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SUMMARY 
In a recent paper' we presented a data structure to be used with multigrid techniques on non- 
homogeneously refined FEM meshes. This paper focuses on the adaptive refinement techniques used 
there. The error estimate is obtained from standard Taylor series. For each element we compute its 
efficiency in terms of the size, the norm of the second derivatives of the unknown and the parameter p, 
where Lp is the chosen norm. The way the norm influences the optimal mesh is studied. The number of 
elements to be refined at each step is such to produce a fast convergence to the optimal mesh, followed 
by successive homogeneous refinements. We hope that the analysis of these two subjects could be of value 
for people working with other (perhaps very dissimilar) adaptive refinement techniques (error estimate 
and data structure, for instance). 

1. INTRODUCTION 

In previous years, more efficient solutions of discretized continuum problems were searched 
in two ways: optimal meshing and more efficient solution of the resulting discrete equations. 
In our work optimal finite-element meshing is achieved through a process of adaptive 
refinement, and the solution is obtained at each step with an extension of the multigrid method 
for non-structured meshes. This subject has been dealt with in depth in a recent paper.' 

With reference to the adaptive refinement strategy, much effort was devoted to two of the 
most important topics in this area, i.e. the error estimator and the type of adaptive 
improvement for use. To begin with the error estimator, we could make a brief list of the 
various kinds of estimators that exist in the literature. These are based on: 

(a) resolution of local problems. The estimators within this class produce the estimates of 
local errors over individual elements or over a patch of elements surrounding each of 
the elements by defining an indicator of how much the approximation fails to satisfy the 
governing differential equations and boundary conditions 2-5  

(b) interpolations methods and superconvergence. These methods use the interpolation 
theory of finite elements in Sobolev norms to produce the estimates of the local errors 
over individual elements6-10 

(c) complementary variational principle. These ones, valid for self-adjoint elliptic problems, 
use the duality theory of convex optimization to derive upper and lower bounds of the 
element errors l1 
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(d) estimates of derivatives by incremental quotients of u h  l2 
(e) residual error estimates. The value of the residual over each element is taken as a 

For our work we adopt an estimator that falls inside item (b). Our algorithm uses an error 
indicator based on the truncation error obtained by Taylor series expansions. It has several 
attractive features, as follows: 

(1) The interpolation error is a local quantity defined for individual elements. Any local 
changes in mesh affect the values of the interpolation error on the elements where the 
changes have been made. 

(2) It is very easy to implement in a finite-element code, and has low computational cost. 
(3) In relation to our applications, the fact that the error indicators would be sensible to the 

high first derivative of the solutions is a good feature because the problems to be solved 
have this type of discontinuity. 

On the other hand, extensions to non-elliptic problems do not produce the same results. The 
error indicator and element size serve to compute a parameter that plays the role of an element 
computational efficiency. This point will be dealt with in depth in Section 2. 

Continuing with the other topics, we come to discuss the refinement type to be used. There 
are four principal types: 

(a) h-type versions 
(b) p-type versions 
(c) h-p type versions 
(d) node relocation or R-type. 

measure of the error size and is used as a refinement criterion. 13-" 

In the first strategy, the order of polynomials used to interpolate the solution is kept constant 
but the mesh size varies. In the second strategy the order of polynomial approximation inside 
the element is variable and the element size fixed. The third strategy is based on a mixture of 
the two strategies above. In the fourth strategy, the location of the nodes is changed to improve 
the finite-element solution, keeping the number of nodes and the degree of the elements fixed. 

We do not make any specific reference to the great number of papers published on this topic, 
but we just mention one state-of-the-art paper," in which almost 200 references can be found. 
It is a common problem of all types of strategies to find an optimal mesh. Our work is based 
on the h-type strategy as part of a full multigrid method. 

In our work, we define an optimal mesh as the mesh, among the class of admissible ones, 
for which the efficiency for all the elements should be constant and should give a minimum 
error for a fixed computational effort. The strategy to choose the amount of elements for 
refinement is discussed later on. 

We decide to use h-type refinement over a mesh composed of quadrangular elements. The 
data structure used is similar to those appearing in References 19 and 20, with some particular 
aspects due to its application in a multigrid context. 

2. THE ERROR ESTIMATOR 

We estimate the error as being given mainly by the interpolation one 

I I U R - U I I  Q I I U R - U I I I +  I I U Z - U I I  = I I U ' - U l l  (1) 
This assertion is true in LZ norms. Sewell used it as valid in the L, context, and in this paper 
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we use it in general Lp norms. Like Sewell, we have no theoretical foundations to do this. The 
Lp-norm error is calculated element by element and the local error is approximated by a 
truncated Taylor series: 21 

we take f& as the nearest node of the element containing the point x, so that: 

where 

Replacing (4) in (2) we obtain our error estimator: 

where ‘Pe is calculated with an expression similar to (5) ,  replacing the derivatives of the exact 
solution u by 

Usually, one of the most important requirements to the error estimator is to detect 
singularities. Since our estimate is based on the second derivatives, it is evident that it will 
detect jump singularities (as shocks in compressible fluid dynamics), phase change and general 
free boundary problems, domain irregularities (as corners in fluid dynamics, elasticity, etc.. .), 
boundary data discontinuities, etc .... Even in the case where the second derivative does not 
exist the error estimator will get very high values in such a situation. Hence, the use of the 
estimator as a driving force to the feedback procedure is guaranteed. 

Now we are going to discuss the use of our estimator as a stopping criterion. Starting with 
the definition (6) and supposing that +,,,in > 0 is the lower bound for the aCs, (zr 2 h,ZPQe 2 hiin c Qe = hi%Q (8) 

which implies that 

so that, if Ep + 0, then hmin + 0 and (if convergence is verified) u R  + u.  
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3 .  REFINEMENT STRATEGY 

In general, a refinement strategy will give us a set of element parameters ( q e ) r L 1  so that one 
refines those elements in which t e  exceeds a certain threshold value. If the refinement criterion 
is, for instance, to reduce the local error, one can define 

Ve = aeh3 = max I U ( X )  - uR(x)  I 
X E Q r  

Another criterion could be to reduce the L,-norm of the error over the element: 

One can generalize all these criteria as qe = with 0 < m < a. A small m will give a 
refinement extremely sensitive to variations in the second derivatives; the opposite is true for 
the case of a large my so we will try to find the appropriate value of m. This will be done by 
optimization of the element error reduction penalized with the increase in computational work 
that takes place during the refinement of the particular element. 22 

The computational work is given by 

W 2: w N ~  = w C 1 w C h-""Qe = w 1 h-"d dQ = W[h(x)]  ( 1 2 )  

where h is taken as a continuous function. The error can be written also as a functional of h as: 
e e Q 

E [ h ( ~ c ) ]  = (1 & p ( x ) h z p ( x )  dfl)"' 
4 n  

(Note that Cp(x) has been replaced by &(x)) .  We introduce the computational work in the 
functional via a Lagrange multiplier X and pose the Euler equations to find the extrema 

6(E[h(x) ]  + XW[h(x)] ) = 0 
which implies 

so that 

which is the same as the second definition described at the beginning of this section; hence the 
optimal criterion is to reduce the L,-norm of the error over the element. qe can be considered 
as the inverse of an efficiency: 

For the elements with a large ve, a strong reduction - 6E of the error can be obtained through 
a little computational work SW, and the converse is true for small qe. 

The elements to be refined at each refinement step are those which have a low efficiency, i.e. 
those which satisfy 

qe > Ptmax (18) 

where qmax is the maximum value of q e  over all the elements and 0 < f i  < 1. 
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4. THE NUMBER OF ELEMENTS TO BE REFINED 

We will discuss now the choice of p or, in other words, the number of elements that must be 
refined at each refinement step. As mentioned above, the optimal mesh will be that one with 
a constant qe. It implies an optimal mesh size hopta&-l'm. Note that the optimal mesh is 
defined modulo a homogeneous refinement. A value of p close to 1 will produce a very slow 
convergence to the optimal mesh because only very few elements are refined at each step. 
Conversely, if p is close to 0 nearly all the elements are refined at each step and the process 
will not converge at all to the optimal mesh. The optimal will be that which gives a fast 
convergence to a mesh with a narrow gap of qs. 

we will make a simplified analysis based on the following model. Once 
an element with q e  = +ehF is refined, 2"d sons are created, with 

To find the optimal 

and the other elements remain with their respective $e unchanged. 
It implicitly assumes that the 9 e S  do not change very much when the elements are refined, 

which is likely to be so, due to the convergence of uR to u. Let us now consider the 
2-m < < 1 case (see Figure l), each curve represents the distribution of elements over q for 
the GR-mesh (the mesh obtained after R refinement steps), so that the area below the curve 
in any interval [q., qb] is representative of the number of elements which have qa < qe  < qb 
(note: the q axis is logarithmic). 

In the former steps ( R  < Rc; the expression for Rc is shown later), the elements in the 
interval [/3v,&',q;&l] (the shadowed area in Figure l(a)) are moved left a distance 
A = m log 2 to their position in the shadowed area of Figure l(b). The net area added below 
the curve is (2"d- 1)  times the shadowed area in Figure l(a). Note that qmax is moved left a 
distance S = - log p and qmin remains unchanged. This is so in the subsequent refinement steps 
until at a certain step RC (GRc-' + GRc): 

is satisfied, so that 
RC = [$log(*)] 0 

17 min 

Rc step the qmin value does not 
described in Figures l(c, d): the 

where [ ] denotes the integer part of its argument. In the 
remain constant. and for R > Rr the situation is like that - 
elements in the interval [p~$&l ,qZ~~]  are moved into the interval 
[2-"'/3q,&', 2-"q&J exactly to the left of the interval whose elements remain fixed. 

As a consequence, we have for R > Rc: 
R 

0 a constant gap: A = log 

R-1 
0 a constant shift: S =  -log 

We can see that, from all the Bs with 

0 the shift is the highest: S =  m log 2 

because: 

-log(%) = -log p 

2-"' < p < 1, the value OOpt = 2-"' is the best one 
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a) 

c 
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' R  R 
'?mi" 71 mox 

Figure 1 .  The 2-m < p < 1 case, S = -log 0, A = m log 2 
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a) 

P I 

H 

Figure 2. The 0 < ,3 Q 2-m case, S = m log 2, A = -log ,3 



136 M. STORTI. N. NIGRO AND S. IDELSOHN 

the number of steps Rc to attain the best mesh is the lowest (see (21)) 
the gap is the same as for all the other 0s within the interval. 

In the same way, it can be shown that for the 0 < p < 2-"' case we have (see Figure 2): 

0 a shift S = m l o g 2  
a gap A = -log 0 for R 2 Rc, where RC is given by the same expression (21). 

We have in this interval: 

0 the shift is the same for all 0s 
0 the number of steps Rc to attain the optimal mesh is the same for all ps 

the gap is the narrowest for /3 = POpt. 
So the choice p = Popt is optimal over all 0 < p < 1. 

We have studied this point in detail because we think that it can be applied to other error 
estimators, as long as the model described above holds. At each circumstance the 
corresponding m value must be found by a theoretical error analysis or by a heuristic one. 

5 .  NUMERICAL EXAMPLES 

We solve the Laplace equation in the unit square with Dirichlet conditions: 

Au = 0 in Q = [0,1] x [0,1] 
u = i i  in as2 

where: 

z = x + i y ,  i=,I-l 
f(2) = (z + a, & E m 

f is (depending on the choice of a) singular on z = - E. Hence, by varying a and E ,  we control 
the irregularity of u (over Q). In fact u is the analytical solution for potential flow around a 
re-entrant corner (see Figure 3). For a = -1 the flow corresponds to that of a dipole. The norm 
of the derivatives is easily calculated as follows: 

I vz.4 

I 

So, using standard inequalities relating different p-norms on finite-dimension spaces, 

6 = C(x,y) 1 (Y(a - 1) 1 ra-2  

with J2/3 < C(x,y) < J2. 
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Figure 3. Test problem 

Htti -a -  

- C- 

- b -  

-d- 

-e -  - f -  
Figure 4. Mesh convergence: (a)-(d) initial meshes; (e) final mesh for mesh (a); ( f )  final mesh for meshes (b)-(d) 
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5.1. Mesh convergence 

The first example deals with the mesh convergence of the refinement process, i.e. we expect 
that, starting with different initial meshes Go, we will get similar meshes after several 
refinement steps. 

and we have taken as initial meshes those indicated in 
Figures 4(a-d)). The corresponding final meshes are: 4(e) for 4(a) and 4(f) for 4(b-d). The 
Figures show a satisfactory convergence to the optimal mesh, regardless of the initial mesh 
chosen by the user. The final meshes shown are obtained after seven refinement steps for the 
(a-c) cases and after five steps in the (d) case, which is obviously the best initialization. 
However, the CPU times are almost the same because the most expensive steps are the final 
ones, where the mesh configuration is the same. 

We have set ct = 0.1 and E = 

5.2. p choice 

The problem parameters are: ct = 0.5, E = lo-'* and p = 0.25. In Figure S(a) we have the 
initial distribution curve of ves. The interval shown is always [log vR,ax - 4, log ~ f i a x ] .  We have 

Id L 
-a- Trnax. -b -  Trnar. 

-C- Trnax 

L 
Trnax. 

1 0 - ~  Trnax. - d -  Trnax. 

Figure 5 .  Choice of 0 parameter 
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run this problem with: 

(i) P = Popt = 2-l' = 0.001. After three refinement steps we obtain the curve shown in 
Figure 5(b)  with a gap A = 2 (neglecting the tails of the curve to the right and to the left 
of the main peak) 

= 0.1 S Popt. We show the curves for R = 3 (Figure 5(c)) and R = 7 (Figure 5(d)). Note 
that the gap is in both curves A = 3. This high value for A is expected since we are in 
the case P > Pop, and then we would need a great number of additional steps to reach 
the optimal mesh. 

(ii) 

5.3. Choice of m and p parameters 

It was shown in Section 5 that the optimal choice of m for a given norm Lp is m = 2 + 2 / p  
(in 2D). It means that if we plot the p-norm of the error ( 1  u R  - u I I p  against the CPU time for 
several m-values we should find that the choice m = 2 + 2 / p  gives the fastest reduction of the 
error. To make this clear we will show a numerical example in which we have made nine runs 
with all the combinations (mi,pj)  with: 

m l = 2 - 2 ,  mz=4,  m3=22 
p1= 10, p 2 = 1 ,  p3=0*1  

In Figures 6(a-c) we see the Lp-norm of the error with the three refinement criteria m1, m2 and 
m3. The expected behaviour is found for p1 and p2. For p3 (Figure 6(c)) m2 was the optimum; 
however m3 was close to it and the runs should be extended to reach a final conclusion. In 

-1.6 

-2.2 

-2.8 

-3.4 

L m =  22 
m = 4  

- -- 

0 200 400 600 800 
CPU (seconds ) 

(a) 

Figure 6. Choice of m and p :  (a) p 1  = 10; (b) p 2  = 1; (c) p 3  = 0.1 
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3.4 m =  22 
m = 4  
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(4 

Figure 6 .  (Continued) 
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practice one is interested in norms L1 and Lz. This gives m-values 4 and 3, respectively. Note 
that m = 4 was nearly optimal in all the norms pi = 0.1, 1 and 10, so that we recommend, in 
general, a choice of m near these values. 

6. CONCLUSIONS 

This study is concerned with the already popular adaptive refinement technique and highlights 
some important points about an optimal use of it. An estimator based on interpolation theory 
is used and the numerical results give evidence that its behaviour in the presence of different 
types of discontinuities is correct. A good way to choose the amount of elements to be refined 
in each step, based on the optimization of a computational efficiency, is developed. Several 
examples have shown an acceptable accord between the theoretical aspects and the practical 
ones. Here we include only the Laplacian problem. Probably, future works in this direction 
would lead to a better utilization of the computational resources. 
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APPENDIX 

Nomenclature 

GP = R-step mesh ‘unrefined’ to level l 
e = element index 

h = element size 

l = level number 
Lp = norm 

m = exponent defining the parameters of q 
nd = number of spatial dimensions 
R = refinement step index: GR-’ + GR during step R 
S = logarithmic shift at each refinement step 
u = scalar valued functions over Q 
w = average resolution work by element 
0 = parameter defining the q threshold value for refinement; pOpt = optimal value 
y = maximum level 
6 = first variation of a functional. 

A = logarithmic gap, i.e. the width of the distribution curve in logarithmic scale 
c =  shift from the corner in the numerical examples 
7 = element refinement parameters; one refines the elements with high q ;  vmax, 7min are the 

a =  domain. 
extreme values 
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Super1 subscripts 

(sub) e = element index 
(supra) Z = finite-element interpolation 
(sub) 
(sub/supra) p = parameter in the norm definition 
(supra) R = level of refinement. 

1 = level of ‘unrefinement’ 

Special symbols 
x=vectors  in bold 

( 1  x 1 1  = norm of a vector 
( ) x =  evaluate ( ) at x 

[x] = the integer part of x 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
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