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Prefazione

Dopo la sua prima apparizione sul finire degli anni 50, il Metodo agli Ele-
menti Finiti si è subito imposto come uno dei metodi numerici più potenti
nonchè di relativamente semplice gestione, riuscendo a modellare facilmente
geometrie anche notevolmente complesse ed essendo versatile e flessibile.

Le approssimazioni standard alla base del FEM si basano sul metodo
di Galerkin o dei residui pesati, strumento potente ed efficace nel caso di
problemi solido-strutturali portando ad ottenere matrici di rigidezza sim-
metriche, ma non altrettanto nell’approccio con problemi di fluido dinamica.
Nella formulazione di fenomeni di flusso, infatti, la difficoltà più grande è
dovuta alla presenza di un termine convettivo: gli operatori convettivi sono
per loro stessa natura non simmetrici portando quindi alla perdita del più
grande vantaggio della formulazione tradizionale.

Dopo aver brevemente riportato il percorso matematico che conduce alla
definizione delle equazioni di Navier Stokes per la descrizione del compor-
tamento dei fluidi definiti newtoniani, è stata affrontata la formulazione del
metodo dei residui pesati. Da un lato viene toccato il problema della scelta
degli spazi di velocità e pressione e dell’ordine delle funzioni interpolanti per
queste variabili: la scelta infatti non può essere arbitraria se non si vuole
compromettere seriamente la stabilità del problema. Dall’altro, invece, si
pone particolare attenzione al fatto che il sistema finale del problema risulta
non simmetrico e non lineare: la trattazione numerica può portare a serie
oscillazioni della soluzione che possono allontanare quest’ ultima dai valori
reali, viene riportato un breve accenno alle tecniche di stabilizzazione per
superare questa difficoltà.

Una volta trattato l’aspetto puramente numerico, viene presentato il
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Particle Finite Element Method (PFEM), metodo di possibile utilizzo in
molteplici campi anche se è nella risoluzione dei problemi di fluidi a superficie
libera, onde d’urto e separazione di domini liquidi che trova la sua migliore
applicazione.

Se il FEM tradizionale presenta i problemi tipici legati alla costruzione
di una mesh che dev’essere conforme, deve avere elementi con forma quanto
più regolare possibile e deve avere una frontiera ben definita; dall’altro lato,
i meshless methods, sviluppati negli ultimi decenni, hanno sicuramente il
vantaggio di aver bisogno esclusivamente del legame di connessione tra i
nodi e di dare una soluzione che dipende esclusivamente dalla posizione di
questi ultimi, ma presentano alcune difficoltà nel momento in cui la distanza
tra i nodi sia variabile in una direzione preferenziale o abbia valori fortemente
dissimili in zone diverse del dominio.

Dal tentativo di trasformare il FEM in un meshless method per guadagnare
i vantaggi di entrambi gli approcci nasce quindi, quello che è stato definito
Meshless Finite Element Method (MFEM): passo essenziale per raggiun-
gere lo scopo è l’introduzione dell’Extendended Delaunay tessellation per
la definizione delle funzioni di forma come viene ampiamente spiegato. Il
PFEM usa il MFEM per computare le forze che agiscono su ogni parti-
cella: non si parla infatti di nodi, derivando questo approccio dai particle
methods in cui tutte le informazioni, sia geometriche che meccaniche sono
attaccate alla particella che può o meno corrispondere con un nodo nel caso
di una mesh o con un punto nel caso di un meshless method. Ogni particella
si muove concordemente alla sua massa (e quindi alla gravità) e alle forze
dovute all’interazione con le particelle vicine.

La parte centrale del presente lavoro rappresentata dall’opera di vali-
dazione del programma PFLOW creato al CIMNE (Centro Internazionale
di Metodi Numerici per l’Ingegneria di Barcellona) dall’Ing. Miguel An-
gel Celigueta e altri, tale programma utilizza chiaramente il PFEM. A tale
scopo verranno presi dei dati sperimentali ricavati in analisi di laboratorio
per diversi fenomeni e una volta ricostruite, con il supporto del GiD [1], le
opportune geometrie, e assegnate le condizioni iniziali e al contorno legate
all’esperimento reale, si opererà un raffronto tra i risultati numerici e quelli
sperimentali.

Il primo esempio ricostruisce un modello creato per l’analisi della trai-
ettoria e della pressione nel caso di un ’flip-bucket’,struttura che si colloca
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generalmente alla base di uno sfioratore in uscita da una diga in modo da
riuscire ad allontanare l’acqua dal piede della stessa, per non danneggiarlo.
La verifica, nel primo caso, si focalizza sulla correttezza della traiettoria di
un getto d’acqua e sui valori di pressione esercitati sulla struttura. Per com-
prendere quali siano i parametri che maggiormente influenzano la bontà dei
risultati, più modelli verranno costruiti variando la dimensione della mesh
o la velocità del flusso in entrata.

Un modello 3D verificherà infine che, con l’inserimento di un deflettore di
deviazione del flusso, la traiettoria dell’onda che si viene a formare rispetti
i dati misurati in laboratorio.

Dopo aver analizzato la traiettoria di un getto d’acqua, viene verificata
la bontà del metodo in caso di efflusso sotto battente per la presenza di una
paratoia piana: la contrazione del getto, la portata uscente, la pressione sulla
paratoia saranno i parametri comparati. Verrà infine causata la formazione
di un risalto idraulico ponendo una soglia alta sul fondo in modo da creare
una corrente lenta di valle in contrasto con quella rapida in uscita dalla
paratoia.

L’ultimo esempio vuole invece ricostruire il modello creato per l’analisi
di pressioni e velocità nel caso di uno sfioratore a gradoni la cui costruzione,
di origini antichissime ma poi abbandonata per questioni economiche, è ri-
tornata ad essere molto popolare nel momento in cui è stato introdotto nel
mercato il calcestruzzo compattato a rullo (CCR).





Chapter 1
Finite Elements in fluid

dynamics

1.1 Abstract

Current chapter tries to give an overview of theoretic background necessary
to deal with fluid dynamic problems with Finite Element Method (FEM)
approach. Starting from a brief summary of the principle steps of the devel-
opment of the theory, we analyze the differences between the classical world
of solid structures and the world of fluids, finding out finally the principle
equations that control these problems.

1.2 Introduction

From its first appearance in late 50’s, due to M.J.Turner [2], the Finite El-
ement Method (FEM) became one of the most powerful numerical method
and it was used in a lot of different fields. The ease of modeling complex
geometry was the main advantage of such a method, together with the pos-
sibility to use differential-type boundary conditions and to be programmed
in a flexible way.

The Galerkin formulation of the method of weighted residuals, which is
the approximation at the base of FEM, is really successful in case of struc-
tural or heat conduction problems, that is, in general, in problems governed
by self adjoint partial differential equations, because of the symmetry of the
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stiffness matrix [3]. This optimality is lost in case of fluid dynamic problems
and this is the reason of the later development of the use of FEM in this field.
In fact, although the equations governing fluid flow and solid mechanics ap-
pear to be similar, a big difference occurs: even when fluid is in a steady
state, convective acceleration appears. These convection operators are, for
their own nature, non-symmetric and this mean that the ease of Galerkin
formulation is lost when convection dominates the transport process.

A second problem arises with the numerical solution of incompressible
flow problems and manifests itself when an inappropriate combination of el-
ements interpolation function is employed: the consequence is an instability
in pressure value also for slow flows, independently from Reynolds number
[4]. In practice, solutions to convection-dominated transport problems by
Galerkin method are often corrupted by serious node to node oscillations.
These aspects led the development of different stabilization techniques, as
we will see in this chapter, which permitted to overcome these problems and
to have a strong impetus for the utilization of FEM in the simulation of fluid
dynamics.

1.3 The governing equation of fluid dynamics

Before presenting Navier-Stokes problem it useful to point out the three
equations that are at the base of the mathematical formulation. From one
side we have the conservations equations that for the incompressible case
are the same of the solid case, on the other side there is the constitutive low
which underlines the biggest difference between solid and fluid: the inability
of this last one to sustain shear stresses when at rest.

1.3.1 Conservation Equations

In the case of incompressible fluid two equations are sufficient to determine
the problem, these are the Conservation of Mass and the Conservation of
Momentum.

- Mass Conservation: Considering any given domain Ω the mass
that it contains can be expressed as:

m(Ω) =
∫

Ω
ρ(X, t)dΩ(t); (1.1)
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where ρ(X, t) is the density of the considered material at point X.

During any time interval δt, the principle of conservation of mass im-
plies that for any control volume the mass flow entering minus the
mass flow leaving equals the change of mass within the control volume
[5]; that is to say:

Dm(Ω(t))
Dt

=
D

Dt

∫
Ω

ρ(X, t)dΩ = 0; (1.2)

Considering Raynolds transport theorem that, for a general function
f(x, t), says that:

D

Dt

∫
Ω(t)

f(x, t)dΩ =
∫

Ω(t)

(
Df

Dt
+ ∇ • vf

)
dΩ; (1.3)

we can obtain ∫
Ω

(
Dρ

Dt
+ ρ∇ • v

)
dΩ = 0. (1.4)

Because the domain is totally an arbitrary one we can be sure that

Dρ

Dt
+ ρ∇ • v = 0. (1.5)

If we do not consider thermal variation, that in any case can be sep-
arately taken into account, density usually follows a state equation
pressure dependent, in fact

dρ =
ρ

K
dp ⇒ dρ =

1
c2

dp ⇒ Dρ

Dt
=

1
c2

Dp

Dt
;

being K the bulk modulus of elasticity and c the wave propagation
velocity.

The behavior of the fluid we are going to analyze can be consider, as
for many other fluids, incompressible, that is to say that pressure is
constant in time and, therefore density is not time dependent; equation
1.5 reduces to:

∇ • v = 0; (1.6)

that is the basic equation for treatment of incompressible flows.

- Conservation of Linear Momentum: it is nothing else but the
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second law of motion known as Second Newton’s Law and it connects
all forces, both superficial (acting on the surface Γ) and volumetric one
(acting on the volume Ω), with the acceleration of the body. Given a
domain Ω of boundary Γ, calling the body forces acting on this domain
b, and boundary tractions t, we can write that:

f(Ω, t) =
∫

Ω
ρb(x, t)dΩ +

∫
Γ

t(x, t)dΓ. (1.7)

Linear momentum is for definition:

plin(Ω, t) =
∫

Ω
ρ(x, t)vdΩ. (1.8)

Therefore the second Newton’s law is

Dplin(Ω, t)
Dt

= f(t); (1.9)

that is to say, considering the Reynolds transport theorem,

Dplin(Ω, t)
Dt

=
∫

Ω

Dρv
Dt

+ ρv∇•vdΩ =
∫

Ω
ρ
Dv
Dt

+ v
(

Dρ

Dt
+ ρ∇ • v

)
dΩ.

(1.10)
This expression can become much more simple considering the equa-
tion of mass conservation that simplifies some terms

Dplin(Ω, t)
Dt

=
∫

Ω
ρ
∂v
∂t

dΩ; (1.11)

and using the divergence theorem that permits to pass from an integral
of surface to a linear one∫

Γ
tdΓ =

∫
Γ
n • σdΓ =

∫
Ω
∇ • σ dΩ. (1.12)

Therefore after some mathematical passages we obtain:

ρ
Dv
Dt

= ∇ • σ + ρ b; (1.13)

which is the strong form of the equation of momentum conservation.
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1.3.2 Constitutive Relation

As we take into account strain and rotation in the case of a solid, we have
to take into account rate of strain and rate of rotation in the case of a fluid:
the analysis of the relative motion of neighboring particles within a fluid
is similar to the theory of deformation of an elastic body. An important
variable is for sure the velocity gradient, that, in a Cartesian coordinate
system, is:

∇v =

⎛
⎜⎝

∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

⎞
⎟⎠ ; (1.14)

and can be decomposed in a symmetric and in a skew-symmetric part

∂vi

∂xj
=

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
+

1
2

(
∂vi

∂xj
− ∂vj

∂xi

)
; (1.15)

for i, j = 1, . . . , nsd, otherwise written as

∇v = ∇sv + ∇wv, where

{
∇s := 1

2(∇ + ∇T)
∇w := 1

2(∇ − ∇T)
(1.16)

The symmetric tensor ∇sv in called rate of deformation tensor, whereas the
skew-symmetric one ∇wv is the vorticy tensor.

Solid and flow problems are similar under many points of view but there
is a big difference: in fact fluids are not able to support shear stresses if at
rest, only pressure or a mean compressive stress can be carried, that is to
say that the stress tensor, for a fluid at rest, has the isotropic form

σij = −pδij , (1.17)

where p is the static fluid pressure and δij is the Kronecker delta. If
the fluid is in motion the situation is different because of the presence of
a non-zero term for tangential stresses and because the normal part of the
stress depends on the direction of the normal to the element. In the case
of incompressible or nearly-incompressible fluid it is convenient to separate
thew isocoric and the deviatoric part of the stress tensor, that is:
isocoric term:

p :=
1
3
Tr(σ) =

1
3
σij ; (1.18)
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deviatoric term:

τ := σ − pI → τij := σij − δij
1
3
σij. (1.19)

In the case of Newtonian fluid it is usually assumed that stress tensor
and strain rate tensor are linearly related [3].
Being the strain rate tensor

˙εij :=
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
; (1.20)

the constitutive relation can be assumed to be in the form

τ = 2µ
(

ε̇ − 1
3
Tr(ε̇)I

)
→ τ = 2µ

(
˙εij − 1

3
˙εij

)
; (1.21)

where µ is the dynamic viscosity.

Therefore the Cauchy stress, using the 1.21, is

σ = τ + pI = 2µ
(

ε̇ − 1
3
Tr(ε̇)I

)
+ p0I; (1.22)

that written in function of the velocity is

σij = µ

(
∂vi

∂xj
+

∂vj

∂xi

)
− 2

3
µ

∂vk

∂xk
δij + pδij ; (1.23)

and reducing the analysis at the case of incompressible fluid (∇ • v = 0)

σij = µ

(
∂vi

∂xj
+

∂vj

∂xi

)
+ pδij. (1.24)

If we want the Stokes law in compact form:

σ = − pI + 2µ∇sv; (1.25)

1.4 The Navier-Stokes equations

The Navier-Stokes equations are always used to describe the dynamic effect
of a newtonian fluid subjected to external forces, and the relation between
these forces and the internal one. We can in general obtain these equations
putting the conservations lows 1.5 and 1.13 into the constitutive relation 1.23
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but, considering that the statement of incompressible fluid is something
commonly accepted for civil engineering applications, we can put the 1.6
and 1.13 into 1.25 [6].

ρ
Dv

Dt
= ∇ • σ + ρb = ∇ • 2µ∇sv + ∇ • pI + ρb; (1.26)

Considering the development of the time derivative of the velocity:

Dv

Dt
=

∂v

∂t
+ (v • ∇)v;

and introducing the kinematic viscosity ν = µ
ρ becomes

∂v

∂t
+ (v • ∇)v − 2µ∇ •∇sv + ∇ • pI + b = 0; (1.27)

Knowing that ∇ • pI = ∇p and introducing the definition of the ∇sv,
we can obtain

2ν∇ •∇sv = ν∇ • ∇v + ν∇ •∇vT = ν∇2v + ν∇(∇ • v); (1.28)

so that
∂v

∂t
+ (v • ∇)v − ν∇(∇ • v) + ∇p = b; (1.29)

Inserting, as said before, the condition over the mass conservation 1.6 of
incompressible fluid:

∂v

∂t
+ (v • ∇)v + ∇p = b; (1.30)

∇ • v = 0; (1.31)

this is the typical form of the Navier-Stokes equations used to discretized
the problem.

1.4.1 Galerkin formulation for stationary flow

Following Galerkin approach to the Navier-Stokes problem, we have to in-
troduce an approximation on both velocity and pressure components, as
well as for their associating weighting residuals, that leads to a mixed fi-
nite elements method [3]. The success of such a method is due to the fact
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that velocity and pressure are locally interpolated and pressure gradient is
not present in the weak form, that is, it is not necessary that pressure is
continuous at the interface between elements.

Looking at the role that pressure has in such a problem , we can see
that it can not be represented by a constitutive low because it is only a
lagrange multiplier with the precise aim to “correct” itself to allow velocity to
respect the incompressibility constraint, that is the divergence free condition.
This usually carries to badly conditioned problems, being these latter often
expressed in function of (v, p) arriving also sometimes to get a singular
matrix [3]; to avoid this problem it is useful to start the analysis of the
Stationary Stokes problem. Taking into account this simplification we can
forget the convective and the time dependent terms; the equations become:

−ν∇2v + ∇p = b (1.32)

∇ • v = 0 (1.33)

and applying Galerkin discretization [3] we write the problem in matrix form
as follow (

K G

GT 0

)
·
(

u

p

)
=

(
f

h

)
; (1.34)

the meaning of each term of the system can be easily understood:

- −ν∇2v → Kv

- ∇p → Gp

- ∇ • v → GTp

where K is the viscosity matrix obtained from the assembly of the con-
tribution of each element; G is the discrete gradient operator and GT is
the discrete divergence operator, whereas f and h are forces and reactions
incorporating the Neumann and Dirichlet boundary conditions. The prob-
lem that arose is connected with the understanding of the necessity to make
the system solvable in fact a null submatrix appear on the diagonal of 1.34
and it can makes more difficult to ensure a non-zero determinant: as largely
explained in [3], it can be demonstrated that providing the kernel of matrix
G is zero, then u and p are uniquely described being the matrix of 1.34
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non-singular. For definition

kerG := {q | Gq = 0} .

To confirm this equation, velocity and pressure interpolation must satisfy
the Ladyzhenskaya (1969), Babuska (1970/71) and Brezzi (1974) condition
(LBB condition) which is necessary to guarantee the stability of a mixed
method. This condition, otherwise known as inf-sup condition, underlines
that velocity and pressure spaces cannot be chosen arbitrarily but there must
be a clear connection between them, if this is respected, then the discrete gra-
dient operator G is such that kerG = 0, the pressure matrix (GTK−1G)
is positive definite and the partitioned matrix 1.34 is non-singular. It means
that families of elements characterized by different orders interpolation have
to exists for velocity and pressure, and we can find many in literature. Mod-
ern approach tends to focus its attention on the equal-order interpolations:
what they want to do is, looking at the 1.34, to make the zero term, resulting
from the imposition of the incompressibility condition, become a non-zero
one. Some examples of these techniques can be the Galerkin Least Squares
(GLS) or the Finite Elements calculus (FIC) for examples [3].

1.4.2 Galerkin formulation for steady flow

Taking away the condition of stationary state, the biggest difference is the
comparison of a convective term in the partitioned matrix 1.34 :C(v) deriv-
ing from the discretization of (v · ∇)v (1.31); 1.34 becomes:

(
K + C(v) G

GT 0

)
·
(

u

p

)
=

(
f(v)
h

)
. (1.35)

System 1.35 is non-symmetric and non-linear that is an appropriate iter-
ative solution has to be used. Fortunately some stabilization techniques help
the resolution also of this second problem due to the presence of a convective
term: in case of high Reynolds number, that is when convection dominates
on the viscosity effects, and in absence of any stabilization, the finite ele-
ment calculus can tend to oscillatory solution that soon can be really far
from the real phenomenon. The basic step to overcome the problem will be
briefly analyzed in this paragraph, but for a large and detailed treatment of
the subject the consultation of [4] is recommended.
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The starting point in this case is given by the convection-diffusion prob-
lem, that is by the following equation:

(a • ∇)v − ν∇2v = s; (1.36)

where a is the convective velocity and s = s(x) is a volumetric source term.
If we want the weak form, then we obtain

∫
Ω

ω(a • ∇)v dΩ −
∫

Ω
νω∇ • (∇v) dΩ =

∫
Ω

ωs dΩ; (1.37)

where ω is a function test which is zero in the Dirichlet boundary.

Using the Green-Gauss theorem 1 the equation becomes:
∫

Ω
ω(a • ∇)v dΩ −

∫
Ω
∇ω • ν∇v dΩ =

∫
Ω

ωs dΩ; (1.39)

Considering the classical Galerkin approach, the discrete form of this
problem take the form

(C + K)v = f (1.40)

where C and K are the matrices obtained by the assembling of the contri-
bution of each element:

Ce
ab =

∫
Ωe

Na(a • ∇Nb) dΩ (1.41)

Ke
ab =

∫
Ωe

ν∇Na • (∇Nb) dΩ (1.42)

f e
a =

∫
Ωe

ωNas dΩ (1.43)

As simple example we can treat the one dimensional case analytically
considering a linear and regular element: the 1.37 becomes

a
∂v

∂x
− ν

∂2v

∂x2
= s (1.44)

1

�
Ω

ω∇2u dΩ = −
�

Ω

∇ω •∇u−∇•ω∇u dΩ =

�
Ω

∇ω •∇u dΩ−
�

Γ

ω(n•∇u) dΓ; (1.38)
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and considering a constant size h and a constant source s = 1 the discrete
operators become:

Ce =
a

2

(
−1 1
−1 1

)
; (1.45)

Ke =
ν

h

(
1 −1
−1 1

)
; (1.46)

fe =

(
1
2
1
2

)
; (1.47)

assembling the different contributions we obtain:

a
vj+1 − vj−1

2h
− ν

vj+1 − 2vj + vj−1

h2
= 1; (1.48)

and introducing the Peclet number [4]

Pe =
ah

2ν

we can write

a

2h

(
Pe − 1

Pe
vj+1 +

2
Pe

vj − Pe + 1
Pe

vj−1

)
= 1. (1.49)

This algebraic equation is non-symmetric and in addiction the accu-
racy deteriorates as the parameter Pe increases, arriving to an absurd for
Pe → ∞ this statement means that only convective terms are of impor-
tance and it brings to a purely oscillatory solution with no relation with the
physical problem. Taking into account a length = 1 the analytic solution is

u(x) =
1
a

(
x − 1 − exp γh

exp γh

)
; γ :=

a

ν
(1.50)

from that one the equation that exactly reproduce the analytic solution can
be deduced and can be written in the form

a
vj+1 − vj−1

2h
− (ν − ν̄)

vj+1 − 2vj + vj−1

h2
= 1 (1.51)

with
ν̄ :=

(
coth Pe − 1

Pe

)
νPe; (1.52)
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If we compare the 1.48 with the 1.52 we can observe that Galerkin in-
troduces a spurious negative numerical diffusion. That implies that the os-
cillatory problem shown by Galerkin space discretization can be effectively
corrected introducing a numerical diffusion.



Chapter 2
Particle Finite Elements

Method (PFEM)

2.1 Abstract

The current chapter tries to present the Particle Finite Element Method
(PFEM): it is explained what it is, starting from its origin from meshless
FEM, continuing underlining the problems that it has been conceived to
overcome, and ending with the presentation of the solutions it proposes.

2.2 Introduction

After the big success of Finite Element Method (FEM) started in late 50’s,
the so called meshless methods have been developed in the last decade both
for structural and fluid mechanics problems; these techniques were presented
first by Nayroles and later developed to solve structural mechanics problems
by Belytschko et al. or fluid mechanics problems by Oñate et al. These new
methods use the idea of a polynomial interpolant that fits a number of points
minimizing the distance between the interpolated function and the value of
the unknown points.

Geometry of the domain changes with time in many physical problems
and this means that two nodes that are close to each other in a time step
can be really far from each other in the following step, distortions can be
large and hence a continuous remeshing is necessary to update the node
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connectivities; this should be done without an excessive loss of time, in a
quickly way, in a fixed and bounded number of operations.

The definition of the free surface in fluid mechanics phenomena can be
a typical problem: the domain is an unknown and can break in many free
surface or many free surface can be jointed in a single one.

That of particle methods is an other class of methods very interesting
for fluid dynamics problems. They represent the development of a physical
phenomenon by a collection of points named particles [7]. In this case each
particle moves accordingly to its own mass and to the forces, both internal
and external, applied to it. A particle can be a physical part of the domain,
such as a rock or a specific part of the continuous domain, but it is not
necessary that it coincides with the node in a mesh or with the points in a
meshless method.

In a particle method all the physical and mathematical properties are
attached to the particle itself and not to the elements as in the FEM.

Particle Finite Elements Method is a special class of particle methods
that combines standard characteristics of class of method with a background
mesh with special finite element shape functions as it will be presented in
this chapter.

2.3 Meshless method

The idea of a meshless method became quite popular in the last years be-
cause mesh generation, overall in 3D case, is the most time consuming tech-
nique within computational mechanics. To consider a way that does not
require the generation of the mesh can solve partially this problem. Mesh-
less methods require node connectivity to define interpolations and the same
node connectivity is what influences the accuracy most than everything else.

The definition of meshless method itself is rather complex. A meshless
method is an algorithm that satisfies both of the following statements:

- The definition of the shape functions depends only on the nodes
position.

- The evaluation of the nodes connectivity is bounded in time and it
depends exclusively on the total number of nodes in the domain.
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It is easy to see as the FEM is not of course a meshless method. In fact
a same point distribution in FEM can have different shape functions and
the evaluation of nodal connectivity does not have to be necessary bounded
in time to give accurate results

Considering an arbitrary nodes distribution in space, the biggest diffi-
culties in building a mesh are represented by three points:

- it must be conforming ;

- the shape of the elements has to be as much regular as possible;

- boundary contours must be respected.

Meshless methods on the contrary, do not need a conforming mesh but
only the connectivities between nodes in order to build the approximation
functions. Major problems in this kind of techniques are obviously given
by the absence of a mesh, such as to say by the need of a variable distance
between nodes, named h. In the case h presents some problems, as the only
one direction variability, it can become really difficult to find out the node
connectivity, and in some case the computing time can be of the same order
than the most difficult mesh generation problem; it is for that reason that
we can say that a meshless method is useless without a bounded evaluation
of the node connectivity.

Both meshless method and FEM present problems with boundary con-
tour.

2.4 The Meshless Finite Element Method (MFEM)

Having FEM advantages where meshless method has difficulties and vice
versa, it seems a good idea to find out if it is possible to transform FEM in
order to obtain a meshless method.

To better understand the following steps it is better to point out some
classical definitions: given a set of distinct nodes N = {n1,n3,n3, ...,nn}
[8]

- The Voronöı diagram of the set N is a partition of R3 into region Vi

(closed and convex or unbounded), where each region Vi is associated
with a node ni, such that any point in Vi is closer to ni than to any
other node ni. The Voronöı diagram is unique.
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Figure 2.1 Voronöı diagram, Voronöı circle and Delaunay triangulation for a 4 nodes
distribution in 2D.

- A Voronöı sphere within the set N is any sphere, defined by 4 or more
nodes, that contains no other node inside. Such sphere are otherwise
known as empty circumspheres.

- A Delaunay tessellation within the set N is a partition of the convex
hull Ω of all the nodes into region Ωi such that Ω =

⋃
Ωi where each

Ωi is the tetrahedron defined by 4 nodes of the same Voronöı sphere.

Delaunay tessellations of a set N are not unique, on the other hand, the
Voronöı diagram is unique thus it seems more reasonable to define meshless
shape functions based on the unique Voronöı diagram than on the Delaunay
tessellations. Furthermore in 3D problems the Delaunay tessellation may
generate several tetrahedra of zero or almost zero volume (slivers [8]) which
introduce many inaccuracies into the shape function derivatives; this is the
reason why the Delaunay tessellation has to be improved iteratively violating
the second statement that define a meshless method, being time unbounded
in this case.

A new tessellation is now introduced to overcome these two problems:

- The Extended Delaunay tessellation within the set N is the unique
partition of the convex hull Ω of all the nodes into regions Ωi such
that Ω =

⋃
Ωi where each Ωi is the polyhedron defined by all the

nodes laying on the same Voronöı sphere.
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In this case the big difference is due to the fact that the nodes belonging
to the same Voronöı sphere define a unique polyhedron. The only problem
can be that only four nodes are necessary to define a sphere and it is possible
that nodes very close to each other define spheres nearly coincident. To avoid
this situation a parameter δ is introduced: the polyhedron is defined by all
the nodes of the same Voronöı sphere and nearby sphere with a distance
between center points smaller than δ. Considering two Voronöı spheres with
nearby centers ci, because they are empty, they must satisfy the following
steatment:

| r2 − r1 | ≤ || c1 − c2 ||; (2.1)

being r the radii and c the centers.

Hence two spheres are similar if they satisfy:

|| c1 − c2 || ≤ δrrms; (2.2)

where δ is a small non dimensional value and rrms is the root-mean-square
radius. Two polyhedra will be joint if they belong to similar spheres.

Once the domain partition is defined, shape functions must be intro-
duced: in order to define them inside each polyhedron, the non-Sibsonian
interpolation will be used [4]. Considering the set of nodes belonging to a
polyhedron: P = n1,n2, ...,nm, the shape function Ni(x) corresponding to
the node ni at an internal point x is defined by computing

Ni(x) =
si(x)
hi(x)∑m

j=1
sj(x)
hj(x)

(2.3)

where si(x) is the surface of the Voronöı cell face corresponding to the node
ni and hi(x) is the distance between point x and the node ni.

The method defined here is the Meshless Finite Element Method (MFEM)
having both characteristics of a meshless method and of a traditional FEM.
It is truly meshless because the shape functions depend only on the nodes
position and the process of computing the empty spheres with four nodes
and of generating all polyhedrical elements is bounded in time [7], but it is
also a FEM because the space is divided into elements with continuity of
the shape functions but discontinuity of the derivatives.
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2.5 The boundary conditions

If sometimes there are boundary nodes explicitly defined as special nodes
which are different from internal ones, in other cases the only available
information is the total set of nodes and it is the algorithm that has to
recognize the boundaries; this is exactly what happens with the Lagrangian
formulation of fluid mechanics phenomena where, at each time step, a new
node distribution is obtained and the free surface must be recognized from
the node positions.

Introducing the value of the minimum distance between two nodes h(x)
and considering that it is a variable quantity, the following criterion is used:
all nodes that are on an empty sphere of radius

r(x) ≥ αh(x) (2.4)

are considered boundary nodes. α in 2.4 is a parameter close to, but greater
than one. This criterion coincide with the Alpha Shape concept (largely
treated in [9]).

2.6 The Particle Finite Element Method (PFEM)

All the problems to solve in traditional approaches have been pointed out
and all the instruments to overcome them have been presented, last step
is to put everything together to obtain an ideal method for fluid mechanic
phenomena.

This is the Particle Finite Element Method (PFEM); its main features,
already outlined in 2.2, can be briefly summarized in three big points:

- The information is particle based, i.e., all the geometrical and mechan-
ical informations are attached to a particle;

- The MFEM is used to compute the force acting on each individual
particle;

- The boundaries of the domain are defined using alpha-shape method.

PFEM can be seen as a particle method with special shape functions
able to evaluate the interacting forces between particles, being a particle
method it does not have problems in the definition of the boundaries that
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are determined by the particles themselves and not imposed by the problem,
this means that the boundary contours are defined by the order h (where
h is the distance between two neighbor particles). Furthermore the speed
of generation of the mesh is of order n without degenerated elements and
using MFEM, PFEM gains also all the other advantages of this approach
as the ease to solve problems with variable h distributions or directional h

distributions and conforming meshes.

Table 2.1 Comparison between different approaches

Problem Standard Standard PFEM
mesh methods meshless methods

Conforming Difficult Simple Simple
Degenerated elements Difficult Simple Simple
Boundary contours Difficult Difficult Simple
Directional h Simple Difficult Simple
Variable h Simple Difficult Simple

Hence, if we summarize all the advantages and disadvantages of both
mesh and meshless methods we can easily see in table 2.1 that all the dif-
ferent problems can be overcome with PFEM.

PFEM can be easily used in many applications but it is in problems with
fluids with the presence of a free surface, breaking waves, or fluid domain
separation, that it has the biggest advantages.

Fluid is assumed as incompressible and continuous when subjected to
compression forces but it is able to separate under traction forces.

Boundaries are always modeled with an arbitrary number of particles;
each particle is subjected to gravity forces and to forces due to the interaction
between neighboring entities, that are calculates using the Navier-Stokes
equations (as explained in chapter 1), this means that the mesh, once the
forces are evaluated, become completely useless and it has to be re-build in
the following step.

2.6.1 A full iterative time step

Knowing un and pn as starting point, where n is the actual time step, the
computation of the new particle position involves the following steps:
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1- Approximate un+1′ taking the value of the last iteration if it is not the
first one or assuming un+1 = 0 if it is the first iteration;

2- Move the particle to xn+1 position and generate the mesh;

3- Evaluate u∗ velocity. Being mass and stiffness matrix divided in 3
blocks, then the momentum equation has to be solved separately for
u∗

x, u∗
y, u∗

z;

4- Evaluate the pressure pn+1 by solving the Laplacian equation;

5- Evaluate the velocity un+1 and go to point 1 till convergence.



Chapter 3
Flip-buckets

3.1 Abstract

The aim of this chapter is to verify that the phenomenon of nappe detaching,
due to the presence of a flip bucket with an angle of 30o, is well reproduced
using the Particular Finite Elements Method (PFEM) (see chapter 2). The
jet trajectory along the jump, with particular care for the takeoff angle, and
for the bottom pressure distribution along the upstream channel, are the
first two parameters taken into account. A third parameter is controlled
when a deflector is inserted as a restriction of the flow: the planar and
side development of the shock wave that is created. We want to obtain a
correspondence between experimental data on one side and output of the
computational model on the other, trying to understand which are the main
aspects that can influence the accuracy of the model and trying to overcome
eventual problems of low congruence.

3.2 Introduction

Flip buckets are energy dissipators used at the end of ski jump spillway of
big dams: the purpose of this structure is to throw the water well clear of
the dam. The jet of a ski jump spillway leaves horizontally whereas the
jet of a flip bucket is deflected upwards to induce disintegration in the air.
Particular care should be taken in the construction of the landing area where
the impact is surely strong. Moreover the spray produced can cause damage
to the countryside and may adversely affect nearby electrical installations.
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Figure 3.1 Schematic representation of a spillway flip bucket

Figure 3.2 St.Mary’s Dam, Alberta

(a) (b)

(c)

An example of flip bucket under construction can be the St. Mary’s
Dam, located approximately 40km southwest of Lethbridge, Alberta, that
was built in 1951; now they are working to rebuild a new one as we can
see in the photos of Fig. 3.2; another example the Shsta Dam Spillway in
California (Fig.3.3)
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Figure 3.3 Shasta Dam Spillway, California

3.3 Experimental Setting

The experimental data taken to do a comparison with a computational
model, are part of a research made by Eng. Roman Juon and Prof. Willi
H. Hager [10] at the Zurich University.

The hydraulic experiments were conducted in a rectangular 7 m long
channel, its base was 0.499 m and its height was 0.7 m. At the very beginning
the flip buckets, composed of its 1 m long approach channel and its bucket
of variable radius R and deflection angle β, was set.

Figure 3.4 Photo of the experimental set-up

The discharge was controlled by a jet-box that could be regulated to
obtain the flow velocity and the flow depth h0 wanted. R was 0.25 m and
the deflection angle was β = 30o. The upper point of the flip bucket was
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Figure 3.5 Schematic representation of experimental set-up: side

collocated w + hs upper than the downstream channel with hs = 0.25 m and
w = (1 − cosβ)R (bucket elevation). The determination of the free surface
approach profile and of the upper and lower nappe profiles for the jet were
made using a point gauge to ± 0.5 mm and ± 0.1 mm respectively.

The second part of the experiment included a 3D analysis: a deflector
was collocated in the channel; it could be regulated starting from 0o (the 2D
case) until 30o; the effect of the deflector was the creation of a shock wave
as it will be analyzed in the following paragraphs.

Figure 3.6 Schematic representation of experimental set-up: plant
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3.4 Experimental Results

Prof. Hager got many empirical functions which can describe the different
aspects of the phenomenon, starting from its experimental data: the trajec-
tory of the flow, of the waves, the developing pressure along the channel and
so on; a brief overview follows of all these equations that are used for our
validation.

The gathering of experimental data starts from different conditions of
Froude Number that could vary from 3 to 7 and of depth of water h0 that
should be major than 4 cm to avoid scale effects.

Considering Prof. Hager [10] results it is possible to trace a qualitative
jet trajectory of the upper and lower nappe profile from the takeoff point
and of the pressure head distribution along the upstream channel.

z = z0 + tanαjx − gx2

2V 2
j cos2αj

(3.1)

The jet trajectories can be approximated with parabolas following the
equation 3.1 where αj is the takeoff angle, Vj is the takeoff velocity that
can be considered equal to the approach velocity V0 for flow conditions
without scale effects. This equation takes origin from the classical equation
of parabolic motion:

z = z0 + tanαjx − 1
2
gt2 (3.2)

Instead of following a trajectory that maintain the initial take off angle,
obviously the gravitational term acts correcting it; time is written as:

t =
x

Vjcosαj

An important detail is that the take-off angle αj is significantly smaller
than the deflection angle β = 300 [11], and their ratio could be calculated
in function of the ratio between the depth of the water and the flip buckets
radius R

α0

β

(
700

β

) 1
6

=
1
2

[
1 + exp

(
−8
(

h0

R

)2
)]

for 0 ≤
(

h0

R

)
(3.3)

The second parameter taken into account in this study is the pressure
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Figure 3.7 Qualitative jet trajectory
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(hP ) that develops along the upstream part of the structure used for the
experiment: therefore pressure has to be constant on the approach channel
and constantly equal to hP = h0 = 0.05 m from one side and it has to be
equal to the sum of a static pressure head (h0) plus a dynamic portion on
the flip bucket on the other side. The dynamic part has to be different than
0 only on the flip bucket. Taking into account the normalized parameter:

HP =
hP − h0

hPM − h0

where the abscissa origin, x = 0, is located at the take off point and R ·sinβ

is the flip-bucket length, hPM is the maximum pressure head plotted along
the normalized streamline coordinate XP = x

R·sinβ , and can be calculated as
hPM
h0

= (h0
R )F 2

0 thinking of having a potential vortex model, this assumption
is correct if the Bend number B = (h0

R )0.5F0 ≤ 1.5; the development of HP

should be:

HP = [−2XP · exp(1 + 2XP )]
2
5 (3.4)

The changing of precision in the 2D computational output is analyzed
considering:

- the refinement of the meshes.

- the changing of the discharges Froude Number ;

In the second part of the experiment we analyze the effect of a deflector
of variable angle posed at the bucket beginning: a shock wave is generated,
its maximum height should be more or less twice the maximum nappe height
without deflector, and its planar contraction should occupy all the channel
in function of the angle.
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Figure 3.8 Qualitative bottom pressure distribution
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The shock-wave profile was described by Hager [10] with the profile of a
standard spillway:

X∗ = A(XL + B); (3.5)

ZL = −X∗

C
− D. (3.6)

Where, for the specific case, A = 0.14, B = 2.7,C = 0.023 and D = 16.

XL =
x

h0F0
; (3.7)

ZL =
(zL − zLM )

h0sin
3
8 ϕ

. (3.8)

With zLM maximum nappe elevation that, as xLM , depends only on the
approach Froude Number :

xLM

h0F0
= 0.05F 2

0 ; (3.9)

zLM

h0sin
3
4
ϕ

= 0.45F 2
0 . (3.10)
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Figure 3.9 Qualitative shock-wave trajectory
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3.5 2D Model

Using GiD program [1] it has been built a simple two dimensional model
that reproduced the experimental setting. The approach channel was only
1 m long because it is proved that flip buckets effects can be considered
negligible for x ≤ −0.5 m on the contrary the downstairs channel is 1.5 m

for the lower Froude Number such as 3 and 4, and 2.5 m for Fr 5 and 7.
Only two layers have been necessary to generate the complete geometry and
these layers due to correspond to two big group set inside PFLOW program:

-Solid : being the structure a fixed one, the best constrain to impose to it, is
the velocity equal to zero (vx = 0, vy = 0, vz = 0). ALE is its system of
reference [3] and this means that the fluid can be analyzed considering
a Lagrangian or Eulerian approach: the nodes of the computational
mesh can respectively follow or not the continuum or can be moved in
some arbitrarily way to permit a rezoning capability, as explained in
appendix A. This particular choice of description of motion is due to
the fact that in such a simulation the structural part is subjected to
interaction with a fluid, that is, it is the zone where the higher relative
difference of velocity is registered between points. This means that
if we use a lagrangian description, then elements distortions will be
too big, or, to avoid this, δt of integration will be too small and so
computationally heavy.

-Fluid-in : a fluid that is created from a linear element which is the ALE
way to create an incoming flow; the line is considered lagrangian,
whereas the other nodes, as soon as they “detach” from the line, be-
come ALE; only the free-surface is fully lagrangian.

Water is the considered fluid for all the analyzed experiments; its phys-
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ical characteristics are:

- Density : 1000 kg
m3

- Dynamic viscosity : 10−3 Ns
m2

- Inflow velocity : changing its x-component in function of the
Froude Number

Figure 3.10 Experimental jet trajectory
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(b) Fr=4
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(c) Fr=5
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(d) Fr=7

Table 3.1 Discharge datos for the 4 models

Model Fr Q vin

[l/s] [m/s]
a 3 52.41 2.1
b 4 69.88 2.8
c 5 87.35 3.5
d 7 122.29 4.9

Basically two different kind of meshes have been considered for each
Froude Number, keeping constant the depth of the inflow discharge equal to
5 cm; the first mesh is 1 cm large, the second one is 0.5 cm large; the models
initially have respectively 831 and 1659 linear elements; a shorter model was
sufficient in the case of the slowest discharges (Fr = 3 or 4) because the
jet touched the channel after less than a meter as we can see in fig. 3.10,so
the meshes are less heavy: respectively 631 and 1259 elements.
It is necessary to think that the complexity of the mesh grows with time
because of the creation of the fluid thetraedra incoming the model and that
some conditions, set into the initial model, may change: for example fluid
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velocity, that was imposed building the geometric model, would not be the
velocity of the jet in any time and this can imply problems with the choice
of the ∆t of integration; in fact relative velocity between elements multiplies
by the smallest ∆t of integration has to be smaller than the dimension of
the generated mesh. This aspect can create some problems when, in the
jump, the kinetics energy takes the place of the potential one in an energy
balance. Some implementations of both the 2D and 3D models stopped at
a certain point because of this excessive largeness of time interval that did
not permit to capture any good solution.

3.5.1 Jet trajectory

Considering the velocity of the discharges (Tabular3.1) the output of the
model after 1 second and after 2.5 seconds is analyzed to be sure that a
state that can be considered a steady one is established.

Figure 3.11 Froude Number 3: comparison between graphical computational output and
experimental interpolating function
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(b) 0.5 cm mesh

Figure 3.12 Froude Number 4: comparison between graphical computational output and
experimental interpolating function
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(b) 0.5 cm mesh

As expected the accuracy of the output jet trajectory improves with:

- the refinement of the mesh;

- the increasing of the velocity.
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Figure 3.13 Froude Number 5: comparison between graphical computational output and
experimental interpolating function
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(b) 0.5 cm mesh

Figure 3.14 Froude Number 7: comparison between graphical computational output and
experimental interpolating function
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(b) 0.5cm mesh
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(c) 0.5cm mesh

Figure 3.15 side view to flip bucket flow

It is built a mesh of 0.2 cm long linear elements, for the discharge with
Froude Number 7, that seems the one that better reproduces the theoretic
phenomena: a very heavy model, being a 4150 elements mesh only at the
beginning, which took more than two weeks to be implemented without
giving good results. In fact the accuracy that increases between the 1 cm

mesh and the 0.5 cm mesh degenerates with the third one, as it can be
seen in fig. 3.14: we cannot say that it was a computational problem, in
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fact, thinking at the physical phenomena (Fig. 3.15 ), the nappe profile
tends to open itself: therefore it becomes hard to analyze the results being
impossible to follow the profile. For sure a big loss of mass is present:
this problem is due partly to the same alpha-shape method and partly to
the numerical approximation in the incompressibility constraint where a
Laplacian operator is used, knowing that this kind of operator would be
correct in the continuum case, not in he discrete one.

Figure 3.16 1 cm mesh
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(b) Dopo 2.5 sec
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(c) Dopo 4 sec

The precision of the program is higher with the increasing of the velocity.
The biggest problems occur in the case of Froude Number= 3: experimental
results are completely different from computational one, once the steady
state is set. The flow seems not to have the energy to keep the jet active.
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In this prticular case a big difference can be noticed between the contact
moment and any other moment in the steady state as in fig. 3.16. This
problem was subdued passing from the 1 cm to the 0.5 cm mesh, as shown
in fig. 3.17. Usually the difference between the contact moment and an
instance in which the steady state is set, has a negligible entity, but the
touching point is always a bit farer from the flip bucket in the first case.

Once the jet touches the downstream channel, part of the water tends
to continue the flow, but part tends to fill the zone under the jet, creating a
stagnation. We built a model with a little inclination of the approach zone
to look if something would change giving an impulse to the water to continue

Figure 3.17 0.5 cm mesh
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Table 3.2 Precision in the touching point

x Lower Profile x Upper Profile
Fr=3

Theoric Model 0.642 0.691
1 cm mesh 0.315 0.345

Error 51% 50%
0.5 cm mesh 0.595 0.645

Error 7% 7%
Fr=5

Theoric Model 1.292 1,396
1 cm mesh 1.145 1.275

Error 11% 9%
0.5 cm mesh 1.276 1.395

Error 1% 0%
Fr=7

Theoric Model 2.205 2.332
1 cm mesh 1.975 2.055

Error 2% 12%
0.5 cm mesh 2.185 2.295

Error 8% 2%

flowing in a single direction; no important differences can be noticed.

Figure 3.18 Initial perturbation

This returning wave, in the model with Froude Number= 5, has too
much energy at the beginning if compared with the height of the jump in
fact it perturbs the trajectory of the flow as shown in Fig. 3.18. It is
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only a transient phenomenon, due to the major energy of the initial flow;
the accumulated water smoothed this energy of the back wave after a few
seconds and the problem does not occur any more.

3.5.2 Pressure

Looking at the output of the bottom pressure distribution and comparing the
results obtained in the graphs with the qualitative tangle of the experimental
results the differences were not negligible. Along the approach channel, as
already said, the pressure head should be constant and equal to the depth of
the flow; looking at the graph there are continuous oscillations around the
correct value of pressure. This is something acceptable because oscillations
are always present also in experimental observations and because we are
analyzing a discrete model, not a continue one.

Along the flip-bucket the increasing of the dynamic head contribution
did not follow the same behavior. In fact, watching what happenes between
30 and 10 cm before the take off point, it arrives at differences of pressure
of about 40-45%. The only entity that is well reproduced is the top of the
pressure head as we can see in the following figures.

Also in this case the increasing of the velocity helps the precision and the
model with a discharge with Froude Number = 3 gave more problems (Fig.
3.20). The passing from a 1 cm mesh, to a 0.5 cm is not a solution: if the first
mesh gives lower level of pressure (more or less 2

3of the experimental value),
the second one overcomes the higher pressure head also of a 10%. These
problems are not present with the other discharges and the passing from a
larger mesh to a thiner one permits a bigger accuracy, but the difference
is not really relevant for this particular velocity. The model with Froude
Number = 7 gives a very precise level of maximum pressure head, nearly
exact, but the phase of increasing of the dynamic pressure had the same
problem of all the other meshes.
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Figure 3.19 Froude Number 3 after 4 sec
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Figure 3.20 Froude Number 3 after 5 sec
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Figure 3.21 Froude Number 5 after 5 sec

0

500

1000

1500

2000

-1.14 -1.04 -0.94 -0.84 -0.74 -0.64 -0.54 -0.44 -0.34 -0.24 -0.14 -0.04

x[m]

P
[P

a]

(a) 1 cm mesh

0

500

1000

1500

2000

-1.14 -1.04 -0.94 -0.84 -0.74 -0.64 -0.54 -0.44 -0.34 -0.24 -0.14 -0.04

x[m]

P
[P

a]

(b) 0.5 cm mesh



3.5 2D Model 39

Figure 3.22 Froude Number 7 after 4 sec
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3.6 3D Model

Figure 3.23 3D experiment

Figure 3.24 Shock-wave

The second part of Prof. Hager [10] experiment considered the effect of
a deflector of variable angle (β could vary from 0o to 30o) that created a
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Figure 3.25 Geometry

restriction of the channel over the flip-bucket (fig. 3.23 3.24. A 3D model is
built using surfaces that reproduces the geometry of the entire experimental
setting as it can be seen in fig. 3.25.

The plane and side development of this wave is the parameter analyzed in
this section. The main problem with this kind of model is the presence of an
incoming fluid: the initial mesh is composed of more or less 72000 triangular
elements that increase after very few seconds of processing, arriving also at
1.5 million of elements; this means that the model becomes very heavy
and only a ∆t = 0.04sec can be achieved in an entire day of processing.
Time necessary to have concrete results is really too much to permit the
implementation of all the different cases of the 2D analysis: one model for
each Froude Number has been built with a constant mesh dimension of
∆x = 0.01cm .

Two side of the shock wave are analyzed: the X − Y and the X − Z

trajectory, as already said in 3.4. It was quite hard to extrapolate clear
images from the output because the phenomenon of the development of
such a wave it is not isolated from the flux but it is part of it.

As we can see in the following figure the side development of the shock
wave is really well reproduced from the model, also in direct comparison
with the photos of the experiment. It is more difficult to see the good
simulation of the planar trajectory that can be only qualitative. In any case
the expected behavior is confirmed.
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Figure 3.26 Fr5

Figure 3.27 Fr 5: side development of the wave
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Figure 3.28 Fr 3: side development of the wave
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Figure 3.29 Fr 5: planar development of the wave
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Figure 3.30 Fr 7: planar development of the wave



Chapter 4
Sluice gate

4.1 Abstract

This chapter presents an other example of hydraulic phenomena. The aim
of this work is that of reproducing the under seal outflow in presence of a
sluice gate: a passage fitted with a vertical sliding gate used to regulate
the flow of water in a channel or lock. The parameters which are going to
be analyzed are pressure on the gate and the vena contracta which should
follow theoretical and experimental data. In a second moment we try to
reproduce an hydraulic jump analyzing the loss of energy and the change of
flow depth.

4.2 Introduction

One of the typical and mostly used discharge regulator is a sliding gate which
can control the outflow of water. Speaking of shape and dimensions we can
find a lot of example starting from the gates that are at the two extremes
of a chamber and arriving at the most common use of them to garrison the
discharge channel of a dam.

The discharge of the under seal outflow is governed by the classical equa-
tion:

Q = a · Cc

√
2gh (4.1)

where a is the height of the sliding gate, Cc = 0.611 is the contraction
coefficient and h is the depth of upstream water. The distribution of pressure
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along the gate should be more or less hydrostatic growing proportionally
with the product between depth y and specific weight γ: P = γy. And the
behavior of the outflow discharge and the nappe contraction is analytically
described and experimentally proved once the upstream condition and the
geometrical data are given. The aim of this work is to verify the coherence
between this description and the computational output. The length of the
model and that of the experimental channel in this case, as usually, is not
sufficient to see the establishment of the real downstream conditions with
the changing from a fast to a slow flow, to do that, and to analyze the
hydraulic jump that will create we introduce a notch fall to oblige the flow
to increase the depth of water to gain the sufficient energy to overcome it
passing in this case to a slow flow. The control of the two corresponding
depth [5] of the hydraulic jump and of the velocity of the slow and fast flow
can be done both with numerical approach and with experimental data.

4.3 Experimental setting

Figure 4.1 Schematic representation of the experimental apparatus

The experimental data used for the comparison in the current chapter,
are taken from the laboratory experience of a group of students of the hy-
draulic section of the faculty of civil engineering of the University of Padua.

The experimental apparatus is schematically represented in fig. 4.1 and
it is composed of a plexiglas rectangular channel, its length is 1 m and its
width is 0.3 m. This channel leans on a beam that can be regulated to
simulate different inclinations. Upstream the channel there is a big tank
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that is the source of the inflow discharge and that controls its regulation.
Downstream the channel there is an other tank where water falls in; an
electrical pump permits the passage of water from the downstream reservoir
to the upstream one as to create a closed circuit with constant discharge. At
the end of the channel there is a valve blade that can be regulated to create
the downstream conditions wanted. Sixteen pressure intakes are connected
with some absolute piezometers, seven of them are inserted in the sluice gate
the other on the bottom of the channel.

4.4 Model

Figure 4.2 Sluice gate: a detail

The necessary model we have to build to reproduce the structure is a 2D
one, in fact the phenomenon of flow under seal has ever been studied as a
2D one being the width of the analyzed channel, usually much bigger than
the height of the sluice gate and therefore of the depth of the outing flow.
The geometry of the solid part is really simple, the only real part to take
care on is the gate that is 1 cm thick and it is thiner in the lower part where
it ended as shown in fig. 4.2, the contraction coefficient can vary a lot in
function of the shape of the lower part of the sluice gate because of the
influence on the outing discharge. What it was more difficult to create, it
was the reservoir in fact, we know that the under seal flow is regulated from
one side by geometric aspects and from the other side, more important in
this case, by the depth of the upstream water in the tank. All this can be
seen in the following equation of under seal flow.

Q = a · Cc

√
2gh (4.2)
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where a is the height of the gate in respect with the bottom of the channel
and Cc is the contraction coefficient that Kirchhoff demonstrated that, in
the case of a plane vertical gate, if this last one is lifted up of a quantity
which is much smaller than the width of the same, it can be calculated as

Cc =
π

2 + π
= 0.611;

On the other side there is a dependence by the depth of the upstream
water that is supposed to be quiet being a tank with constant volume from
a theoretical point of view , but because in reality it is not as big to permit
this hypothesis being an other piece of channel where a constant discharge
is put in, we have to find a way not to perturb the free surface too much.
With the help of GiD [1] we can easily draw a fluid volume, the difficult
part is to find out a way to balance from one side the under seal discharge
destined to go away because of gravity force, and from the other side, the
same discharge that we put inside without causing big perturbations.

Figure 4.3 Different models for the tank

(a) 1st model: Septa

(b) 2nd model: Septa with holes

(c) 3rd model: Septa with staggered holes

The ideal solution seems to be to impose the condition of initial velocity
to the vertical line at the left extreme of the model (fig.4.7(a)) that has
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Figure 4.4 Different moments of the simulation: 1st model

(a)

(b)

the height of the depth of water wanted for the upstream discharge and
to impose that the flow will be created from that line pulling the mass of
fluid forward and arriving quite soon to a steady state. The theoretical
hypothesis of a infinite tank of constant level would be respected in this
case. The vertical line at the extreme left is supposed to be Eulerian so that
the fluid can advances whereas the computational mesh is fixed: this is one
of the two way to obtain a creation of fluid.

The other one implies the use of a fluid-in with Ale condition of motion
but does not hallow the line, from which the fluid is created, to have nothing
in front of it (fig.4.7(b)), otherwise the process will stop because of the
impossibility of creating element, it will be the same of having a wall in
front of the line from which the flux is created. We finally used the second
one because of many problems arisen with the model using the first way, in
fact the discharge taken into account were probably too slow, as to say that
the velocities were too small to permit a good working of the program that
still does not work very well with slow discharges (Froude Number ≤ 1).

Using the Ale condition of motion, we have to put the “fluid-in line”
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Figure 4.5 Different moments of the simulation: 2nd model

(a)

(b)

above the surface that represents the fluid and we simulate the entrance of
a flux directly falling into the water of the tank. This is the reason why we
have to introduce many septa to try not to have a perturbed flux; this is
not sufficient alone, in fact the first models continue to see wave creation as
we can see in fig. 4.4 and the situation gets a bit better introducing a series
of holes in each septum (fig. 4.5). The best results are obtained with the
introduction of septa with staggered holes (fig. 4.6).

The first two models (fig.4.4, fig.4.5) have been used to verify the good
behavior of the under seal flow, three parameters have been analyzed:

- The pressure along the gate;

- The outing discharge;

- The analysis of the free surface of the downstream water;

The discharge used in the laboratory for the experiment was Q = 31 l/s;
the the sluice gate was raised from the bottom of the channel of a = 6 cm.
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Figure 4.6 Different moments of the simulation: 3rd model

(a)

(b)

The dimension of the mesh of the model is ∆x = 1 cm. The depth of the
water in the tank, following the 4.2 was h = 0.433 m.

The last model has been used to verify the possibility of catching a lo-
calized phenomenon like the hydraulic jump that is generated, as we know,
by the clash of an upstream fast discharge, with a downstream slow dis-
charge. In our model, as during the experiment, these boundary conditions
are created by the simultaneous action of the sluice gate that creates a fast
discharge (Froude Number ≥ 1) and to the presence of a step at the right
side of the model, that, representing an high step for the considered flow,
generates a transition from fast to slow flow to gain energy to pass the ob-
stacle [12]. In this case the discharge of the model is Q = 21.1 l/s and the
sluice gate is raised from the bottom of the channel of a = 4 cm. The di-
mension of the mesh is ∆x = 0.8 cm. The depth of the water in the tank,
following the 4.2 was h = 0.422 m.
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Figure 4.7 Different possible models

(a) Eulerian representation

(b) ALE representation

4.5 The pressure along the gate

Taking into account an irrotational fluid, the energy presents into the stream
tube can be considered constant, this means that because of the growing of
velocity in the zone near the sluice gate, pressure head has to reduce itself
drastically if compared with the hydrostatic value.

The measurements made at the University of Padova were conducted
using 7 piezometers on the sluice gate as we can see in fig. 4.8, knowing
from the beginning the value of the capillary migration: it was equal to
4.43 mm, calculated using Jurin equation [12]

In fig 4.10 and 4.11 the comparison between experimental results (the red
line in the graph, with the underlined points which are the measured one)
and the computational output, given by a line graph by GiD post-process
options (the blue line), is printed for different instances in the two models
taken into account and described in 4.4.

As we expected, the analysis, in the case of the model with septa with
holes (2nd one) gives an upstream depth that is more regular and less sub-
jected to waves due to incoming flow, and this fact allows a very good
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Figure 4.8 Piezometers

Table 4.1 Experimental results: pressure head for Q = 31 l/s

Piezometer h h =h−4.43 mm z h − z = P/γ
[cm] [cm] [cm] [cm]

1 43.7 43.3 34.20 9.06
2 43.4 43.0 19.20 23.76
3 42.7 42.3 9.20 33.06
4 41.1 40.7 4.20 36.46
5 39.4 39.0 2.60 36.36
6 35.8 35.4 1.20 34.16
7 30.0 29.6 0.48 29.08

comparison with the experimental results as we can see in fig. 4.11 On the
contrary, looking at the results of the 1st model, that one with only septa,
the dynamic effect increases the value of pressure head as we can see in fig.
4.10 a and b; this is a consequence of the presence of a dynamic effect which
cannot be negligible, only studying an output of an instance in which the
upstream depth is quite regular the pressure head development is as good
as the one of the other model.

As clear in fig. 4.12, looking at the variation of pressure in a single point,
in this case at the middle of the sluice gate, oscillations are present but they



54 Sluice gate

Figure 4.9 Pressure head: Experimental vs hydrostatic distribution
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are acceptable if compared with the middle value (the horizontal line), in
fact it is easy to calculate the standard deviation which is about an 11%.

4.6 The outing discharge

Keeping constant the upstream level, knowing the kind of sluice gate we are
using and the entity of its uplift from the bottom of the channel, we have
to know the precise value of the outing discharge of the under seal flow.
Analyzing a single section of the outing flow we could risk to be influenced
by a local alteration due for example to a wave, that is the reason why we
integrate the data of velocity of each node of a vertical section along the
height of the depth of water in that section and therefore we calculate the
discharge; to give an example of the graph we have to integrate we can see
fig. 4.13.

We consider five different vertical sections collocated, as we can see in
tab.4.2, 5, 6, 7, 8, 10cm from the sluice gate respectively As we can see in
tab.4.2 the error in the outing discharge is always lower that 10% if we ex-
clude isolated phenomena, and if we remember the variation of the upstream
discharge we can expect such results.
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Table 4.2 Discharge of the under seal flow for different sections

t Qtheor QPFEM [m3/s]
[s] [m3/s] x= 0.05 x= 0.06 x= 0.07 x= 0.08 x= 0.1

41.08 103.3 104.4 105 106 117.4 99.1
Error 1% 2% 3% 14% 4.5%

47.76 103.3 104.6 92.8 102.6 106.5 104.6
Error 1% 10% 1% 3% 1%

50 103.3 84.4 91.6 95.9 88.2 102.6
Error 18% 11% 7% 15% 1%

63 103.3 106.4 111.5 111. 107.4 111.1
Error 3% 8% 8% 4% 7%
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Figure 4.10 Pressure head distribution: 1st model
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Figure 4.11 Pressure head distribution: 2nd model
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Figure 4.12 Pressure variation in time for the middle point of the sluice gate
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Figure 4.13 Velocity diagram for a vertical section 0.05cm far from the sluice gate
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4.7 The analysis of the free surface of the down-

stream water

A thin and planar sluice gate as already said in 4.4 causes a contraction of
the free surface of the flow bound to a contraction coefficient Cc = 0.611
following Kirchhoff method; that is, the under seal flow has to arrive having
a depth of water which is equal to aCc where a is the level of raisnes of the
gate

It seems that the model cannot follow exactly the free surface of ex-
perimental results looking at fig.4.14 but we have to think that the mesh
dimension is imposed equal to 0.008m at the beginning and, looking at the
oscillation of the free surface, they are more or less of the same order, there-
fore it is impossible to appreciate a higher precision thinking in a discrete
way.

Table 4.3 Depth of water between 10 and 50cm from the gate

t Medium depth Theoretical Value Standard Deviation
[s] [m] [m]

40.96 0.034 0.035 0.003

47.76 0.032 0.035 0.004

50 0.036 0.035 0.002

Looking at the values of the depth of water in the interval between 10cm
and 50cm from the sluice gate and calculating a middle depth we obtain
quite good results also comparing it with the standard deviation as we can
see in tab. 4.3
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Figure 4.14 Contraction after the sluice gate
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4.8 The hydraulic jump

One interesting phenomenon of energy dissipation generated by the clash
of an upstream fast discharge with a downstream slow discharge is the hy-
draulic jump. Many forms of hydraulic jump exist and basically they are
characterized by the Froude Number of the upstream discharge, in fact we
have five different kinds of them:

- Wave hydraulic jump if 1 ≤ Fr ≤ 1.7;

- Weak hydraulic jump if 1.7 ≤ Fr ≤ 2.5;

- Oscillating hydraulic jump if 2.5 ≤ Fr ≤ 4.5;

- Steady hydraulic jump if 4.5 ≤ Fr ≤ 9;

- Strong hydraulic jump if Fr ≥ 9;

Considering that for a generic section the total thrust is composed of
two different parts:

- The hydrostatic thrust:

Mhydr = γ · A · yG;

- The dynamic thrust:
Mdyn = ρ · Q · v;

Figure 4.15 Hydraulic jump, theoretical approach

We know that an hydraulic jump is generated when the total thrust
of the upstream discharge is equal to that of the downstream discharge;
to localize it , once a control volume is defined, the momentum principle
together with the continuity equation [12] [13] permit to obtain a relation
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between the upstream and the downstream motion; having a rectangular
channel we can simplify the expression even more and we finally obtain:

y2

y1
=

−1 +
√

1 + 8 · Fr2
1

2
(4.3)

We can easily compare the development of the free surface in correspon-
dence of the hydraulic jump having experimental data.

The kind of hydraulic jump we analyze is a steady one. Pink line repre-
sents experimental points whereas the blue and less regular one represents
the model output. It is clear that the computational results are given for
much more points than those which are taken into account in the experi-
ment, being impossible to detect more than 10, 11 points.

Unfortunately for a phenomenon like an hydraulic jump, the output
after few seconds is nothing really important, steady state and equilibrium
between upstream and downstream channel are not fully obtained and only
a qualitative behavior can be controlled.
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Figure 4.16 Free surface development in hydraulyc jump
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Chapter 5
Stepped Spillway

5.1 Abstract

The third example treated in this thesis is the experiment that analyzes
the variables of the flux over a stepped spillway. After a brief description
of what a stepped spillway is and of its principal utilizations, velocity and
pressure on the steps of the crest will be analyzed. Air is not present in the
highest part where the boundary turbulent layer is not still arrived at the
free surface level.

5.2 Introduction

In the last years stepped spillways represent a choice more and more made to
solve the problem of discharging water exceeding the maximum level allowed
in a dam, on a downstream channel.

The origin of the construction of stepped spillway dates back to the
ancient world if we think that the oldest still existing example is present in
Arkanania (Greece) and it was built in the 1300 b.C. (5.1) [14]. It seems that
the construction of this kind of structure was a common practice until the
end of XIX century because, from one side, a good dam stability was ensured
and from the other side it was possible to obtain a big energy dissipation;
during XX century, on the contrary, it became more common the use of
smaller (and therefore less expensive) structures with dissipation pools where
the action of an hydraulic jump permits bigger dissipations. At the end of
70’s the use of a new material such as roller-compacted concrete (RCC) gets
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Figure 5.1 Arkanania Stepped spillway, Greece, 1300b.C.

Figure 5.2 Examples of stepped spillways in the past

(a) Corton dam (1907) (b) Falvey (1980)
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Figure 5.3 Examples of stepped spillways built with RCC

(a) (b)

raise the interest about stepped spillway.

Since 1980, RCC no-slump concrete has been used successfully to re-
store more than 100 dams and to build more than 70 new dams. RCC
has three key properties that make it uniquely suited for dams: economy,
performance, and high-speed construction. It has the strength and durabil-
ity of conventional concrete that means much bigger than earth or rock-fill
dam, but at a cost that rivals this other construction. RCC can be used to
build new dams or to shore up old ones. It protects dams from over-topping
failure, earthquakes, and erosion. This material has the same ingredients as
conventional concrete: cement, water, and aggregates but it is much drier.
It can be placed quickly and easily with large-volume earth-moving equip-
ment. It’s generally transported by dump trucks, spread by bulldozers, and
compacted by vibratory rollers.

Sections are built lift-by-lift in successive horizontal layers so the down-
stream slope resembles a concrete staircase, an ideal technique for a stepped
spillway that in fact are presents in the 30% of the RCC dams. Once a layer
is placed, it can immediately support the earth-moving equipment to place
the next layer. For existing earth and rock-fill dams, RCC acts like an armor
plating to protect them from the erosion of high-velocity water flows. RCC
can also be used to build new or replacement dams.

5.3 The experiment

The experiment we tried to reproduce was conducted by Prof.M.Sánchez-
Juni and Dr.Eng.A. Táboas Amador en la Universitat Politecnica de Catalunya,
at the Dip. de Ingenieria Hidraulica, Maritima y Ambiantal , UPC, E.T.S.
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Figure 5.4 Experimental setting scheme

Figure 5.5 Variable steps

Ingenieros de Caminos, Canales y puertos de Barcelona, Spain. The analysis
of the flux over stepped spillway was the subject of their Phd thesis [15] [16].
The reduced model used for the experiment is still present at the hydraulic
and fluid mechanics laboratory at the UPC and it is a plexiglas horizontal
upstream channel 5.8m long, and a plexiglas stairs that reproduces in the
higher part the spillway profile following the equation

x1.85 = 2 · 0.1780.85 · y;

The height of the stair is 4.5m and the width, that coincides with that
of the upstream channel, is 0.5cm. Excluding the first steps, represented in
fig.5.5, the others have constant tread (0.04cm) and constant riser (0.05cm).
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Figure 5.6 Experimental setting

(a)

(b)
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Figure 5.7 Analysis steps

5.3.1 Velocities measurement techniques

For a given imposed upstream discharge, the aim of the experiment was to
get quantitative values of the velocity field using an innovative technique:
the Particle Image Velocimetry (PIV) which is, never the less than a optical
method able to identify, for a given time instance all the velocity in a fixed
plane. Velocity is deduced from the movements of the tracing particles
which have to be able not to alter the fluid and also not to interact with it
to be ideal particles. Looking at the position of the moving particle in two
different time instance, measuring the position it is possible to deduce the
velocity using statistic techniques. A laser was used as light source because
of its ease to regulate and orientate and its wavelength is very short, of the
order of about nanoseconds. A set of cameras was set to catch photos very
close in time [16].

5.3.2 Pressure measurement techniques

For the dynamic pressure measurement piezoresistance sensors (see fig.5.9)
have been used; these sensors were made of a silicon crystal in which an
electric circuit was included. Pressure variation causes micro deformations in
the crystal structure and these alterations are sufficient to change the electric
circuit answer. A continuous excitation returns a signal which depends on
the entity of pressure it has been subjected to [16] [15].
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Figure 5.8 Laser input

(a)

(b)

Figure 5.9 Pressure sensors
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5.4 The model

A model was built to reproduce the phenomenon, the approach was a 2D
one because it seems not necessary the third dimension also considering that
all the experimental data have been surveyed in a plan x− z where x is the
direction of the flux and z is the vertical, and the collocation of the planes
of analysis was as far from the lateral wall as it was sufficient not to feel the
edge effects.

Geometry was very simple to build and boundary conditions were im-
posed knowing the discharge value and the upstream water depth. A fluid-in
line (already described in cap 3, par 3.5) was built 1.5m upstream from the
beginning of the spillway crest, from that line the flux of uniform slow mo-
tion begins, once the flow starts to go down on the spillway, the motion
became a fast one, the depth of water reduces and velocity increases as it is
easy to imagine.

Experimental data inserted in the model are the following:

- The discharge is 55l/s and because the channel width is 0.5m the
specific discharge is 0.11m3/sm ;

- The inflow depth is 0.178m over the spillway crest;

As it is easy to verify the initial discharge is a slow flux. At the beginning
this represented a problem in the creation of fluid particles: it seemed that
once a set of node was created, the following set does not have the force to
push the first set forward, it seemed that a node found a wall in front of
itself becoming impossible the creation of other fluid, the only possibility
for the just created nodes was velocity vector turned in the opposite verse
causing an outing of water in the wrong direction if compared with what
was expected.

This was a consequence of the difficulties to impose initial conditions:
velocity is usually given as a constant value on the all fluid-in line, the
real velocity distribution (with v = 0m/s on the interface fluid-structure
and vmax on the free surface) will be created automatically at the following
time steps with the boundary conditions; a more difficult problem can arise
with pressure, some people impose the hydrostatic distribution, some other
do not impose any pressure, both techniques are incorrect, but they leave
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Figure 5.10 Distorsion of velocity verse

the definition of a pressure distribution at the already created particles as
happen for the velocity.

The PFLOW program initially had this second approach, the solution of
this problem has been found out considering the fluid-in line and only this
line (not the created particles) as solid, it is like to say that there is a wall
from what fluid is generated, and it automatically induces a real pressure
distribution to the detaching nodes of the fluid (for more details on the
difference between fluid-in and solid: cap 3, par 3.5).

The model does not represent the entire stair, but finishes after the

Figure 5.11 Th 2D model
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Figure 5.12 Flux on a stepped spillway

Figure 5.13 Line that separate the no aired zone from the turbulent zone
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Figure 5.14 Velocity field next to step 34 and 35

first thirteen step. In fact the object of the analysis is the upper part of
the spillway, that is, the non aired flux (fig. 5.12): after these first steps air
starts to get inside the flux because of the arriving of the turbulent boundary
layer to the free surface [12], creating a fluid that is not water any more,
but it is a mixture between air and water; this different behavior is clear in
the photo 5.13.

The turbulent boundary layer thickness (δ) grows progressively until it
arrives at the value of the flow depth; after that moment turbulent fluctua-
tions are sufficient to overcome the viscosity force and the superficial tension
creating perturbations that allow the entry of the air. We concentrates on
the part where there is no air.

Being the flow over the spillway a fast discharge with Froude Number> 1
the downstream conditions do not influence the upstream discharge, it is
sufficient to end the solid structure, creating a free flow.

For the analysis of pressure and velocity each step has been numerated
starting from step number 40 at the crest of the stepped spillway and going
down.

5.4.1 Velocity

Vectorial field photographed in fig. 5.14 clearly shows the development of
two completely different flows over the stepped spillway:

- A superior discharge that flows over the steps with a velocity which is
ten times higher then that developed in the steps;
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- A recirculatory discharge that develops in the cavity delimited by the
risers of the steps.

In the small transitory zone between these two fluxes a very big velocity
gradient is present, it is the zone of exchange of momentum.

Velocity is well reproduced from the model with an high precision, see
for instance fig. 5.15, fig. 5.15, fig. 5.16, fig. 5.17 where isotaches are traced
with different colors. We expected that the first isotach not influenced by
the presence of the stairs is the one with v = 2m/s and looking at the green
line it is exactly like this; velocity in the cavity of each step is recirculatory
and ten time smaller than the superior discharge.
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Figure 5.15 Steps 31 and 32 after 3.4sec

(a) Computational results

(b) Experimental results
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Figure 5.16 Steps 34 and 35 after 3.4sec

(a) Computational results

(b) Experimental results



5.4 The model 79

Figure 5.17 Steps 31 and 32 after 3.7sec

(a) Computational results

(b) Experimental results
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Figure 5.18 Steps 34 and 35 after 3.7sec

(a) Computational results

(b) Experimental results
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5.4.2 Pressure

The analysis of pressure distribution on the steps would need a long period
of observation to achieve to the same results present in the Phd thesis of
Dr. Amador [16]. He calculate a mean pressure on the fixed measure points
of each step considering time intervals (2̃0min) much longer than the few
seconds of our computational results.

A low precision in the comparison is the direct consequence of such a
difference, this means that only a qualitative behavior can be controlled.

Some problems are clearly shown in the graphs of the risers much than in
that of the treads where the behavior is much more similar. Mean pressure
value are always negative in the upper part of the riser of the computational
model, while they have a value which is next to zero in the experimental
data. That is a zone where there is the separation between the superior flux
and the vortex in the step cavity. The biggest fluctuations of pressure value
are present in that zone, as proved experimentally.

The following graphs analyze pressure value in function of the position on
the tread or on the riser, treating the different quantities in an a-dimensional
way: mean pressure head value is calculated for each of the five points of the
riser and the seven of the tread. p/γ is divided respectively by the length of
the tread or of the riser. The points of the analysis where indicated in an
adimensional way too, dividing the abscissa or the ordinate by the length of
the riser or of the tread too.

Figure 5.19 Velocity field next to step 34 and 35
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Figure 5.20 Step 29: experimental data (green line with triangles) and computational
output (blue line with squares)
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Figure 5.21 Step 30: experimental data (green line with triangles) and computational
output (blue line with squares)

n.30

0

0.5

1

1.5

2

2.5

3

00.10.20.30.40.50.60.70.80.91

y/l

p
m

/
/h

(a) Tread

n.30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5

pm/ /h

z
/h

(b) Riser



84 Stepped Spillway

Figure 5.22 Step 31: experimental data (green line with triangles) and computational
output (blue line with squares)
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Appendix A
Descriptions of motion

A.1 Introduction

A very important aspect, during the development of a computer code, is
the choice of an appropriate kinematical description of the continuum. In
fact all the relationship between the deforming continuum and the grid of
the computational mesh are determined by this choice and overall in fluid
mechanics problems, one of the big difficulty is the ability to catch and follow
the big distortions and changes at the interface between two different fluids
or fluid and structure.

In literature two classical descriptions of motion are present: the La-
grangian and the Eulerian descriptions, both approaches have advantages
and drawbacks that are going to be outlined in this section; there is a third
description that will be presented and that tries to combine all the advan-
tages of both the classical kinematical description while minimizing their
respective drawbacks as far as possible.

Lagrangian algorithms are mainly used in structural mechanics having
each individual node of the computational mesh that follows the associated
material particle during motion. This is a good way to trace easily the
interface fluid-fluid or fluid-structure and to consider materials with history-
dependent constitutive relations. Its weakness is the inability to follow big
distortions of the domain without the necessity of a continuum remeshing.

Eulerian algorithm on the contrary, is largely used in fluid dynamics
because of the ease to follow also large movements: in fact in this case the
computational mesh is fixed and the continuum moves in respect to the grid,
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Figure A.1 1D example of the three different kinematical representations

t Lagrangian description

t Eulerian description

t ALE description

Material point

Node

Particle motion

Mesh motion

it is more difficult, in this case, to be able to follow the interfaces with big
detail.

A third technique has been developed to combine the best feature of both
Lagrangian and Eulerian approach, it is known as arbitrary Lagrangian-
Eulerian (ALE) description. In this case the nodes of the computational
mesh may move with the continuum (as in Lagrangian representation) or
may be fixed (as in Eulerian one) or may move in some arbitrarily way to
permit a continuous rezoning capability. Doing this its easier to catch big
distortions than with Lagrangian method and the resolution is better than
that afforded by purely Eulerian approach [17],[3].

A.2 Lagrangian and Eulerian viewpoints

Material domain RX ⊂ R
nsd , with nsd spatial dimension, and spatial domain

Rx are the two traditional domains used in continuum mechanics: the first
one is consisting of material particles X, the second one of spatial points
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Figure A.2 Lagrangian description of motion

ϕ

υ
RX Rx

Reference configuration Current configuration

xX

x. As outlined in A.1, the Lagrangian approach consists in following the
material particles in their motion, that is, once a computational grid is
introduced to follow the continuum particle motion, then , the two entities
will be permanently connected. The motion of the material points relates the
material coordinates X, to the spatial one x and it is defined by a function
ϕ

ϕ : RX × [t0, tfinal [ −→ Rx × [t0, tfinal [

(X, t) −→ ϕ (X, t) = (x, t) (A.1)

That means that X and x can be linked in time by the low of motion:

x = x(X, t) t = t (A.2)

From that statement it can be deduced that: the spatial coordinates x

depend both on the material particle X, and time t, and physical time is
measured by the same variable t in both domains. Using a matrix represen-
tation

∂ϕ

∂(X, t)
=

(
∂x
∂X v

0T 1

)
; (A.3)
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where 0T is a null vector and

v(X, t) =
∂x
∂t

∣∣∣∣
x

(A.4)

The one-to-one mapping ϕ must verify

det(
∂x
∂X

) ≥ 0 ∀X,∀t ≥ t0

Because the material points coincide with the same grid points during
the whole motion, there are no convective terms in Lagrangian formulation:
the material derivative reduces to a simple time derivative. This last aspect
is one of the bigger advantages in computational calculation, but especially
in fluid dynamics problems, Lagrangian algorithms undergo a loss of accu-
racy and can also be unable to finish a calculation because of the excessive
distortions of the computational mesh.

This particular problem is overcame by the Eulerian formulation which
keeps fixed the computational mesh allowing the material particles to move
freely: it examines the physical quantities associated with the fluid particles
passing through a fixed region of space. The material velocity corresponds
to the velocity of the material points coincident with the considered node at
a given time t. In this case there is no reference to the initial configuration
an the material coordinate X as happened in Lagrangian description

v = v(x, t). (A.5)

The biggest problem from a computational point of view is the appear-
ance of a convective term being mesh nodes dissociated from continuum
particles and serious difficulties are now found in following deforming mate-
rial interfaces and mobile boundaries.

A.3 ALE description of motion

Arbitrary Lagrangian-Eulerian (ALE) methods were first presented in finite
difference and finite volume context and then developed since late 60’s by
Noa(1964), Frank and Lazarus (1964), Trulio (1978), Hirt (1974) [17]. The
so called referential configuration Rχ, a third domain, different from both
the spatial and the material domain, is introduced; in that case reference
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Figure A.3 ALE description of motion
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χ

xX
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Rx

Rχ

ϕ

coordinates χ are introduced to identify the grid points as in fig.A.3. Rχ

is mapped into the material and spatial domains by Ψ and Φ respectively;
we can write ϕ = Φ ◦ Ψ−1 to underline that the three domains cannot be
independent.

Form the referential to the spatial domain the motion of the grid points
can be described with

Φ : Rχ × [t0, tfinal [ −→ Rx × [t0, tfinal [

(χ, t) −→ Φ (χ, t) = (x, t) (A.6)

with this gradient

∂Φ
∂(χ, t)

=

(
∂x
∂χ v

0T 1

)
; (A.7)

the mesh velocity is

v̂(χ, t) =
∂x
∂t

∣∣∣∣
χ

(A.8)

From referential to material domain on the contrary
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Ψ−1 : RX × [t0, tfinal [ −→ Rχ × [t0, tfinal [

(X, t) −→ Ψ−1 (X, t) = (χ, t) (A.9)

and its gradient is

∂Ψ−1

∂(X, t)
=

(
∂χ
∂X w

0T 1

)
; (A.10)

where the velocity, that can be read as the particle velocity in the referential
domain, is defined as

w =
∂χ

∂t

∣∣∣∣
X

(A.11)

The relation between the three different velocities can be obtained dif-
ferentiating the expression ϕ = Φ ◦ Ψ−1,that is, in matrix term,

(
∂x
∂X v

0T 1

)
=

(
∂x
∂χ v̂

0T 1

)
·
(

∂χ
∂X w

0T 1

)
(A.12)

From that system we can obtain

v = v̂ +
∂x
∂χ

· w (A.13)

and wanting to put in evidence the value of the convective term (the relative
velocity between the material and the mesh), we obtain

c := v − v̂ =
∂x
∂χ

·w (A.14)

We have to be careful not to confuse the particle velocity w that is seen
from the referential domain, with the convective one c, which is the particle
velocity relative to the mesh, seen from the spatial domain RX

As it is easy to see from ALE equation both Lagrangian and Eulerian
formulation can be obtained, respectively taking Ψ = I we obtain X ≡ χ

and the convective velocity is null, or taking Φ = I we obtain x ≡ χ and the
material velocity v is equal to the convective c.
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method. International Journal for Numerical Methods in Engineering,
58:893–912, 2003.

[9] E.P.Mucke H. Edelsbruner. Three dimensional alpha.shape. ACM
Transaction on Graphics, 13:43–72, 1994.

[10] W.H. Hager R.Juon. Flip bucket without and with deflec. Journal of
Hydraulic Engineering, 126:837–845, 2000.



92 BIBLIOGRAPHY

[11] W. H. Hager V. Heller. Ski jump hydraulics. Journal of Hydraulic
Engineering, 131:347–355, 2005.

[12] A.Ghetti. Idraulica. Cortina, 1984.

[13] R.Cola. Idraulica. IMAGE, 2002.

[14] H.Chanson. The hydraulics of stepped chutes and spillways. Balkema,
Rotterdam, 2002.

[15] M.Sánchez-Juni. Comportaminento hidraulico de los haliviadero
escalonados en presa de hormigon compactado. Analis del campo de
presiones. PhD thesis, 2001.
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