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An Unstructured Finite Element
Solver for Ship Hydrodynamics
Problems

J. Garcia, E. Onate

A stabilized semi-implicit fractional step algorithm based on the finite elementmethod for solving ship wave problems using

unstructuredmesheds presentedThe stabilizedgov-erningequationsfor the viscousincompressibléluid and the free surfaceare

derivedat a differential level via a finite calculusprocedure.This allows us to obtain a stabilizednumericalsolution schemeSome
particular aspectsof the problem solution, such as the meshupdating procedureand the transomstern treatment,are presented.
Examples of thefficiencyof the semi-implicialgorithm for the analysis of ship hydrodynamics problemespresented.

Introduction surface wave boundary effects are accounted for in the flow solu-

tion either by moving the free surface nodes in a Lagrangean

The prediction of the wave pattern and resistance joint to tr}ﬁanner, or else for via the introduction of a prescribed pressure at
study of the flow around a ship are topics of major relevance We free surface computed from the wave height

naval architecture. The analytical and numerical solutions of this 1" it of the paper is structured as follows. First the sta-

]E)roblem havetchallenged mathematicians and hydrodynamluﬁ}ﬁzed semi-implicit fractional step approach using the finite ele-

orDover_ta cen u”t" d . tational fluid d .ment method is then described. Details of the computation of the
espite recent advances in computational Tul ynamiapilization parameters are also given. Finally some examples of

(CFD.) methods and computer hardware, the _nu_meric_al SOIUtiOQﬁplications of the unstructured-grid solver for ship hydrodynam-
of ship wave problems is still a challenge. This is mainly due t s problems are presented

the difficulties in solving the incompressible flow equations

coupled to the free boundary constraint stating that at this boungyite Calculus (FIC) Formulation of Viscous Turbulent
ary the fluid particles must remain on the water surface, whogf

position is in turn unknown. ow and Free Surface Equations

This paper presents advances in recent work of the authorsWe consider the motion around a body of a viscous incompress-
[1-10], to derive a stabilized finite element method which allowible fluid including a free surface.
us to overcome the above mentioned problems. The starting pointd he finite calculus form of the governing differential equations
are the modified governing differential equations for the inconfor the three-dimensional problem can be written[8s;10] fol-
pressible flow and the free surface condition incorporating tHews:
necessary stabilization terms vidiaite calculus(FIC) procedure Momentum

developed by the author8—10]. The FIC technique is based on 1 ar
m

writing the different balance equations over a domain of finite size F—Th——0 on Q i i=1,2,3 @

and retaining higher order terms. These terms incorporate the in- mo2 IX; ' o

gredients for the necessary stabilization of any transient amﬂ

steady-state numerical solutiaready at the differential equa- MasS Balance

tions level. In addition, the modified differential equations can be 1 arg _

used to derive a numerical scheme for computing the stabilization ra=5h; o0 on Q j=123 (2
]

parameterd,5,6,7,9].

The stabilized differential equations are first solved in time us-
ing a semi-implicit fractional step approach. Application of the
standard Galerkin finite element formulation to the fractional steps (a))
equations leads to a stabilized system of discretized equations
which overcomes the above-mentioned problems, allowing for
equal order linear interpolations of the velocity and pressure vari-
ables over the elements. Unstructured grids of linear tetrahedra
have been used in this work. The approach is similar to semi-
implicit fractional methods proposed {11-13. The particular
features of the algorithm here proposed are the additional stabili-
zation terms introduced by the FIC formulation. These terms en-
sure the stabilization of the algorithm for small time-step sizes and (b)
enhance the convergence towards the steady-state solution. Fre
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Fig. 2 DTMB 5415 model. Geometrical definition based on
NURBS surfaces.
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In the abovey; is the velocity along theth global reference

Fig. 3 DTMB 5415 model. Surface mesh used in the analysis.

where n; are the components of the unit normal vector to the
boundary and; andujp are prescribed tractions and displacements
on the boundarie¥; andT",, respectively.

The underlined terms in Eq$l)—(3) introduce the necessary
stabilization for the numerical solution. Additional time stabiliza-
tion terms can be accounted for in E@$)—(3), [4,5,9], although
they have been found unnecessary for the type of problems solved
here.

The characteristic lengtidistancedy; represent the dimensions
of the finite domain where balance of momentum and mass is
enforced,[4,8]. The characteristic distancbgj in Eq. (3) repre-
sent the dimensions of a finite domain surrounding a point where
the velocity is constrained to be tangent to the free surf&;@].

Equationg1)—(6) are the starting point for deriving a variety of
stabilized numerical methods for solving the incompressible
Navier-Stokes equations with a free surface using equal-order in-
terpolations for the velocities, the pressure, and the wave height,
[1-4,8,9].

axis, p is the dynamic pressur@E& p(p—gz) wherep is the total
pressurep is the density and is the gravity acceleratiorg is the
wave elevation, and;; are the deviatoric viscous stresses related ]

to the kinematic viscosity: by the standard expression Fractional Step Approach

.  au 2 Juy Let us discretize in time the stabilized momentum Eca)(&s

= + L =8z —]. 4
T a3 @ ut—ul g Loop" am 1 rm,
The boundary conditions for the stabilized problem are written At + (9_xj(uiui) + X (9_xj_ Ehi a_xl =0. (1)
as . ) ) -
A fractional step method can be simply derived by splitting Eq.
1 (7) as follows:
anij—ti+—hjnjrm_=0 on Ft (5)
2 1 arn n
* n_At i( )_ﬂ_ih_ml (8)
uj—uP=0 on T, (6) Ui = X uid; ax; 2 ax
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Fig. 4 DTMB 5415 model. Wave profile on the hull.
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Fig. 5 DTMB 5415 model. Wave profile at y/L=0.082. -*- experimental values,
[24]. —numerical results.

ap" au;  d(ujup) T
Ntl_, x _ As P [ L A §
Ui T=ui - At ax; ©) = X X b
Note that addition of Eqg8) and(9) gives the original stabilized  Equation(13) is used to compute the pressure. The left-hand
momentum Eq(7). side is a Laplacian equation for the pressure values at time

=1,23. (14)

Substitution of Eq(9) into Eq. (2) gives whereas the right-hand side includes known values of the frac-
Ppt ou* orn tional velocities, the veIociti(_es and the viscous stresses atrtime

= u= (10) Remark 1. Standard fractional step procedures neglect the con-
axiox;  axax tribution from the terms involvingr, in Eq. (13). These terms

wherer, are intrinsic time parameters definedas h;/2u; . improve the stabilization properties of the algorithm as they en-

The free surface wave E€B) can be also discretized in time toSU"® the solution of Eq13) when the values okt are small. Also
the influence of the; terms has proven to be essential for obtain-

give,[2,7,9], el ) .
ing improved and fully converged solutions in steady-state prob-
he1 o Z0B" 1 gl lems.
BT =B AU —us— Shg - 1j=12. (11)  The finite calculus procedure can be also applied to derive a
' ! stabilized pressure increment split scheme. This can be simply
Pressure Stabilization derived by splitting Eq(7) only for the pressure increment simi-
) . . . larly as described ifi14].
Using Eq.(1) and neglecting high-order terms it can be ob- Remark 2. In Eq. (13he cross derivative terms of the pressure
tained: have been neglected. These terms can be accounted for if a proper
g lou\ Irm definition of ther; parameters is used. For details $8¢
ui_(_’) =1 (12) Remark 3. The residual can be discretized using the finite
X\ 9x; ) X elements method15] as
Substituting Eq(12) into Eg. (10) gives r=NF (15)
#p"  out arl " . ,
(At+7)——=——1| — (13) whereN=[Ny,N;, ---,N,] contains the shape functioi and
XX I IXi (*) denotes nodal values.

Application of the Galerkin method to E@L3) gives after in-

with .
tegration by parts

Fig. 6 Wave map of the DTMB 5415 model obtained in the Fig. 7 KVLCC2 model. Geometrical definition based on

simulation (above) compared to the experimental data (below) NURBS surfaces.



where 7} is the Reynolds stress tensor. In this wefkhas been
modeled using the standard Boussinesq’s approximation.

Remark 5. The value of the intrinsic time parameterfiave
been taken a$8,9],

4 2u\ 7t

Ti= (3_h|2 + h_l) . (20)
Equation(20) provides the standard values of the intrinsic time

parameter for the convective limiu{—0) and the viscous limit

(u—0).
The characteristic length distandesare defined here using the

Fig. 8 KVLCC2 model. Surface mesh used in the analysis. SUPG assumptions givin4,8,16]
h=ihzf=hro 1)
oN oN
Hk@":f (?—kui*dﬂ—f — N "dQ (16) s
o X o 7% whereh=[V®1¥3 whereV® is the volume of the tetrahedral

where Hy = [ o(At+7)dN, /dx;(IN, /9%, )dQ is the standard element. o _ )
Laplacian matrix. The characteristic lenght distandeg in the free-surface Egs.

5(3) are defined by an identical expression to Egl) with h
=[A®1¥2 A© pheing the area of the triangular element over the
sea surface.

The values of | can now be computed by projecting the pre
sure gradients. Neglecting the stabilization terms in(Egwe can

write . . I
More details on the computation of the stabilization parameters
, ap can be found if4-10|.
=== a7)
IXi
Application of the Galerkin method to E@L7) gives using Eq. Finite Element Discretization
(15) Space discretization is carried out using the finite element
Mr/"=q" (18a) method,[15]. A linear interpolation over four-node tetrahedra for
with both u; and p is chosen in the examples shown in next section.

Similarly, linear triangles are chosen to interpol@ten the free-
ap" surface mesh.
Mk':j NN dQ  and qg= —f NdeQ. (18b) The discretized integral form in space is obtained by applying
Q Q Xi the standard Galerkin procedure to E(®), (13), (9), and(11)
and the boundary condition&) and (6). Solution of the dis-
cretized problem follows the pattern given below.
ep 1. Solve Eq.(8) for the nodal fractional velocities. The
irichlet boundary conditions on the nodal velocities are imposed
when solving Eq(8). Note that the fractional step method can be
interpreted as an incomplete block LU factorization of the mono-

Equation (1&) can be solved for the values of" using an
iterative Jacobian scheme.

Remark 4. The above formulation can also be aplied to t
Reynolds(RANSE) equations. In this case the valuer(p,fi in the

stabilized momentum equations is given Pg:

U 9 op A Tinj +70) lithic problem,[14,17]. _
M= — + —(Uu;) + — — —— (19) Step 2. Solve Eq(13)for the nodal pressures at time nt+1. The
Poodt o ox; 7 ax X pressures computed from Step 4 are used as a boundary condition
KvLcc2
Wave Profile on Hull
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Fig. 9 KVLCC2 model. Wave profile on the hull compared to experimental
data, [25]. Thick line shows numerical results.



KvLCC2
Wave Profile y/L=0.0964
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Fig. 10 KVLCC2 model. Wave profile on a cut at  y/L=0.0964 compared to
experimental data, [25]. Thick line shows numerical results.
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Fig. 11 KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, [25].

Fig. 12 KVLCC2 model. Map of the X component of the velocity on a plane at 2.82 m from the
orthogonal aft. Comparison with the experimental data, [25].



Fig. 13 KVLCC2 model. Map of the eddy kinetic energy ~ (K) on a plane at 2.71 m from the
orthogonal aft. Comparison with the experimental data, [25].

whensolving Eq.(9).
Step 4. Solve for the new free surface height at time-h1. The
new free-surface elevatiof”*? in the fluid domain is computed
from Eq. (11).

The pressure at the free surface is obtained from the balance of
tractions at the surfac¢l8],

_ Y
anTij_niP:anaTﬁ—niﬁa"‘niﬁ (22)

wherep is the pressure field on watg? is the air pressure:f} is
the air viscous stress tenset, is the air density;y is the surface
tension coefficientR is the average curvature radius of the free
surface, andh; is the vector in the normal direction to the free
surface. Assuming/B/dx<1 and dB/dy<1 it can be takem
=[0,0,—-1].

In Eq. (22) the turbulent stresses are neglected close to the free
surface as shown experimentall§8,19].

Assuming that air is at respf=0 andr{"}=0), Eq.(22) can be
Fig. 14 Bravo Espan a sail racing boat. Mesh used in the simplified as
analysis.

— Y
njprij—nip=ni§. (23)
The third component of above equation gives

— Y
P=pTt - (24)

The dynamic pressure is finally obtained from

Fig. 15 Bravo Espana. Velocity contours.

for solutionof Eq. (13) (viz. Eq. (18)).
Step 3. Solve Eq. (9) for the nodal velocitiesat time n+1. The
Dirichlet boundaryconditionson the nodalvelocitiesareimposed Fig. 16 Bravo Espan a. Streamlines.
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p=733— le"‘gﬁ (25)
whereg is the modulusof the acceleratiorof the gravity.

Reachingthis point the fluid domainhasto be updateddue to
the new positionof the free surface.This is an expensiveprocess
anda simplified solutioncanbe foundby neglectingthe changeof
the free surfaceandtaking into accountits effectsby prescribing
the pressureacting on the free surface.ln order to increasethe
accuracyof the solution, the free-surfacesquationis modified by
makinguseof a Taylor seriesexpansiorof 8 in the Oz direction,
[20].

Remark6. The conceptuallysimplestway to carry outthe mesh
updatingdue to the new position of the free surfaceand of the
ship is by remeshingthe new fluid domain.A numberof algo-
rithms for computationof moving boundariesand interfacesin-
cluding free-surfaceflows using interface-trackingand interface-
capturing techniques and remeshing algorithms have been
proposedin recentyears,[13,21]. Indeed,the use of tetrahedra
elementsand unstructuredyrids simplifiesthis processHowever,
remeshings nowadaygoo expensivef industrialapplicationsof
the algorithmare sought.

Chiandussi,Bugeda,and Onate [22] have proposeda simple
methodfor movementof meshnodesensuringminimum element
distorsion therebyreducingthe needof remeshingThe methodis
basedon theiterativesolutionof afictitious linear elasticproblem
on the meshdomain.In orderto minimize meshdeformationthe
“elastic” propertiesof eachmeshelementareadequatelyselected
so that elementssuffering greaterdistortionsare stiffer. Applica-
tions of this techniqueto ship hydrodynamicproblemscan be
foundin [3,7,9].

Transom Stern Model

It is well known that the transomflow occuringat a sufficient
high speedhasa singularity for the standardsolution of the free-
surfaceEqg. (11). Severalauthorshaveproposedsolutionsto these
problem,[23,24], mainly basedon experimentalobservationsof
this phenomenalNext, a more naturalsolutionto solve the tran-
somflow is presented.

The standardsolutionof convectiveequationssuchasthe free-
surfaceequationrequiresprescribingthe Dirichlet conditionsat
the inflow. As the transomcausesa discontinuityin the domain,
the solution of the free-surfaceequationclose to this region is
inconsistentith the convectivenatureof the equation.The direct
solution of the free surfaceequationin this caseresultsin the
instability of the wave height closeto the transomregion. This
instability is found experimentallyfor low speedsThe flow at a
sufficient high speedis physically more stable althoughit still
cannotbe reproducedby standarchumericaltechniques.

1 15 2 28 3
Model Speed [miv]

Bravo Espan”a. Resistance test. Comparison of numerical results with experimental data.

The solution to this problem is to apply adequate free-surface
boundary conditions at the transom boundary. The obvious condi-
tion is to fix both the free-surface elevatighand its derivative
along the corresponding streamline to values given by the transom
position and the surface gradient. However, prescribing those val-
ues can influence the transition between the transom flux and the
lateral flux, resulting in unaccurate wave maps.

The method here proposed is to extend the free surface below
the ship. In this way the neccesary Dirichlet boundary conditions
imposed at the inflow domain are enough to achieve the well-
possessed properties of the problem. We note that is not an ad hoc
condition, as Eq(11) has to be satisfied also in the wetted surface
below the ship. Obviously, this way to proceed is valid both for
the wetted and dry transom cases and it can be also applied to
ships with regular stern. In Fig. 1 the nodes marked wi#i “
include the standard degrees-of-freedgf) of the free-surface
problem; those nodes marked withb™ introduce the new
degrees-of-freedom, while wave elevatignis prescribed at the
nodes marked asc.”

Indeed, accounting for every surface element of the wetted ship
surface is not neccesary. Just the first row of elements is enough as
the rest usually have a fixed wave elevation and will not influence
the results.

This scheme can not be used in the case of partially wetted
transom when the flow remains adhered to the transom instead of
a detatched flow. These phenomena usually appear for highly un-
steady flows where wake vortex induces the deformation of the
free surface. To favor the convergence of the free surface to a
stable state an artificial viscosity term has been added to the free-
surface equations in the vecinity of the transom in these cases.

Examples

All examples have been solved in a standard single processor
PC using the computer code SHYNR5]based on the algorithm
here presented and the pre/postproce&si@ developed at ClI-
MNE, [26]. Recent industrial applications of the CFD formulation
presented can be found [&7].

Example 1. DTMB 5415 Model. The first case analyzed is
the David Taylor Model Basin 5415 benchmark model. The ge-
ometry used in the analysis was obtained from the Gothenburg
2000 Workshop databasg28]. The NURBS definition is shown
in Fig. 2. The obtained results are compared with experimental
data available[28]. The main characteristics of the analysis are

* length: 5.72 m, beam: 0.5 m, draught: 0.248 m, wetted sur-
face: 4.861 rf,

« velocity: 2.1 m/seg, Froude number: 0.28, and

« viscosity: 0.001 Kg/mseg, density: 1000 Kg/mReynolds
number: 12.31%



The analysis was carried out for three different gri®m Conclusions

150,000 to 600,000 linear tetrahedra, corresponding to 25,000 an

115,000 nodesin order to qualitatively analyze the influence of
the element size in the solution. Here only the results correspo
ing to the finest grid are shown. The smallest element size us
was 0.002 m and the maximum 0.750 m. The surface mesh of

Figures 4 and 5 show the wave profile on the hull and in a cll

aty/L=0.082, respectively. Numerical results obtained are co
pared with the experimental data.

0

DTMB 5415 used in the last analysis is shown in Fig. 3. The
Smagorinsky turbulence model with the extended law of the WaIIn
was chosen. The tramsom stern flow model presented was usé

q‘he finite calculus method provides modified forms of the gov-
ning differential equations for a viscous fluid with a free surface.
p finite element method provides a straight forward and stable
orithm for analysis of ship hydrodynamic problems.

Numerical results obtained in the three-dimensional viscous
alysis of complex ship geometries indicate that the proposed
'merical method can be used with confidence for practical hy-
odynamic design purposes in naval architecture.

e
%glution of the modified equations with a semi-implicit fractional

Figure 6 shows the comparison of the wave map obtained wiffcknowledgments

the experimental data available.

Example 2. KVLCC2 Model. The next example is the analy-
sis of the KVLCC2 benchmark model. Here a partially wette
tramsom stern is expected due to the low Froude number of

test. Figure 7 shows the NURBS geometry used obtained from tha .
perimental data of the racing boat analyzed.

Hydrodynamic Performance Research team of Kqi€RISO).

The obtained results are compared with the experimental data.
puting some of the examples presented.

5!

available in the KRISO databade9].
The smallest element size used was 0.001 m and the larg
0.50 m. The surface mesh chosen is shown in Fig. 8. A total

Financial support for this work was provided by the European

Community through projects Brite-Euram BR 967-4342 SHEAKS
gnd Esprit 24903 FLASH. Thanks are given to Dr. H. Sierra from
thany useful suggestions. The authors are also grateful to Copa

erica Desafio Espah SA for providing the geometry and ex-
Thanks are also given to Mr. J.A. Aea for his help in com-

he authors also thank Prof. S. Idelsohn, Prof. R. Lohner, and
C. Sacco for many useful discussions.

550,000 tetrahedra were used in the analysis. The tramsom stern

flow model presented in the previous section was used.
Test 1. Wave pattern calculation The main characteristics of
the analysis are listed below:

« length: 5.52 m, bearfat water plane): 0.82 m, draught: 0.18
m, wetted surface: 8.08

« velocity: 1.05 m/seg, Froude number: 0.142, and

« viscosity: 0.00126 Kg/mseg, density: 1000 Kd/nReynolds
number: 4.631%

The turbulence model used in this case waskheodel. Fig-

ures 9 and 10 show the wave profiles on the hull and in a cut at
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