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Abstract

The numerical solution strategies for the Stokes eigeevaloblem based on
the use of penalty formulations are investigated in thislstult is shown that

the penalty method approach can successfully be adaptetaigenproblem
to rectify the associated problems such as the existencerofdiagonal entries
in the resulting algebraic system. Two different schemasyely, the standard
penalisation with a small penalty parameter, and the itergienalisation that
enables relatively large parameters, are implemented. entq@oyment of the
latter leads to a so-called inhomogeneous generalisedweilye problem which
requires a special attention. A feasible solution strateggresented which is
adapted from a procedure based on Newton’s method proposeati€ corre-

sponding standard (inhomogeneous) eigenvalue problenmce@ang the spatial
discretisation, among other possible options, the Chebysbectral collocation
method based on expanding the unknown fields in tensor pradu€hebyshev
polynomials is employed. It is shown that the method comstst a novel way of
efficiently examining the approximate eigensolutions &f 8tokes operator with
the use of Chebyshev spectral collocation method direcitjpout a decoupling
of velocity and pressure.
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1. Introduction

The Stokes eigenvalue problem is a subject of an extensseareh due to its
significance on both fundamental and practical grounds.ifance, the eigen-
modes of the Stokes operator form a natural basis in the sisaf/homogeneous
component of any flow. They are used in describing the fluctgadart of a tur-
bulent flow. Moreover, the Stokes eigenvalue problem is @sebenchmark for
analysing convergence and accuracy of the numerical #éhgasidesigned in fluid
dynamics (see, e.gﬂ [@15] and the references thereinyedre numerous works
devoted to approximating the Stokes eigenproblem basedferetit methodolo-
gies. Among them are finite element methdﬁs[[i:é, 18] hnfre® methods
based on radial basis functions [6], spectral Chebyshevaodsthased on decou-
pling the velocity and pressure operat&E @ 11], andtspldcagrange method
using a staggered grid systelﬂ'l [4].

There are several difficulties in approximating accuratet eigenmodes of
the Stokes problem both in two and three dimensional domsirth as the lack of
theoretical knowledge of the corresponding spectrum, &atighmic limitations
due to the size of the resulting algebraic system. Theseuliifts are emphasised
when the problem is formulated in primitive variables, w#ipand pressure, with
the solenoidal condition, as the discretisation of the ajpeleads to a generalised
eigenvalue problem with zero diagonal entries in the respkilgebraic system.
It is well known that these and similar issues arising in sw\the corresponding
source problems, can be resolved with the use of penaltyadstm which a
perturbed form of the problem is considered. Moreover,gisipenalty method
allows one to avoid the problem in the choice of the degredseeflom for the
pressure (which is determined up to an additive constantyfach, a zero mean
value constraint is introduced.

In this paper, we investigate numerical solution stratefpethe Stokes eigen-
value problem based on the use of penalty formulations. Totvation is to
extend the widely used application of penalisation teaeso the Stokes eigen-
value problem. We show that the penalty method approach secessfully
be adapted for the eigenproblem to deal with associate@sssliwo different
schemes, namely, the standard penalisation with a smadltggparameter, and
the iterative penalisation that allows the use of relayidarge parameters, are
implemented. The employment of the iterative method lead@sgo-called inho-
mogeneous generalised eigenvalue problem which cannoeaied in the clas-
sical framework of eigenproblems. We adapt an efficienttsmiustrategy from
a procedure based on Newton’s method proposed for the pomdmg standard



(inhomogeneous) eigenvalue problems]ﬂ [13]. We employChebyshev spec-
tral collocation method (CSCM) based on expanding the unkrf@ids in tensor
product of Chebyshev polynomials for the spatial discrétsa As a matter of
fact, the idea introduced here can be applied with any typisofetisation, how-
ever, the simplicity and efficiency of the CSCM make it a viabpdi@n for the
demonstration of the idea. More importantly, we show that phoposed idea
constitutes an efficient way of numerically examining thgeeisolutions of the
Stokes operator with the use of Chebyshev collocation appedion directly,
that is, without a decoupling of velocity and pressure.

2. Problem statement

The Stokes eigenvalue problem consists of findiag, A] on a bounded and
polyhedral domaif? ¢ R¢, d = 2,3, whereu : Q — RY, with u # 0, is the
displacement or velocity fielg, : 2 — R is the pressure, and € R, such that

—vAu+ Vp = \u in Q,
V-u=0 inQ, (1)
u=20 onof),

wherev > 0 is a physical parameter. The eigenproblem that seeks tlssyree
eigenfunctions (a mixed eigenvalue problem of second typelﬂZ]) will not be
considered in this work. It is well known that the eigenvalsatisfy

k—o00
with the associated eigenfunctions
(w1, pa], [w2, pa, - - o [u, D - -
which are assumed to satisfy
(w;,w;) =0i5, 1,7=12,..., (2)

where(-, ) denotes the standafd inner product.

As we aim to focus on the demonstration of the idea that thkeSteigenso-
lutions can be approximated by the use of different penaisdaechniques, we
consider[(l) on both two- and three-dimensional configanatinamely, a square
domain and a cube domain. For the former case, the velodidydenponents are
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denoted byu andwv, whereas, the third dimensional component is denoted by
in the latter case. We note that the accurate determinatitredstokes eigenso-
lutions even on simple domains is a challenging problem. l@rother hand, an
extension to more general domains can be made by using amde@omposition
technique or a coordinate transformation. Neverthelégsntumerical strategies
devised in this study are independent of the choice of dosnain

3. Numerical approximation

We explain the spatial discretisation of the Stokes eiganlpm [1) which
is carried out by a collocation approach which is explaine@ectio{ 3.11. The
discretisation will lead to an algebraic eigenvalue probk&at, in general, can
be solved in numerous ways. For the reason to be clear lagewilvpresent a
procedure based on Newton’s method for approximating gajeaes in Section

B.2.

3.1. The Chebyshev spectral collocation method

The method we consider is based on requiring the numerigabapnation of
each unknown to be exactly satisfied on the abscissae of treerexpoints of the
Chebyshev polynomials. In this approach, each functionsgi@whole domain
under consideration and thus, the derivatives of the fanaepend on the entire
discretisation.

A function ®(z) defined in[—1, 1] is mterpolated by the polynomidly (z) of
degree at moQN of the form E

r) = ZC’j(x)@ x

with @y (z;) = ®(z,), andC;(z) is a Cardinal function (or Lagrange basis) of
degreeN defined using the Chebyshev polynomials of the first kifhgl{) =
cos(narccosz), n =0, 1..., N) by

‘ —(_1\1+d (1 —2?)Ty(z) -
C](‘T) ( 1) CjNQ(.I'—Ij)’ .] 0717"'7N7

wherecy = cy =2,andc; =1,forj=1,...,N — 1.
The collocation points are given as

xizcos(%) for i =0,1,...,N.
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They are referred as Chebyshev-Gauss-Lobatto (CGL) pointg bige abscissae
of the extreme points of the Chebyshev polynomials (in [J1,4hd used in the
Gauss-Lobatto quadratures. They possess the desiredtgropbeing clustered
through the end points of the interval, consequently in atirditnensional do-
main, having a concentration of grid lines near the bouedarA distribution of
the CGL points used as collocation points in a square domdierew = 16, is
illustrated in Figuréll.

Figure 1: A sample node distribution on a square domainiee 16.

Then—th derivative of®(z) is then approximated by
N
O (2) = Y O (2) ().

The first derivatives at the collocation points satié&)(:ci) = d,;, where

i_li-l-j
d”:c_( ) ) Z#.% i,j:O,...,N,
Cj Ty — Iy
dyj = — i=1,....N—1,
21— 22)
2N? +1
d()O:_dNN: .
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Now, the discrete values of the first derivative of the fumei®  can be ob-
tained as

N
oY () = Z dij®n (;). )

This equation can be written in a matrix-vector form as

d
—(®y) = Dy 2y, (4)
where DE\}) = [d,;] is called the first order Chebyshev spectral differentiation

matrix, which is of siz§ N + 1) x (N +1). @y in (@) is an array of sizéN + 1)
whose components afiey (z;), and-L (®y) is the array that contairrB%) (x;) for
i=0,1,...,N.

In order to minimise the round-off errors for the calculataf the first deriva-
tives, the diagonal entries; are computed aﬁh6]

N
dy == dy. (5)
7=0
JFi
Then—th order derivative of the functiof(z) is now approximated as

%(@N) =DMy, (6)
where D™ = [DW]", that is,n-times matrix multiplication ofD("). In general,
D™ s referred as the-th order Chebyshev spectral differentiation matrix. The
use of matrix multiplication for higher order derivatives)d the use of Equation
(B) for obtaining diagonal entries, lead to a significanttgager accuracy in the
computation of second and higher order derivatives for awahge of functions.

The Chebyshev spectral differentiation matrix for functiolefined on an arbi-
trary interval[a, b] can be constructed by a linear transformatjon = (b — a) /2+
(a +b)/2, which maps the standard interyall, 1] to any finite intervala, b|.

The utilisation of the Chebyshev spectral differentiatioatmces to construct
the approximate discrete operators for solving eigenvalablems in several
space dimensions is described in the subsequent subsection



3.1.1. Two-dimensional formulation

In a two-dimensional configuration, we first set a tensor pobdrid based on
CGL points assuming that the domain is a square, and usingthe golynomial
degreeN in each direction for all the unknowns. L&®, i = 1,2, denote the
Chebyshev spectral differentiation matrices in the first sacbond order differ-
entiation in each spatial dimension. Next, we substitugeapbproximations: ,
vy andpy to u, v andp, respectively, into the system of equations describing the
Stokes eigenprobleriil(1), and approximate the differenpatators defining this
problem. Then, the discretised equations are written as

—vKuy + Gopy = Auy,
—vKvy + Gypy = vy, (7)
GQCUN + Gy’UN =0.

Here, the(N + 1)? x (N + 1)* matricesK, G, andG,, are defined with the
use of the Kronecker product as

K=Iy®D? +D? &Iy, (8)
Gx:]N®D§\}), 9)
G, =DV @ Iy, (10)

wherely denotes the identity matrix of ordéN + 1). The approximation vectors
are of orde( NV + 1)2, and are computed in the following pattern

F = [f(any(])? teey f(xN7y0)> ceey f($07yN)7 "'7f<xNayN)}T

The previous equations form the following generalised matgenvalue prob-
lem

Lo = \R¢, (11)
where
B —-vK 0 G, B In 0 0 _ un
L=| 0 —vK G,|, R=1]0 Iy 0|, and ¢= |ux
G, G, 0 0 0 0 PN

Here we note that the matriX associated to the Laplace operator is not sym-
metric, and thus the block matrixis not symmetric.
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Let us write the reduced system corresponding[fd (11) aft@osing the
boundary conditions as

Lé = \R¢. (12)

3.1.2. Three-dimensional formulation

The problem within a cubical domain is tackled in an analegway as in the
two-dimensional case. We assume without loss of genethhtythe same polyno-
mial degreeV is used in all directions; thus, the first and second order Gitedy
spectral differentiation matrice@ﬁ) andD](i), respectively, are computed and are
used to approximate the derivatives in all coordinateshdfdpproximations ,
vy, wy andpy to u, v, w andp, respectively, are substituted into the system of
equations describing the Stokes eigenproblem (1), thedisfoeetised equations
are written in matrix-vector form as

—Z/KIUN + G;p]\[ = )\uN,
—vK'vy + Gpy = Ay,
—vK'wy + Glpy = My,
G;UN + G;UN + G/sz = 0.

Here, the matrix associated to the Laplace operator in thireensions is of order
(N +1)3, and it is defined as

K=IyoDP @Iy+IyoIyo DY + DY &Iy Iy.
The matricesr), G, and(, are defined as

G =Iyo D) @Iy,
G =DV ®Iy®ly.

Next, we can write the following generalised matrix eigdaggroblem in the
three-dimensional setting as

L'¢ = \R'¢/, (13)



where

—vK' 0 0 G, Iy 0 0 O unN

=~ 0 —vK' 0 G, ~ 0 IN 0 0 oy UN
I y [ -

L 0 0 —wi | & 0 0 Iy 0] Y7 lun

G, G, G 0 0 0 0 0 PN

As before, let us write the reduced system correspondin@3® With the
boundary conditions imposed as

L'¢/ = \R'¢. (14)

3.2. Eigenvalue approximation

As the eigenvalue approximation is established in the saar@ner for both
two- and three-dimensional problems, it is sufficient tosider the former case.
Thus, let us consider the reduced algebraic eigenprolal@n This problem is a
system of non-linear equations written as

(L= AR)$ =0,
¢ Rp =1,

for the unknowns\ and ¢. Here, the matrixR, in the term¢™ R¢, has been
introduced for the normalisation of the eigenvectors gpoading to the velocity
field associated t¢12).

For convenience, we can reformulate this system as

(L —AR)¢ =0,
ﬂ —0. (15)

If we introduce the partitioned vectdr defined by

=[]

then the problem can be viewed as a non-linear equation ifothe /'(A) = 0.
The Jacobian of this system is

J“A”‘FL_XM —Rﬂ

TR0
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We can then use Newton’s method for the solution of the no@ali problem,
with a suitable initial estimata®, written in the following way:

A = N [Tp(M)]TIR(N), j=0,1,. .. (16)

Naturally, the inefficient way of inverting the Jacobian mais avoided, and
a linear system is solved for the increment vector that issddd the previous
iterate at each step.

4. Penalty methodsfor the Stokes eigenproblem

The penalty method is a widely used approach in incompriesSitokes and
Navier-Stokes models for relaxing the solenoidal condititt has some advan-
tages, such as the possibility of condensing discontinpoessures and writing
the problem in terms of the velocity only (see, eB.@, 1Bplow, we present the
extension of the application of the penalisation idea ta@axmate the spectrum
of the Stokes operator.

4.1. The classical penalty problem
The idea is to approximate the solution of the Stokes eigdiipm by the
solution to the penalised problem
—vAu, + Vp. = \.u, in Q,
pet+Veou =0 in Q, a7
u. =0 on s},

wheres is a penalty parameter chosen such thate /v < 1.
The CSCM discretisation steps are followed as before yielding

Z;Qge = )\sﬁ(gsa

where the modified matrii: IS now given as

- —vK 0 Gy
IL.=| 0 -vK G,
G, G, =ly

The reduced system after the imposition of the boundaryitond is written
in the form

Ls¢z—: = )\ER¢€'
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The effect of removing zero diagonal

entries of the pentdinacan readily

be seen in Figurgl 2, where the structured.aind L. which are calculated on a

square domain witlv = 16, are visualised

200

400

500

600

700

nz = 28350

100NN

300r

using the MATLAB functiospy.

0 200 400 600

nz = 28608

Figure 2: Structures of the eigensystem matricgkeft) and L. (Right), whereN = 16.

It iswell known that the solutions [u, p)
that correspond to (1) and (I7), respectivel

and [u., p.] tothesource problems
y, satisfy

v[Va = Vo[ + v lp — pe||* < Cie® (v Vul* + v p]?)

where (' is a positive constant independent of €. That is, the convergence
of both u. and p. (for the source problem) is O(e). Our calculations have
revealed the fact that the convergence order is the same for the eigenvalue

problem. Furthermore, we have observed
from the classical penalty method satisfy

that the approximations obtained

A — Ac| < Cael,

for a positive constant C';. We do not provide a proof for this estimate, how-
ever, it can be done following the perturbation analysis given in [13].

4.2. The iterative penalty method

The iterative penalisation idea we consider here, is pregpas [5] for the
Stokes source problem. In this approach, the penalisediegsare solved in
each iteration with the addition of the residual of the inpoessibility equation

11



of the previous iteration. This method allows the use ofdgrgnalty parameters
leading to a system with better conditioning.

The resulting problem reads as: given initigh}; find u.?, pi, and )\ such
that

—vAu' + Vpl = \.u.’ in Q,

EpL+V-ul = <pi! in Q, (18)
u'=0 onof,
fori=1,2,....
The discretised system ¢f (18) can be written as
Lig. = RO + ¢, (19)

at each iteration, wherep~! is the inhomogeneity vector partitioned as

i1 0
Pe = fpé—l .

Clearly, the first iterate, that is, the case 1, with p? = 0, and thusy? = 0,
corresponds to the classical penalty problem and can bedal/described in the
previous section. On the other hand, the next iterationgevpg! # 0 are in
the form of an inhomogeneous generalised eigenvalue prowfleich cannot be
solved as a standard eigenvalue problem. A natural contéodsolving such a
problem is a procedure based on Newton’s method proposéusfaprresponding
inhomogeneous but standard eigenvalue problenﬁn [13].

To begin with, we assume that a normalisation condition @ftiim

(¢1) Rt =1,
accompanies Equatioh (19), since the eigenproblem we @emnsorresponds to

finding velocity eigenfunctions. Consequently, we can wthigeiterative problem
in the form

Ligl — NRgi — ¢ =0,
1 (60" RYL _
2

This problem can be viewed as a non-linear equation in tha féfA’) = 0,
where the partitioned vectdr’ is defined by

e
A= M '

12
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We can then introduce Newton’s method for the solution ofitre-linear problem
at each iteratiom = 1, 2, . . ., yielding the nested algorithm in the following way:

A = N — [Jn ()T H(A), =01, (20)

where Jy is the Jacobian of the systefi(A’) = 0. A convergence criteria is
set at each inner iteration (with respectjjoi.e. Newton’s method, and then the
outer cycle (with respect t, i.e. the iterative penalisation, is carried out until a
corresponding condition for the convergence is met.

The coupled iterations
Instead of following the nested iterative schemé (20), wg m#lement a
combined iterative scheme defined as

AFFE = A [T (AR H(AS), k=0,1,. (21)

starting from an initial,? formed by a giverp®. In this way, a computationally
cheaper scheme is obtained that is also capable of apprimgribe eigenspec-
trum of the Stokes operator.

It is shown in |[$] that for the corresponding source probléme, error of the
iterative penalty method!/?||Vu — Vu.?|| + v~ /2||p — pi|| is of orderO(s?),
so it tends to zero both # — 0 ori — oo. For the Navier-Stokes source prob-
lem, it is possible to couple the iterations due to penatiseind to non-linearity
as explained for the eigenvalue problem. It is showrl in [B} tonvergence is
driven by the slower of the two errors. We have experimentdiserved the same
behaviour for the eigenvalue problem.

5. Numerical examples

In this section we present the numerical results for appnaking the Stokes
eigensolutions on the square dom#ni]? and the cube domaip-1,1]%. The
caser = 1 is considered, and the results are obtained with differenapsation
techniques described in Sectidn 4. The computations areedaut by a com-
puter program created by us, using MATLAB. In all the simdas presented
below, we have taken 17 collocation points in each spatrakdsion, that is, the
interpolation polynomials are of degréé = 16, for all cases. For the iterative
penalty method, the convergence criteria has been et for both Newton’s
method and the iterative penalisation method.

The eigensolutions to the Stokes problem for all cases wsidenare not
known analytically, and therefore, we take as referenceegéxisting in the lit-
erature to compare our results.
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5.1. The square domain

5.1.1. The classical penalty method

Firstly, we consider approximating the Stokes eigenprolie the square us-
ing the classical penalty method described in SubseEtiin#he first 10 eigen-
values are listed in Tablg 1, where the penalty parametekentass = 1076.
The tabulated values show that the approximations obtawued the classical
penalisation agree reasonably well with the referenceegalU-urther, the plot
of the eigenfunction associated to the minimum eigenvaugivien in Figuré 13,
revealing a good agreement with the existing ones in theatitee (see, [17]).

Table 1: Computed first 10 eigenvalues on the square doméirews 1076,

Ref. [17] The classical penalty method

52.3447 52.3447

92.1245 92.1243

92.1246 92.1243

128.2100 128.2096
154.1260 154.1254
167.0298 167.0292
189.5729 189.5718
189.5735 189.5718
246.3240 246.3227
246.3243 246.3227

In order to investigate the convergence behaviour of thecequpated eigen-
value with respect to the penalty parameter, the minimurarsiglue (denoted by
A1) is calculated foe values varying from10~! to 10~1°. For this test, we consider
the corresponding reference value\as = 52.34469138411319. This value is ob-
tained by manually removing the spurious pressure modestiie non-penalised
problem (for the cas& = 16). The variation offA\; — Aref| / Arer With respect ta
is presented in Figufd 4, from which it is inferred that theva@rgence is linear.

5.1.2. The iterative penalty method
Here we present numerical results obtained from the tecdksigescribed in
Subsection 4]2, for the approximation of the iterative ftgn@oblem [18).
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Figure 3: Plot of the first eigenfunction (Left) and the asatax pressure contours (Right), ob-
tained withe = 1076,
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107 F
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1070}

12

107

Figure 4: Convergence of\; with respect toe, on the square domain, whergs =
52.34469138411319.

A plot of the relative change in the approximated first eigéwe, defined by
|IA: — Ai—1|/\; against the number of the accumulated iteratiorssprovided in
Figure[. Two different penalty parameters- 10~! ande = 102 are tested. In
both cases, the quadratic dependence on the iteration matibéial steps shows
that Newton’s method governs the convergence behaviodregptocedure. The
jumps in the error correspond to the new iterations of théeadsops.
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‘/\z - )\1—1’/)\1
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Figure 5: Convergence plot of the relative error with respethe accumulated iterations of the
nested loops (denoted k), on the square domain, where= 10~! (Left) ande = 103 (Right).

The previous experiment far = 10~ ande = 1072 is now repeated by
implementing the iterative penalisation procedure in aluioed loop defined in
(21). The convergence behaviours are illustrated in Figuia progressive itera-
tions, the convergence is driven by the penalisation sclvéimeee an almost linear
profile is observed. This phenomena is more pronounced élatiger value of
the penalty parameter where the relative errors are lamyapared to the smaller
value for all iterates as expected. For the largesse, the profile changes to linear
after the sixth iteration. A similar tendency can be obseffee the smallee case,
however, with faster decrease in the residual.

5.2. The cube domain

In the previous subsection, we have focused on the squaraiddéoshow that
the penalty formulations are successfully applied to stheeStokes eigenvalue
problem with the use of CSCM. Now we proceed to present the sporeding
results for the cube domain.

5.2.1. The classical penalty method

The classical penalisation approach has been tested toxamyaite the eigen-
solutions of the Stokes operator on the cube domain. Theoajppations to the
first 33 eigenvalues are listed in Talble 2, together withrthailtiplicities. We
have obtained these results using- 10~°. Comparing them with the reference
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A — Ae—1]/ Ak

10'

Figure 6: Convergence plot of the relative error, with respe the number of combined iterations
(denoted byk), on the square domain, where= 10~ (Left) ands = 103 (Right).

values published iﬂﬂl], one sees that they are reasonadllyapproximated,
with exactly matching multiplicities.

Table 2: Computed first 33 eigenvalues on the cube domain$oi0—°.

(Multiplicity) Ref. [11] (Multiplicity) The classical penléy method

(3) 15.54335376

(3) 15.54335314

(2) 22.90746669

(2) 22.90746812

(3) 24.07918373

(3) 24.07915406

(3) 27.06027940

(3) 27.06027842

(3) 32.31421538

(3) 32.31420328

(2) 33.53829871

(2) 33.53828501

(3) 35.17427505

(3) 35.17426715

(1) 36.68074859

(1) 36.68074764

(3) 41.51396629

(3) 41.51394605

(3) 41.99664874

(3) 41.99651688

(3) 44.20838149

(3) 44.20837963

(1) 45.36635367

(1) 45.36633127

(3) 46.41314479

(3) 46.41313479
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The minimum eigenvalue (having multiplicity three, and endted by)\,),
is calculated for= values varying fromi0~! to 10~!°. In the same way as in
the square domain case, for this test, we take the corresmpraference value as
Aref = 15.543353940134807 which is obtained by manually removing the spurious
pressure modes from the non-penalised problem. The \@ariafij\; — Aref| /Aret
with respect t is depicted in Figurk]7, to examine the convergence behawgfou
the approximated eigenvalue with respect to the penaltgrparer. The conver-
gence rate to the reference value with respect to the pepatgmeter is clearly
linear, as can be seen from the figure.

10? ! ! ! .

—slope -

.
S,

’/\1 - /\ref’/)\ref

.
S,

10

Figure 7: Convergence of\; with respect toe, on the cube domain, wherd,s =
15.543353940134807.

Before passing to the results of the iterative procedure ewerk on the con-
ditioning of the systems for both two- and three-dimensicaaes. This is studied
by means of the condition numbersiofind’, denoted by andx’, respectively.
Figure[8 illustrates the variation of each condition numf@aiculated in the 2-
norm) with the penalty parameter. As can be inferred from figure, in each
case, the condition number grows linearly with the penaliyameter, and the
order of magnitude does not depend on the spatial dimension.

5.2.2. The iterative penalty method

In analogy with the square domain case, a plot of the relathange in the
approximated eigenvalue defined By — \;_1|/)\; against the number of the ac-
cumulated iterations is given in Figuré 9 for= 10! ande = 1073. In both
cases corresponding to different penalty parameter, thdrgtic dependence on
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Figure 8: The variation of the condition numbers with theadgnparameter for square (Left) and
cube (Right).

the iteration number at initial steps shows that Newton'shoe governs the con-
vergence behaviour of the procedure. In progressive ibgrsitthe convergence
is driven by the penalisation scheme where an almost linedilgis observed.
The results are in accordance with the corresponding tweedsional case (see,
Figure®).
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Figure 9: Convergence plot of the relative error with respethe accumulated iterations of the
nested loops (denoted ), on the cube domain, whete= 10~! (Left) ande = 1072 (Right).
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Finally, we present the results obtained from the appbecatf the iterative
penalisation procedure in the combined loop giverLin (219.bAfore, we repeat
the experiments for = 10~! ande = 10~3. The variation of the relative error
with respect to the iteration numbeéris given in Figurd_1I0 for each case. We
see that the convergence properties are similar to thodeeafto-dimensional
counterpart, especially in the case of smalléFherate of conver gence changes
from quadratic to linear gradually, with a prominent alteration in the case
of larger penalty parameter, as before. On the other hand, the conver gence
isnoticeably slower compared to the solution on the square domain, for both
penalty parameter cases. Not unexpectedly, a dight distortion in the con-
vergence curve is observed, for the larger penalty parameter case. These
arguments address the well known alteration in the convergence behaviour
of Newton’s method when approximating a multiple root, asit is the corre-
sponding case for this problem.
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Figure 10: Convergence plot of the relative error, with ezgpo the number of combined iterations
(denoted byk), on the cube domain, whege= 10~ (Left) ande = 103 (Right).

6. Conclusions

We have presented two different methods, namely, the clssiethod and
iterative method, based on the penalisation idea appli¢iet&tokes eigenprob-
lem. We have shown that both procedures circumvent the uifés related to the
eigensystem solution, and further, provide an efficientme@d approximating the
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Stokes eigenproblem directly with the use of CSCM. The nurakdalculations
suggest that the classical penalty method converges Iynieathe reference val-
ues, for the two- and three-dimensional examples, nametjuare and a cube
domain, we considered. The iterative penalty method allttvesuse of large
penalty parameters, leading to a system with better camiityg. On the other
hand, it necessitates a novel algorithm to deal with thelimearity inherited by
the inhomogeneous nature of the eigenproblem. We have ingpited this novel
procedure based on Newton’s method for approximating trenealues of the re-
sulting inhomogeneous generalised problem. Our resutisaraing two different
applications, the nested loops and the single loop optreflect the characteristic
behaviours of the iterative penalisation. The convergengeverned by Newton’s
method initially as the quadratic dependence on the itaratumber addresses for
the nested loops option. For the single loop, numericalliebave revealed that
the quadratic convergence is achieved up to a certainigarafter which, the
profile tends to be linear. These behaviours are apparenhéolarger penalty
parameter value, whereas for the smaller one, a rapid dexiedhe residual is
observed for both cases considered. In the coupled iterstiveme, a decrease in
convergence rate is observed for the larger penalty paesnmethe cube domain
where the approximated eigenvalue corresponds to a nauftiolt, as expected.
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