

%token ELEMENTS_TOKEN

%token ELEMENT_TOKEN

%token BEGIN_TOKEN

%token END_TOKEN

%token FIX_TOKEN

%token SOURCES_TOKEN

%token FOR_TOKEN

%token SOLVE_TOKEN

%token MOVE_MESH_TOKEN

%token PRINT_TOKEN

%token PRINT_ON_GAUSS_POINTS_TOKEN

%token EXECUTE_TOKEN

%token TRANSIENT_TOKEN

%token ALPHA_TOKEN

%token SMOOTH_TOKEN

%token MAP_TOKEN

%token MAPPER_TOKEN

%token LINEAR_SOLVER_TOKEN

%token SOLVING_STRATEGY_TOKEN

%token EQUAL_TOKEN

%token NOT_EQUAL_TOKEN

%token LESS_EQUAL_TOKEN

%token GREATER_EQUAL_TOKEN

%token CREATE_SOLUTION_STEP_TOKEN

%token CREATE_TIME_STEP_TOKEN

%type <statement_handler > statement

%type <statement_handler > expresion

%type <statement_handler > node_generating

%type <statement_handler > properties_adding

%type <statement_handler > set_elements_group

%type <statement_handler > element_generating

%type <statement_handler > nodes_variables_fixing

%type <statement_handler > nodes_variables_setting

%type <statement_handler > elements_variables_fixing
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%type <statement_handler > linear_solver_generating

%type <statement_handler > solving_strategy_generating

%type <statement_handler > mapper_generating

%type <statement_handler > solve_process

%type <statement_handler > move_mesh_process

%type <statement_handler > execute_process

%type <statement_handler > print_process

%type <statement_handler > print_on_gauss_points_process

%type <statement_handler > smooth_process

%type <statement_handler > map_process

%type <statement_handler > step_creating

%type <statement_handler > time_step_creating

%type <statement_handler > for_loop

%type <statement_handler > assignment_expresion

%type <statement_handler > logical_expresion

%type <block_statement_handler > block_generating

%type <block_statement_handler > block

%type <double_value_statement_handler > double_variable_expresion

%type <integer_value > integer_expresion

%type <integer_value > integer_index

%type <integer_value > nodes_array

%type <integer_value > elements_array

%type <integer_value > properties_array

%type <double_value > double_expresion

%type <vector_integer_value > integer_sequence

%type <vector_integer_value > vector_integer

%type <vector_double_value > vector_double

%type <matrix_double_value > matrix

%type <vector_double_value > double_sequence

%type <vector_vector_double_value > vector_double_sequence

The second part holds grammar definitions in context free format and their corresponding
semantic actions. Here is the organization grammar for input:

statement : expresion ’;’ {$$ = $1}

| block {$$ = $1;}

| for_loop {$$ = $1;}

;

expresion : assignment_expresion {$$ = $1;}

| logical_expresion {$$ = $1;}

| node_generating {$$ = $1}

| properties_adding {$$ = $1;}

| set_elements_group {$$ = $1;}

| element_generating {$$ = $1;}

| nodes_variables_fixing {$$ = $1;}

| nodes_variables_setting {$$ = $1;}

| elements_variables_fixing {$$ =$1;}

| solve_process {$$ = $1;}

| move_mesh_process {$$ = $1;}

| execute_process {$$ = $1;}

| print_process {$$ = $1;}

| print_on_gauss_points_process {$$ = $1;}

| smooth_process {$$ = $1;}
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| map_process {$$ = $1;}

| linear_solver_generating {$$ =$1;}

| solving_strategy_generating {$$ = $1;}

| mapper_generating {$$ = $1;}

| step_creating {$$ = $1;}

| time_step_creating {$$ = $1;}

;

block : block_generating ’}’

{

$$ = $1;

}

block_generating : ’{’ statement

{

$$ = new BlockStatement ();

$$->AddStatement($2);

}

| block_generating statement

{

$1->AddStatement($2);

$$ = $1;

}

The rest of definitions have not brought here to reduce the size of listing. The third part is for
the auxiliary function. In our case an error reporting function is defined here is:

using Kratos :: Exception;

void InputCParser :: yyerror( char *s) {

Kratos :: String buffer;

buffer << "Pars error in line no "

<< mInputCScanner.rNumberOfLines ()

<< ", last token was : "

<< mInputCScanner.GetYYText ();

KRATOS_ERROR(std:: runtime_error , "Reading Input", buffer , "");

}

9.4.5 Creating a new Interpreter Using Spirit

Flex++ and Bison++ are great tools to generate an interpreter but they have been put aside
from this work for mainly two reasons. The first was changes in the strategy of code development
form creating a sophisticated interpreter to using an existing one. The idea was to have a simple
but flexible data IO and using an existing interpreter for process IO. By the way for reading data
still a simple parser was necessary, but these tools were too heavy to be used for this case. The
other reason was portability and maintaining issues.Any small changes in grammar, for example
introducing a new variable name, requires to regenerate the parser and then recompile the program.
In practice this yields portability problems specially in Windows, due to the incompatibilities
between Linux and Windows compilations of these tools.

Spirit is an object-oriented parser generator framework implemented in C++ using template
meta-programming techniques. Spirit enable us to write the context free grammar directly in C++
code and compile it with a C++ code to generate the parser. In this way the translation step from
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context free grammar to a parser implemented in C++ by an external tool is omitted. There are
several small parsers already defined in Spirit which help users to implement its parsers easier.

Parsing in Spirit can be done using one of the overloaded parse functions. Some of these
overloads work in character level while some others work in phrase level and take and skip parser.
This skip parser is helpful for example in skipping white spaces and comments. The parse function
is also overloaded respected to its input. There are overloads that accept first and last operator like
STL algorithms, and others which accept a null terminating string. Phrase level parse functions
with first and last iterator as input are used in this work:

template <typename IteratorT , typename ParserT , typename SkipT >

parse_info <IteratorT > parse

(

IteratorT const& first ,

IteratorT const& last ,

parser <ParserT > const& p, // Grammar rules

parser <SkipT > const& skip // Skip rules

);

Now let us start to create a parser for reading our node statement example. This helps to see
how a simple parser can be generated using Spirit. Here is the statement to be parsed:

// a node statement:

// Node(Index ,X,Y,Z);

Node(1, 0.02, 1.00, 0.00);

First we need to use Spirit grammar components to define our grammar. Table 9.4 shows
valid operators in Spirit. These operators are defined to be as close as possible, respecting to the
C++ language restrictions, to their corresponding regular expression operators. So understanding
regular expressions helps to use Spirit as well.

Operator Description
!P Zero or One P
*P Zero or more P
+P One or more P
~P Anything except P
P1 % P2 One or more P1 separated by P2
P1 - P2 P1 but not P2
P1 >> P2 P1 followed by P2
P1 & P2 P1 and P2
P1 ^ P2 P1 or P2, but not both
P1 | P2 P1 or P2
P1 && P2 Synonym for P1 >> P2
P1 || P2 P1 or P2 or P1 >> P2

Table 9.4: Spirit’s operators

Using this operators together with some predefined Spirit parsers creates the necessary grammar
to read the node statements:

(

str_p("Node")

>> ’(’
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>> uint_p

>> ’,’

>> real_p

>> ’,’

>> real_p

>> ’,’

>> real_p

>> ’)’

)

str p is a predefined parser which matches input with given string which is "Node". uint p
is another parser which matches to an unsigned integer in input and used to read the index of
the Node. real p used to read coordinates. It matches to a real number from input. Finally any
character matches to itself. This grammar can be used to parse the statement but still there is no
action to do when input matches each part. So we have to add some actions to it:

(

str_p("Node")

>> ’(’

>> uint_p[assign_a(node.Id())]

>> ’,’

>> real_p[assign_a(node.X())][ assign_a(node.X0())]

>> ’,’

>> real_p[assign_a(node.Y())][ assign_a(node.Y0())]

>> ’,’

>> real_p[assign_a(node.Z())][ assign_a(node.Z0())]

>> ’)’

)

Here assign a is an action which retrieves the value read by parser and assign it to its argument.
Also it can be seen that actions can be cascaded when there are more than one action has to be
performed for a rule. For handling comments and white spaces we need a skip parser. This parser
can be written easily as below:

(space_p | comment_p("//") | comment_p("/*", "*/"))

space p is a parser already defined in Spirit which matches to any white space character.
There is another predefined parser in sprit which handles comment patterns. comment p with just
one argument matches to a sequence starting with given string and finished by end of line, like
C++ comments. comment p with two arguments matches with a sequence starting from the first
argument and finished with second one, like C comments.

Now let us put every things together and create our ReadNode method:

void ReadNode(NodeType& rNode ,

IteratorType First ,

IteratorType Last)

{

using namespace boost :: spirit;

parse(First , Last ,

// Begin grammar

(

str_p("Node")

>> ’(’

>> uint_p[assign_a(rNode.Id())]
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>> ’,’

>> real_p[assign_a(rNode.X())][ assign_a(rNode.X0())]

>> ’,’

>> real_p[assign_a(rNode.Y())][ assign_a(rNode.Y0())]

>> ’,’

>> real_p[assign_a(rNode.Z())][ assign_a(rNode.Z0())]

>> ’)’

)

// End grammar

,

// Skip grammar

(space_p | comment_p("//") | comment_p("/*", "*/")));

}

That’s it! This function can parse any sequence of characters given by iterators First and
Last. But we may need to parse an input data file. This can also be done by slightly modifying
above function. Spirit provides a file iterator which can be used in the same way that normal the
iterators are used. Here is the new version of ReadNode which is able to read a Node from an input
file:
void ReadNode(NodeType& rNode ,

std:: string Filename)

{

using namespace boost :: spirit;

FileIterator first(Filename );

FileIterator last= First.make_end ();

parse(first , last ,

// Begin grammar

(

str_p("Node")

>> ’(’

>> uint_p[assign_a(rNode.Id())]

>> ’,’

>> real_p[assign_a(rNode.X())][ assign_a(rNode.X0())]

>> ’,’

>> real_p[assign_a(rNode.Y())][ assign_a(rNode.Y0())]

>> ’,’

>> real_p[assign_a(rNode.Z())][ assign_a(rNode.Z0())]

>> ’)’

)

// End grammar

,

// Skip grammar

(space_p | comment_p("//") | comment_p("/*", "*/")));

}

In this IO we also want to parse new components, for example new variables, Elements, or
Conditions, without changing and updating the parser each time. Spirit provides a symbols
class which fits well to our purpose. This class is a parser associated with a symbol table. This
table can be initialized with different symbols and parser matches to any symbol stored in its
table. So adding KratosComponents elements to a symbol class provides a parser to match these
components.
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template <class TComponentType >

class ComponentParser :

public symbols <reference_wrapper <TComponentType const > >

{

public:

ComponentParser ()

{

typedef KratosComponents <TComponentType > ComponentsType;

typedef ComponentsType :: ComponentsContainerType ContainerType;

typedef ContainerType :: const_iterator iterator_type;

iterator_type i_component;

for(i_component = ComponentsType :: GetComponents (). begin () ;

i_component != ComponentsType :: GetComponents (). end() ;

i_component ++)

add(i_component ->first.c_str(), i_component ->second );

}

};

ComponentParser derived from symbols class and in its constructing time adds automatically
all TComponentsType components to the symbol table. This make it a parser that match to any
components stored in KratosComponents list of that type.

Finally all these concepts and tools are used together to create a flexible and extendible IO for
Kratos.

9.5 Using Python as Interpreter

As we mentioned before during the evolution of Kratos, the strategy for implementing a complete
interpreter for the IO part changed to use an existing one. This change in the development strategy,
lead finally to using the Python interpreter.

9.5.1 Why another interpreter

In time of decisions about what to include in the IO features, a process IO was chosen as a way
to introduce new algorithms without changing the code and recompile it. To be able to do this in
practice IO has to provide a complete set of language flow control commands.

Implementing an interpreter is a hard work. From the management point of view, it introduces
a significant overhead to project cost and time. Maintaining it is even harder and results in more
overhead in the cost of the code. Also implementing an interpreter requires knowledge in different
concepts like grammar notations, some tools and libraries usage and compiler implementation
techniques. Finite element programmers usually are not familiar with most of these concepts and
in many cases even do not like to deal with them. So in developing a finite element program it is
not easy to share the implementation and maintenance of an interpreter with others due to this
lack of experience. In practice, this can lead to longer implementation times and extra cost.

During the implementation of Kratos all these facts affected the implementation of an inter-
preter and made its development more and more difficult to the point that it became one of the
bottlenecks of the project. Consequently the strategy changed by stop writing an interpreter and
looking for an existing one.
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Binding Kratos to Python makes it extremely flexible and extendible. New algorithms can be
implemented using existing Kratos tools and methods without even recompiling the code. Interac-
tion between domains and planning different staggered strategies to solve a coupled problem also
can be perform easily at this level without changing the Kratos or its applications. Also it can be
used as a small lab for testing new algorithms and formulations before programming it into the
Kratos. The list of added features is unlimited and many complex tasks can be done easily using
this interface.

9.5.2 Why Python

Selecting a script languages between the large amount of available script language is not an easy
task. Each different language has its own advantages and disadvantages which can be useful
for some cases but leaves uncovered some objectives. So an intention is to understand first the
requirements and then find a language that fits more naturally to these tasks.

In this case there are different features required to be supported by the language:

• First of all any interpreter to be used has to have an interface to C++ or at least to C. It
really makes no sense to choose an interpreter which cannot be bounded to our code.

• Portability is another essential point to be considered. Kratos is written in standard C++
and uses also portable libraries to enhance its portability. So the interpreter must continue
this idea.

• To be object-oriented is an important feature. Though high level commands can be expressed
by traditional languages but an object-oriented language can represent much better internal
classes and data structures.

• Language syntaxes and its readability is another important feature. This depends on personal
tastes but a self descriptive syntax considered to be clearer than the highly symbolized one.

• Ease of learning also is considered as an important point. A complex and difficult to learn
language reduces the number of users who wants to use these IO features.

• Flexibility and extendibility are other features to be considered. Adding new types of data
and also using them via the interface is essential in order to add finite element data and
containers.

• An active language in sense of development will be preferred to an old but not active one
due to the risk of new unresolved problems.

• Finally a popular language is preferable because the larger community of programmers helps
a lot in dealing with day to day problems and questions.

From the long list of languages first some more popular ones were selected to be verified:

• Lisp is one of the widely used script languages. However its full of parenthesis syntax and
lack of other features causes to be eliminated quickly from our list. Here is a square generator
sample in Lisp:

(defun print-squares (upto)

( loop for i from 1 to upto

do (format t "~A^2 = ~A~%" i (* i i))))
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• Perl (Practical Extraction and Report Language) is a mature language with a fast interpreter.
Also it is used to interpret data files with its built-in regular expressions, which is another
added value for our case. Perl has a modular structure with some object-oriented features
added to it later and is single thread without supporting multi-thread. Here is the print
squares code in Perl:

for($i = 1 ; $i <= 10 ; ++$i) {

print $i*$i , ’ ’;

}

• Ruby is a young but attractive full object oriented language including many features of Perl,
with an intuitive syntax. It also supports multi-threading at the interpreting level which
enables it to be used also in single thread operating systems.

for i in 1..10 do

print i*i, " "

end

• Tcl is a widely used script language. It is portable and can be easily integrated with C. It is
a modular language without object-oriented features. Here is the print squares example in
Tcl:

set i 1

while {$i <= 10} {puts [expr $i*$i ];set i [expr $i+1]}

• Python is a general purpose script language with object oriented features and very easy
and intuitive syntax. It also support multi-threading. Here is the print squares example in
Python:

for i in range (1 ,11): print i*i,

Finally Python was selected due to some details and also our background. Tcl was a good choice
as it is already used in GiD and a large amount of experience was available. Lack of object-oriented
features however prevented this choice. Perl also was considered for its maturity and performance,
but again it is less object-oriented than Python and does not support multi-threading. Ruby at
that time was completely new to us and also was considered to be somehow young.

There were some other reasons to chose Python. An existing well designed interface to Python
was one important reason to be selected. Also there was some practical use of Python in finite
element applications [10, 11].

9.5.3 Binding to Python

Boost Python library is used for binding Kratos to Python. This library provides an easy but
powerful way to connect a C++ code to Python.

Now let us create a Node interface to Python and use it as a step by step introduction in using
this library. The first step is to introduce the Node class itself. The following code introduces the
Node<3> class as a Node identifier in Python:

typedef Node <3> NodeType;

class_ <NodeType , NodeType ::Pointer >("Node");
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class template introduces a class to Python. The first template parameter is the class to be
imported. The second one is the handler in Python for objects of this type. In this case is the
Node<>::Pointer which is a reference counted pointer. Boost Python library handles properly
this type of pointer and binds it correctly to the memory manager of Python. The argument of
constructor is the representative name of this class in Python. Python does not have templates
so different instances of a template can be exposed to Python and not the template itself. For
example here the instance Node<3> is exposed.

In Kratos Node<> is derived from Point<> and IndexedObject. We can keep this hierarchy by
introducing Node’s bases in its definition:

typedef Node <3> NodeType;

class_ <NodeType , NodeType ::Pointer ,

, bases <NodeType ::BaseType , IndexedObject > >("Node");

By introducing its bases, Node automatically inherites all imported methods of Point<> and
IndexedObject. This class is exposed now and can be constructed by its default constructor. But
we prefer to construct it by its id and coordinates. init provides a way to introduce a constructor
and can be passed as another argument to the class constructor:

typedef Node <3> NodeType;

class_ <NodeType , NodeType ::Pointer ,

, bases <NodeType ::BaseType ,

IndexedObject > >("Node",

init <int , double , double , double >());

Another constructors can be added using def method of class . For example a constructor
by id and point can be exposed in the following way:

typedef Node <3> NodeType;

class_ <NodeType , NodeType ::Pointer ,

, bases <NodeType ::BaseType ,

IndexedObject > >("Node",

init <int , double , double , double >())

.def(init <int , const Point <3>& >())

;

def uses a visitor pattern which makes it extendible to new concepts. Here init uses this
pattern to expose a new constructor. Now we can create the Node in Python and calling its
inherited methods from Point<3> and IndexedObject, but we cannot print it yet. To make Node
printable, another statement must be added:

typedef Node <3> NodeType;

class_ <NodeType , NodeType ::Pointer ,

, bases <NodeType ::BaseType ,

IndexedObject > >("Node",

init <int , double , double , double >())

.def(init <int , const Point <3>& >())

.def(self_ns ::str(self))

;
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This statement uses the << operator already defined for Node to print its information. def can
be used also to define member functions. For example Node.IsFixed(Variable) can be imported
to Python as follow:

typedef Node <3> NodeType;

class_ <NodeType , NodeType ::Pointer ,

, bases <NodeType ::BaseType ,

IndexedObject > >("Node",

init <int , double , double , double >())

.def(init <int , const Point <3>& >())

.def("IsFixed", &NodeType :: IsFixed)

.def(self_ns ::str(self))

;

To import Kratos as a module, the following statements are necessary:

#include <boost/python.hpp >

BOOST_PYTHON_MODULE(Kratos) {

// Module components will be defined here.

}

Adding the IndexedObject, the Point<3> and the Node<3> interfaces results in the first Kratos
module:

#include <boost/python.hpp >

BOOST_PYTHON_MODULE(Kratos) {

AddPointsToPython ();

class_ <NodeType , NodeType ::Pointer ,

, bases <NodeType ::BaseType ,

IndexedObject > >("Node",

init <int , double , double , double >())

.def(init <int , const Point <3>& >())

.def("IsFixed", &NodeType :: IsFixed)

.def(self_ns ::str(self))

;

}

The Point interface is placed in another function and is just called here. This makes the code
easier to read and also reduces the required memory to compile this file.

Compilation consists of compiling Boost Python library itself and above codes as a dynamic
link library, then we must put them into Python dynamic link libraries folder.

In Python one must import this module to use all its components or just import the require
components. Here is an example of using this module in Python:

from Kratos import *

# Constructing a node:

node = Node (1,2.00, 10.00 , 0.00)
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# Using X property inherited from Point:

node.X = 4.5

# Calling exposed IsFixed method

if(node.IsFix(TEMPERATURE )) :

# Using << operator of Node

print node

This simple case was just an introduction. Many other concepts from the Boost Python li-
brary are necessary to implement a real interface. Call policies, virtual and overloaded methods,
exception handling and so on are examples of these concepts which are described in the library
documentations.
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Chapter 10
Validation Examples

In this chapter some applications developed using Kratos are presented to test the desired flexibility
and extensibility of the framework.

10.1 Incompressible Fluid Solver

In this example an incompressible fluid application implemented in Kratos is described. It shows
the ability of Kratos to handle a standard finite element formulation efficiently while achieving
performance comparable to single purpose codes.

10.1.1 Methodology Used

An Arbitrary Lagrangian Eulerian (ALE) formulation is used to solve the fluid problem [32]. The
solver is based on fractional step method [26] using equal order pressure-velocity elements stabilized
by Orthogonal subscales (OSS) [27]. This application uses an element based approach optimized
for simplex elements.

10.1.2 Implementation in Kratos

The fractional step method chosen consists of four solution steps, of which the first one involves
a nonlinear loop for solving the nonlinearity in the convection term, while the rest are linear and
the third one involves the explicit calculation of projection terms.

This method can be implemented effectively by creating a new SolvingStrategy combining
existing ones for different steps. The strategy is hard coded in C++, however the implementation
is such that all the different steps can be solved separately. In this way a flexible Python interface
allowing direct interaction with the solver can be defined. With this interface, different parts of
the algorithm can be changed reusing existing strategies with minimal performance loss. This
flexibility provides major advantages in defining new fluid structure interaction coupling strategies
based in existing ones.

For the present application a combined Strategy is created to handle the solution process.
The following code shows the Solve method of this Strategy which calls other methods for im-
plementing different steps:

255
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double Solve ()

{

// assign the correct fractional step coefficients

InitializeFractionalStep(this ->m_step , this ->mtime_order );

double Dp_norm;

// predicting the velocity

PredictVelocity(this ->m_step ,this ->mprediction_order );

// initialize projections at the first steps

InitializeProjections(this ->m_step );

// Assign Velocity To Fract Step Velocity and Node Area to Zero

AssignInitialStepValues ();

if(this ->m_step <= this ->mtime_order)

Dp_norm = IterativeSolve ();

else

{

if(this ->mpredictor_corrector == false) // standard fractional step

Dp_norm = FracStepSolution ();

else // iterative solution

Dp_norm = IterativeSolve ();

}

if(this ->mReformDofAtEachIteration == true )

this ->Clear ();

this ->m_step += 1;

this ->mOldDt = BaseType :: GetModelPart (). GetProcessInfo ()[ DELTA_TIME ];

return Dp_norm;

}

double FracStepSolution ()

{

// setting the fractional velocity to the value of the velocity

AssignInitialStepValues ();

// solve first step for fractional step velocities

this ->SolveStep1(this ->mvelocity_toll , this ->mMaxVelIterations );

// solve for pressures (and recalculate the nodal area)

double Dp_norm = this ->SolveStep2 ();

this ->ActOnLonelyNodes ();

// calculate projection terms

this ->SolveStep3 ();

// correct velocities

this ->SolveStep4 ();
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return Dp_norm;

}

This strategy can be exported to Python without loss of performance, by providing access to
the methods implementing each step in above strategy class. We can write in Python an equivalent
solution step as follows:

def SolutionStep1(self):

normDx = Array3 (); normDx [0] = 0.00; normDx [1] = 0.00; normDx [2] = 0.00;

is_converged = False

iteration = 0

while( is_converged == False and iteration < self.max_vel_its ):

(self.solver ). FractionalVelocityIteration(normDx );

is_converged = (self.solver ). ConvergenceCheck(normDx ,self.vel_toll );

print iteration ,normDx

iteration = iteration + 1

def Solve(self):

if(self.ReformDofAtEachIteration == True):

(self.neighbour_search ). Execute ()

(self.solver ). InitializeFractionalStep(self.step , self.time_order );

(self.solver ). InitializeProjections(self.step);

(self.solver ). AssignInitialStepValues ();

self.SolutionStep1 ()

(self.solver ). SolveStep2 ();

(self.solver ). ActOnLonelyNodes ();

(self.solver ). SolveStep3 ();

(self.solver ). SolveStep4 ();

self.step = self.step + 1

if( self.ReformDofAtEachIteration == True):

(self.solver ).Clear ()

As can be seen the Python code is self explanatory and simple. Providing this interface also
has the great advantage of allowing users to customize the global algorithm without accessing the
internal implementation in Kratos.

In order to implement the elemental formulation a new Element has to be created. The Element
should provide different contributions for each solution step. This is achieved by passing the current
fractional step number as a variable of the ProcessInfo to the calculation method of the Element.
Interestingly, this can be done without any modification of the standard elemental interface. This
is one of the cases where the generality of the interface helps to integrate new types of formulations.
The following code shows the structure of the calculation method for this Element:

void Fluid3D :: CalculateLocalSystem(MatrixType& rLeftHandSideMatrix ,

VectorType& rRightHandSideVector ,

ProcessInfo& rCurrentProcessInfo)
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{

KRATOS_TRY

int FractionalStepNumber = rCurrentProcessInfo[FRACTIONAL_STEP ];

if(FractionalStepNumber <= 3)

{

int ComponentIndex = FractionalStepNumber - 1;

Stage1(rLeftHandSideMatrix ,

rRightHandSideVector ,

rCurrentProcessInfo ,

ComponentIndex );

}

else if (FractionalStepNumber == 4)

{

Stage2(rLeftHandSideMatrix ,

rRightHandSideVector ,

rCurrentProcessInfo );

}

KRATOS_CATCH("")

}

Where Stage1 and Stage2 are private methods.

10.1.3 Benchmark

Kratos is a general purpose code. Therefore, it is expected to show a lower performance than
codes optimized for a single purpose. A well optimized implementation can reduce the performance
overhead to the amount introduced by Kratos. An effort was made to optimize the implementation
mentioned above, so it is interesting to compare its performance against existing fluid solvers in
order to estimate the order of performance overhead introduced by Kratos.

As usual it is not trivial to perform a good benchmark as each program implements a slightly
different formulation. Nevertheless comparison was possible with the code Zephyr, an in house
program in UPC, and with FEFLO a highly optimized fluid solver developed at the Laboratory
for Computational Physics and Fluid Dynamics (LCPFD) in George Washington University at
Washington, DC [56]. For the first case the formulation is exactly the same with only minor
differences in the implementation. The second solver is an edge based formulation and the only
possible comparison was with a predictor corrector scheme.

The benchmark represents the analysis of a three dimensional cylinder at Reynolds number
Re = 190. Figure 10.1 shows the model used. The no slip boundary condition is used at the walls
of the cylinder, while slip conditions are used everywhere else. The inflow velocity is set to 1m/s.
The mesh provided by Prof. R. Löhner with resolved boundary layer and contains 30000 nodes
and 108k elements. Figure 10.2 shows the mesh used for this test. The values computed were the
lift and drag history for the cylinder.

Figures 10.3 and 10.4 show the pressure and velocity calculated by Kratos. The results showed
an excellent agreement with the values calculated by FEFLO both in term of peak values and of
shedding frequency, as can be seen in figures 10.5 and 10.6.

The timing results are interesting. FEFLO appeared to be 50% faster than Kratos. This is
considered a good result taking in account that FEFLO features a highly optimized edge based
data structure while Kratos is purely element based.
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(a) (b)

Figure 10.1: a) Geometry of cylinder example, domain dimension 19.0 × 8.0 × 0.2 and Rc = 0.5.
b) the mesh used.

On the other hand, Zephyr features a element based formulation and implements the same
fractional step. The main difference was the treatment of the projection terms and the use of four
integration points for the calculation of the element contributions in Zephyr. The results showed
that Kratos is about 100% faster with a solution time around one half of the solution time of
Zephyr.

10.2 Fluid-Structure Interaction

Coupled problems can be naturally implemented inside Kratos taking advantage of the Python
interface. The fluid solver and the structural solver can be implemented separately and coupled
using this interface without any problem. The first action required to solve a fluid structure
interaction (FSI) problem is to load the different applications involved. The following code shows

(a) (b)

Figure 10.2: Detail of the mesh used for the cylinder example.



260 CHAPTER 10. VALIDATION EXAMPLES

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.3: Pressure at different time steps.



10.2. FLUID-STRUCTURE INTERACTION 261

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.4: Velocity at different time steps.
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Figure 10.5: The comparison of results obtained by Kratos (red line) using a fractional step
algorithm and FEFLO (blue line). a) Lift calculated for the cylinder b) Drag calculated for the
cylinder.
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Figure 10.6: The comparison of results obtained by Kratos (red line) using a predictor corrector
scheme and FEFLO (blue line). a) Lift calculated for the cylinder b) Drag calculated for the
cylinder.
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this step in Python:

#including kratos path

kratos_libs_path = ’kratos/libs/’

kratos_applications_path = ’kratos/applications/’

import sys

sys.path.append(kratos_libs_path)

sys.path.append(kratos_applications_path)

#importing Kratos main library

from Kratos import *

kernel = Kernel () #defining kernel

#importing applications

import applications_interface

applications_interface.Import_ALEApplication = True

applications_interface.Import_IncompressibleFluidApplication = True

applications_interface.Import_StructuralApplication = True

applications_interface.Import_FSIApplication = True

applications_interface.ImportApplications(kernel , kratos_applications_path)

Then a very simple explicit coupling procedure can be expressed as:

class ExplicitCoupling:

def Solve(self):

# solve the structure (prediction)

(self.structural_solver ). Solve()

## map displacements to the structure

(self.mapper ). StructureToFluid_VectorMap(DISPLACEMENT ,DISPLACEMENT)

## move the mesh

(self.mesh_solver ).Solve ()

## set the fluid velocity at the interface to

## be equal to the corresponding mesh velocity

self.CopyVectorVar(MESH_VELOCITY ,VELOCITY ,self.interface_fluid_nodes );

## solve the fluid

(self.fluid_solver ).Solve()

## map displacements to the structure

(self.mapper ). FluidToStructure_ScalarMap(PRESSURE ,POSITIVE_FACE_PRESSURE)

# solve the structure (correction)

(self.structural_solver ). Solve()

Of course, many different coupling schemes can be implemented without making changes to
the single field solvers. An example of fluid-structure interaction is given in figure 10.7.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.7: Flag flatter simulation using fluid structure interaction with mesh movement.

10.3 Particle Finite Element Method

The Particle Finite Element Method (PFEM) [76, 51, 50, 49] is a method for the solution of fluid
problems on arbitrarily varying domains. The basic concept is that each particle is followed in a
lagrangian way and the mesh is regenerated at each time step.

The main computational challenges faced to are the efficient regeneration of the mesh and the
optimized recalculation of all elemental contributions. Good performance is achieved by linking
with an external mesh generation library and by using the optimized Kratos fluid solver. The
solution sequence is controlled by the Python interface. Here a part of the Python script is given:

def Solve(self ,time ,gid_io ):

self.PredictionStep(time)



10.4. THERMAL INVERSE PROBLEM 265

self.FluidSolver.Solve ()

def PredictionStep(self ,time):

domain_size = self.domain_size

# performing a first order prediction of the fluid displacement

(self.PfemUtils ). Predict(self.model_part)

self.LagrangianCorrection ()

(self.MeshMover ). Execute ();

(self.PfemUtils ). MoveLonelyNodes(self.model_part)

(self.MeshMover ). Execute ();

## ensure that no node gets too close to the walls

(self.ActOnWalls ). Execute ();

## move the mesh

(self.MeshMover ). Execute ();

## smooth the final position of the nodes to

## homogenize the mesh distribution

(self.CoordinateSmoother ). Execute ();

## move the mesh

(self.MeshMover ). Execute ();

# regenerate the mesh

self.Remesh ()

This example shows how a previously implemented fluid solver can be reused when implement-
ing a new algorithm. This reusability allows the fast development of new formulations which can
be tested by solving large scale real-life problems. Figure 10.8 shows a dam break simulation done
with the PFEM application implemented in Kratos [57].

10.4 Thermal Inverse Problem

Inverse problems are found in many areas of science and engineering. They can be described
as being opposite to direct problems. In a direct problem the cause is given, and the effect is
determined. In an inverse problem the effect is given, and the cause must be estimated [52]. There
are two main types of inverse problems: input estimation problems, in which the system properties
and output are known and the input is to be estimated; and properties estimation problems, in
which the the system input and output are known and the properties are to be estimated [52].

Mathematically, inverse problems fall into the more general class of variational problems. The
aim of a variational problem is to find a function which minimizes the value of a specified functional.
By a functional, we mean a correspondence which assigns a number to each function belonging to
some class. Also, inverse problems might be ill-posed in which case the solution might not meet
existence, uniqueness or stability requirements.

While some simple inverse problems can be solved analytically, the only practical technique
for general problems is to approximate the solution using direct methods. The fundamental idea
underlying the so called direct methods is to consider the variational problem as a limit problem
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(a) (b)

(c) (d)

(e) (f)

Figure 10.8: A Dam break test and its simulation by the PFEM implementation in Kratos. [57]
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(a) (b)

(c) (d)

(e) (f)

Figure 10.9: Dam break, continued. [57]
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for some function optimization problem in many dimensions. Unfortunately, due to both their
variational and ill-posed nature, inverse problems are difficult to solve.

Neural networks is one of the main fields of artificial intelligence [47]. There are many different
types of neural networks, of which the multilayer perceptron is an important one [94]. Neural
networks provide a direct method for the solution of general variational problems and consequently
inverse problems [30].

In this example neural networks are used to solve thermal inverse problems. In order to solve this
problem we need to solve the heat transfer equation. The Flood library [60] developed at CIMNE
is an open source neural networks library written in C++ and used to create the neural network
necessary for solving this problem. While this library does not include utilities for solving partial
differential equations, it uses Kratos and its thermal application to solve the thermal problem. This
example validates the integrability of Kratos as a library in another project. It also demonstrates
its robustness due to the fact that this algorithm runs Kratos to analyze the same model several
times. In this situation any small problem (for example, in memory management) might cause an
execution error.

10.4.1 Methodology

The general solution of variational problems using Neural networks consists of three steps [?]:

• Definition of the functional space. The solution here is to be represented by a multilayer
perceptron.

• Formulation of the variational problem. For their effect a performance functional F (y(x, a))
must be defined. In order to evaluate that functional we need to solve a partial differential
equation which is done using the FEM within Kratos.

• Solution of the reduced function optimization problem f(a). This is achieved by the training
algorithm. The training algorithm will evaluate the performance function f(a) many times.

Figure 10.10 shows these three steps.
This algorithm provides an example of how Kratos can be embedded into an optimization

application in which different steps of finite element analysis are necessary to achieve the solution.
Kratos has been embedded inside the Flood library as its solving engine in order to calculate

the solution of partial differential equations.
Here the above methodology is applied to solve two different thermal inverse problems.

10.4.2 Implementation

The Flood library uses Kratos to solve a thermal problem several times with different properties
and boundary conditions. In order to do this it has to access to internal data of Kratos and change
the boundary conditions assigned to the different Nodes. This is done without any file interface
which would dramatically reduce performance. The first part is the interface for the direct solution
using Kratos. The following code shows the main part of this interface:

// Initializing Kratos kernel

Kratos :: Kernel kernel; kernel.Initialize ();

// Initializing Kratos thermal application

Kratos :: KratosThermalApplication kratosThermalApplication;

kernel.AddApplication(kratosThermalApplication );
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Figure 10.10: General solution of variational problems using neural networks consists of three main
steps.

// Read mesh

Kratos :: GidIO gidIO("thermal_problem"); gidIO >> mesh;

// Set properties

mesh.GetProperties (1)[ DENSITY] = density;

mesh.GetProperties (1)[ SPECIFIC_HEAT_RATIO] = specificHeat;

mesh.GetProperties (1)[ THERMAL_CONDUCTIVITY] = thermalConductivity;

// Assign initial temperature

for(MeshType :: NodeIterator i_node = mesh.NodesBegin ();

i_node != mesh.NodesEnd (); i_node ++)

if(!(i_node ->IsFixed(TEMPERATURE )))

i_node ->GetSolutionStepValue(TEMPERATURE) = initialTemperature;

// Creating solver

// ...

// Main loop

for(int i = 1; i < numberOfTimeSteps; i++) {

// Obtain time

time[i] = time[i-1] + deltaTime;

// Obtain boundary temperature

// Gaussian function
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double mu = 0.5;

double sigma = 0.05;

double numerator = exp(-pow(time[i]-mu ,2)/(2.0* pow(sigma ,2)));

double denominator = 8* sigma*sqrt (2.0*pi);

boundaryTemperature[i] = numerator/denominator;

// Assign boundary temperature

for(MeshType :: NodeIterator i_node = mesh.NodesBegin () ;

i_node != mesh.NodesEnd () ; i_node ++)

if(i_node ->IsFixed(TEMPERATURE ))

i_node ->GetSolutionStepValue(TEMPERATURE) =

boundaryTemperature[i];

// Solving using thermal solver

Solve ();

// Now updating the nodal temperature values

// by result of solved equation system.

Update ();

// Obtain node temperature

nodeTemperature[i] =

mesh.GetNode(nodeIndex ). GetSolutionStepValue(TEMPERATURE );

equation_system.ClearData ();

}

The part initializing the solver has been removed to make the sample code shorter and only
the parts that Flood uses to interact with Kratos are kept. This code shows the flexible but clear
and intuitive interface that Kratos provides for other applications to communicate with it. First,
application changes the Element properties to its prescribed values. Then, it changes the temper-
ature value for all Nodes to some initial value. Afterwards it tries to solve using different boundary
conditions assigning fixed values of temperature to Nodes. Finally it takes the temperature at a
specific Node. It can be seen that some steps are directly inside the time loop. This restrict us
from solving the problem using usual time processes.

The inverse problem also needs similar steps but in the form of performance functions of
the Flood library. In this case Kratos is adapted to the working methodology of Flood without
problems.

10.4.3 The Boundary Temperature Estimation Problem

For the boundary temperature estimation problem, consider the heat equation in the square domain
Ω = {(x, y) : |x| ≤ 0.5, |y| ≤ 0.5} with boundary Γ = {(x, y) : |x| = 0.5, |y| = 0.5},

∇2u(x, y; t) =
∂u(x, y; t)

∂t
in Ω, (10.1)

for t ∈ [0, 1], with the initial condition u(x, y; 0) = 0 in Ω. The problem is to estimate the boundary
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temperature y(t) on Γ and for t ∈ [0, 1], from measurements of the temperature at the center of
the square u(0, 0; t) for t ∈ [0, 1],

t1 u1(0, 0; t1)
t2 u2(0, 0; t2)
...

...
tP uP (0, 0; tP )

where P is the number of time steps considered. For this problem we use 101 time steps.
The first stage in solving this problem is to choose a network architecture to represent the

boundary temperature y(t) for t ∈ [0, 1]. Here a multilayer perceptron with a sigmoid hidden layer
and a linear output layer is used [47]. This neural network is a class of universal approximator [48].
The network must have one input and one output neuron. We guess a good number of neurons
in the hidden layer to be six. This neural network spans a family V of parameterized functions
y(t; α) of dimension s = 19, which is the number of free parameters in the network.

The second stage is to derive a performance functional in order to formulate the variational
problem. This is to be the mean squared error between the computed temperature at the center of
the square for a given boundary temperature and the measured temperature at the center of the
square,

F [y(t; α)] =
1
P

P∑
i=1

(
ûy(t;α)(0, 0; ti) − ui(0, 0; ti)

)2
. (10.2)

Please note that evaluation of the performance functional (10.2) requires a numerical method
for solving partial differential equations. Kratos is used here to solve this problem.

The boundary temperature estimation problem for the multilayer perceptron can then be for-
mulated as follows:

Let V be the space consisting of all functions y(t; α) spanned by a multilayer perceptron
with 1 input, 6 sigmoid neurons in the hidden layer and 1 linear output neuron. The
dimension of V is 19. Find a vector of free parameters α∗ ∈ R19 that addresses
a function y∗(t; α∗) ∈ V for which the functional (10.2), defined on V , takes on a
minimum value.

The third stage in solving this problem is to choose a suitable training algorithm. Here we
use a conjugate gradient with Polak-Ribiere train direction and Brent optimal train rate [24]. The
tolerance in the Brent’s method is set to 10−6. Training of the neural network with the conjugate
gradient algorithm requires the evaluation of the performance function gradient vector ∇f(α). This
is carried out by means of numerical differentiation [24]. In particular, we use the symmetrical
central differences method [24] with an ε value of 10−6.

In this example, we set the training algorithm to stop when the norm of the performance
function gradient ∇f(α) falls below 10−6. That means that the necessary condition for a local
minimum has been satisfied. The neural network is initialized with a vector of free parameters
chosen at random in the interval [−1, 1]. During the training process the performance function
decreases until the stopping criterium is satisfied. Table 10.1 shows the training results for this
problem. Here N denotes the number of epochs, M the number of performance evaluations,
F [y∗(t; α∗)] the final performance, and ∇f(α∗) the final performance function gradient norm.

Figure 10.11 shows the actual boundary temperature, the boundary temperature estimated by
the neural network, and the measured temperature at the center of the square for this problem.
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N M F [y∗(t; α∗)] ∇f(α∗)
421 25352 2.456 · 10−4 8.251 · 10−7

Table 10.1: Training results for the boundary temperature estimation problem.

The solution here is good, since the estimated boundary temperature matches the actual boundary
temperature.

Figure 10.11: Actual boundary temperature (red), estimated boundary temperature (green) and
measured temperature at the center of the square (blue) for the boundary temperature estimation
problem.

10.4.4 The Diffusion Coefficient Estimation Problem

For the diffusion coefficient estimation problem, consider the equation of diffusion in an inho-
mogeneous medium in the square domain Ω = {(x, y) : |x| ≤ 0.5, |y| ≤ 0.5} with boundary
Γ = {(x, y) : |x| = 0.5, |y| = 0.5},

∇ (κ(x, y)∇u(x, y; t)) =
∂u(x, y; t)

∂t
in Ω, (10.3)

for t ∈ [0, 1] and where κ(x, y) is called the diffusion coefficient, with boundary condition u(x, y; t) =
0 on Γ and for t ∈ [0, 1], and initial condition u(x, y; 0) = 1 in Ω. The problem is to estimate the
diffusion coefficient κ(x, y) in Ω, from measurements of the temperature at different points on the
square u(x, y; t) in Ω and for t ∈ [0, 1],

t1 u11(x1, y1; t1) u12(x2, y2; t1) . . . u1Q(xQ, yQ; t1)
t2 u21(x1, y1; t2) u22(x2, y2; t2) . . . u2Q(xQ, yQ; t2)
...

...
...

. . .
...

tP uP1(x1, y1; tP ) uP2(x2, y2; tP ) . . . uPQ(xQ, yQ; tP )
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where P and Q are the number of points and time steps considered, respectively. For this problem
we use 485 points and 11 time steps.

The first stage in solving this problem is to choose a network architecture to represent the
diffusion coefficient κ(x, y) in Ω. Here a multilayer perceptron with a sigmoid hidden layer and
a linear output layer is used. This neural network is a class of universal approximator [48]. The
neural network must have two inputs and one output neuron. We guess a good number of neurons
in the hidden layer to be six. This neural network is denoted as a 2 : 6 : 1 multilayer perceptron.
It spans a family V of parameterized functions κ(x, y; α) of dimension s = 25, which is the number
of free parameters in the network.

The second stage is to derive a performance functional for the diffusion coefficient estimation
problem. The performance functional for this problem is to be the mean squared error between
the computed temperature for a given diffusion coefficient and the measured temperature,

E[κ(x, y; α)] =
1

PQ

P∑
i=1

⎛
⎝ Q∑

j=1

(
ûκ(x,y;α)(xj , yj ; ti) − uij(xj , yj ; ti)

)2

⎞
⎠ , (10.4)

The diffusion coefficient estimation problem for the multilayer perceptron can then be formu-
lated as follows:

Let V be the space consisting of all functions κ(x, y; α) spanned by a multilayer percep-
tron with 2 inputs, 6 sigmoid neurons in the hidden layer and 1 linear output neuron.
The dimension of V is 25. Find a vector of free parameters α∗ ∈ R25 that addresses
a function κ∗(x, y; α∗) ∈ V for which the functional (10.4), defined on V , takes on a
minimum value.

Evaluation of the performance functional (10.4) requires a numerical method for integration of
partial differential equations. Here we choose the Finite Element Method [104]. For this problem
we use a triangular mesh with 888 elements and 485 nodes.

The third stage is to choose a suitable algorithm for training. Here we use a conjugate gradient
with Polak-Ribiere train direction and Brent optimal train rate methods for training [24]. The
tolerance in the Brent’s method is set to 10−6. Training of the neural network with the conjugate
gradient algorithm requires the evaluation of the performance function gradient vector ∇f(α) [24].
This is carried out by means of numerical differentiation. In particular, we use the symmetrical
central differences method [24] with ε = 10−6.

In this example, we set the training algorithm to stop when the norm of the performance
function gradient falls below 10−6. That means that the necessary condition for a local minimum
has been satisfied. The neural network is initialized with a vector of free parameters chosen at
random in the interval [−1, 1]. Table 10.1 shows the training results for this problem. Here N
denotes the number of epochs, M the number of performance evaluations, F [κ∗(x, y; α∗)] the final
performance, and ∇f(α∗) the final performance function gradient norm.

N M F [κ∗(x, y; α∗)] ∇f(α∗)
312 22652 1.562 · 10−5 7.156 · 10−7

Table 10.2: Training results for the diffusion coefficient estimation problem.
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Figure 10.12 shows the actual diffusion coefficient and the diffusion coefficient estimated by the
neural network for this problem. The solution here is good, since the estimated diffusion coefficient
matches the actual diffusion coefficient.

(a) (b)

Figure 10.12: Actual diffusion coefficient a) and estimated diffusion coefficient b) for the diffusion
coefficient estimation problem.

Further applications and other class of problems can be found in [73, 85, 86, 88, 87, 29].



Chapter 11
Conclusions and Future Work

11.1 Conclusions

Kratos, a framework for developing multi-disciplinary programs has been designed and imple-
mented. It helps developers in implementing applications for different fields of analysis by provid-
ing input-output, data structures, solvers, basic tools, and standard algorithms. The applications
implemented in this framework can be used for solving multi-disciplinary problems using any
master and slave strategies or even by solving simultaneously. At this moment several solvers
(incompressible fluid, structural, thermal, and electromagnetic) are implemented in Kratos. Com-
bination of these applications are also used to solve different multi-disciplinary problems, specially
fluid-structure interaction and thermal-structural problems.

This framework provides a high level of flexibility and generality which is required for dealing
with multi-disciplinary problems. Developers in different areas can configure Kratos for their needs
without altering the standard interface used to communicate with other fields in coupled analysis.
Different applications like: the particle finite element method and explicit compressible fluid are
implemented in Kratos which helped for validating its flexibility in handling different algorithms.
Finally its python interface gives extra flexibility in handling nonstandard algorithms.

Several reusable components are provided to help developers allowing easier and faster imple-
mentation of their applications. Data structure, IO, linear solvers, geometries, quadrature tools,
and different strategies are examples of these reusable components. Use of these components makes
application development not only faster, but also ensures compatibility with other tools for solving
multi-disciplinary problems.

Kratos is also very extensible at different levels of implementation. Each application can add
its variables, degrees of freedom, Properties, Elements, Conditions, and solution algorithms to
Kratos. The object-oriented structure and appropriate patterns used in its design make these
extensions easy while reducing the need for modifications. The extensibility is also validated at all
levels by implementing different applications varying from standard finite element applications to
optimization procedures using Kratos and its applications.

Last but not least, the performance of Kratos is comparable even to single purpose programs
and different benchmarks show this in practice. This makes Kratos a practical tool for solving
industrial multi-disciplinary problem.

275
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11.1.1 General Structure

An object-oriented structure has been designed to maximize the reusability and extensibility of
the code. This structure is based on finite element methodology and many objects are designed to
represent the basic finite element concepts. In this way the structure becomes easily understandable
for developers with a finite element method background.

In this design Vector, Matrix, and Quadrature representing the basic numerical concepts.
Node, Element, Condition, and Dof are defined directly form finite element concepts. Model,
Mesh, and Properties are from the practical methodology used in finite element modeling com-
plemented by ModelPart, and SpatialContainer, for organizing better all data necessary for
analysis. IO, LinearSolver, Process, and Strategy represent the different steps of a finite ele-
ment program flow. Finally Kernel and Application are defined for library management and its
interface definition.

Kratos uses a multi-layer approach in its design which reduces the dependency between different
parts of program. It helps in maintenance of the code and also helps developers in understanding
the code. These layers are defined in a way such as each user has to work in the smallest number
of layers as possible. In this way the amount of code that each users has to be familiar with
is minimized and the chance of conflict between users of different categories is reduced. The
implementation difficulties needed for each layer is also tuned for the knowledge of users working in
it. For example the finite element layer uses only basic to average features of C++ programming but
the main developer layer use advanced language features in order to provide desired performance.

11.1.2 Basic Tools

Different reusable tools have been implemented to help developers in writing their applications
in Kratos. Several geometries and different quadrature methods are provided and their perfor-
mances are optimized. Their flexible design and general interface make them suitable for use in
different applications. Their optimized performance make them appropriate not only for academic
applications but also for real industrial simulations.

An extensible structure for linear solvers has been designed and different common solvers have
been implemented. In this design the solver encapsulates only the solving algorithms and all
operations over vectors and matrices are encapsulated in space classes. In this way solvers become
independent of the type of mathematical containers and can be used to solve completely different
types of equations systems like symmetric, skyline, etc. This structure also allows highly optimized
solvers (for just one type of matrices or vectors) to be implemented without any problem.

11.1.3 Variable Base Interface

A new variable base interface has been designed and implemented. All information about a con-
cept or variable to be passed through this interface is encapsulated in the Variable class. The
information about components of a variable also is encapsulated in the VariableComponent class
which gives an additional flexibility to this interface. This interface is used at different levels of
abstraction and proved to be very clear, flexible, and extensible.

Variable provides the type of data statically and objects can use it to configure their operations
for a given type of data via template implementation. This type information also prevents the use
of variables in procedures that cannot handle their type of data. Each variable has a unique key
which can be used as the reference key in data structures. The name of variable as an string helps
routines like IO to read and write them without requiring additional parameters. Finally it provides
a zero value which can be used for initializing data independent of its type in generic algorithms.
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Beside this information, variable provides different methods for raw memory manipulations. These
methods are excellent tools for low level generic programming, specially for writing heterogeneous
containers.

This interface has been used successfully in different parts of Kratos. Its flexibility and ex-
tendibility is demonstrated in practice and its evident contribution to readability of the code is
shown. This interface played a great role in uniforming different concepts coming from different
area of analysis.

11.1.4 Data Structure

New heterogeneous containers have been implemented in order to hold different types of data
without any modifications. The DataValueContainer can be used to store variables of any type
without even explicitly defining the list of them. This container is very flexible but uses a search
mechanism to retrieve given variable’s data. The VariablesListContainer only stores the vari-
ables defined in its variables list which can be have any type but its advantage is its fast indirection
mechanism for finding the variables data. In Kratos these two containers are used alternatively in
places where performance or flexibility are more important. Being able to store even the list of
neighbor Nodes or Elements shows their flexibility in practice.

An entity base data structure has been developed in Kratos. This approach gives more freedom
in partitioning the domain or in creating and removing Nodes and Elements, for example in adaptive
meshing. Several levels of abstraction are provided to help users group model and data information
in different ways. In Kratos the Model contains the whole model, divided to different ModelParts.
Each model part can have different Meshes which hold a complete set of entities in Kratos. These
objects are effectively used for separating domain information or sending a single part to some
process.

11.1.5 Finite Element Implementation

The Element and Condition classes are designed as the extension points of Kratos. Their generic
interfaces provide all information necessary for calculating their local components and also are
flexible enough for handling new arguments in the future.

Several processes and strategies has been developed to handle standard procedures in finite
element programming. These components increase the reusability of the code and decrease the
effort needed to implement new finite element application using Kratos.

Some experimental work has been done to handle elemental expression using a higher level of
abstraction. In this way elemental expressions can be written in C++ but with a meta language
very similar to mathematical notations and then can be compiled with the rest of the code using
the C++ compiler. These expressions have been successfully tested and their performance is
comparable to manually implemented codes.

Finally the Formulation is designed to handle nodal, edge based, or even elemental formulations
in different forms of implementations. However these capabilities have not been implemented yet
due to the lack of interest from developers.

11.1.6 Input-Output

A flexible and extensible IO module for finite element programs has been developed. It can handle
new concepts very easily while Kratos automatically adds variables to its components and IO uses
these components as its list of concepts. Therefore any application built with Kratos can use IO
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for reading and writing its own concepts without making any change to it. However, more effort
is required to extend this IO system to handle new types of data.

This IO is multi-format. It can support new formats just by adding a new IO derived class an
without changing any other part of IO. For example a binary format IO can be added using this
feature.

An interpreter is also implemented to handle Kratos data files. Its format is relatively intuitive
and similar to Python scripts. The major interpreting task is given to the Python interpreter.
This flexible interpreter with its object-oriented high level language can be used to implement and
execute new algorithms using Kratos. In this way the implementation and maintenance cost of a
new sophisticated interpreter is eliminated.

11.2 Future Work

This work can be continued in different ways. First of all different extensions to the existing
framework can increase the number of useful features provided by it. Besides these extensions,
parallelization of the code is the next task to perform in order to guarantee its success in solving
future large scale problems.

11.2.1 Extensions

Here is a list of suggested extensions to this work.

Basic Tools

New solvers and preconditioners should be added to extend the solving abilities of Kratos. Also a
new type of linear solvers for very small system of equations should be implemented. They can be
used for solving efficiently the small equations appearing in some algorithms like the patch recovery
method [104].

Variable Base Interface

As mentioned before, there are some complexities related to incompatibility of variables and their
components in this interface. This also is an open door for further improvements. A solution
could be deriving the VariableComponent from variable and using some indexing mechanism
to distinguish them. This can be completed by some traits to avoid virtual function calling in
cases where a good performance is also needed. This is something to be implemented and tested
carefully.

Finite Element Implementation

Creating new processes and strategies can increase the reusability of the code and also the com-
pleteness of Kratos. This can be done also by revising the processes and strategies implemented
in different applications and adding a generic version of them to Kratos which could be usable for
a wider set of applications.

As mentioned in section 8.5, an experimental elemental expression has been developed and
tested. These part needs more components to be useable in a wide variety of formulations. Im-
plementing missing components and practically use them can help the fast development of finite
element formulations in Kratos, At the same time, it can be used to optimize the new formulations
or even transform them automatically to parallel codes.



11.3. ACKNOWLEDGMENTS 279

Formulations are another part of Kratos to explore. Adding nodal or edge based formulations
to Kratos can be a good way to refine its design in practice.

Input-Output

Serialization is not implemented yet but is considered to be useful for automatization of problem
loading and saving. Adding this feature to Kratos would help users to run longer problems and
pause them whenever they want. Using an external library is considered to be a better solution
than implementing it.

Supporting binary format for input can reduce significantly the data reading time. The multi-
format feature of Kratos reduces a lot the effort necessary to implement it.

11.2.2 Parallelization

Beside the extensions mentioned before, parallelization of Kratos framework is the main task to be
undertaken in the future. The growing size of problems and the increase of available parallel com-
puting machines (even in the personal computers sector), stress the importance for parallelization
of numerical codes. For this reason a big effort should be invested to parallelize Kratos for shared
memory and distributed memory architectures.

Fortunately, several aspects of Kratos become useful in this process. Its entity based data
structure makes the distribution of data over processors easier. Also, several layers of abstraction
in the data structure will help the partitioning task which are needed for division of the model
over processors. Finally the Strategy is designed to be parallelized with a very small effort.
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[49] S. R. Idelson and E. Oñate. To mesh or not to mesh. that is the question. Computer methods
in applied mechanics and engineering, 195:4681–4696, 2006.
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