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Abstract

We present a formulation for incompressible flows analysis using the finite element method (FEM). The necessary sta-
bilization for dealing with convective effects and the incompressibility condition is modeled via the finite calculus (FIC)
method. The stabilization terms introduced by the FIC formulation allow to solve a wide range of fluid flow problems
for low and high Reynolds numbers flows without the need for a turbulence model. Examples of application of the
FIC/FEM formulation to the analysis of 2D and 3D incompressible flows with moderate and large Reynolds numbers
are presented.
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1. Introduction

Many problems in mechanics are characterized by the existence of numerical values of the geometrical and/
or physical parameters differing in several orders of magnitude. Typical examples are convection–diffusion–
absorption problems where high values of the convection or the absorption terms lead to sharp boundary
and/or internal layers along which the numerical solution can change in many orders of magnitude. A similar
problem is found in the analysis of thin discontinuity layers in solids, such as in the case of fracture in con-
crete, rock or geomaterials, or in shock waves in compressible fluids. A traditional multiscale problem is that
of a turbulent fluid, where high gradients of the velocity field occur along random directions of the flow. The
transition from a compressible to an incompressible solid or fluid can also be considered as a multiscale prob-
lem, in the sense that the propagation speed of sound changes from a finite value (for the compressible case) to
an infinite value (in the case of incompressibility). Indeed, problems where many different scales of the material
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properties co-exist in a solid (such as in composites) or in a fluid are also classical examples of multiscale sit-
uations in mechanics.

It is well known that standard numerical methods such as the central finite difference (FD) method, the
Galerkin finite element (FE) method and the finite volume (FV) method, among others, lead to unstable
numerical solutions when applied to problems involving different scales, multiple constraints and/or high gra-
dients. Examples of these situations are typical in the solution of convection–diffusion problems and incom-
pressible flow problems in fluid mechanics using the standard Galerkin FE method or the central scheme in
FD and FV methods [1,2,24].

The sources of the numerical instabilities in FE, FD and FV methods when solving above problems have
been sought in the apparent unability of the Galerkin FE method and the analogous central difference scheme
in FD and FV methods, to provide a numerical procedure able to capture the different scales appearing in the
solution for all ranges of the physical parameters [1,2]. Typical examples are the spurious numerical oscilla-
tions in convection–diffusion problems for high values of the convective terms. The same type of oscillations
are found in turbulent flows and in regions next to sharp internal layers appearing in high speed compressible
flows (shocks). A similar problem of different nature emerges in the solution of incompressible problems in
fluid and solid mechanics. Here the difficulties in satisfying the incompressibility constraint limit the choices
of the approximation for the velocity (or displacement) variables and the pressure [1,24].

Much effort has been spent in the context of the finite element method (FEM) in developing the so called
stabilized numerical methods overcoming the two main sources of instability in incompressible flow analysis,
namely those originated by the high values of the convective terms and those induced by the difficulty in sat-
isfying the incompressibility condition.

The first attempts to correct the underdiffusive character of the Galerkin FEM for high convection flows were
based on adding some kind of artificial viscosity terms to the standard Galerkin equations [1–3]. Stabilized FD
schemes are typically based on the ‘‘upwind’’ computation of the first derivatives appearing in the convective
operator [2]. Extensions of the upwind approach to the FEM are reported in [1,4]. The counterpart of upwind
techniques in the FEM are the so called Petrov–Galerkin methods [1,24]. Among the many methods of this kind
we can name the SUPG method [1,5–14], the Galerkin Least Square (GLS) method [15], the Taylor–Galerkin
method [1,16], the characteristic Galerkin method [17], the characteristic based split (CBS) method [18,19,49]
and the subgrid scale (SS) method [20–23]. A review of some of these methods can be found in [24].

Stabilized FEM, such as those described in the previous paragraph, have been successfully used to solve a
wide range of incompressible fluid mechanics problems. The intrinsic dissipative properties of the stabilization
terms (which can interpreted as an additional viscosity) typically suffices to yield good results for low and
moderate values of the Reynolds number (Re). For high values of Re most stabilized FEM fail to provide
physically meaningful results and the numerical solution is often unstable or inaccurate. The introduction
of a turbulence model is mandatory in order to obtain meaningful results in these cases.

Recent attempts to develop a unified relativity theory in physics adequate for dealing with the whole spec-
trum of scales in the universe, from the Plank atomistic scale (10�33 cm) to the cosmological scale (10+28 cm)
indicate that a suitable mathematical model should incorporate the effect of the different scales within the gov-
erning equations of the model [25]. Failing to include these scale terms may lead to unstable behaviour of the
equations when solved numerically for very different values of the physical, geometrical and/or time param-
eters of the problem.

The finite calculus (FIC) method developed by Oñate and co-workers [26–49] is a consistent procedure to
re-formulate the governing equation in mechanics introducing new terms involving characteristic space and
time dimensions into the equations. The modified equations are derived by invoking the balance laws in
mechanics in a space-time domain of finite size. The new terms introduced by the FIC approach are essential
to obtain physical (stable) numerical solutions for all ranges of the parameters governing the physical
problem.

The merit of the modified equations via the FIC approach is that they lead to stabilized schemes using any

numerical method. In addition, the different stabilized FD, FE and FV methods typically used in practice can
be recovered using the FIC equations [26,27].

The FIC/FEM formulation has proven to be very effective for the solution of a wide class of problems, such
as convection–diffusion [26–33] and convection–diffusion-reaction [34–36] with arbitrary high gradients,



incompressible flow problems accounting for free surface effects and fluid–structure interaction situations [37–
46] and quasi and fully incompressible problems in solid mechanics [47–49].

This paper extends the work recently presented in [45,46] where an enhanced stabilized FEM for incom-
pressible flows was derived via FIC. The FIC approach introduces additional terms in the classical differential
equations of momentum and mass balance of infinitesimal fluid mechanics. The FIC terms have a matrix form
and are a function of characteristic length dimensions related to the finite element sizes and also to the form of
the numerical solution. A procedure to compute the characteristic length parameters is described. The FIC
terms in the modified governing equations provide the necessary stabilization to the discrete equations
obtained via the standard Galerkin FEM. The resulting FIC/FEM formulation allows to use low order finite
elements (such as linear triangles and tetrahedra) with an equal order approximation for the velocity and the
pressure variables.

It is shown in this paper that the non linear stabilization terms introduced by the FIC/FEM formulation
can be used to solve accurately high Re number flows without the need of introducing any turbulence model. The
FIC/FEM formulation described here therefore provides a straightforward procedure for solving a wide class
of flow problems from low to high Reynolds numbers. The good results obtained in the 2D and 3D examples
presented open the door for the reinterpretation of the (nonlinear) FIC stabilization terms as a turbulent
model. The advantage of this analogy is that the FIC terms are derived from basic principles, such as balance
of momentum and mass and, in conjunction with a numerical method such as the FEM, they provide a
straightforward procedure for the analysis of complex problems in fluid mechanics.

The layout of the paper is the following. In the next section the FIC equations for incompressible flows with
matrix stabilization terms are presented. The finite element discretization is introduced and the resulting
matrix equations are given. A fractional step scheme for the transient solution is detailed. Examples of appli-
cation to the 2D and 3D analysis of flows at different Reynolds numbers are presented.

2. The finite calculus approach

We will consider a convection–diffusion problem in a 1D domain X of length L. The equation of balance of
fluxes in a subdomain of size d belonging to X (Fig. 1) is written as
qA � qB ¼ 0 ð1Þ

where qA and qB are the incoming and outgoing fluxes at points A and B, respectively. The flux q includes both
convective and diffusive terms; i.e. q ¼ u/� k d/

dx, where / is the transported variable (i.e. the temperature in a
thermal problem), u is the velocity and k is the diffusivity of the material. For simplicity the density and the
specific heat constant have been assumed to have a unit value.

Let us express now the fluxes qA and qB in terms of the flux at an arbitrary point C within the balance
domain (Fig. 1). Expanding qA and qB in Taylor series around point C up to second order terms gives
qA ¼ qC � d1

dq
dx

����
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þ d2
1

2

d2q
dx2

����
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þOðd3
1Þ; qB ¼ qC þ d2

dq
dx

����
C

þ d2
2

2

d2q
dx2

����
C

þOðd3
2Þ ð2Þ
Substituting Eq. (2) into Eq. (1) gives after simplification
Fig. 1. Equilibrium of fluxes in a space balance domain of finite size.



dq
dx
� h

2

d2q
dx2
¼ 0 ð3Þ
where h ¼ d1 � d2 and all the derivatives are computed at the arbitrary point C.
Standard calculus theory assumes that the domain d is of infinitesimal size and the resulting balance equa-

tion is simply dq
dx ¼ 0. We will relax this assumption and allow the space balance domain to have a finite size.

The new balance Eq. (3) incorporates now the underlined term which introduces the characteristic length h.
Obviously, accounting for higher order terms in Eq. (2) would lead to new terms in Eq. (3) involving higher
powers of h.

Distance h in Eq. (3) can be interpreted as a free parameter depending on the location of point C within the
balance domain. Note that �d 6 h 6 d and, hence, h can take a negative value. At the discrete solution level
the domain d should be replaced by the balance domain around a node. This gives for an equal size discret-
ization �le

6 h 6 le where le is the element or cell dimension. The fact that Eq. (3) is the exact balance equation

(up to second order terms) for any 1D domain of finite size and that the position of point C is arbitrary, can be
used to derive numerical schemes with enhanced properties simply by computing the characteristic length
parameter from an adequate ‘‘optimality’’ rule, such as requiring to an smaller error in the numerical solution
[26–36].

Consider, for instance, the 1D convection–diffusion problem. Neglecting third order derivatives of /, Eq.
(3) can be rewritten in terms of / as
�u
d/
dx
þ k þ uh

2

� �
d2/
dx2
¼ 0 ð4Þ
We see clearly that the FIC method introduces naturally an additional diffusion term in the standard convec-
tion–diffusion equation. This is the basis of the popular artificial diffusion procedure [1–3] where the charac-
teristic length h is typically expressed as a function of the cell or element dimension. The critical value of h can
be computed by requiring that the numerical solution of Eq. (4) is physically meaningful [1–3,26–36].

Eq. (3) can be extended to account for source terms. The resulting governing equation can then be written
in compact form as
r � h
2

dr
dx
¼ 0 ð5Þ
with
r :¼ �u
d/
dx
þ d

dx
k

d/
dx

� �
þ Q ð6Þ
where Q is the external source. The essential (Dirichlet) boundary condition for Eq. (5) is / ¼ �/ on C/ where
C/ is the boundary where the prescribed value �/ is imposed. For consistency a stabilized Neumann boundary
condition must be obtained as described next.

Note that for h ¼ 0 the classical balance equation of the infinitesimal theory (r ¼ 0) is obtained.
Let us consider a balance domain next to a Neumann boundary point B (Fig. 2)). The length of the balance

segment AB next to the boundary is taken as one half of the characteristic length h for the interior domain.
The balance equation, assuming a constant distribution for the source Q, is
A B

q

[u φ ]A

A

Q

x L

h/2

q-

Fig. 2. Balance domain next to a Neumann boundary point B.



�q� qðxAÞ � ½u/�A �
h
2

Q ¼ 0 ð7Þ
where �q is the prescribed total flux at x ¼ L and xA ¼ xB � h
2
.

Using a second order expansion for the advective and diffusive fluxes at point A gives [26]
�u/þ k
d/
dx
þ �q� h

2
r on x ¼ L ð8Þ
where r is given by Eq. (6). Again for h ¼ 0 the infinitesimal form of the 1D Neumann boundary condition is
recovered.

It is important to recall that the underlined terms in Eqs. (5) and (8) introduce the necessary stabilization in
the discrete solution using whatever numerical scheme [26–36].

Quite generally the FIC equation can be written for any problem in mechanics as [26,27,46]
ri �
hij

2

ori

oxj
¼ 0;

i ¼ 1; nb

j ¼ 1; nd
ð9Þ
where ri is the ith standard differential equation of the infinitesimal theory, hij are characteristic length param-
eters; nb and nd are, respectively, the number of balance equations and the number of space dimensions of the
problem (i.e., nd ¼ 2 for 2D problems). The usual sum convention for repeated indexes is used in the text un-
less otherwise specified.
3. Interpretation of the discrete solution of the FIC equations

Let us consider the solution of a physical problem in a space domain X, governed by a differential
equation rð/Þ ¼ 0 in X with the corresponding boundary conditions. Only the steady state solution is con-
sidered, for simplicity. The ‘‘exact’’ (analytical) solution of the problem will be a function giving the
sought distribution of / for any value of the geometrical and physical parameters of the problem. Obvi-
ously, since the analytical solution is practically impossible to find for real situations, an approximate
numerical solution is found / ’ /̂ by solving the problem r̂ ¼ 0, with r̂ ¼ rð/̂Þ, using a particular discret-
ization method (such as the FEM). The distribution of / in X is now obtained for specific values of the
geometrical and physical parameters. The accuracy of the numerical solution depends on the discretization
features, such as the number of elements and the approximating functions chosen in the FEM. Fig. 3
shows a schematic representation of the distribution of /̂ along a line for different discretizations
M1;M2; . . . ;Mn where M1 and Mn are the coarser and finer meshes, respectively. Obviously for n being
sufficiently large a good approximation of / will be obtained and for M1 the approximate numerical solu-
tion /̂ will coincide with the ‘‘exact’’ (and probably unreachable) analytical solution / at all points.
Indeed in some problems the M1 solution can be found by a ‘‘clever’’ choice of the discretization
parameters.

An unstable solution will occur when for some (typically coarse) discretizations, the numerical solution pro-
vides non-physical or very unaccurate values of /̂. A situation of this kind is represented by curves M1 and M2

of the left hand side of Fig. 3. These unstabilities will disappear by an appropriate mesh refinement (curves
M3;M4; . . . in Fig. 3) at the obvious increase of the computational cost.

In the FIC formulation the starting point are the modified differential equations of the problem as previ-
ously described. These equations are however not useful to find an analytical solution, /ðxÞ, for the physical
problem. Nevertheless, the numerical solution of the FIC equation can be readily found. Moreover, by ade-
quately choosing the values of the characteristic length parameter h, the numerical solution of the FIC equa-
tions will be always stable (physically sound) for any discretization level chosen.

This process is schematically represented in Fig. 3 where it is shown that the numerical oscillations for the
coarser discretizations M1 and M2 disappear when using the FIC procedure.

We can conclude the FIC approach allows us to obtain a better numerical solution for a given discretization.
Indeed, as in the standard infinitesimal case, the choice of M1 will yield the ‘‘exact’’ analytical solution and
this ensures the consistency of the method.



Fig. 3. Schematic representation of the numerical solution of a physical problem using standard infinitesimal calculus and finite calculus.
4. FIC equations for incompressible flow

The FIC governing equations for a viscous incompressible fluid can be written in an Eulerian frame of ref-
erence as (for simplicity we neglect the time stabilization terms) [46]

Momentum:
rmi �
1

2
hij

ormi

oxj
¼ 0 in X no sum in i ð10Þ
Mass balance:
rd �
1

2
hj

ord

oxj
¼ 0 in X ð11Þ
where
rmi ¼ q
oui

ot
þ uj

oui

oxj

� �
þ op

oxi
� osij

oxj
� bi ð12Þ

rd ¼
oui

oxi
i; j ¼ 1; nd ð13Þ



Above X is the analysis domain, ui is the velocity along the ith global axis, q is the (constant) density of the
fluid, p is the absolute pressure (defined positive in compression), bi are the body forces and sij are the viscous
deviatoric stresses related to the viscosity l by the standard expression
sij ¼ 2l _eij � dij
1

3

ouk

oxk

� �
ð14Þ
where dij is the Kronecker delta and the strain rates _eij are
_eij ¼
1

2

oui

oxj
þ ouj

oxi

� �
ð15Þ
The FIC boundary conditions are
njrij � ti þ
1

2
hijnjrmi ¼ 0 on Ct no sum in i ð16Þ

uj � up
j ¼ 0 on Cu ð17Þ
and the initial condition is uj ¼ u0
j for t ¼ t0.

In Eqs. (16) and (17) ti and up
j are surface tractions and prescribed velocities on the boundaries Ct and Cu,

respectively, nj are the components of the unit normal vector to the boundary and rij are the total stresses
given by rij ¼ sij � dijp.

Distances hi in Eq. (11) denote the dimensions of the domain where balance of mass is enforced. This is a
basic difference with the momentum equations where the momentum balance law is applied along each global
coordinate direction, thereby introducing the characteristic lengths hij in Eq. (10) [46]. In Eq. (16) the hij’s
define the domain where equilibrium of boundary tractions is established [26,46]. As mentioned earlier, in
the discretized problem the characteristic distances become of the order of the typical element dimensions.
Note that by making these distances equal to zero the standard infinitessimal form of the fluid mechanics
equations is recovered [1,2,24].

In the following we will assume that hi ¼ hii, i.e. the dimensions of the mass balance domain are directly
related to those of the domain where balance of momentum is established.

Eqs. (10)–(17) are the starting point for deriving stabilized FEM for solving the incompressible Navier–
Stokes equations. The underlined FIC terms in Eqs. (10) and (16) are essential to overcome the numerical
instabilities due to the convective terms in the momentum equations, whereas the underlined terms in Eq.
(11) take care of the instabilities due to the incompressibility constraint. An interesting feature of the FIC for-
mulation is that it allows to use equal order interpolation for the velocity and pressure variables [37–49].

4.1. Stabilized integral forms

From the momentum equations it can be obtained (for hi ¼ hii) [37,45,46]
ord

oxi
’ hii

2ai

ormi

oxj
; no sum in i ð18aÞ
where
ai ¼
2l
3
þ quihii

2
; no sum in i ð18bÞ
Substituting Eq. (18a) into Eq. (11) and retaining the terms involving the derivatives of rmi with respect to xi

only, leads to the following alternative expression for the stabilized mass balance equation
rd �
Xnd

i¼1

si
ormi

oxi
¼ 0 ð19Þ
with
si ¼
8l

3h2
ii

þ 2qui

hii

!�1

ð20Þ



The si’s in Eq. (19) when multiplied by the density are equivalent to the intrinsic time parameters, seen exten-
sively in the stabilization literature. The interest of Eq. (19) is that it introduces the first space derivatives of the
momentum equations into the mass balance equation. These terms have intrinsic good stability properties as
explained next.

The weighted residual forms of the momentum and mass balance equations (Eqs. (10) and (19)) are written
as
 Z

X
dui rmi �

hij

2

ormi

oxj

� �
dXþ

Z
Ct

dui rijnj � ti þ
hij

2
njrmi

� �
dC ¼ 0 ð21Þ

Z
X

q rd �
Xnd

i¼1

si
ormi

oxi

" #
dX ¼ 0 ð22Þ
where dui and q are arbitrary weighting functions representing virtual velocities and virtual pressure fields.
Integrating by parts the rmi derivative terms in Eqs. (21) and (22) yields
Z

X
duirmi dXþ

Z
Ct

duiðrijnj � tiÞdCþ
Z

X

hij

2

odui

oxj
rmi dX ¼ 0 ð23aÞ

Z
X

qrd dXþ
Z

X

Xnd

i¼1

si
oq
oxi

rmi

" #
dX�

Z
C

Xnd

i¼1

qsinirmi

" #
dC ¼ 0 ð23bÞ
We will neglect hereonwards the third integral in Eq. (23b) by assuming that rmi is negligible on the bound-
aries. The stresses in the first integral of Eq. (23a) are integrated by parts in the usual manner. This gives
for the momentum and mass balance equations
Z

X
duiq

oui

ot
þ uj

oui

oxj

� �
þ odui

oxj
ðsij � dijpÞ

� �
dX�

Z
X

duibi dX�
Z

Ct

duiti dCþ
Z

X

hij

2

odui

oxj
rmi dX ¼ 0 ð24aÞ

Z
X

q
oui

oxi
dXþ

Z
X

Xnd

i¼1

si
oq
oxi

rmi

" #
dX ¼ 0 ð24bÞ
4.2. Convective and pressure gradient projections

The computation of the residual terms are simplified if we introduce the convective and pressure gradient
projections ci and pi, respectively, defined as
ci ¼ rmi � quj
oui

oxj

pi ¼ rmi �
op
oxi

ð25Þ
We can express rmi in Eqs. (24) in terms of ci and pi, respectively which then become additional variables. The
system of integral equations is now augmented in the necessary number of equations by imposing that the
residual rmi vanishes (in average sense) for both forms given by Eqs. (25). This gives the final system of gov-
erning equation as:
Z
X

duiq
oui

ot
þ uj

oui

oxj

� �
þ odui

oxj
ðsij � dijpÞ

� �
dX�

Z
X

duibi dX

�
Z

Ct

duitidCþ
Z

X

hik

2

oðduiÞ
oxk

quj
oui

oxj
þ ci

� �
dX ¼ 0 ð26Þ

Z
X

q
oui

oxi
dXþ

Z
X

Xnd

i¼1

si
oq
oxi

op
oxi
þ pi

� �
dX ¼ 0 ð27Þ



Z
X

dciq quj
oui

oxj
þ ci

�
dX ¼ 0 no sum in i ð28ÞZ

X
dpisi

op
oxi
þ pi

� �
dX ¼ 0 no sum in i ð29Þ
with i; j; k ¼ 1; nd . In Eqs. (28) and (29) dci and dpi are appropriate weighting functions and the q and si

weights are introduced for convenience.
The convective and pressure gradient projections enforce the consistency of the formulation as it ensures

that the stabilization terms in Eqs. (26) and (27) have a residual form which vanishes for the ‘‘exact’’ solution.
Neglecting these terms reduces the accuracy of the numerical solution and it makes the formulation more sen-
sitive to the value of the stabilization parameters [45,47,48].

5. Finite element solution of FIC equations for incompressible flow

We choose C� continuous linear interpolations of the velocities, the pressure, the convection projections ci

and the pressure gradient projections pi over 3-noded triangles (2D) and 4-noded tetrahedra (3D). The linear
interpolations are written as
ui ¼ Nk�uk
i ; p ¼ Nk�pk

ci ¼ Nk�ck
i ; pi ¼ Nk�pk

i

ð30Þ
where the sum goes over the number of nodes of each element n (n ¼ 3=4 for triangles/tetrahedra), �ð�Þk denotes
the nodal variables and Nk are the linear shape functions [1,24].

Substituting the approximations (30) into Eqs. (26)–(29) and choosing the Galerkin form with
dui ¼ q ¼ dci ¼ dpi ¼ Ni leads to following system of discretized equations
M _�uþH�u�G�pþ C�c ¼ f ð31aÞ
GT�uþ L̂�pþQ�p ¼ 0 ð31bÞ
Ĉ�uþ �M�c ¼ 0 ð31cÞ
QT�pþ M̂�p ¼ 0 ð31dÞ
where
H ¼ Aþ Kþ K̂ ð32Þ

If we denote the node indexes with superscripts a, b and the space indices with subscripts i, j, the element con-
tributions to the components of the arrays involved in these equations are (some expressions are explicitly gi-
ven for 2D problems)
Mab
ij ¼

Z
Xe

qN aNb dX

� �
dij; Aab

ij ¼
Z

Xe
qN aðuTrNbÞdX

� �
dij

Kab ¼
Z

Xe
BT

a DBb dX; Ba ¼

oNa

ox1
0

0 oNa

ox2

oNa

ox2

oNa

ox1

2
664

3
775; D ¼ l

4=3 �2=3 0

�2=3 4=3 0

0 0 1

2
64

3
75

K̂ab
ij ¼

1

2

Z
Xe

hij
oN a

oxj
ðquT$N bÞdX

� �
dij; G ¼

G1

G2

� �
; Gab

i ¼
Z

Xe

oNa

oxi
Nb dX

C ¼ C1

C2

" #
; Cab

i ¼
1

2

Z
Xe

hij
oNa

oxj
N b dX; �Mab ¼

Z
Xe

qNaN b dX

L̂ab ¼
Z

Xe
ð$TN aÞ½s�$N b dX; ½s� ¼

s1 0

0 s2

� �



Q ¼ ½Q1;Q2�; Qab
i ¼

Z
Xe

si
oN a

oxi
Nb dX no sum in i

ĈT ¼ ½Ĉ1; Ĉ2�; Ĉab
1 ¼ Ĉab

2 ¼
Z

Xe
q2N aðuT$NbÞdX

M̂T ¼ ½M̂1; M̂2�; M̂ab
ij ¼

Z
Xe

siNaN b dX

� �
dij; f a

i ¼
Z

Xe
N afi dXþ

Z
Ce

N ati dC

ð33Þ
It is understood that all the arrays are matrices (except f which is a vector) whose components are obtained by
grouping together the left indices in the previous expressions (a and possibly i) and the right indices (b and
possibly j).

Note that the stabilization matrix K̂ in Eq. (33) adds new orthotropic diffusivity terms of value q hijul

2
. A dis-

cussions of these terms is presented in [54].
The overall stabilization terms introduced by the FIC formulation have the intrinsic capacity to ensure phys-

ically sound numerical solutions for a wide spectrum of Reynolds numbers without the need of introducing
additional turbulence modelling terms. This property is validated in the examples presented in a next section.

5.1. Transient solution scheme

The solution in time of the system of Eqs. (31) can be written in general form as
M
1

Dt
ð�unþ1 � �unÞ þHnþh�unþh �G�pnþh þ Cnþh�cnþh ¼ fnþh ð34aÞ

GT�unþh þ L̂nþh�pnþh þQ�pnþh ¼ 0 ð34bÞ
Ĉnþh�unþh þ �M�cnþh ¼ 0 ð34cÞ
GT�pnþh þ M̂nþh�pnþ0 ¼ 0 ð34dÞ
where Hnþh ¼ HðunþhÞ, etc. and the parameter h 2 ½0; 1�. The direct monolithic solution of Eqs. (34) is possible
using an adequate iterative scheme. However, in our work we have used the fractional step method described
in [45,46].
Fig. 4. Definition of the principal curvature direction ~ni
1 along the gradient of ui.

Fig. 5. Definition of the element characteristic distances li1 and li2 corresponding to the ith momentum equation.



6. Computation of the characteristic distances

The computation of the stabilization parameters is a crucial issue as they affect both the stability and accu-
racy of the numerical solution. The different procedures to compute the stabilization parameters are typically
based on the study of simplified forms of the stabilized equations. Contributions to this topic are reported in
[12–22,27–36,45–51].

Recent work of the authors has shown that the stabilizing FIC terms for convection–diffusion problems
take the form of a simple orthotropic diffusion if the balance equation is written in the principal curvature
directions of the solution. Excellent results were reported in [33,35] by computing first the characteristic length
distances along the principal curvature directions, followed by a standard transformation of the distances to
global axes. The resulting stabilized finite element equations capture the high gradient zones in the vicinity of
the domain edges (boundary layers) as well as the sharp gradients appearing randomly in the interior of the
domain [33,35]. The FIC/FEM thus reproduces the best features of the so called transverse (cross-wind) dis-
sipation or shock capturing methods [1,2,24].

The numerical computations are simplified without apparent loss of accuracy if the main principal curva-
ture direction of the solution at each element point is approximated by the direction of the gradient vector at
the element center [33,35]. The other principal directions are taken in orthogonal directions to the gradient.
For linear triangles and quadrilaterals these directions are assumed to be constant within the element.

Above simple scheme has been used in this work for the computation of the characteristic distances hij.
Details of the algorithm are given next. The method is explained for 2D problems although it is readily extend-
ible to 3D problems [54].

For the ith momentum balance equation and every time step of the transient solution scheme:

1. A coordinate system ~ni
1, ~ni

2 is defined at each element point such that ~ni
1 is aligned with the gradient of ui

(~ni
1 ¼ ~rui) and~ni

2 is orthogonal to~ni
1 in anticlockwise sense (Fig. 4). The angle that~ni

1 forms with the global
x1 axis is defined as ai. Recall that upper and lower index i denotes the ith momentum equation.

2. The element characteristic distances li1 and li2 are defined as the maximum projections of the element sides
along the ~ni

1 and ~ni
2 axes, respectively (Fig. 5).
Fig. 6. Flow past a cylinder of unit diameter. Analysis domain and boundary conditions.



3. The characteristic distances hi1 and hi2 are computed as
hi1

hi2

� �
¼

ci �si

si ci

� �
h0i1
h0i2

� �
; i ¼ 1; 2 ð35Þ
with ci ¼ cos ai; si ¼ sin ai and the local distances h0i1 and h0i2 are
h0ij ¼ coth cij �
1

cij

!
lij; cij ¼

u0jlij

2l
; j ¼ 1; 2 ð36Þ
where u01 and u02 are the components of the velocity vector along the local axes ~ni
1 and ~ni

2, respectively
(Fig. 4).
Fig. 7. Flow past a cylinder. Mesh of 59380 three-noded triangles used for the computations.

Fig. 8. Flow past a cylinder, Re ¼ 1000. Contour of the velocity vector module for t ¼ 100 s.



7. Examples

The examples were solved with the Tdyn code where the formulation here presented has been implemented.
The Tdyn code can be downloaded from the webpage given in [52].

7.1. 2D flow past a cylinder

Fig. 6 shows the geometry for the analysis of the flow past a cylinder of unit diameter (D). A unit horizontal
velocity is prescribed at the inlet boundary and at the two horizontal walls. Zero pressure is prescribed at the
outlet boundary. The dimensions of the analysis domain are 36� 27 units. The origin of the coordinate system
has been sampled at the center of the cylinder located at a distance of 13.1 units from the entry wall. Zero
velocity is prescribed at the cylinder wall. The kinematic viscosity (m ¼ l

q) is m ¼ 0:001. Fig. 7 shows the mesh
of 59,380 three-noded elements used for the computation (160 along its circumference) and 29,398 nodes. The
radial thickness of the layer of elements around the cylinder is 0.02. The number of elements in the highly-
refined inner mesh is 47,716.
Fig. 9. Flow past a cylinder, Re ¼ 1000. Velocity vectors for t ¼ 100 s.

Fig. 10. Streamlines around the cylinder at time t ¼ 100 s.



The problem has been analyzed for a value of the horizontal velocity at the entry of u1 ¼ 1 giving a Rey-
nolds number of Re ¼ 1000. The time step for the solution of Eqs. (34) using a fractional step method was set
equal to 0.05 s [45,46]. Figs. 8 and 9 respectively show the velocity modulus contours and the velocity vectors
for t ¼ 100 s.

Fig. 10 shows the streamlines around the cylinder at time t ¼ 100 s. It is shown the two vortices created in
the turbulent wake of the cylinder. Fig. 11 shows images of the trajectory of a substance over a band of 2.45
units transported at the entry across the flow for t ¼ 100 s. The picture shows clearly the oscillatory nature of
the flow.
Fig. 11. Flow past a cylinder, Re ¼ 1000. Trajectories of a substance over a band of 2.45 units at the entry transported across the flow for
t ¼ 100 s.



Fig. 12. 3D flow past a cylinder, Re ¼ 1000. Oscillations with time of the horizontal velocity at the point A with coordinates (6.7–1.02).
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Fig. 13. Time histories of the pressure and the viscous forces along the vertical axis over the cylinder from time 50 to 200 s.



Fig. 12 shows the oscillations of the horizontal velocity at the point A with coordinates (6.7, �1.02) with
time. Fig. 13 shows the time histories of the pressure and the viscous forces along the vertical axis over the
cylinder from time 50 to 200 s. The Strouhal number computed from the shedding frequency n as S ¼ nD

juj is
S ¼ 0:2103. This number compares very well with the experimental result available in the literature as shown
in Fig. 14 where the Strouhal numbers obtained for Re ¼ 1000 and Re ¼ 100 are plotted. More details of these
results can be found in [46].

It is a well known fact that for Re > 300 the flow past a cylinder exhibits 3D features. In [53] results from
2D and 3D computations were compared for Re ¼ 300 and 800. While 3D features were observed even at
Re ¼ 300 and more so at Re ¼ 800, there were no large discrepances between the global flow parameters (such
as drag, lift and Strouhal number) obtained from 2D and 3D computations. These conclusions justify the
results of the 2D computations presented here.
Strouhal Frequency vs Reynolds Number
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Fig. 14. Flow past a cylinder. Experimental (thick line) and computed (filled diamond) values of the Strouhal number S in terms of the
Reynolds number. Experimental values taken from [http://wn7.enseeiht.fr/hmf/travaux/CD0102/travaux/optmfn/gpfmho/01-2/grp1/
index.htm].

Fig. 15. Flow past a cylinder, Re ¼ 400. Mesh of 445814 four-noded tetrahedra used for the computations.

http://wn7.enseeiht.fr/hmf/travaux/CD0102/travaux/optmfn/gpfmho/01-2/grp1/index.htm
http://wn7.enseeiht.fr/hmf/travaux/CD0102/travaux/optmfn/gpfmho/01-2/grp1/index.htm


7.2. 3D flow past a cylinder

The 3D analysis of the flow about a cylinder was solved for Re ¼ 400. Geometry and boundary conditions
are the natural extension of the 2D case presented in the previous section. The dimension of the computational
domain parallel to the cylinder axis is 8 units (this length is recommended in [53] to capture a few wavelengths
along the cylinder axis). The boundary conditions for the lateral boundary perpendicular to the cylinder axis
consist of zero-normal velocity and zero-shear stress. Fig. 15 shows the mesh of 445,814 four-noded tetrahedra
used for the computation (40 elements along the cylinder span and 80 elements along its circumference) and
Fig. 16. 3D cylinder. Iso-contours of the vorticity modulus (w ¼ 0:3) at t ¼ 100 s.

Fig. 17. Streamlines in the wake of the cylinder at t ¼ 100 s.



91,316 nodes. The radial thickness of the layer of elements around the cylinder is 0.015. The number of ele-
ments in the highly-refined inner mesh is 252,725. The time step for the integration of Eqs. (34) is set to 0.05
[45,46].

Fig. 16 shows the isosurface of the vorticity modulus w for w ¼ 0:3 at t ¼ 100 s. Results clearly show the 3D
character of the flow at that Reynolds number. Fig. 17 shows streamlines behind the cylinder at t ¼ 100 s,
inside the recirculating area. It is clear the structure of the vortex created in the turbulent region. When the
vortex gets enough energy then it detaches from the cylinder, generating the von Karman street vortexes.
The Strouhal number computed from the shedding frequency yielded S ¼ 0:2. This value compares well with
the experimental data shown in Fig. 14.

Similar good results for this problem for a higher Reynolds number are reported in [54].

8. Conclusions

The finite calculus (FIC) form of the fluid mechanics equations is a good starting point for deriving stabi-
lized FEM for solving a variety of incompressible fluid flow problems. The matrix stabilization terms intro-
duced by the FIC formulation here presented allow to obtain physically sound solutions in the presence of
sharp gradients occuring for high Reynolds numbers without the need of introducing a turbulence model.
Good numerical solutions have been obtained in the 2D and 3D examples solved with relatively coarse meshes
for moderately high values of the Reynolds number. These results reinforce our conviction that the stabiliza-
tion terms introduced by the FIC formulation suffice to provide good results for problems for which turbu-
lence models are required using more classical numerical methods. The results also confirm the close link
between the stabilized methods and turbulence models, which surely will be the object of much research in
the near future.
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[30] E. Oñate, M. Manzan, A general procedure for deriving stabilized space-time finite element methods for advective–diffusive problems,
Int. J. Num. Meth. Fluids 31 (1999) 203–221.
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[38] E. Oñate, C. Sacco, S.R. Idelsohn, A finite point method for incompressible flow problems, Comput. Visual. Sci. 2 (2000) 67–75.
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[48] E. Oñate, R.L. Taylor, O.C. Zienkiewicz, J. Rojek, A residual correction method based on finite calculus, Eng. Comput. 20 (5/6)
(2003) 629–658.
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