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SUMMARY

This paper presents several numerical results using a vectorized version of a 3D ®nite element compressible and
nearly incompressible Euler and Navier±Stokes code. The assumptions were set on laminar ¯ows and Newtonian
¯uids.

The goal of this research is to show the capabilities of the present code to treat a wide range of problems
appearing in laminar ¯uid dynamics towards the uni®cation from incompressible to compressible and from
inviscid to viscous ¯ow codes.

Several authors with different approaches have tried to attain this target in CFD with relative success. At the
beginning the methods based on operator splitting and perturbation were preferred, but lately, with the wide
usage of time-marching algorithms, the preconditioning mass matrix (PMM) has become very popular. With this
kind of relaxation scheme it is possible to accelerate the rate of convergence to steady state solutions with the
modi®cation of the mass matrix under certain restrictions. The selection of the mass matrix is not an easy task,
but we have certain freedom to de®ne it in order to improve the condition number of the system. In this paper we
have used a physics-based preconditioner for the GMRES implicit solver developed previously by us and an
SUPG formulation for the semidiscretization of the spatial operator.

In sections 2 and 3 we present some theoretical aspects related to the physical problem and the mathematical
model, showing the inviscid and viscous ¯ow equations to be solved and the variational formulation involved in
the ®nite element analysis. Section 4 deals with the numerical solution of non-linear systems of equations, with
some emphasis on the preconditioned matrix-free GMRES solver. Section 5 shows how boundary conditions
were treated for both Euler and Navier±Stokes problems. Section 6 contains some aspects about vectorization on
the Cray C90. The performance reached by this implementation is close to 1 G¯op using multitasking. Section 7
presents several numerical examples for both models covering a wide range of interesting problems, such as
inviscid low subsonic, transonic and supersonic regimes and viscous problems with interaction between
boundary layers and shock waves in either attached or separated ¯ows. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper presents a survey of results using a uni®ed ®nite element formulation to solve from nearly

incompressible to supersonic regimes and from inviscid to viscous ¯ows.1 During the last few years a

lot of effort has been put into the application of the ®nite element method to treat ¯uid dynamics

problems, trying to bring the inherent advantages of the method into an area where other numerical

techniques were previously and successfully applied, such as ®nite difference and ®nite volume

among others.

Combining a strong mathematical basis with the capability to treat complex geometries, the ®nite

element method is one of the commonly used formulations to solve 3D problems applied to industrial

and scienti®c environments.

The progress achieved in supercomputing makes possible the solution of increasingly more

challenging problems with these numerical tools by parallelizing and vectorizing the software

developed in this area.

In the CFD context, SUPG,2±14 or its generalization called Galerkin least square,15±17 has been one

of the most popular methods used during recent years. These methods are based on the Petrov±

Galerkin formulation using weighting functions that are different from the approximation ones.

While the former is based only on the usage of multilinear polynomial approximation, the latter is

generalized to higher-order functions. In this way both methods enforce the stabilization needed to

preclude the inherent oscillations that appear when the Galerkin method is applied. In this work we

adopt an SUPG method using equal-order polynomials and conservative variables. A shock-capturing

operator2,6,8,10,11 is added to get a better resolution of the shock waves present in the applications.

The non-linear system produced by the spatial semidiscretization is solved by a time-marching

algorithm using a matrix-free preconditioned GMRES iterative solver18,19 for each linear system

obtained at each time step. Indeed, this preconditioner is de®ned by two steps: ®rstly we modify the

mass matrix in order to improve the condition number of the system for all Reynolds and Mach

numbers1,20±23 and secondly we use the nodal block diagonal preconditioner inside the GMRES

routine.1,2,11 The goal of this paper is to show the performance of this vector code in solving a very

wide range of ¯uid dynamics problems, covering from inviscid to strongly viscous ¯ows and nearly

incompressible to transonic and supersonic ¯ows using the same formulation. Our results were

validated with experimental, analytical and other numerical results solved by several authors.

2. PROBLEM STATEMENT

The physics involved in our ¯uid dynamics problems is mathematically governed by the Euler and

Navier±Stokes equations. In the present work we use a version written for a non-inertial frame of

reference with the possibility to solve problems involving rotating systems.24

The 3D compressible Navier±Stokes equations are classically written in terms of conservative

variables in the form

Fi
a;i � Fi

d;i �ff: �1�

Implicitly we assume � �;i � @� �=@xi.

U 2 R5 is the ¯uid local state vector, with U � �r; ruT; re�T, where r; u and e are the density,

velocity and total energy of the ¯uid respectively. Fa;Fd 2 R5�3 are the advective and diffusive
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¯uxes respectively, which depend on the state vector and its gradient as

Fa�U� �
ruT

ruuT � pI3�3

�re� p�uT

24 35; Fd�U;HU� �
0

s
�s � u� q�T

24 35: �2�

Here p;s and q are the thermodynamic pressure, the deviatoric stress tensor and the heat ¯ux vector

respectively, with

sjk � m�uj;k � uk; j� � lul;ldjk ; �3�

qj � ky; j; �4�
where m is the dynamic viscosity, l is the second viscosity coef®cient, k is the thermal conductivity

and y is the temperature.

We ®nish the description of the mathematical model by introducing the state equation of the ¯uid

and the relation between the energy and two of the thermodynamic variables of the ¯uid:

y � y�p; r�; e � e�p; r�: �5�
Speci®cally we use the ideal gas law

p=r � Ry � Cv�gÿ 1�y � �gÿ 1�i; �6�

p � �gÿ 1�ri; �7�
where R and Cv represent the gas universal constant and the speci®c heat at constant volume

respectively and i is the internal energy

i � eÿ 1
2
kuk2: �8�

The body force ff is given by

ff � r
0

fCor � fCent

fCent � u

0@ 1A; �9�

where fCor � ÿ2V� u and fCent � ÿV�V� x are the Coriolis and centrifugal forces respectively.

This kind of advective±diffusive system is incompletely parabolic because the continuity equation

does not have diffusive term.

In the Euler equation case we can use the above system but dropping the diffusive ¯ux term Fi
d,

resulting in a purely advective hypberbolic system.

It is useful to rewrite equation (1) in the quasi-linear form

AjU; j � �KijU; j�;i �ff; �10�
where Aj � @Fj

a=@U is the jth advective Jacobian matrix and Kij is one of the components of the

tensor K representing the diffusive Jacobian matrix, with Fi
d � KijU; j. Expressions for the above

Jacobian matrices may be found in several references.2,10,11,14

3. SPATIAL DISCRETIZATION BY FINITE ELEMENT METHOD

In order to get a numerical solution of the continuum problem presented in Section 2, we have to

discretize the problem using a particular numerical method. In this work we use an SUPG technique

that is very popular in the context of the ®nite element method and is one of the most referenced in
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the CFD area.2±14 It is based on the Petrov±Galerkin weighted residual method which allows one to

use test functions that can be different from the interpolation ones and not necessarily continuous.

This method introduces the numerical dissipation needed to stabilize the system in advection-

dominated problems, keeping the consistency with the continuum problem. For each node a there is

an interpolation function Na (hat type in 1D, bilinear in 2D and multilinear in general) and a test

function Wa � Na � Pa, where Pa is called the perturbation function. The standard Galerkin method

is recovered when we impose Pa � 0. The Wa (and, of course, Pa) are not necessarily continuous

through the inter-element boundaries. Next we describe the variational formulation employed and in

Section 3.2 we explain how to get the perturbation function.

3.1. Variational formulation

Given a ®nite element partition of the original domain O into elements Oe; e � 1; . . . ;Nel, with Nel

the number of elements in the mesh, the problem is to ®nd Uh 2s such that 8N 2v�
O
�NT

a AiU
h
;i � NT

a;iKijU
h
ij� dO�PNel

e�1

�
Oe

PeT
a �AiU

h
;i ÿ �KijU

h
; j�;i ÿff� dO

�
�
O

NT
aff dG�

�
Oh

NT
a h dG �11�

is satis®ed, where h is the diffusive ¯ux imposed on the boundary Gh and Uh is the ®nite element

approximation of U. s and v are the trial and weighting function spaces respectively, commonly

used in this context.2,11

The Euler±Lagrange form is obtained through classical integration by parts:

PNel

e�1

�
Oe

WT
a �AiU

h
;i ÿKijU

h
;ij ÿff� dO�

�
Gint

NT
a �niKijU

h
; j� dG�

�
Gh

NT
a �niKijU

h
; j ÿ h� dG � 0;

where

�niKijU
h
; j��x� � ni�x���KijU

h
; j��x�� ÿ �KijU

h
; j��xÿ�� �12�

is the jump in the diffusive ¯ux throughout the inter-element boundary, x is a point which lies there,

x� are points belonging to each side of the boundary and Gint is the inter-element contour.

Consistency is guaranteed because the continuum solution is also a solution of this variational

formulation.

3.2. Perturbation function

As mentioned earlier, the goal of the SUPG scheme is the modi®cation of the standard basis

functions in order to stabilize the discretized problem. Since the publication of the original work in

1982 by Brooks and Hughes,5 a lot of work has developed around this subject, but a complete list of

contributions is outside the scope of this work. It is important to mention that several different

perturbation function approaches have arisen since the original paper. Here we adopt that most

commonly used for the Euler and Navier±Stokes equations,7,10,13,14 i.e.

Pe
a � tTAT

i N;i: �13�
In this expression there appears a matrix t that varies with different authors and represents the

critical point of the design of the stabilization method. Sometimes called the intrinsic time scale

matrix, it can be deduced through its application to simple situations where an exact analytical
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solution can be found. Its generalization is very dif®cult and relies on heuristic arguments. In the next

subsection we present the de®nition used for the t-matrix.

3.3. De®nition of t matrix

Suppose that we are interested in the solution of the Euler equations and we start by taking the one-

dimensional case. In this situation and by extrapolation of the advection scalar equation we choose t
as the inverse of the norm of the advective Jacobian matrix, i.e.

t � kBkÿ1; �14�
where B represents the cited Jacobian but transformed to the master element. As is well known, in the

one-dimensional case this Jacobian is diagonalizable and we can get the right t to produce the exact

solution. When trying to extend to general three-dimensional situations, this advantage disappears

and the generalization to produce good results is not so obvious. Hughes and Mallet7 proposed

solving an eigenvalue problem for the matrix

kBk � �B2
1 � B2

2 � B2
3�1=2: �15�

The above is equivalent to applying the L2-norm to the vector of matrices Bi; i � 1; 2; 3. In order to

avoid the solution of the eigenvalue problem and consequently to save CPU time, we adopt the L1-

norm instead of L2. As each Jacobian Bi is diagonalizable in its own basis, we can analytically

compute each diagonalization and we only have to invert the ®nal matrix:

t � kBkÿ1 � �jB1j � jB2j � jB3j�ÿ1; �16�
with jBij � Sÿ1

i jLijSi, where S and L are the corresponding eigenvector and eigenvalue matrices

respectively.21

The extension to the Navier±Stokes equations is possible by several different methods and here we

mention only some of them. One alternative could be to affect the intrinsic time scale matrix by only

one scalar factor for the whole system of equations. This method was proposed by Soulaimani and

Fortin12 and is based on the de®nition of a magic function that depends on the Peclet number de®ned

by the Reynolds number and assuming that the Prandtl number is O(1). Another technique is based on

the projection of the diffusivity tensor over the basis where the advective Jacobians are

diagonalizable.10 It is also possible to de®ne the above matrix by changing the metric of the

problem and diagonalizing the system using the basis of the regularized Peclet matrix K*
ÿ1

B where

K*
ÿ1

is the inverse of some regularization of the diffusivity tensor.25,26 While the ®rst is supported by

heuristic arguments and the last two have a stronger theoretical basis, all three methods work

reasonably well in practical applications and in our experience we have not detected substantial

differences.

4. SOLVING THE NON-LINEAR ALGEBRAIC SYSTEM OF EQUATIONS

Using

Uh �P
a

NaUh
a �17�

as the approximation for the unknown variables and replacing the above de®nition of the intrinsic

time scale matrix (equation (16)) in the expression for the perturbation function (equation (13)),

applying it to equation (11) and adding the contribution of each element to the corresponding nodes

GMRES PHYSICS-BASED PRECONDITIONER 1351

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1347±1371 (1997)



in the ®nite element grid, we obtain a non-linear algebraic system of equations, a discretized version

of our original non-linear PDE system:

G�U� � 0; G : Rn ! Rn: �18�
To solve this steady state problem, we have used a time-marching scheme to get the solution of the

former as the stationary state of the latter, the temporal variable being a relaxation parameter. This

kind of method is very popular nowadays. In this case the system of non-linear algebraic equations

becomes a system of non-linear ordinary differential equations of the form

llU � U;t �G�U� � 0: �19�

Then, given U�n�, the solution at t � tn, we want to add a contribution DU so that llU � 0.

Expanding the non-linear term using a Taylor series gives

G�U� DU� � G�U� �G;UDU� higher-order terms: �20�

Replacing this in (19), we get

�U� DU�;t �G�U� DU� � 0; DU;t �G;UDU � ÿU;t ÿG�U�: �21�

As we are interested in steady state solutions, the transient term on the right-hand side is neglected

and in order to achieve the numerical solution we include a time discretization. Finally we arrive at

the system

1

Dt
M� C�U�

� �
DU � R�U�; �22�

where M;C � G;U and R � ÿG�U� represent the mass matrix associated with the discretization of

temporal terms, the residual Jacobian matrix and the residual vector respectively.

We put the above system in a compact way as

~MDU � R�U�; �23�
de®ning an effective mass matrix ~M � �1=Dt�M� C�U�.

4.1. Time local stepping

The computation of steady solutions using a time-marching algorithm allows us to select the time

step according to temporal stability and convergence rate criteria. In the case of an explicit solver we

known that there exists a critical time step that is a function of several numerical and physical

parameters. Regardless of the right expression for this critical time step,11 we know that one of the

principal factors in¯uencing its determination is the element size. If we adopt a global time step (the

same for all the elements), we penalize those elements of large size. Since accuracy in time is not our

concern, we can adopt a very popular strategy called time local stepping27 in which each element of

the mesh has its own time step in order to improve the rate of convergence.

As usual, the criterion is to equalize the Courant number for all the elements. This strategy is

especially needed when one has a strong re®nement in the mesh due to the physical properties of the

¯ow involved in the computation, such as shocks, boundary layers, etc. Even though this strategy is

specially adapted for explicit computations, it implementation within an implicit solver produces

some interesting improvement in the convergence rate.2
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4.2. Linear system solution

As presented in (23), we need to solve a linear system

~MDU � R: �24�
In the explicit case, ~M is usually lumped in order to get a diagonal matrix. Then the solution of the

linear system decouples and it is not necessary either to invert or to store any matrix. These

advantages and its own simplicity make the explicit solver one of the most popular ways to solve

linear systems. Its disadvantage is associated with the strong limitations imposed by stability criteria.

In the general implicit case we need to store and invert the left-side matrix and for this task we can

choose among direct or iterative solvers. Direct solvers are frequently used in small- and medium-

size computations such as those that appear in 2D problems, but their generalization to 3D problems

is restricted owing to memory and CPU time resources. In this case we are constrained to use iterative

methods. In this work we have used matrix-free GMRES, one of the most referenced iterative solvers

in CFD applications during recent years.18,19

To accelerate the convergence of the GMRES algorithm, we have used two different kinds of

preconditioners. The ®rst one is introduced into the temporal term like a mass matrix affecting the

time evolution of the solution, keeping the same steady solution. This matrix, called G,22 improves

the convergence rate for all Reynolds and Mach numbers, modifying the characteristic speeds

without altering the physical sense of the problem:

G �

ckuk2=2 ÿcu ÿcv ÿcw c
1
2
�ckuk2 ÿ 2�u 1ÿ cu2 ÿcuv ÿcuw cu

1
2
�ckuk2 ÿ 2�v ÿcuv 1ÿ cv2 ÿcvw cv

1
2
�ckuk2 ÿ 2�w ÿcuw ÿcvw 1ÿ cw2 cw

Y1 Y2u Y2v Y2w 1ÿY2

0BBBBBBBB@

1CCCCCCCCA
;

where

c � gÿ 1

bM 2
r

; Y1 � ÿ 1
2
ku2k�1�Y2� ÿ

c2

gÿ 1
;Y2 � �1ÿ g��1� X�; X � re� p

rbM 2
r

ÿ d;

bM 2
r � Ec2; with E � max�Einv; Evis�;

Einv � M 2
r ; Evis � max

j

aj�aj ÿ 1�
�aj ÿ 1� c2=u2

j �

 !
;

aj �
CFL

sReDxj

; j � x; y; z;

�25�

c is the speed of sound, �ux; uy; uz� � �u; v;w� and Mr is a reference Mach number used to avoid

singularities when the velocity is locally zero, with Mmin � 10ÿ6 in this work. This value is de®ned as

Mr �
Mmin; M < Mmin;
M ; Mmin < M < 1;
1; M > 1:

8<: �26�

s represents the algorithmic Fourier number and ReDxj
is the element Reynolds number with Dxj as

the characteristic length. d is an arbitrary constant that plays the role of a coef®cient of the time
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derivative of pressure. When d � 0, the time derivative is dropped. When d � 1, we recover the

standard energy equation.

More details about this preconditioner and its in¯uence on the de®nition of the stabilized scheme

and boundary conditions are presented in References 1 and 22. The second preconditioner plays the

role of a scaling for our GMRES method and in this work we have used a right preconditioner based

on a nodal block diagonal matrix.1,2,11 To circumvent memory resource restrictions in large 3D

computations, we have used a matrix-free version of this algorithm.2

5. BOUNDARY CONDITIONS

We have implemented the following boundary conditions: (a) Dirichlet boundary conditions; (b) slip

and symmetric boundary conditions; (c) natural boundary conditions; (d) periodic boundary

conditions; (e) absorbent boundary conditions.

As described earlier, we have used conservative variables within our code. One of the most

common sets of variables to de®ne Dirichlet boundary conditions is the primitive variables. The

relation between these two variables is non-linear and the procedure used to update the conservative

variables restricted to satisfying the boundary conditions imposed by primitive variables is the

following:

if r is fixed; then U2 � g1;

if ux is fixed; then U2 � U1g2;

if uy is fixed; then U3 � U1g3;

if uz is fixed; then U4 � U1g4;

if p is fixed; then U5 � g5=�gÿ 1� � 1
2
�U 2

2 � U 2
3 � U 2

4 �=U1;

if y is fixed; then U5 � U1g6Cv � 1
2
�U 2

2 � U 2
3 � U 2

4 �=U1:

�27�

Here �g1; g2; g3; g4; g5; g6�T is a vector representing those values of the primitive variables that are

®xed. Owing to the fact that the pressure or temperature imposes the value of U5, it is not possible to

®x both primitive variables simultaneously.

The treatment of essential boundary conditions inside the inner loop of the implicit solver is based

on the above identities:

if r is fixed; then dU1 � 0;

if ux is fixed; then dU2 � g2dU1;

if uy is fixed; then dU3 � g3dU1;

if uz is fixed; then dU4 � g4dU1;

if p is fixed; then dU5 �
1

2

ÿU 2
2 � U3

3 � U2
4

U2
1

dU1 �
U2

U1

dU2 �
U3

U1

dU3 �
U4

U1

dU4;

if y is fixed; then dU5 �
1

2

ÿU 2
2 � U 2

3 � U2
4

U 2
1

� Cvg6

� �
dU1 �

U2

U1

dU2 �
U3

U1

dU3 �
U4

U1

dU4:

�28�

Here dUi denotes the increment of the unknown.

In this way we satisfy the essential boundary conditions in an implicit way without degrading the

convergence rate.

Slip boundary conditions are treated implicitly or explicitly according to the solver selection.

While the explicit implementation consists of dropping the normal contribution of the momentum
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equations in the update stage of the computation, the implicit version uses a rotation to the local

frame, restricting the normal component to be ®xed as a Dirichlet boundary condition.2,9

In the case of the symmetric plane boundary condition we have imposed

un � 0; qn � 0; trn � tsn � 0: �29�
Periodic boundary conditions are very useful when the problem contains a repetitive structure of

the variables involved in the computation. Examples of this kind of problem can be found in e.g.

turbomachinery simulation, where the rotor can be divided into Nblades repetitive portions, or the ¯ow

around a cascade of bodies of similar shape.

Absorbent boundary conditions are very important at far-®eld boundaries. As is well known, the

location of these boundaries is very important to decrease the computational cost while keeping a

good rate of convergence and accurately. In this sense, absorbent boundary conditions allow one to

diminish the re¯ection of error waves on the far-®eld boundary, thus improving the convergence rate.

Much work has been done on designing absorbent boundary conditions for inviscid equations.28,29

Our code was implemented by imposing those characteristics that are entering the domain and

extrapolating those that are leaving the domain. The treatment of the Navier±Stokes absorbent

boundary condition is a much more dif®cult problem.30 In this work we have used the same inviscid

absorbent boundary condition for viscous ¯ows.

6. VECTOR CODE IMPLEMENTATION ON CRAY C90

The optimization techniques employed were the more basic ones, trying to maximize the number of

vectorized loops. To do this, we put the longest loop as the innermost and, as is common in ®nite

element computation, the loops are represented by loops over elements or loops over nodes. In other

cases we have used other standard techniques such as splitting loops, unwinding the inner loop or

even swapping loops. We have tried to minimize memory con¯icts by an adequate use of array lay-

out or avoiding indirect addressing whenever possible. The global performance for a single-processor

con®guration reaches more than 300 M¯ops; using multitasking with eight processors available on

the Cray C90, the elapsed time was reduced by a factor of approximately three. This is equivalent to a

global performance greater than 900 M¯ops, which places this code almost within the lower bound of

parallel machines in the supercomputing world.

7. NUMERICAL EXAMPLES

In this section we present several results that were obtained with the developed code. As mentioned,

the goal was to show the ability of this vector code to solve the nearly incompressible and

compressible Euler and Navier±Stokes equations using an explicit or an implicit solver and covering

a broad range of different situations: (a) inviscid ¯ow over a parabolic arc bump at subsonic,

transonic and supersonic speed; (b) viscous supersonic ¯ow over a ¯at plate; (c) viscous supersonic

¯ow over a compression corner; (d) viscous ¯ow over an aerofoil under incompressible, subsonic and

transonic conditions; (e) viscous incompressible and subsonic ¯ow over a circular cylinder; (f)

viscous incompressible and subsonic ¯ow over a sphere.

7.1. Parabolic arc bump

We start with the inviscid ¯ow over a parabolic arc bump at several Mach numbers ranging from

the subsonic regime (M� 0�1 and 0�5) through the transonic one (M� 0�84) and ®nally to the
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supersonic case (M� 1�4). The equation for the bump is

y � b�1ÿ �2x�2�;
where b is the ratio between the maximum arc thickness and the length. The computational box

contains the bump in the centre of the bottom boundary and it extends L units in front of and behind

the bump and H units above it, with both L and H normalized by the arc length. The bottom boundary

satis®es the no-penetration condition and the other three boundaries have the absorbent boundary

condition, except for the supersonic case where the top boundary also has the no-penetration

condition.

7.1.1. Mach numbers 0�1 and 0�5. For this case we use L� 8 and H� 3 with b� 5%. The mesh

consisted of 12 elements in the y-direction and 47 elements in the x-direction, giving a total of 564

elements. Figure 1 shows the pressure coef®cient at M� 0�1 using an explicit solver and Figure 2

plots the same for M� 0�5 using the GMRES solver. Both results are in good agreement with thin

body theory.31 Figure 3 shows the rate of convergence of GMRES using absorbent boundary

conditions. We see a decrease in residual norm by eight orders of magnitude in 170 outer iterations.

7.1.2. Mach number 0�84. In this example we have adopted a freestream Mach number of 0�84 and

have used the same mesh as in the previous case. This ¯ow develops a shock wave over the surface of

the bump, producing a supersonic region in part of the domain.

Figure 4 shows the pressure coef®cient over part of the bottom boundary, especially concentrated

on the bump surface. We can note the formation of the shock at around x� 0�3 and this shock was

captured by only two elements without any overshoot or undershoot effect. This result has been

successfully compared with another numerical computation.3

Figure 1 Cp for parabolic arc bump at M� 0�1
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Figure 2 Cp for parabolic arc bump at M� 0�5

Figure 3. GMRES convergence rate for parabolic arc bump at M� 0�5
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7.1.3. Mach number 1�4. This supersonic ¯ow consists of a 1�4 freestream Mach number

impinging over a thinner bump. In this example we have used b� 4% and have changed the mesh,

taking L�H� 1. The mesh had 30 elements in the y-direction and 92 elements in the x-direction,

giving a total of 2760 elements. As we can see in Plate 1 from the pressure isocurves, the problem

consists of a leading edge shock that re¯ects off the upper boundary where we have imposed the no-

penetration boundary condition, crosses the trailing edge shock and re¯ects again, merging ®nally

with the trailing edge shock. Figures 5 and 6 show the density pro®les at y� 0�5 and 1 respectively.

We can note that the formation captures well the expansion waves caused by the curvature in the arc

and the decrease in strength of the re¯ected shock caused by the expansion waves. As in the transonic

example, no undershoot or overshoot was found in all the discontinuities appearing here.3

7.2. Flow over a ¯at plate

The second problem, called the Carter problem,32 consists of a viscous ¯ow over an in®nitely thin

¯at plate at zero angle of attack in the supersonic regime (M� 3), with a Reynolds number of 1000

based on the freestream values and the distance from the leading edge of the plate. In this case we

show the behaviour of the code in problems where a strong curved shock interacts with a boundary

layer starting at the leading edge of the plate. We have used the Sutherland viscosity law

m � 0�0906y1�5

y� 0�0001406

corresponding to a freestream temperature of 216�7 K.

The computational domain covers the area ÿ0�24 x4 1�2 and 04 y4 0�8, with the leading edge

of the plate placed at x� 0. On the in¯ow and top boundaries we have imposed all the variables. On

Figure 4. Cp for parabolic arc bump at M� 0�84
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Figure 5. r�x�jyÿ1=2 for parabolic arc bump at M� 1�40

Figure 6. r�x�jy�1 for parabolic arc bump at M� 1�40
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the symmetry line �y � 0; x < 0� we have imposed symmetric conditions, along the plate the non-slip

condition and the stagnation temperature

ystag � yinflow

�
1� gÿ 1

2
M 2

inflow

�
were prescribed and, ®nally, on the out¯ow boundary all the variables were free.

The mesh used to solve this problem consisted of 32 elements in the y-direction and 56 elements in

the x-direction, giving a total of 1792 elements. Plate 2 shows the density isocurves and Figure 7 plots

the velocity pro®les at several x-stations. In both Plate 2 and Figure 7 we can visualize the

development of the boundary layer and the shock wave. Figure 8 shows the distribution of the

pressure along the wall relative to its freestream value and Figure 9 plots the skin friction computed

using our code (circles) and using the modi®ed Blasius formula (full curve).2 Both ®gures show

reasonable agreement with Carter's results.32 Figure 10 shows the x-velocity pro®le at the outlet

boundary as presented in Carter's paper.32 Finally, in Figure 11 the rate of convergence of this

problem using the GMRES solver is presented.

7.3. Compression corner

The third problem is viscous ¯ow over a compression corner at M� 3 and Re� 16,800 where there

is an additional complexity compared with the ¯at plate problem because it involves separated ¯ow

close to the corner and reattachment produced by a compression fan.32,33 This viscous problem

consists of a Mach 3 ¯ow passing over a compression corner at an angle of 10�. The Reynolds

number, based on the freestream values and the distance from the leading edge of the plate to the

corner, is 16,800. The same Sutherland law as in the plate example was used. The computational

domain covers the area ÿ0�24 x4 1�8 and 04 y4 0�59 on the plate and a height of 0�59 is kept

above the wall past the corner. The leading edge is placed at x� 0 and the corner at x� 1. On the

in¯ow and top boundaries all the variables were ®xed, we have applied symmetry boundary

conditions at the boundary at y� 0 and x < 0 and we have imposed the no-slip condition on the wall

Figure 7. Velocity ®eld for ¯at plate at M� 3 and Re� 1000
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Figure 9. Skin friction over ¯at plate at M� 3 and Re� 1000

Figure 8. Pressure distribution over ¯at plate at M� 3 and Re� 1000
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Figure 10. Outlet ux-pro®le for ¯at plate at M� 3 and Re� 1000

Figure 11. GMRES convergence rate for ¯at plate at M� 3 and Re� 1000
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with a ®xed stagnation temperature. No condition is imposed on the out¯ow boundary. To solve this

problem, we have used 39 elements in the y-direction and 104 elements in the x-direction, giving a

total of 4056 elements. In order to capture the recirculation close to the corner, we have used a

grading function in the cross-¯ow direction similar to Carter's experiments,32 getting

Dymin � 6� 10ÿ4.

According to Carter's description, we plot in Plate 3 the density isocurves that show some

interesting features of this kind of ¯uid ¯ow. The supersonic ¯ow over a plate followed by a 10�

degree ramp has attracted the attention of ¯uid dynamicists for years. The present rise generated by

the ramp upstream along the ¯at plate results in a complex interaction between the boundary layer

and the outer inviscid stream. This interaction leads to ¯ow separation for certain ranges of Mach

numbers, Reynolds number and ramp angle. In addition to its theoretical interest, the problem is of

practical importance in predicting the pressure and heat loads on a wing±¯ap junction on a supersonic

aircraft, reducing the ¯ap effectiveness when separation occurs with severe heating of surfaces in the

reattachment region. Figure 12 shows how the boundary layer is thickened by the compression ramp

through the adverse pressure gradient. The reduction of the total pressure within the boundary layer

can produce a separation from the surface without overcoming the adverse pressure gradient. The

separated boundary layer becomes a free shear layer external to a steady and recirculating inner ¯ow

near the corner. This recirculation is evident in Figure 13 through the sign change of the skin friction

or by the streamlines in Plate 3. Downstream the shear layer impinges on the ramp in the

reattachment region; the ¯ow accelerates until the boundary layer reaches a minimum thickness at the

neck, returning to its normal state downstream of the neck but at a new Mach number. There is also a

shock wave that appears at the leading edge and separates from the solid surface as in the previous

¯at plate example, but it now has a stronger interaction with the boundary layer through the

separation and reattachment compression fan produced close to the corner. Figure 12 shows the

Figure 12. Pressure coef®cient for compression corner at M� 3 and Re� 16,800
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Figure 13. Skin friction for compression corner at M� 3 and Re� 16,800

Figure 14. GMRES convergence rate for compression corner at M� 3 and Re� 16,800
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pressure coef®cient distribution over the wall from leading edge �x � 0� through the corner at x � 1

until the outlet of the computational box at x � 1�8. In Figure 13 we plot the skin friction factor. Both

these important parameters are in good agreement with the values reported by Shakib11 for a similar

mesh and very close to the experimental ones reported by Carter32 and Hung and McCormack.33

Increasing the re®nement close to the wall will improve these results. Figure 14 plots the rate of

convergence of the GMRES solver for this problem.

7.4. NACA 0012 aerofoil

We start this series of NACA 0012 numerical simulations with an inviscid, nearly incompressible

¯ow where the ef®ciency of the code is checked by the convergence rate and the accuracy of the total

pressure coef®cient. The mesh employed for this example consists of a C-grid with 39 nodes on the

aerofoil, 20 nodes along the wake and 31 nodes in the direction normal to the streamwise direction,

with an aerofoil chord size equal to two units and the far-®eld boundary placed at more than 28 units.

The angle of attack was zero and we meshed the lower and the upper side of the aerofoil. The

boundary conditions used were the absorbent boundary condition on the far-®eld boundary and no-

slip velocities and zero heat ¯ux along the pro®le. Figure 15 shows the rate of convergence of each of

the ®ve variable increments (left) and the residual (right). We can note a reduction of seven orders of

magnitude in the left plot, with a uniform convergence rate for all the equations, and ®ve orders in the

right plot. This kind of behaviour is only possible by the use of an optimal preconditioner.1

It is important to observe the stagnation in the residual convergence after 130 iterations produced

by round-off errors. Figure 16 shows the pressure coef®cient (left) and the total pressure coef®cient

(right), two important parameters to validate the code for this regime. The theoretical solution of this

problem should produce a constant total pressure coef®cient equal to one, a symmetric Cp with an

increment of the pressure at the leading edge equal to the dynamic pressure of the freestream

�Cp � 1�. We can observe that our preconditioned code produces accurate results without numerical

Figure 15. Rate of convergence for NACA 0012 aerofoil at M� 0�001

GMRES PHYSICS-BASED PRECONDITIONER 1365

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1347±1371 (1997)



oscillations, while the standard SUPG formulation exhibits such drawbacks produced by

incompressibility effects. The second case was a viscous subsonic ¯ow and Figure 17 shows a

rate of convergence of nine orders of magnitude in 350 outer iterations for the increment of each of

the ®ve variables (left), with an equivalent reduction in the residual (right). This simple example was

included to show that the good behaviour of the preconditioner is retained also for a set of parameters

that does not present dif®culties in the non-preconditioned case.

Finally we run a viscous transonic case that consists of a ¯ow at Mach 0�85 approaching an NACA

0012 aerofoil at zero angle of attack. The Reynolds number based on the aerofoil chord is 500 using a

constant viscosity. We have used a C-mesh with 158 elements in the chordwise direction and 39

elements in the normal direction, giving a total of 6162 elements. We have imposed all the variables

Figure 16. Cp and total Cp for NACA 0012 aerofoil at M� 0�001

Figure 17. Rate of convergence for NACA 0012 aerofoil at M� 0�3 and Re� 200
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at the inlet boundary without imposing any at the out¯ow, using a no-slip boundary condition over

the aerofoil with a prescribed temperature. Plates 4 and 5 display the density and temperature

isocurves respectively, showing a symmetric pair of detached supersonic pockets followed by a thick

wake behind the aerofoil. Figures 18 and 19 show the pressure coef®cient and the skin friction over

the chord of the aerofoil respectively. We have found good agreement with the results reported by

Shakib.11

7.5. Circular cylinder

The circular cylinder problem is a very good test because we have numerous approaches for its

solution. There is an analytical exact solution for the Stokes equation in creeping incompressible ¯ow

�RE! 0� and some analytical approximations for low Reynolds numbers and lightly compressible

¯ow34 that allows us to validate our code. For this problem, Re < 40 based on the diameter of the

cylinder is the critical point for stationary ¯ow. We mesh the entire domain using two zones: the ®rst

one, close to the body, is built with an O-mesh with 80 nodes around the cylinder and 20 nodes in the

radial direction; the second zone is an H-mesh with 20 nodes in the downstream direction. The

diameter of the cylinder is one unit length and we have placed the inlet, upper and lower boundaries

at nine units and the outlet boundary at 27 units. The boundary conditions were no slip around the

cylinder with zero heat ¯ux and we have imposed all the variables at the inlet, upper and lower

boundaries while using free traction and zero heat ¯ux at the outlet. We start with nearly

incompressible ¯ow at M� 0�001 and Re� 1 and 20. Again the low Mach number employed here is a

very strong condition to check the convergence ef®ciency. Figures 20 and 21 show the convergence

rate of each variable increment (left) and residual (right) for the two Reynolds numbers. A constant

slope in the residual of almost six orders of magnitude in 300 outer iterations seems to be evidence of

the ef®ciency of the preconditioner.1 The next simulation deals with a subsonic ¯ow at M� 0�27 and

Figure 18. Pressure coef®cient for NACA 0012 aerofoil at M� 0�85 and Re� 500
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Figure 19. Skin friction for NACA 0012 aerofoil at M� 0�85 and Re� 500

Figure 20. Rate of convergence for circular cylinder at M� 0�001 and Re� 1
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Re� 10 that was run using the same mesh. This Reynolds number based on the diameter of the

cylinder is very close to the beginning of the formation of the recirculation zone at the rear part of the

body. Plate 6 shows the pressure isocurves and downstream velocity ®eld in the same plot. We can

note the symmetry in the results and the stagnation of the ¯uid immediately behind the cylinder. The

last example for the circular cylinder consists of increasing the Reynolds number to 20 in order to test

the formation of the recirculation pocket and its length. Plate 7 shows the streamlines produced by the

velocity ®eld. The size of the pair of vortices is in good agreement with analytical approximations

and experiments.34

7.6. Sphere

The last example of this paper is ¯ow around a sphere. The goal of this simulation is to show the

ef®ciency of the code in a three-dimensional case. We have used a mesh composed of 19,942 nodes

and 15,840 elements distributed inside a computational domain represented by a box with

ÿ34 x4 10;ÿ34 y4 3;ÿ44 z4 3 and the sphere diameter is equal to one. Boundary conditions

were similar to the circular cylinder case. We begin by showing the rate of convergence in nearly

incompressible ¯ow. Figure 22 plots the residual convergence for M� 0�002 and Re� 10 (left) and

100 (right). The almost constant residual decrease of six orders of magnitude in approximately 150

iterations shows again the optimal behaviour of the preconditioner in such a severe condition. Plate

8(a) plots the distribution of the pressure ®eld over the sphere at M� 0�002 and Re� 100, showing

the peak of the pressure in the zone where the ¯uid is impinging on the body (pole of the sphere), the

suction zone at the equatorial plane and the partial recovery of the pressure behind the sphere. In

Plate 8(b) we can see the streamlines at z� 0 for the same conditions. The critical point for this

stationary ¯ow is approximately Re < 300. The accuracy of the recirculation region size is good

according to several references.34,35 Finally we have extended the simulation to low subsonic ¯ow at

M� 0�2 for several Reynolds numbers. Here we show only the results for Re� 30 and 100. Plates

Figure 21. Rate of convergence for circular cylinder at M� 0�001 and Re� 20
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9(a) and 9(b) show the streamlines for Re� 30 and 100 respectively that were checked with other

numerical results.2

8. CONCLUSIONS

In this work we have presented an ef®cient vector code (close to 1 G¯op) for solving the compressible

and incompressible Euler and Navier±Stokes equations. We have applied the software to different

kinds of interesting problems in order to validate its usage for very challenging applications.
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