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All-hexahedral mesh smoothing with a node-based
measure of quality
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SUMMARY

This research work deals with the analysis and test of a normalized-Jacobian metric used as a measure of the
quality of all-hexahedral meshes. Instead of element qualities, a measure of node quality was chosen. The
chosen metric is a bound for deviation from orthogonality of faces and dihedral angles. We outline the main
steps and algorithms of a program that is successful in improving the quality of initially invalid meshes to
acceptable levels. For node movements, the program relies on a combination of gradient-driven and simulated
annealing techniques. Some examples of the results and speed are also shown. Copyright ? 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The optimization of a given mesh for Finite Element Analysis implies that the elements must
satisfy certain quality conditions. Many methods are currently in use [1–3] and there is also an
excellent compendium of matrix norms useful for hexahedra, cited in Reference [4], but it is still
di�cult to give a concrete meaning to the word ‘quality’ for a mesh.
Even though the actual algorithm we use combines orthogonality with aspect ratio, we will

only concentrate here on the angular aspect of quality. This is because traditional methods give us
meshes with negative-angled elements. Therefore, within the scope of this paper, any hexahedral
element must have its edges and faces as orthogonal as possible.
We will be using the term ‘Jacobian’ for the matrix involved in the mapping between any

tetrahedron over the canonical one. A tetrahedral element can be mapped with a single Jacobian
matrix whereas hexahedral elements have a di�erent Jacobian at each vertex.
Mesh improvement involves two main approaches, which are sometimes used together: smooth-

ing and topological operations. It is a common practice to use the term ‘smoothing’ when only
changes in node positions are involved. When there are some changes in the connectivity among
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Figure 1. A trihedron in a hexahedral mesh element. Figure 2. Dependence of two-dimensional metric on
the node position, for one of the elements attached to

the moving node.

the nodes, changing also the quantities of nodes or elements, these operations are referred to as
topological changes.
Whereas tetrahedral meshes can readily undertake local topological changes, they are still unim-

plemented for all-hexahedral meshes. This is because of the lack of algorithms to handle and
operate with dual surfaces or sheets of elements [5–7]. We are currently smoothing, i.e. reposi-
tioning nodes without changing the topology of the mesh.
Until recently, the only known smoothing technique applied to hexahedra was the Laplacian

smoothing [8], a movement of each node towards the centroid of its neighbouring nodes. The
drawback of the Laplacian method is the compression and even inversion (negative Jacobian) of
elements near concave areas of the boundary. Even the newest methods [3; 4] cannot successfully
untangle a mesh with inverted hexahedral elements.

2. THE GEOMETRY

2.1. Metric

We are using a technique known as ‘optimization-based smoothing’ [1; 9], where each selected
node is moved in order to maximize a quality-related function called quality metric.
The algorithm is intended to move nodes; therefore, instead of handling element qualities, we

have de�ned a node quality metric. The subtle di�erence between node and element quality has
proven useful at the implementation stage. It is easier to evaluate the impact of each movement
on the quality of neighbouring nodes using a node-based quality measure.
In order to improve meshes with some concave elements (with a negative Jacobian), we need

a metric pushing the mesh towards (positive) orthogonality. After we tested dihedral angles and
edge angles as objective functions, we realized that the normalized Jacobian was a simple bound
for both of them.
As elements de�ne a trihedron on each node, we will deal mostly with trihedra rather than

elements.
Figure 1 shows a mesh element. The segments PA, PB and PC de�ne a trihedron with P as its

vertex.
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The intersection of S2P (the unit sphere centered at P) and the element is the unit spherical
triangle shown greyed. S2P intersects the edges at A1, B1 and C1, with a; b and c the respective
unit vectors so de�ned.
The angle between the edges PB and PC was labelled âe, âd is the dihedral angle between the

triangles BPA and CPA; and �a is the angle between the edge PA and the normal b × c to the
triangle BPC. The letters a, b and c can be cyclically used for all the angles between faces and
edges.
In order to avoid any problem with the signs, we choose angles such as âe and �a ∈ [0; 180◦)

and dihedrals such as âd ∈ (−180◦; 180◦]. Thus, when the trihedron becomes inverted, all the �’s
are over 90◦ and all the dihedrals are negative.
The mapping of these unit vectors in the canonical tetrahedron is made with a Jacobian matrix

whose determinant is j=(a b c). It can take values between −1 and 1; and is the normalized
version of the Jacobian determinant J =(PA PB PC) for the element edges.
The normalized Jacobian is an orthogonality measure for each trihedron at P. This measure is

a lower bound on the sine of the angle between edges:

j=(a b c)= a • (b× c)= cos(�a)sin(âe)6 sin(âe) (1)

The dihedral angle âd is the angle between a × b and a × c; as seen from A to P, then

sin(âd)=
(a × b)× (a × c)
‖a × b‖‖a × c‖ • a=

(a b c)‖a‖
‖a × b‖‖a × c‖ =

(a b c)

sin(ĉe)sin(b̂e)
¿ (a b c)= j (2)

where double bars mean that the module of the enclosed vector was taken. This equation shows
the given metric as a lower bound for the sine of the dihedral angles.
As the previous equations are equally applied to the angles on the other edges: the angles

between faces and between edges of a trihedron are closer to 90◦ than the arcsine of j.
We now have a metric to quantify the quality: The quality of a node is the least-valued j from

the set of trihedra sharing that node. The quality of the mesh is the worst node quality.
Frequently, some sort of mean value is used instead of the worst one, relations between inner

and outer spheres or something alike. These values may be suitable for triangles or tetrahedrons,
but are rather dangerous for quads and hexes. They are prone to give inverted elements, and a
single one makes the whole mesh useless.

2.2. Internal nodes

In order to improve the quality of a node, we move it while keeping the adjacent ones �xed. With
the exception of a few special points, j is a di�erentiable function of node position. The element
to which the worst j belongs, changes as the node moves.
In the two-dimensional (plane) case, we can easily show that problem. In Figure 2, we have

isolated one of the quads sharing some node P, and showed the non-adjacent (and irrelevant)
edges in dotted lines.
Fixing nodes A and B while P moves in the plane, we can plot j as a function of the position

of the moving node. In this case, j is the component of a× b in a direction that is perpendicular
to the plane.
The line joining the �xed nodes is the border between positive and negative half-planes. The

metric value is zero on that line, and 1 or −1 at the circle with the �xed points diametrically
opposite (the diameter of the circle subtends a right angle).
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For each element attached to the (moving) node, we have one of these surfaces. From that set
of surfaces we make a single one choosing the lowest value at each point. This is the surface we
can see viewing the set of intersecting surfaces from below. We must �nd the maximum value of
that function.
In our three-dimensional case, we have three �xed nodes (such as A, B and C in Figure 1)

for each element attached to the moving node P. The plot of j, as a function of the three node
coordinates, is a 4D surface for each attached element. The planes through each triplet of �xed
nodes, are the borders between positive and negative half-spaces. For each attached trihedron, any
pair of �xed points (say A and B) de�nes a sphere (in which A and B are diametrically opposite).
If the node were on the surface of that sphere, the edges (PA and PB) will form a right angle. In
order that the three edge angles are right ( j equals 1 or −1), the node must be at the intersection
between the three spheres so de�ned (by AB, BC and CA). This intersection exists as long as the
�xed nodes are forming an acute triangle (ABC).
When the node has a negative metric, the gradient of the function may move it in the wrong

direction. In Figure 2, on the left, the surface is negative and outside the −1 semicircle. Here, the
gradient moves the point away from the line, causing j to grow as it asymptotically approaches
zero. Such a movement increases the metric value, but in the wrong direction. In the positive
half-plane, we do not have such a problem.
Thus, when the metric is negative, we use J (the triple product of the edge vectors) without

dividing it by the edge lengths. It does not require a new calculation when it is negative, it is not
divided by the edge lengths.
The corresponding surface in 2D, is a half-plane bounded by the dividing line and tangent to

the negative half-circle of Figure 2 (all the triangles=tetrahedrons with the same base and the same
height have the same area=volume).
This combination of metric values is one of the key approaches to successfully untangle meshes

having nodes with negative Jacobian.

2.2.1. Inuence of the set of neighbouring nodes. The position of a node a�ects the quality of
its neighbouring nodes.
The kernel of a polygon is the intersection of all its internal angles [10]. It is a convex polygon

included in the former one. So de�ned, the kernel is the set of points from which all the nodes of
the polygon can be viewed without interference. If the starting polygon is convex, then the kernel
coincides with it.
Figure 3(a) displays a node P from a two-dimensional planar mesh and the quadrilatera sharing

that node. The adjacent nodes are labelled Ai, and the diagonally opposite ones are labelled Di.
Shown in (b) is the enveloping polygon of the adjacent nodes. The quality of P is positive only
if the node is inside the kernel of that polygon. If the point is moved out of the kernel, at least
one of the attached elements will be inverted.
In a polygon that has more than one concavity, there may be no kernel at all and no place with

positive metric. In Figure 3(c), we moved node A0 to void the intersection between the internal
angles at A4 and A1; in this case there is neither kernel nor a suitable position for the inner node.
In the three-dimensional case we have an enveloping polyhedron, trihedral solid angles and a

convex kernel polyhedron yielding positive metric to all the trihedra attached to the node.
In order to avoid futile attempts to improve a node whose quality cannot be bettered any

more, we need a value for the maximum quality attainable by each node. The positions of the
neighbouring nodes severely restrict that value, but these positions will change in successive steps.
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Figure 3. Envelope and Kernel of the nodes adjacent to a node P.

Figure 4. Envelope and Kernel of the element set
attached to a node P.

Figure 5. Fixed boundary node.

The valence of the node (the number of attached edges), in turn, limits the quality and this limit
will not change.
In 2D the minimum angle at a node with n elements attached cannot be over 360◦=n. In 3D

the general function relating the upper bound on j with the number of edges is the same problem
as the optimal placing of points in a spherical surface. It is an unsolved combinatorial geometry
problem [11; 12], so we currently do not provide the program with such a value.
If we analyze Figure 3(b) and Figure 4 we can easily see that, by increasing the quality of a

node, we may negatively a�ect that of its neighbours. Even in the kernel of the adjacent nodes,
where the node P has positive-metric, some of the attached nodes can take negative metric values.
The cluster-enveloping polygon, formed with the attached elements, has a smaller kernel (with a

higher probability of being void) than the adjacent nodes envelope. In the cluster kernel, the node
has a positive metric and does not force a negative metric on its neighbour nodes. It is evident
that the centroid of the cluster kernel is a better position for the node than the commonly used
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(Laplacian) centroid of the envelope. As the kernel is di�cult to obtain in 2D, obviously our 3D
case is even harder. Any algorithm doing that will be welcomed.

2.3. Boundary nodes

The boundary of the hexahedral mesh is a closed quadrilateral mesh with �xed nodes. We will
show how the quality of the hexahedral mesh is a�ected by the quality of the prescribed boundary.
Our hexahedral mesh generator makes one element for each face of the outer mesh. As was

explained in previous works [5; 6], a layer of elements adjacent to the boundary composed of one
hexahedron for each quad, makes it possible to correct many potential problems with the outermost
elements.
Figure 5 above displays an external node O with one of the n trihedra sharing the segment OP.

In addition, we can see S2O (unit sphere at O), the greyed sector left by S
2
O at the ith external

quad, and the corresponding unit vectors. Translating the origin of coordinates to O, we have (as
P moves) the metric of the ith trihedron:

ji=(aiai+1p)= (ai × ai+1) •p⇒ ∇ji= ai × ai+1; with the indices cycling modulus n (3)

The maximum ji is for p perpendicular to the ith face (actually, to the triangle Ai OAi+1).
The direction p is a priori unknown, so the worst ji is also unknown but we can say that it is

worse (lesser) than the worst ai× ai+1. Therefore, the quality of the mesh is conditioned from the
beginning by the worst (two dimensional) ji of the quads, i.e. the quality of the exterior mesh.
This simple bound is a poor approximation, as the scalar product will lower the actual quality

in acute polyhedral angles.
The calculation of the limit on the orthogonality reachable by any border node has the same

di�culty level as the calculation of the optimal position of any node and so we do not perform it;
however, it is a source of time consumption when the program makes futile attempts to improve
beyond imposed restrictions.

3. PROGRAMMING

Our goal is to move each node to a better position. To compare positions, we use the quality of
the node as well as the worst quality from the set made up of the node and its neighbours.
So, in our algorithm, a new position for the node P is considered to be better if the worst

quality of the set {P; {Ai}} improves or if it stays the same and the quality of the node improves.
Every previous attempt we made by using only analytical ways invariantly ended up with some

locking positions, often with negative metric.
In order to select the nodes to be moved, a list in reverse quality order is made. The �rst nodes

on the list are selected and tested one at a time. This sub-list is repeatedly traversed. The quantity
of tested nodes is a function of the overall quality of the mesh, starting with a few nodes and
expanding to the entire list as the quality rises, or when there is no signi�cant improvement.
To change a node position, the program has three di�erent approaches:

(1) Gradient driven: As was explained before, a node movement in a direction improving the
worst trihedron quality (∇j) may lower the quality of the neighbour nodes. Thus, the program
makes a minimum movement in that direction; if it is a better position (in the sense already
de�ned), the maximum successful step in that direction is found.
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The obvious choice for the reference step is

‖�P‖= 1−j
‖∇j‖ ⇒ �P=

1− j
‖∇j‖2∇j (4)

This step carries j to 1 (orthogonal trihedron), but it has proven less e�cient than the mean length
of the edges attached to the node. Labelling ai the ith edge length ‖AiP‖, and considering that
there are n such attached edges, we choose the reference movement length

‖�P‖= 〈ai〉=
∑ ‖AiP‖

n
(5)

The �rst (and minimum) attempt is 1
128 of this. If it is successful, we test the whole reference

step. If it does not succeed, we halve it recursively until a movement improving the node quality
is found.
If the minimum movement does not succeed, the control passes to the next algorithm.
(2) Simulated annealing: The node is randomly moved and tested. The movement steps

randomly take di�erent directions and their magnitudes are random fractions of the mean edge
length (previously calculated)

‖�P‖=f〈ai〉; where 0¡f6 1 (6)

The number of attempts is a linear function of quality, between 0 for quality 1 and 50 attempts
when quality falls to 0 or negative.
(3) Forced movement: If all the previous tricks have failed and

(a) the quality of the node is 0 or negative,
(b) this is the sixth time with this node and is still unchanged,
(c) the node has at least one positive-metric neighbour node.

Then, the node and its neighbours are forced to move randomly as de�ned in the previous
algorithm.
This movement is meant to prevent severe locking of a node. The causes may vary but it

actually happens and this solution works out well.
The third condition lies in the fact that almost every example we tested has a near-smooth layer

of many negative-metric nodes (mostly at the domain frontier). It is useless to work inside this
layer so we chose to move only those nodes at the interface with the ones having a good position.
Finally, the program halts if the required quality is reached, or some prescribed time has passed

or the list of nodes is complete and the quality does not improve.
Even though all the factors and functions chosen were experimentally tested, we do not

expect them to be the best (fastest) values for every situation. We can only say that these val-
ues gave positive metric meshes in all our examples and benchmarks. Many of them may seem
superuous, ine�cient or extremely conservative, but they are necessary in order to guarantee the
result. Regardless of whether it takes a minute or an hour, the speed must not interfere with the
robustness.

4. EXAMPLES

The examples were tested in an ALPHA station 500, 333 MHz with 320 MB of RAM and Digital
UNIX V4.0B operating system.
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Figure 6. Mesh with an acute concavity.

Figure 7. Run plot of quality for the curved beam.

We have tested mostly benchmark, few-element meshes without any engineering sense; however,
we have selected three examples of concave meshes to be shown here.
In order to test the robustness of the process, all the runs were made with the same set of

parameters.

4.1. Curved beam

The �rst example is a test case of an acutely curved beam (Figure 6), forcing bad results from
Laplacian-only smoothing. The resulting hexahedral mesh has 1586 nodes and 1310 elements.
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Figure 8. Mesh for a gear tooth.

Figure 9. Run plot of quality for the tooth.

The running test started with 150 negative-quality nodes. They reached the 0-quality status in
a minute and the overall quality rose to an acceptable level ¿0:1 (about 6 or 174◦) in less than
2 min (Figure 7).
In the plots, mean, minimum and standard deviations are over the set of node qualities, be-

ing 1 for a perfectly orthogonal trihedron, 0 when squashed on a plane and negative when in-
verted.

4.2. Gear tooth

The second and more complex example shown in Figure 8 is a test problem of a gear tooth
from a contact problem. The planar mesh was made by using a planar paving [13] mesh-generator
and then extended and re�ned in the third dimension with the help of a CAD program. The
all-hexahedral mesh has 9286 nodes and 8210 elements.
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Figure 10. CAD Mesh for a spherical bearing.

Figure 11. Run plot of the spherical bearing, starting with the Laplacian-smoothed mesh.

The initial situation with 404 negative nodes was corrected in about 10min and the mesh quality
reached an acceptable level in 15min (Figure 9).

4.3. Spherical bearing

The external mesh for the spherical bearing shown in Figure 10 was entirely made with a standard
PC CAD program. The corresponding all-hexahedral mesh has 68689 nodes and 60112 elements.
Starting with the Laplacian smoothed mesh, the initially negative 56 nodes were corrected in

less than a minute, and it took a total of 11min to improve the overall quality (Figure 11).
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5. CONCLUSIONS

The problem of �nding the best shape for the elements=nodes of an all-hexahedral mesh has proven
intractable by some of the standard means used with tetrahedrons.
Although there is still a lack of consensus about the best-quality measure for hexahedral

elements, we made some progress towards the improvement of angular quality.
Surely this metric alone is not the solution. It must be combined with suitable values for the

aspect ratio and the planarity of the faces in order to boost the overall quality of the mesh. We
actually use a product made up of the metric already presented and a node-based measure of
aspect ratio related to the logarithm of the quotient between minimum and maximum lengths from
the set of attached edges.
The method has proven to be robust and every test has given a positive result, so it can be easily

extended to any quality measuring value. The very philosophy of the object-oriented programming
allows us to replace the metric used by any other.
We are now in a position to make good-quality meshes for the type of problems that can be

successfully addressed by our all-hex generator.
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