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All-hexahedral element meshing: automatic elimination of
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SUMMARY

There has been some degree of success in all-hexahedral meshing. Standard methods start with the object
geometry de�ned by means of an all-quadrilateral mesh, followed by the use of the combinatorial dual
to the mesh in order to de�ne the internal connectivities among elements. For all of the known methods
using the dual concept, it is necessary to �rst prevent or eliminate self-intersecting (SI) dual lines of
the given quadrilateral mesh. The relevant features of SI lines are studied, giving a method to remove
them, which avoids deforming the original geometry. Some examples of resulting meshes are shown
where the current meshing method has been successfully applied. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Signi�cant advance has been made in the area of all-hexahedral mesh generation in the last
few years [1]. All the surviving general-purpose methods deal (directly or not) with the com-
binatorial dual of the mesh [2–8]. The meaning of the dual and the methods based on it can
be found in any of these references.
These methods start from an all-quadrilateral mesh as input; this mesh is used to de�ne

the boundary geometry. In this work, this boundary surface is further required to have the
topology of a two-dimensional sphere, that is a single closed surface without holes.
There are, however, at least three sources of trouble in developing a fully automated gen-

erator in such a way:

(1) Some dual lines to the given boundary mesh are self-intersecting (SI), they are present
in almost every well-shaped unstructured mesh. Each boundary dual line bounds a
surface (to be made) dual to a sheet of hexahedra. If the line is SI, the surface must
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be SI too, and they are very di�cult to deal with. The exact source of problems with
SI lines or surfaces is approach dependent, but all the main methods acknowledge
these di�culties [5, 6, 8]. This problem is still one of the main sources of failure when
meshing.

(2) Topological monsters appear because the generation stage deals only with the topology
of the problem. The term refers to objects agreeing with the topological requirements
but giving invalid hexahedra in order to be used in the �nite element method. Mostly
they give hexahedra sharing more than a face, edge or vertex with another element and
even sharing some sub-entities with itself. Some problems of this kind have already
been solved by di�erent approaches with varying degree of success [5, 8–11]. There
is not yet a fully satisfactory method to remove them.

(3) Smoothing algorithms have extremely low speed, at least those successful in disen-
tangling meshes and improving their qualities. Although faster algorithms have been
implemented, so far they have had little success in reverting elements with a negative
Jacobian at some vertices [11–13].

This work deals only with the dual of the external mesh and the �rst problem mentioned
before. As there is not yet any successful algorithm to handle SI surfaces, there is presented
an algorithm to automatically modify the boundary mesh in order to eliminate the SI lines,
thus no SI surfaces will be made.
There are already in the literature some methods for the elimination of SI’s from the

boundary dual [5, 6, 14]. In particular, the work of Folwell and Mitchell [5] presents some of
the basic features of the process needed to remove SI lines by collapsing quadrilaterals.
This work is intended to present a systematic framework for the study of the topologi-

cal properties of SI lines and to discuss some available methods for the removal of self-
intersections. The goals are to avoid modi�cations on the input geometry and to minimize the
quality loss in the input mesh.
The methods already implemented in our generator are fully described and some resulting

input meshes are shown, in order to see the e�ect of the SI removal routine for problems that
were successfully meshed with hexahedra without topological monsters.

2. SELF-INTERSECTING CLOSED LINES

2.1. De�nitions and notation

We will analyse planar closed curves with the further requirements that they are not self-
tangent and that they have no triple self-intersection points. These are also known as unicursal
curves. We will also establish a method for traversing the line, so it can be considered as a
directed line. This ordering will be a means to make deductions in an easy way but, otherwise,
it is unnecessary.
Figure 1 shows a SI closed line with a two-number labelling at each node. This labelling

is the order in which each cross must be passed over when the line is traversed. There
are n nodes connected by 2n curve segments. At any node such as (6; 19) there are four
incident segments: two incoming segments like 5–6 and 18–19 and two outgoing ones as 6–7
and 19–20.
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Figure 1. Node labelling a self-intersecting line.
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Figure 2. Positive and negative split of a self-intersection.

We will make extensive use of the Jordan curve theorem, stating that a smooth (di�eren-
tiable, non-zero tangent vector) simple (non-SI) closed line divides the plane into two disjoint
regions each of which is homeomorphic to a disk. This theorem seems obvious on the plane
and the sphere, but it is certainly not true on surfaces with holes as the torus. For our pur-
poses, the spherical and planar problems are essentially the same, however almost nothing
will be valid in surfaces with genus (number of holes) greater than zero.

2.2. Splitting self-intersecting lines

Each self-intersection of a curve can be spliced in two ways. Let us label positive a split
joining segments coming to the node with segments leaving the node, and negative to the
opposite case. Figure 2 shows the labelling scheme.
A positive split always leaves two curves (may be non-disjoint) and preserves the original

direction of the segments. On the other hand, by negatively splitting, one branch must be
inverted, thus leaving a single curve.
Splitting all the n nodes gives 2n possible outcomes. Each one is a set of disjoint closed

lines; some sets being made of a single line. When each split leaves a connected line set, the
outcome is a single line.
Two lines are obtained by making a positive split like the one at node (6; 19) in Figures 3

and 4. In this case, both of them having common points such as (15; 20) as well as self-
intersections like (9; 18).
One consequence from the Jordan theorem is that each node label has one even and one

odd number. Consider the split made at Figure 4, a round trip starting from node 6 meets
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Figure 3. Two di�erent outcomes resulting from splitting all the nodes.
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Figure 4. Splitting the line into two.

the other closed circuit an even number of times, and also each self-intersection of the trip
is found twice.

2.3. Circular diagram and splitting

For computational analysis and manipulation, we made a simple representation of all the
relevant structure of SI lines. The sequence of crossings found when travelling the line is
mapped on a circumference as seen on Figure 5. The crossings belonging to the same node
are identi�ed by means of inner lines joining them.
At the computer, this information is allocated in a circular one-dimensional array of integers

in which each element (crossing) is pointing to the other crossing of the same node.
Let us see the e�ect of both types of splitting by means of diagrams.
In the upper diagram of Figure 6 there are two arcs (2–9 and 11–20) with closing chords,

representing the two pieces resulting from a positive split at node (1; 10). These pieces are
mutually intersected at nodes such as (4; 15) whose lines in the diagram cut the splitting line.
Self-intersections of the pieces remain as lines (as 13–16) which do not cross (are parallel
to) the splitting line.
A negative split reverses one of the pieces and attaches it to the other, resulting in a single

line with one less self-intersection. Note the reversal of the traversing order in one of the
arcs.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:1439–1449



ALL-HEXAHEDRAL ELEMENT MESHING 1443

8,19

9,18

1,10

7,20 6,11 5,12

13,16

4,15

3,14

11 10
9

8

7

6

5

4

3
2120

19

18

17

16

15

14

13
12

6
5

4

3

2
1

10

9

8

7

1,8

7,10

6,9

2,5

3,4

2,17

Figure 5. Circular diagrams.
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Figure 6. Circular diagrams for a positive and a negative split at a node.
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Figure 7. Splitting to avoid self-intersections.
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Figure 8. Optimal splitting.

2.4. Minimal splitting

In order to avoid self-intersections, it is not necessary to split the line at every node. Splitting
at a few nodes instead, as Figure 7 shows, results in a set of simple lines, which is enough
for meshing purposes.
A negative split reduces the number of self-intersections by only one, whereas a positive

split leaves two closed lines with some of the previous self-intersections as mutual intersec-
tions. Therefore, we will use only positive-type splitting.
Mutual intersections were already identi�ed in the diagram with the lines crossing the

splitting line. Because lines (1; 10) and (13; 16) in Figure 8 intercept all the other lines, only
two splits are enough in order to obtain simple lines.
The question is how to make an algorithm to �nd such minimal set of lines in any problem.
One relevant datum in the search of that minimal set is the number of lines intercepted by

each line in the circular diagram. In Figure 8, the line corresponding to node (1; 10) intercepts
eight other lines. We will refer to that number as the ‘cutting index’ of the node (1; 10).
Any line divides the circular diagram into two arcs, the cutting index is the number of

unpaired crossings in each of these arcs, i.e. the number of crossings in the arc minus two
crossings for each parallel line whose ends are in the arc. Because the circular diagram
have 2n crossings for n nodes and, as was stated, each line connect one even and one odd
crossing number, each arc have an even number of crossings, thus all cutting indices are even
numbers.
With the data-structure above mentioned for the diagram, the cutting indices are easily

found. Nevertheless, �nding the minimal set of lines cutting the rest of the lines is not so
simple. One possible solution seems to be the recursive use of a maximal line i.e. one with
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Figure 9. Counterexample for the hypothesis that recursive use of maximal
lines gives the optimal cutting set.

maximal cutting index. We use such quick and simple approach, but we know that is not the
best way for every case. Figure 9 shows a counter example.
Four bent lines like (21; 30) cut eight other lines each, whereas all the straight lines intercept

ten lines. Six splits are needed by using any of the maximal lines because this implies further
use of all the parallel remnants. The four minimal lines instead, make the optimal cutting set
for this case.

3. THE SPLITTING ON THE MESH SIDE

Removing a node is the dual operation to removing an element of the input mesh.
An element corresponding to a self-intersection is schematized at the centre of Figure 10(a),

whereas in 10(b) the e�ect of removing such element is shown. Such process (as used by
Hannemann [6]) have visible bad consequences if any of the edges of the removed element
were part of a geometric edge, i.e. an edge of the object being meshed. Figure 10 shows a
geometric edge in 10(a′) whereas 10(b′) shows the e�ect of removing an element.
In order to avoid such deformations, we made [14] (some years ago) a suitable subdivision

of the element as shown in Figure 10(c) and the enlarged detail 10(c′). The changes were
made inside the original element without any changes on any of the original edges. The
outcome, at the dual side, is made up of two lines crossing twice inside the element and
a little ‘circular’ new line. This last line is needed in order to avoid generating a digon
(two-edged region dual to a pair of quads sharing two adjacent edges‡).
Because of the resulting low quality, such an approach was abandoned in favor of other

means to resolve the self-intersections problem (into the inner 3D mesh). These methods
are still wished for but unsuccessful so far. So we returned to this scheme but with another
method.

‡This is the simplest of the topological monsters mentioned in the introduction.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:1439–1449



1446 N. A. CALVO AND S. R. IDELSOHN

Figure 10. E�ect of splitting on the mesh and some ways for removing an element.

In Figure 10(d), the currently implemented method is shown. The lines no longer intercept
and there are two new lines avoiding digons, which span neighbouring elements. The elements
so created have qualities that are far more acceptable, even when the neighbourhood of the
element is not orthogonal, as shown in 10(e), 10(f) and 10(g) in the same �gure.
The method followed by Folwell and Mitchell [5] requires a selection process to be made,

they ‘pillow’ (add one of those little circular lines) the SI node whenever they must avoid
modifying a geometrical edge, and then they pillow again every digon obtained. The outcome
is very similar to ours.
As can easily be shown, many methods can be used. The goals are to obtain a method

simple enough to be automatically used in every situation, to avoid deformations on the input
geometry and to minimize the quality loss of the input mesh in order to avoid a time expensive
second smoothing stage. There is not such a thing as ‘the better method’. With our method,
the original edges are not modi�ed, and the process is fully automated.

4. EXAMPLES

As previously mentioned, we show here some meaningful boundary meshes for which, before
the SI removal, we were not able to make an all-hexahedral mesh. Now we made such
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Figure 11. Tube �tting, original mesh, single self-intersecting line and resulting mesh.

Figure 12. Mesh for a rectangular channel with a cubic obstruction.

meshes without any other problem appearing. There were some meshes (not presented here)
were other topological problems remains and thus we are not yet capable to mesh inside them.
Figure 11 shows a quad mesh for an oil tube �tting. The upper mesh is the original one. In

order to show the magnitude of the problem we extracted from this mesh a single dual line
intercepting itself many times. At the bottom of the same �gure, the resulting automatically
cleaned mesh is shown.
Similar results are shown in Figures 12 and 13.
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Figure 13. E�ect of removing self-intersections in a mesh for the water
around a sailboat (detail and complete mesh).

5. CONCLUSIONS AND FURTHER WORK

Before the implementation of automatic elimination of self-intersections, we were only able to
mesh inside a few external meshes, mostly made ad hoc. Now the proportion of success/failure
has been reversed, with a remainder of a few meshes where the problem is not related to the
external self-intersections. The source of misconnection among elements relies on a certain
kind of topological monsters, which are not successfully removed with our current algorithms.
However, we were not able to realize that such problems exist at all, until we avoided self-
intersections in order to �x one problem at a time.
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There are two negative aspects of this approach deserving consideration.
One is the fact that the cutting set giving the minimum number of splits is by no means

the geometrical optimum. This is because there are some splits made next to previous ones,
lowering even more the quality of the elements involved. This problem can be seen in the
examples shown before. The true optimum is the minimal set of splits with enough separation
among them; or better still, the splitting set minimizing the quality loss. This result is not
implemented (if it could be accomplished at all) but the current results are enough for our
current purposes.
The other (far more important) problem arises because sometimes one needs to mesh by

pieces. Being unable to predict a priori what changes the program will make on any surface,
makes it impossible to match two surfaces in order to paste the pieces together (giving a
conformal mesh). This problem also applies when the original geometry is not ‘spherical’.
When the body has holes, the common practice is to make a cut along any ‘handle’ adding
the same mesh on both sides of the cut.
The approach introduced here has proven to be powerful experimental help and an adequate

emergency tool for meshing, but we acknowledge that this is not the best solution although
it is the best current solution.
Further work is oriented towards the internal treatment of self-intersections and pathological

connectivity. We hope (we have clues to hope) that succeeding in repairing badly connected
elements will allow the previously unsuccessful attempts to resolve the self-intersections in-
ternally.
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