
                  Pelinovsky et al 1

 
 
 
 
 
 
 
 
 
 
 

FREAK EDGE WAVES 
 

Efim Pelinovsky1, Antonio Lechuga2, Andrey Kurkin3, Oxana Poloukhina4, and 
Valentina Dubinina5  

 
 

Abstract:  The nonlinear and unsteady dynamics of the edge waves is 
discussed. Two physical processes: dispersive focusing and nonlinear 
modulational instability, are studied. Both mechanisms can induce the 
appearance of the short-living large-amplitude isolated waves and intense 
wave packets (“freak edge waves”).  

 
INTRODUCTION 
 Wave propagation in the inhomogeneous media can induce the scattering of the wave 
energy, as well as its capturing. The last phenomenon has a great interest due to the 
weak attenuation of the waves over long distances. There is a lot of tsunami 
observations when strong intensity can be explained with the theory of the trapped 
waves only. For instance, Ishi and Abe (1980) suggested that the manifestation of the 
catastrophic 1952 Kamchatka tsunami on the Japanese coast is related with the trapped 
waves. The 25 April 1992 Cape Mendocino earthquake generated a tsunami 
characterized by both coastal trapped edge wave and non-trapped tsunami modes that 
propagated north and south along the U.S. West Coast (Gonzales et al, 1995; Fujima et 
al, 2000). Totally, approximately 70% of the tsunami wave energy propagates along the 
Kurile Islands in Pacific as the trapped waves (Fine et al, 1983). Due to frequency 
dispersion of the trapped waves, such waves approach significantly later then the 
leading wave, and their amplitudes are significantly higher. Coastally trapped waves are 
an important component in the sea disturbances produced by cyclones moving along 
coastlines (Tang and Grimshaw, 1995). Short-scale edge waves may be generated from 
normally incident wind waves due to strong nonlinearity of the wind waves (Guza & 
Davis, 1974; Foda & Mei, 1981; Agnon & Mei, 1988). 
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 The mechanisms of the formation of the short-lived anomalous high edge waves 
(”freak” waves) are discussed in present paper. The first mechanism discussed early in 
papers (Aceev et al, 2001; Kurkin and Pelinovsky, 2003; Dubinina et al, 2003; Kurkin 
and Pelinovsky, 2004) is the dispersive focusing of the frequency modulated wave 
packets due to difference in the group velocities of propagated edge waves. This 
mechanism is effective for the edge waves on cylindrical bottom of any profile. The 
second mechanism is the modulational instability of the periodic wave train, which is 
known as the Benjamin-Feir instability for the Stokes waves. The analysis for edge 
waves above a beach of constant slope shows that the edge waves of any carrier 
frequency and modal number are unstable (Kurkin and Pelinovsky, 2004; Dubinina et 
al, 2004, 2005). For more complicated beach profiles the waves can be stable or 
unstable depending from the wave frequency. This mechanism leads to appearance of 
the group of anomalous waves in the almost periodic wave train for short time. All 
discussed mechanisms can induce an unusual sudden flooding on the coasts. Some 
observed data of such a flooding are discussed also. 
 
DISPERSIVE FOCUSING OF EDGE WAVE TRAINS 
 Let us consider the wave motion above the cylindrical bottom in the framework of 
the linear shallow water theory  
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where η(x,y,t) is the surface displacement, g is the gravity acceleration, h(y)  is the 
water depth, y is the offshore coordinate and x is the alongshore coordinate. The 
boundary conditions (on offshore coordinate) correspond to the wave vanishing on 
infinity and its bounding on the shoreline.  
 The wave equation (1) should be solved with the initial conditions. For tsunami 
problem the piston model is the popular model, thus the initial conditions correspond to 
the initial displacement of the sea surface  
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but other initial conditions can be easily considered due to linearity of the wave 
equation. The solution of the Cauchy problem for the wave equation (1) can be 
expressed in the integral form. Physically, this solution is presented as a sum of the near 
field (algebraically attenuated from the source) and the wave component given the 
superposition of the edge waves. Far from the source, the wave component contributes 
mainly in the resulting field. We will consider the trapped waves far from the source 
and ignore the near field. The wave component of the general solution presents by the 
Fourier series, 
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where An(k) can be easily found from η0(x,y) by inverse Fourier transformation. The 
function, Fn(k,y) and the wave frequency, ωn(k) are determined by the eigenvalue 
problem 
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with corresponding boundary conditions. For instance, for the beach of constant slope, 
h(y) = αy the offshore structure of the edge waves is described by 
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where Ln(ky) is the Laguerre polynomial. The offshore structure and dispersion relation 
of the Stokes edge waves are shown in Fig. 1 for α = 10-3.  
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Fig. 1. Offshore structure and dispersion relation for Stokes edge waves  

Thus, the linear superposition of the free edge waves (3) is the mathematical model for 
discussion of the anomalous high wave appearance. It is important to note that the edge 
waves have in general case the significant dispersion; in particular, for the Stokes 
waves dispersion relation (5) coincides with the dispersion relation for the wind waves 
in deep water (with reduced value of the gravity acceleration). Dispersion is usually 
considered as the mechanism of the wave attenuation due to transformation of the initial 
impulse into the wave train with decreasing amplitude and increasing length. It is 
evident that if at the initial moment the wave packet has the slow waves in its front and 
the fast waves on its end, the fast waves will overtake the slow waves. In the moment of 
overtaking (wave focus) the individual waves merge with forming of the large 
amplitude pulse. So, the focusing process is the inverse process of the dispersive 
attenuation. Mathematically, it follows from the invariance of the wave equation (1) on 
the sign changing of time and coordinates (in fact, only the propagated coordinate, 
alongshore coordinate should be considered). Therefore, the complicated mathematical 
problem to prove the appearance of the anomalous pulse from the given wave field can 
be reduced to the simpler Cauchy problem of the evolution of the anomalous pulse. All 
obtained solutions after inverting in space will present the wave packets evolved into 
the anomalous high impulse.  
 The main idea of analysis of appearance of the freak waves is to use the initial 
condition for (3) in the form of possible large pulse. Such a wave is described by the 
Fourier integral 
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where An(k) is a spectrum of anomalous high (freak) wave. The wave field on large 
times can be found using the stationary phase method 
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where сn is the group velocity determined by 
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For the fixed time, the wave number as a function of coordinate, k(x) is found from (8), 
and then the wave field from (7), it is function of both spatial coordinates. 
 Inverting time, t and coordinate, x in (7), the wave packet will have the slow waves 
on its front and fast waves in back. Such wave packet will evolve with time in the 
localized large pulse (6), and then disperse in the wave packet (7). Fast long waves will 
be again in front of more slow short waves. Fig. 2 illustrates the process of the 
appearance and disappearance of the freak wave. It is evident, that the significant 
amplification is in the vicinity of the wave focusing only; so, the anomalous high wave 
is rapidly appeared and also rapidly disappeared, and it has short-lived time (Fig. 3).  

 

 
Fig. 2. Appearance and disappearance of the freak wave 
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Fig. 3. Maximal value of the amplitude of the wave train versus time 

 
 Deterministic edge waves are considered above. In the framework of the linear 
theory the random and regular components propagate independently. As a result, the 
freak edge wave may be formed on the background of the random sea, as it was shown 
early for the Stokes edge waves (Kurkin and Pelinovsky, 2002).  
 
NONLINEAR SELF-MODULATION OF EDGE WAVE TRAINS 
 Let us consider now nonlinear equations of the shallow-water theory 
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where Φ(x, y, t) is the potential determined the alongshore current, u = ∂Φ/∂x, and 
offshore current, v = ∂Φ/∂y. Nonlinear modulational instability of the lowest mode of 
the Stokes edge waves was investigated in several papers (Whitham, 1976; Minzoni  
and Whitham, 1977; Yeh, 1985) where nonlinear dispersion relation was derived. Here 
this analysis is extended for the edge waves of any modal number.  
 The solution of the equations (9) and (10) is seeking in the form of the progressive 
steady waves considering η and Φ as functions of txk Ω−=θ  and y. Assuming the 
smallness of the wave amplitude, a, the wave field is expanded by the asymptotic series  
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The wave frequency, Ω should be presented also as power series in the amplitude 
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We will not give here the complicated technical details of the calculations of the 
nonlinear dispersion relation in the third order of the perturbation theory; see for 
instance, Dubinina et al (2004). In particular, for the beach of constant slope, the 
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coefficient γn depends from modal number, n only, and can be approximated by the 
regression curve 
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its accuracy is demonstrated in Fig. 4. In particular, for n = 0 this expression was 
derived by Whitham, 1976. It is important to mention that the nonlinear coefficient has 
the same sign for all values of the modal number, and, therefore, all modes of the 
Stokes edge waves are unstable. 

 
Fig. 4. Coefficient γ versus modal number 

 
 Based on the nonlinear dispersion relation, all coefficients of the nonlinear 
Schrodinger equation for the complex wave amplitude are calculated in an explicit 
form, so that this nonlinear evolution equation can be specified as 
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where A = ka, ξ = kx, and τ = ωt; k and ω are wave number and frequency of the carrier 
wave. Early this equation has been derived for the lowest mode of the Stokes wave only 
(Akylas, 1983). 
 Fig. 5 demonstrates the developing of the modulational instability for the initial weak 
disturbance of the wave amplitude 
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where m is the coefficient of modulation, K is the wave number of modulation taken 
from the condition of modulational instability. In the case of the weak amplitude wave 
train (Fig. 5, left), the one intense wave packet is appeared and disappeared on the 
background of the almost periodic wave. Increasing of the wave amplitude leads to the 
appearance of several intense wave groups (Fig. 5, right).  
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Fig. 5. Developing of the modulational instability  

 
For comparison, the process of the dispersive focusing is also modelled in the 
framework of the nonlinear Schrodinger equation (15); in this case the initial 
disturbance is 
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00 dAA −−= ,     (17) 

 
for A0 = 0.07 and d = 5. Fig. 6 displays the wave focusing of the frequency modulated 
wave train. As it can be seen, both mechanisms: modulational instability and nonlinear-
dispersive focusing, result to appearance of the freak edge waves. 
 

 
Fig. 6. Nonlinear – dispersive focusing of the wave train 

 
 

Similarly ( Lechuga, 1996) studied Benjamin-Feir instability and the resulting 
modulation from another point of  view in a more restricted case , mainly standing or 
quasi standing edge waves of zero mode on a planar beach. In this  paper the approach 
was constructive using Hill equation to check domains of instability. 
 
 
CONCLUSIONS  
 Nonlinear and unsteady dynamics of the edge waves can induce the appearance of 
the short-living large-amplitude localized pulses (freak edge waves). They can appear 
as a result of the action of two physical mechanisms: dispersive focusing and nonlinear 
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modulational instability. Both processes are studied and their effectiveness is analyzed. 
How to anticipate the flooding of the coastal zone as resulting of these mechanisms of 
generating freak edge waves should be the practical conclusion of this paper.  
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