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Abstract

This work formulates a relatively simple isotropic local Querlay Jo-
Viscoelastic- Viscoplastic- Viscodamage constitutive model (O-J2-VVV) which
encompasses the merits of both the plastic and continuum damage formula-
tions. The plastic component of the model account for inelastic permanent
strains, while the damage component account for loss of stiffness. The plas-
tic and damage softening moduli are regularized according to the material
mode II fracture energy and the element size. The Orthogonal SubGrid
Stabilization Method (OSGS) is used to ensure existance and uniquess of
the solution for strain shear strain localization processes, attaining global
and local stability of the corresponding discrete finite element formulation.
Consistent residual viscosity is used to enhance robustness and convergence
of the formulation. Numerical examples show that the formulation derived
is versatily, fully stable and remarkably robust, The solutions obtained
are completely mesh independent, unlike those obtained with the ill-posed
standard approaches.



1 Introduction

Softening materials subjected to monotonic straining exhibit strain localization.
In particular, in the so-called J; materials, shear (or slip) strains concentrate,
under certain circumstances. This phenomenon leads to the formation of shear
bands inside the solid where, once the peak stress is reached, the deformation
concentrates while the material outside the band unloads. Shear bands are typical
of ductile materials such as metals, although they are also observed in granular
materials such as sands or soils. Similar deformation patterns can also appear in
fiber-reinforced composites subjected to compressive loading.

Upon continuing straining, the width of the shear band diminishes and, unless
there is a physical limitation, it tends to zero. In J, materials, these zero width
bands are called slip lines. It is generally accepted in fracture mechanics that the
amount of energy released during the formation of a unit area of slip surface is a
material property, called the mode II fracture energy.

Despite the considerable effort devoted to the subject in the last two decades,
theoretical modeling and computational resolution of the strain localization process
that gives place to shear bands and, ultimately, to structural failure due to them
have remained an open challenge in Computational Solid Mechanics.

The possibilities to model shear bands with finite elements are several, and
both the weak and the strong discontinuity approaches have been followed. In
the first, the objective is to capture the shear band as precisely as possible, with
standard continuous elements. In the second, the displacement field is enhanced
with discontinuous functions so that the true slip line can be captured.

The main difficulty why most attempts to model weak displacement discon-
tinuities with standard, local, approaches is that the solutions obtained appear
to be unphysically, and unacceptably, fully determined by the fineness and ori-
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entation of the discretization. Up to now, this disagreeable observation has been
erroneously and misleadingly attributed to the fact that, when strain-softening
occurs and the slope of the local stress-strain curve becomes negative, the govern-
ing equations of the Continuum Mechanics problem lose their “natural” elliptic
character.

Recently, the authors have applied stabilization methods to the solution of Jo-
plastic and J;-damage problems with mixed displacement/pressure (u/p) linear
simplicial elements, see [1], [2], [3], [4] and [5]. This translates in the achievement
of three important goals:

e (a) the solution of the corresponding localization boundary value problem
exists and it is unique,

e (b) the position and orientation of the localization bands is independent of
the directional bias of the finite element mesh, and

e (c) the global post-peak load-deflection curves are independent of the size
of the elements in the localization band.

The accomplishment of these fundamental objectives is attained by ensuring
both global and local stability of the problem; this is secured by the appropriate
modification of the variational formulation, making use of the concept of sub-grid
approximation.

In this work, we formulate an isotropic Querlay J2- Viscoelastic- Viscoplastic-
Viscodamage model (O-J2-VVV model) that encompasses the merits of both the
plastic and continuum damage formulations. It must be emphasized that the
choice of an isotropic model implies that the macroscopic anisotropy of the struc-
tural behaviour has to be captured by means of a finite element approximation to
within the resolution of the adopted mesh [6], [7]. On the other hand, this pro-
vides a relatively simple constitutive model which, nevertheless, is very versatile
and able to predict appropriately the softening response.

The outline of the monograph is as follows. In the first chapter, the mixed
isotropic O-J2-VVV model is presented. Constitutive relationships, evolution
laws for the internal variables, consistent tangent operators and thermodynamic
frameworks are proposed and discussed. The plastic and damage softening mod-
uli are appropriately regularized according to the size of the elements inside the



localization band. In the second chapter, the corresponding mixed displace-
ment /pressure (u/p) boundary value problem is formulated and properly sta-
bilized with the Orthogonal SubGrid Scale (OSGS) method. The possibility of
enhancing the robustness and convergence of the numerical procedure by the in-
clusion of consistent residual plastic and damage viscosities is also considered.
Finally, in the third chapter, numerical benchmarks and strain localization ex-
amples are presented to assess the present formulation.
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2 Mixed formulation for J, models

2.1 Stress and strain tensors

The (second order) stress tensor o can be expressed as:
oc=pl+ s (2.1)

where p = (1/3)tr (o) and s =dev (o) are the volumetric and the deviatoric
parts of the stress tensor, respectively, and 1 is the (second order) unit tensor.
Correspondingly, the (second order) strain tensor € =V*u, where u are the dis-
placements, is expressed as:

e(u) = %57,1 be (2.2)

where £, = tre = V-u and e =dev € are the volumetric and the deviatoric parts
of the strain tensor, respectively.

For linear elastic behaviour, the constitutive equations are simply expressed
as:

p = Ke, (23&
s = 2Gdeve = 2Ge (2.3b)

where K is the bulk modulus, also referred to as modulus of volumetric com-
pressibility, and G is the shear modulus.

7
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2.2 Jy Viscoelasticity

2.2.1 Constitutive model

In classical viscoelasticity, the mechanical behaviour is characterized by the re-
laxation function or the compliance function and the constitutive relationships
are formulated in the form of Volterra integral equations [8]. This approach is
clearly unsuitable for numerical computations because of its memory and CPU
time requirements.

However, it is possible to expand any relaxation function into a Dirichlet
series, and retain only a finite number of terms. This achieves a double goal:
first, the constitutive laws for the viscoelastic material can be written in terms of
a finite number of internal variables, and only these need to be stored from one
time step to the next, thus providing huge computational advantages compared to
the hereditary integral equations; and secondly, the resulting rheological model
can be interpreted as a generalized Maxwell chain, where a number of springs
and dashpots are arranged in parallel. Alternatively, the compliance function of
concrete can be considered and expanded in a Dirichlet series. This leads to a
generalized Kelvin chain with a series arrangement. Although both approaches
are completely equivalent (if a large enough number of terms is considered in the
Maxwell or Dirichlet series), the first one leads to first order differential equations
to be solved for the evolution of the internal variables, while the second approach
leads to second order differential equations [9]. Therefore, the Maxwell chain
model is preferred here.

In the following, we will consider that the Eq. (2.3a) holds, while the devia-
toric stresses are obtained from the Jo-viscoelastic model proposed below.

Figure 2.1 shows a schematic representation of the rheological model used, in
the form of a Maxwell chain. The shear moduli, G, and the dashpot viscosities,
n', of thei = 0, 1,..., N Maxwell elements of the chain are the material parameters.
Alternatively, the chain may be characterized by the elastic shear moduli, G*, and
the relaxation times of the dashpots, defined as ¥ = n*/G".

It is often convenient to take ¥ = co in the series expansion, so that G° can
be considered as the asymptotic (for time ¢ — oo) material shear modulus. Note
that G = YN | G is the instantaneous (for time t — 07) material shear modulus
of.

It is also useful to define the participation ratio for each element in the chain,
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Fig. 2.1: Viscoelastic Maxwell chain

¢' as the ratio between its own elastic modulus and that of the chain: ¢ = G*/G.
Note that S & = 1.
The total deviatoric stress sustained by the (parallel) Maxwell chain is eval-

uated as
s = Z s' (2.4)

Choosing the stress in each Maxwell element of the chain, s, as internal
variables, the first order differential equations governing the evolution of these
variables are _

S’L

9

where e is the total deviatoric strain tensor. It is possible to select the viscous

s+ & 2Gé for i =0,1,..,N (2.5)

deviatoric strains in each Maxwell element, e’, rather than the deviatoric stress,
s', as internal variables. The relationship between them is

s’ = ¢ 2G (e — &) (2.6)

Substitution of Eq. (2.6) into Eq. (2.5) leads to the obtention of the evolution
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law for the viscous deviatoric strains

& = ?(e—el) for i =0,1,..,.N (2.7)
1

2.2.2 Integration of the internal variables

The solution in time of the evolution law for the viscous deviatoric strains, Eq.
(2.7) , is [10]:
1 [t s
e = r e e(s)ds (2.8)
This can be expressed, for time ¢, = t, + At as

. 1 tn+1 (tni )—s
e(thr1) = 5 e e(s)ds
—00

1 tn (tn—s)
= — e e_%e(s) ds +

9 )
1 bnt1 _ (tng1)—s
— e o e(s)ds
VA B
= et e 9 + Ae (2.9)

with the increment of viscous deviatoric strain equal to the second integral term

1 bt _Gny1)—s

Ae' = S e o e(s)ds (2.10)
(VA NS
The numerical integration of Eq. (2.10) can be performed by different meth-
ods. Here, we will assume that the deviatoric strain is approximately constant
during the interval [¢,, ¢, 1] and equal to the value at time t*, (with t* = ¢, +aAt,
0 < a < 1). Then, Eq. (2.10) can be evaluated as

. 1 bnt1 Ctng1 s
Ae' = —e(t") e o ev ds
Y oo
_tngl [ s ]l
= e(t')e "o [ew}
tn

At

— ot (1 . e_W) (2.11)

and, therefore, Eq. (2.9) is

E(tns1) = €i(ty) e o +e(t)) (1 - e—%) (2.12)
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Taking o = 0, t* = ¢,, and it is necessary to store £(¢,) to integrate the viscous
strains. It is, therefore, computationally more efficient to use a = 1, t* = t,,,1,
and then Eq. (2.9) reduces to

. . At _At
Ci(tn)) = €i(tn) e o + e(tnsr) (1 —e ) (2.13)

It must be remarked that this integration method is unconditionally stable.
. At .
For small time steps, At/ << 1, e » ~1—(At/¥"), and Eq. (2.13) can be
rewritten as

At

=7 [eltni1) — €' (tn)] (2.14)

which obviously corresponds to a backward Euler scheme.

e (tni1) = €'(tn) +

2.2.3 Tangent operator

The tangent operator consistent with the numerical integration scheme proposed
can be obtained by differentiating Eq. (2.4) with respect to time, substituting
Eq. (2.6), and differentiating the integration scheme Eq. (2.13), to obtain:

i=0
N
= Z £2G (& — &)
=0
N
= Z 5167? C(lcv €
- cgljj e (2.15)

where Cgyoy = 2G [I—— (1® 1)] is the standard (fourth order) linear—elastic

deviatoric constitutive tensor, I is the (fourth order) unit tensor and (:) denotes

the tensor product contracted on two indices. Note that, in this model, &' = é&'.
Therefore, the viscoelastic deviatoric tangent operator is

N
visc i —At
POy — 7
dev — E § e v
i=0

Cev (2.16)




12 CHAPTER 2. MIXED FORMULATION FOR Jo MODELS

Note that for very small time steps, At/9¥" — 0, the viscoelastic operator is
purely elastic, C}*° — Cg.,. Also, for large time steps, At/9" >> 1, the response

dev

tends to be asymptotic, C}* — (G°/G) Cyey-

dev

2.2.4 Thermodynamic Framework

Let us define the mechanical free energy for the viscoelastic model in the form

W = Wi (es) + Wae (e, €) (2.17a)
] N
= 5 K 612) + Zz(; jev(eze) (217b)
1 iy
— 2 i (et . Al
= S Ke+ 20: 5 et (6 Cun) e (2.17¢)

where the elastic deviatoric strain tensor is defined as e, = e—e, for each element.
Using Coleman’s method, the total stress can be obtained as

p = a‘sv KE’U (2']‘83’)
N N N

s = Y 0gWiy, =) &Cunviel =) & (2.18b)
i=0 i=0 i=0

Note that the introduced viscous deviatoric strains e’ are the thermody-
namic forces conjugated to the deviatoric stresses in the chain elements s’ (s =
—0ei Waey ). Also, the mechanical dissipation for the Maxwell chain can be com-
puted as

. 2 :
D=>) =W, >0 (2.19)

2.3 Jsy Viscoplasticity

2.3.1 Constitutive equation

The constitutive equations for a Jo-viscoplastic model are :

p = Ke (2.20a)

v

s = 2Ge° (2.20b)
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where ¢, is the total volumetric strain and e® is the elastic deviatoric strain tensor,
defined as:
e“=e—¢€’ (2.21)

where e” is the plastic strain tensor, which in J, plasticity is purely deviatoric.
Let us define the equivalent deviatoric plastic strain in the usual manner,

€= (\/2/3) f; ||€P|| dt, and the equivalent von Mises stress as's = (\/3/2) |Is]| =
\/3/2) [s: s]l/2 . With these definitions, the rate of plastic work is WP = s :

= S €.

®

/N

®

2.3.2 Characterization of plastic behaviour

With the above definition for the equivalent effective stress, the plastic yield
surface, ®P, is introduced as:

3 -
P (s,17) = \/;HSH P =F P =0 (2.22)

Note that the plastic criterion is defined in the deviatoric stress space. In the
principal stress space, the plastic criterion is the well-known von Mises cylinder
with axis along the hydrostatic axis.

The isotropic softening variable ? = rP(€) is an internal stress-like variable
that defines the current size of the plastic yield surface, as it controls the value
of the radius of the von Mises cylinder. In this work, we will consider both linear
and exponential relationships between the equivalent deviatoric strain and the
softening variable:

e Linear softening:

HP __ 0,
O, (1 — e) 0<e<
P — T _— HP (2.23)
0 v >e

e FExponential softening:

2HP _ ~
r? = o, exp (— e) 0<e< oo (2.24)

o
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where HP > 0 is a constant.

Notice that, in both cases, initially, when the equivalent deviatoric plastic
strain e = 0, 7P is equal to the initial flow stress o,. Along the softening regime,
rP diminishes and, for large value of the equivalent plastic strain, it vanishes.

The evolution of the deviatoric plastic strain tensor is defined in the usual
associative manner

e’=4n (2.25)
where ¥ is the plastic multiplier and n =0®”/0s = s/ ||s|| is the normal to the
yield surface.

For the rate independent case, the plastic multiplier 4 is determined from the
Kuhn-Tucker and consistency conditions:

¥ >0 PF (s,77) <0 FPP (s,r’) =0 (2.26a)
if ®F (s,7?) =0 then 7P (s,7?) =0 (2.26b)

while for the rate dependent case, these conditions are replaced by a Perzyna-type
relation:
. _ (9P (s,rP)) _ (PP (s,rP))
= = >0 2.27
gl p oo 2 (2.27)
where (-) are the Macaulay brackets (ramp function) and 7? is the plastic viscosity;
V¥P ;= nP/G is the retardation time for plastic behaviour. Notice that for very low

values of the viscosity, n” — 0, or very small relaxation times, ¥, the inviscid
plastic model is recovered.

2.3.3 Coupling with viscoelasticy

The viscoplastic model described above can be easily coupled with the viscoelastic
model described in Section 2.2. To this end, the definition of the deviatoric

stresses, Eq. (2.20b), is simply replaced by its viscoelastic counterpart

N
s=) s (2.28)
=0

where s’ is the deviatoric stress sustained by each element of the Maxwell chain,

computed as
st = £ Cuey : (e —ef — &) (2.29)
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where ¢' and e are the corresponding participation ratio and viscoelastic devia-
toric strain tensor, respectively.

2.3.4 Integration of the internal variables

Details on the radial return algorithm to integrate along time both the elasto-

plastic and the elasto-viscoplastic constitutive models can be found in reference
[11].

2.3.5 Tangent Operator

The rate relationship between the deviatoric the strain and stress tensors can be
written as

s=(Cm)" e (2.30)

dev

with

1 il 1 At
(Cier)” = 26 { {I—g (1® 1)} ; e o

+[6(1® 1)+ 62 (n® n)]} (2.31)

| |

where the coefficients §; and 65 depend on the radial return algorithm used (see
reference [11] for details).

2.3.6 Thermodynamic Framework

Let us define the mechanical free energy for the (visco)elasto-viscoplastic model
in the form

W = Wialey) + Waev(€9) (2.32a)
= % Kai+% (2G) (e —€P): (e —€P) (2.32b)

The constitutive equations for the model are obtained using Coleman’s method
as:

p = 0., W = Kg, (2.33a)
s = 0. W = 2Ge° (2.33D)
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The mechanical dissipation can be expressed as

@:s:ép:s:’yn:s:’yﬁzﬁ > 0 (2.34)
S

provided that the plastic multiplier increases monotonically, v > 0.

2.4 Softening behaviour and regularization

Either considering linear or exponential softening, the elasto-viscoplastic model
described above is able to reproduce the softening branch that occurs in a test
under monotonic shear straining after the peak stress is reached, with the stress
decreasing asymptotically to the strain axis. With these evolution laws for 77, a
finite amount of energy is dissipated in the control volume.

In finite element analysis this entails the loss of objectivity of the results, in
the sense that the inelastic shear strains tend to localize in a band that is only
one element across, independently of the element size h.. Upon mesh refinement,
as he tends to zero, strains tend to concentrate on a band of zero thickness (a
geometrical line), and no energy is dissipated in the failure process. Clearly, this
is physically unacceptable.

In order to remedy this well-accounted for fact, reference [12] proposed the
use of the so-called “fracture energy reqularization technique”, nowadays used in
many FE applications. This strategy is followed in this work, as it is extremely
convenient from the computational standpoint, while guaranteeing the correct
conservation of dissipated energy upon mesh refinement.

It has to be remarked that this technique constitutes a crucial and appealing
“lost-link” between Continuum and Fracture Mechanics, two disciplines that have
often been presented as wide apart ways of approaching Failure Mechanics.

The fracture energy regularization technique is based on the assumption that
dissipation takes place in a band only one element thick, irrespective of the ele-
ment size. The basic concept consists on modifying the softening law in such a
way that the energy dissipated over a completely degraded finite element be equal
to a given value, which depends on the fracture energy of the material and on
the element size. For each element, the material characteristic length ([13], [14])
is approximated by the element characteristic length 14, [15], which depends on
the geometric dimensions of the element and measures the computational width
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of the fracture zone. The specific dissipated energy D is then scaled for each
element so that the equation

Dl = Gr11 (2.35)

holds, where Gy is the mode II fracture energy of the material, regarded to be
a material property. As it is shown below, this makes the softening modulus
HP?, which defines the softening response, dependent on the element size. The
procedure is as follows:

For the elasto-plastic model, the rate of plastic work can be computed as:

D=WP=s:6" =3¢ (2.36)

Thus, the total plastic work along a process with softening is

t=oco E=00 . 2
D=wr= [ :/g rEF = 22? (2.37)
t= =

It has to be remarked that the total plastic work is equal to the “area” below
the P — € curve, that defines the softening response. Note also that the result in
Eq. (2.37) holds both for linear and exponential softening, due to the appropriate
definition of these in Box 1.

Equating the total plastic work to the energy (per unit volume) to be dissi-
pated in the localization band, WP = Gr;/l.,, it yields:

0.2

HY = E ln = H lay (2.38)
where H' only depends on the material properties.

In the framework of local models and finite element analysis, the state vari-
ables are computed at the integration points in terms of the local strain (and/or
stress) history. Therefore, the plastic internal variables 7P and € are defined at
the integration points. The characteristic length is thus related to the volume (or
area) of each finite element.

For linear simplicial elements, the characteristic length can be taken as the
representative size of the element, l4, = h.. In this work, and assuming that
the elements are equilateral, the size of the element will be computed as h? =
(4/ \/§) A, for triangular elements, A, being the area of the element, and as
hi’ = (12 / \/5) V, for tetrahedral elements, where V, is the volume of the element.
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2.5 Jy Viscodamage

2.5.1 Constitutive Equation

The Continuum Damage Mechanics Theory (CDMT) is based on the definition of
the effective stress concept, which is introduced in connection with the hypothesis
of strain equivalence ([16], [17], [18]): the strain associated with a damaged state
under the applied stress o is equivalent to the strain associated with its undamaged
state under the effective stress .

In the present work, the effective deviatoric stress tensor s will assume the
following form:

s=2Ge (2.39)

The constitutive equation for the J2-damage model is defined as:

p = Ke (2.40a)
s = (1—d)s = (1—d)2Ge (2.40b)

where we have introduced one internal-like variable, d, the damage index, whose
definition and evolution is given below.

2.5.2 Characterization of Damage

In order to clearly define concepts such as loading, unloading, or reloading for
general 3D stress states, a scalar positive quantity, termed as equivalent stress, is
defined. This allows the comparison of different 2D and 3D stress states. With
such a definition, distinct 3D stress states can be mapped to a single equivalent
1D shear test, which makes their quantitative comparison possible [17], [18].

In the present work, the equivalent stress will assume the following form:

T = \/gH%H = \/g [5: 5] (2:41)

which corresponds to the usual definition of the equivalent von Mises stress s.
With the above definition for the equivalent effective stress, the damage cri-
terion, ®¢, is introduced as:

! (rr!) =1 —1r" =51 <0 (2.42)
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Variable r? is an internal stress-like variable that is interpreted as the current
damage threshold, in the sense that its value controls the size of the (monoton-
ically) expanding damage surface. The initial value of the damage threshold is
r, = 0,, where o, is the initial uniaxial strength.

Note that the damage criterion is defined in the effective deviatoric stress
space (or, alternatively, in the deviatoric strain space). In the principal stress
space, the criterion is the well-known von Mises cylinder with axis along the
hydrostatic axis.

The expansion of the damage bounding surface in the normalized space for
loading, unloading and reloading conditions is controlled by the Kuhn-Tucker
relations and the damage consistency condition, which are

i >0 ¢ (r,r") <0 7407 (7,r?) =0 (2.43a)
if ®(7,7%) =0 then #9®%(r,r%) =0  (2.43b)

leading, in view of Eq. (2.42), to the loading condition
il =7 (2.44)

This, in turn, leads to the explicit definition of the current values of the internal
variable 7 in the form

r? = max {r,, max(7)} (2.45)

Note that Eq. (2.45) allows to compute the current values for r¢ in terms of the
current value of 7, which depends explicitly on the current deviatoric strains (see
Egs. (2.39) and (2.41)).

Finally, the damage index d = d(r?)is explicitly defined in terms of the cor-
responding current value of the damage threshold, so that it is a monotonically
increasing function such that 0 < d < 1.

In this work, we will use the following functions:

e Linear softening:

(2.46)
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e Exponential softening:
d To a8 =1, d
dir‘y =1— —expq —2H" | —— r >, (2.47)
r To
where H? > 0 is a constant.

2.5.3 Rate dependent damage

In many materials there is a strong coupling between nonlinear rate-sensitivity
and damage growth. Therefore, it is natural to develop a rate dependent consti-
tutive model within the framework of CDMT, evolving from the above presented
rate independent damage model, and which accounts for strain rate dependency
via the damage evolution laws [7].

To this end, let us consider a viscous regularization of the rate-independent
damage threshold evolution law defined by Eq. (2.44), so that Kuhn-Tucker and
consistency conditions, Egs. (2.43a) and (2.43b), of the rate independent model
are replaced by the evolution law:

a2 (r) (@) (2.48)
nd Gv? N .

where () are the Macaulay brackets (ramp function) and n¢ is the damage vis-
cosity; 9 := 1n?/G is the retardation time for damage behaviour. Notice that for
very low values of the viscosity, n? — 0, or very small relaxation times, 9%, the
inviscid plastic model is recovered.

Note that this modification of the evolution law only affects the integration
of the damage threshold 7¢, but not the damage variable d itself. This is still
obtained in a closed form, through the explicit definition of the function d =
d(r?). Additionally, it is worth to remark that Eq. (2.48) guarantees monotonic
increasing of the damage threshold, and, therefore, also of the damage index
(d>0).

2.5.4 Coupling with viscoelasticy

The viscodamage model described above can be easily coupled with the viscoelas-
tic model described in Section 2.2. To this end, the elastic definition of the effec-
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tive deviatoric stresses, Eq. (2.39), is simply replaced its visco elastic counterpart

5= zNjgi (2.49)

where §' is the effective deviatoric stress sustained by each element of the Maxwell
chain, computed as

s = ¢'2G (e — ) (2.50)
where ¢ and e’ are the corresponding participation ratio and viscoelastic devia-
toric strain tensor, respectively.

2.5.5 Update of the damage threshold

A numerical algorithm needs to be implemented for the time integration of the
damage constitutive equations presented in the previous Sections. In the following
this algorithm is presented, in a strain—driven form which leads to a completely
closed—form algorithm to integrate the stress tensor in time. This is most appro-
priate within the context of the application of the FE method.

Each time step begins at time ¢,, with all state variables known and it ends
at time ¢,,,1 with the state variables updated according to the given total strain
tensor €,,1. The time step size is At =, 1 — t,.

For the rate independent model, Eq. (2.45) allows to compute the current value
for r4_, in terms of the current value of 7,1, which in turn, depends explicitly on
the current strains €,1(see Egs. (2.39) and (2.41)). After this, the damage index
dpy1 = dpy1 (rg +1) is explicitly computed in terms of the corresponding current
value of the damage threshold, using the appropriate expression, Egs. (2.46) or
(2.47).

For the rate dependent model, the only difference is the updating of the dam-
age threshold r¢ +1 When evolution of the damage occurs, that is, upon loading
conditions. This may be evaluated using a generalized mid-point rule to integrate
Eq. (2.48), i.e.,

iy = Ay = 4 S5 () (2.51)
where 7, and r, are defined by:
To = (1—a)Tp+aTpi (2.52a)
d

e = (1-a)rf+art, (2.52Db)

«
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The choice @« = 1 Eq. (2.51) corresponds to a backward-Euler difference
scheme. It is easy to show that the algorithm of Eq. (2.51) is unconditionally
stable for v > 0.5 and second order accurate only for v = 0.5 (Crank-Nicholson or
trapezoidal rule), which allows the use of larger time step sizes for rate-dependent
analysis.

Substituting Eqgs. (2.52a) and (2.52b) into Eq. (2.51), yields

1 At
d = — 1— (1—a)— | r¢+ = o 2.53
Trit max{rn,1+a% {( ( O‘)ﬁd rn—l—ﬂdT ( )

It is worth to remark that the presented method for the integration of the
damage threshold is also valid for the rate independent model, noting that for
¥'=0and o = 1, Eq. (2.53) simply reduces to the satisfaction of the monotonic-
ity and consistency conditions

re . = max {rl 7,41} (2.54)

2.5.6 Tangent operator
Rate independent damage

Differentiating Eq.(2.40b) with respect to time, we obtain
s§= (1—-d)S—ds (2.55)

The effective deviatoric stresses s can be computed in terms of the total strain
tensor € as
§=Cyey : € (2.56)

where Cy.y = 2G [I—% (1® 1)} is the usual (fourth order) linear—elastic devia-
toric constitutive tensor, I is the (fourth order) unit tensor and (:) denotes the
tensor product contracted on two indices. Differentiating this with respect to
time, we have

§=Cqev : € (2.57)

On the other hand, the time derivative of the damage index is

d=d (2.58)
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where the derivative d’ = d’ (1) can be obtained from Eqs.(2.46)-(2.47). On load-
ing, consistency requires that 7? = 7, and therefore, differentiating Eq. (2.41),
we can write
%d:i—:%§:§:——§:é (2.59)
On unloading, it is 7#? = 0. Substituting this result in Eq. (2.58), and the
result in Eq. (2.57), yields the desired expression

§=Clm g (2.60)

dev

with
(Cem)! = (1—d) (2G) {I—% (1® 1)] [Z gie—%] —ht (s®@s)  (2.61)

where the scalar coefficient h? is

——d for loading

2T

ht = (2.62)

0 for unloading

Rate dependent damage

In the case of rate dependent damage the determination of ¢ comes from differ-
entiating Eq. (2.51) with respect to time, to yield:

At

d

7'0‘1:71;2& 7 (2.63)
e

Comparing Eqgs. (?7?) and (2.63), it is obvious that the tangent operator for

the rate dependent damage case has the same expression of Eq. (2.61) with the

coefficient h? given by

At
oass 332G
1% 3 d for loading
pd={ t T 2T (2.64)
0 for unloading

Note that for large values of At/9 the rate independent case is recovered.
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2.5.7 Thermodynamic Framework

The mechanical free energy term for the damage model is defined in the form:

W = W) + (1 —d)Waev(e) (2.65a)
= %K53+%(1—d) (2G) e: e (2.65b)

From this, and recalling that 0 < d < 1, it is obvious that W > 0.
The constitutive equation for the damage model is obtained using Coleman’s
method as:

p = 0., W = Kg, (2.66a)
s = 0.W = (1-d)2Ge (2.66Db)

The mechanical dissipation can be expressed as

D=W.d >0 (2.67)

dev

provided that the damage index increases monotonically, d > 0.

2.5.8 Softening behaviour and regularization

As for the viscoplastic model, the softening behaviour must be regularized accord-
ing to the characteristic lengths of the finite elements to yield meaningful results,
independent of the element sizes used in the discretization. This is accomplished
as follows:

Rate independent behaviour

Consider an ideal experiment in which the shear load increases monotonically and
quasi-statically from an initial unstressed state to another in which full degrada-
tion takes place.

Using the rate independent version of the damage model, the specific energy
dissipated in the process is:

t=00
D = / Ddt
t=0

t=00 .
= (fev ddt
t=0
2/3 e d\2 y ;.d
— dd 2.
2(2G) /7« (r ) r (2.68)

=70
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where we have used Eqgs. (2.67), (2.65a), (2.39), (2.41), (2.45) and the rate of
damage is expressed as d=d7.

We will consider in the following both the cases of linear and exponential
softening;:

e Linear softening:
Using Eq. (2.46), d = (1 + H%)ry/ (rd)2, for r, < r? < r,, with r, =
To (1 +1/H d), and d = 0, otherwise. Recalling that r, = o,, integrating
and equating D = G;; /I, we have

1 o2 Gir
D=(1+—— °_ — 2.69
( +Hd> 202G)  la (2.69)
and, therefore,
—d
H oy,
H'=—""%— >0 (2.70)
1-H l(:h

where H* = o2/ (3(2G) Grr) depends on the material properties, as Gyy is
the mode II fracture energy per unit area, o, is the uniaxial strength and
G is the shear modulus.

e Exponential softening:

Using now Eq. (2.47), d' = (ro + 2H%r?) exp {—2H" (r* — 1) /r,} /r?, for
r¢ > r,. Recalling that r, = 0,, and integrating, we have

D= (1 + %) 5 ézG) (2.71)

which is identical to the result in (2.69).

Rate dependent behaviour

Let us now consider an ideal experiment in which the load increases monotonically,
and not quasi-statically from an initial unstressed state to another in which full
degradation takes place.
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Using the rate dependent version of the model, the specific energy dissipated

t=00
D = / Ddt
t=0

in the process is:

t=o00 .
= LfBV ddt
t=0
2/3 e d d-d12 i ;.d
— ) dd 2.72
2(2G)/M0 [+ 0] ' (272)

where we have used Egs. (2.67), (2.65a), (2.39), and Eq. (2.48) and the rate of
damage is expressed as d = d' 7.

Comparing Eq. (2.72) with Eq. (2.68) it is obvious that the first one reduces
to the second for a null value of ¥, or for very slow processes, with 7% — 0.

In other cases, the evolution law, Eq. (2.48), ensures that the terms ¢ and
997 are of the same order, that is (977¢/r?) = O(1). Therefore, it can be
assumed that the regularized parameter from Eq. (2.70), will also regularize the
rate dependent model, both for linear and exponential softening.

2.6 Overlay J, Viscoelasto-Viscoplastic-Viscodamage model

It is obvious from the above discussion that softening behaviour can be modelled
either via a (visco)plastic or a (visco)damage model. If appropriate material data
is supplied, both models would render the same stress vs. strain behaviour when
monotonically increasing straining is applied. However, the internal performance
and dissipative mechanisms of both models is rather different. The different
essence of the models is displayed upon unloading: (visco)plastic models unload
(visco)elastically, with evident permanent plastic deformation; on the other hand,
(visco)damage models unload secantly, with evident permanent loss of stiffness.

The behaviour of real materials may follow complex loading and unloading
stress vs. strain curves, exhibiting both permanent inelastic strains and loss
of stiffness. This is why many models have been proposed in the literature to
combine the features of plastic and damage models ([17], [18], [19], [20], [21],
among others).

In this work, we propose to combine them in the most simple, and efficient,
manner, constructing an overlay model, that can be rigorously based in Mizing
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Theory ([22], [23]), used in the last decades to appropriately model composite
materials such as concrete ([24], [25], [26], [27]). It has to be remarked that Mixing
Theory was originally conceived precisely to achieve the goal here pursued: the
proper combination of features of different material models.

The basic assumption of the overlay model is that the plastic and damage
dissipative mechanisms work in parallel, that is, that they are subjected to the
same total strains. Therefore, for a J; overlay plastic-damage model, we can
define the mechanical free energy in the form

W = Wialey) + (1= B) (Waer(e) + 8 (Waev(e))* (2.73a)
_ % K&t (1;5) (2G) (e — ) : (e — &)

+§ (1—4d) (2G) e: e (2.73b)

where (3 is a material parameter that determines the ratio of participation of the
damage and plastic “components” of the material. Note that for 5 =0and =1
the purely plastic and damage models are obtained as limit cases. It is obvious
that this definition can incorporate viscoelastic behaviour in a natural fashion.

The constitutive equations for the overlay model are obtained using Coleman’s
method as:

p = 0., W = Keg, (2.74a)
s = 0o W = 2G[(1—-P)e+3(1—d)e] (2.74Db)

The tangent operator is, evidently,
an an an d
Cflev = (1 - ﬁ) ( 1Lglev)p + ﬁ (Cflev) (275)

where (C'21)” and (Ct)? are defined by Eqns. (2.31) and (2.61), respectively.

dev dev
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3 Boundary value problem

3.1 Strong and weak forms

The strong form of the continuum mechanical problem can be stated as: find the
displacement field u and the pressure field p, for given prescribed body forces f,
such that:

V.s+Vp+f =0 in Q2 (3.1a)
V-u—%p =0 in Q (3.1b)

where € is the open and bounded domain of R occupied by the solid in a space
of ngim dimensions. Egs. (3.1a)-(3.1b) are subjected to appropriate Diritchlet and
Neumann boundary conditions. In the following, we will assume these in the form
of prescribed displacements u = u on 952, and prescribed tractions t on 0%,
respectively. In the mixed formulation the value of the pressure is defined by the
Neumann conditions or, alternatively, by prescribing its value at some point.
The associated weak form of the problem (3.1a)+(3.1b) can be stated as:

(v.V-s)+ (v,Vp)+(v,f) = 0 Vv (3.2a)
(¢, V-u)— (q, % p) =0 Vg (3.2b)

where v € V and ¢ € Q are the variations of the displacements and pressure fields,
respectively, V = H} () is the space of continuous functions with discontinuous
derivatives, @ = L? () is the space of square integrable functions in  and (-, )
denotes the inner product in L? (). Integrating Eq. (3.2a) by parts, the problem
can be rewritten in the standard form as:

(Vov,8) +(V-v,p) = (v,f) = (v,t),, = 0 Vv (3.3a)

29
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(q,V-u)—<q%p> -0 Vg (3.3b)

3.2 Irreductible, mixed and stabilized methods

Over the last years, many researchers have supported the misleading idea that the
underlying reason why the standard, local, rate-independent constitutive models
are inadequate to model zones of localized straining correctly is the local change
of character of the governing equations (see [28], [29], [30], [31], [32], [33], [34],
35], [36], [34], [37] and many others.).

In fact, substituting Eq. (3.1b) into Eq. (3.1a), and reducing the discussion
to standard elasticity, yields the irreductible form:

GAu+KV (V-u)+ f=0 inQ (3.4)

where A (-) denotes the laplacian operator and G and K are the shear and bulk
modulus, respectively.

A standard stability (or energy) estimate for problem (3.4) is obtained by
multiplying the left hand side by uand integrating by parts over the domain (2,
to yield

G (Vu,Vu) +K (V-uV-u) =G ||Vul]* +K |V -u]* = |[ul3 (3.5)

where ||-||% is the energy norm (equal to the elastic free energy). From Egs. (?7?)-
(?7), the elliptic character of the original equations is evident, for G, K > 0. It
is, therefore, obvious that in nonlinear solid continuum mechanics with softening,
where the local tangent values of the moduli become negative, the rate equations
lose ellipticity. It is important to note that as long as the secant moduli remain
positive, the equations in terms of the total displacement u (non its increments)
remain elliptic.

Anyway, loss of ellipticity does not mean that the problem be ill-posed or that
it can not be solved numerically. Parabolic and hyperbolic partial differential
equations certainly have solutions and they can be computed, analytically or
numerically.

The true panorama is as follows. For a compressible irreductible elliptic prob-
lem in the continuum, it can be proved that the solution u € V exists and it is
unique, V being the appropriate functional space. It can also be proved that,
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CONTINUUM DISCRETE

GALERKIN

Solution u Solution uy,
exists and exists and
it is unique it is unique

Fig. 3.1: Continuum and discrete compressible irreductible elliptic problem

DISCRETE

DOES NOT
SATISFY inf-sup

CONTINUUM

s

NON-ELLIPTIC
BUT
SATISFIES inf-sup

Solution uy,/py,
exists and
it is unique

DOES
SATISFY inf-sup

Solution u/p
exists and
it is unique

Fig. 3.2: Continuum and discrete incompressible mixed non-elliptic problem
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for this problem, the standard Galerkin discretization method provides a discrete
1rreductible problem which inherits the elliptic nature of the original problem.
Therefore, the discrete solution u, € V), exists and it is unique, V), being an
appropriate finite element functional space. This situation is depicted in Figure
3.1.

The situation is more complex when incompressibility takes places in the
domain. Let us now consider a mized problem in the continuum with some in-
compressibility constraint present, either globally or locally. It can be proved that
a solution u € V, p € Q exists and it is unique if the spaces V and Q satisfy
the inf-sup condition [38]. Unfortunately, satisfaction of the necessary and suffi-
cient inf-sup condition is not necessarily inherited by the corresponding discrete
problem. For instance, if we attempt to solve the incompressible problem us-
ing standard simplexes, such as constant strain triangles or tetrahedra, we have
YV =P, and Q = F,, which do not satisfy the inf-sup condition. This, and not
the loss of ellipticity is the reason why the standard irreductible formulation fails
miserably when attempting to solve localization problems. Figure 3.2 illustrates
the explained situation for these problems.

It is, therefore, evident that the origin of the difficulties encountered when
attempting to solve incompressible problems with non-stable finite element for-
mulations does not lay on the local format of the constitutive equations, as many
reputed researchers have assured during the last decade, but on the inadequacy
of the discretization method used. It is also very clear that to solve localization
problems it is necessary to use a discretization procedure that satisfies the nec-
essary and sufficient inf-sup condition. In the following, we propose the use of
the orthogonal sub-grid scale stabilization method (OSGS) to solve this type of
problems.

3.3 The Sub-Grid Scale approach

The discrete finite element form of the problem is obtained from Eqgs. (3.3a)-
(3.3b), substituting the displacement and pressure fields and their variations by
their standard finite element interpolations:

(Vv 8,) + (V- v, o) — (Vi £) = (Vi t),, = 0 Vv, (3.6a)

1
(qn, V - up) — (C,Zh;Eph) = 0 Va (3.6b)
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where uy, , v, € V}, and pp, , ¢, € Q) are the discrete displacement and pressure
fields and their variations, defined onto the finite element spaces V, and Q,
respectively.

As it is well known, the inf-sup condition [38], poses severe restrictions on the
choice of the spaces V,, and Qj when using the standard Galerkin discrete form
(3.6a)-(3.6b). For instance, standard mixed elements with continuous equal order
linear /linear interpolation for both fields are not stable, and the lack of stability
shows as uncontrollable oscillations in the pressure field that usually, and very
particularly in non linear problems, pollute the solution entirely. Fortunately, the
strictness of the inf-sup condition can be circumvented by modifying the discrete
variational form appropriately, in order to attain the necessary stability with the
desired choice of interpolation spaces.

The basic idea of the sub-grid scale approach [39] is to consider that the
continuous displacement field can be split in two components, one coarse and a
finer one, corresponding to different scales or levels of resolution. The solution of
the continuous problem contains components from both scales. For the solution
of the discrete problem to be stable it is necessary to, somehow, include the effect
of both scales in the approximation. The coarse scale can be appropriately solved
by a standard finite element interpolation, which however cannot solve the finer
scale. Nevertheless, the effect of this finer scale can be included, at least locally,
to enhance the stability of the pressure in the mixed formulation.

To this end, the displacement field of the mixed problem will be approximated
as

u=u;+u (3.7)

where u, € V), is the displacement component of the (coarse) finite element
scale and 1 € V is the enhancement of the displacement field corresponding
to the (finer) sub-grid scale. Let us also consider the corresponding variations
v, € Vp and v € 17, respectively. This extends the displacement solution space
toV~V,®V.

It is reasonable to assume that the sub-grid displacements u will be sufficiently
“small” compared to uy; they can be viewed as a “high frequency” perturbation
of the finite element field, which cannot be resolved in V. It can also be assumed
that u and v vanish on the boundary 0. It must be pointed out that no sub-grid
scale contribution has been considered on the pressure field.

Considering the subscales, the deviatoric stresses can be decomposed into two
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different contributions
s (u) = sp (u) +s(u) (3.8)

Notice that the stresses s are not a linear function of u and, therefore, it is not
exactly true that s, = sp, (u;) and ' s = s (u). However, we can approximate the
stresses corresponding to the coarse finite element scale in the standard fashion,

. Sh (u) = Sp, (uh) = 2G*eh (39)

which can be computed following the integration algorithm proposed in the next
chapter. In Eq. (3.9) we have introduced the secant shear modulus as (half)
the ratio between the norms of the deviatoric stress and total strain tensors,
2G* = ||su||/ |len||- For non-linear constitutive models, this ratio is obviously
non-constant and it varies along the deformation process.

Being the enhancement u “small” compared to uy, it is possible to make the
following approximation for the strains due to the sub-scale:

ISI1 o Nsell _ o (3.10)
el lleall
which motivates the approximation:
s(u) Zs(u)=2G"e (3.11)

It can be remarked that the formalism of approximation (3.11) holds for other
non-linear constitutive models, such as nonlinear elasticity or plasticity.

With these definitions, the discrete problem corresponding to Egs. (3.2a) and
(3.2b) is now:

(Vovh,sp,) +{(V°vi,8) |+ (V- Vi, pr)
— (Vh, f) — (Vh,E) PYor = 0 Vvh (312&)

V.V s0)+ @ V-5 + (% V) +(*f) = 0 V% (3.12b)

1 =
(qn, V - ) — (Qh, ?Ph> +|(qgn,V-u)| = 0 Vg  (3.12¢)

where Eq. (3.12a) has been integrated by parts, recalling that u and v vanish on
the boundary.

Due to the approximation used, Eq. (3.7), and the linear independence of v,
and v, Eq. (3.7), now the continuum Eq. (3.3b) unfolds in two discrete equations,
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one related to each scale considered. Equations (3.12a) and (3.12c) are defined in
the finite element spaces V}, and Qj,, respectively. The first one solves the balance
of momentum including a stabilization term S; = (V°v;,’s) depending on the sub-
grid stresses s. The second one enforces the incompressibility condition including
a stabilization term Sy = (g, V - 1) depending on the sub-grid displacements u.
On the other hand, equation (3.12b) is defined in the sub-grid scale space % and,
hence, it cannot be solved by the finite element mesh. Let us now rewrite Eq.
(3.12b) in the form:

—(¥,V-3) =1, WeV (3.13)

where the residual of the Cauchy equation in the finite element scale is defined
as:

ry, =7TIp (uh, ph) =V- Shp + Vph + f (314)

Now, some appropriate approximations are necessary. According to hypothe-
ses (3.10) and (3.11), let us assume that, within each finite element €2,

<o I8IL_ 2GE Jlell o 2GE [ ul 1=
IV -s]| = == = = = — [lull (3.15)

Clhe Clhe Clhe CQhe Te

where the parameter 7. = ch?/2G? is defined as a function of the characteristic
length of the element h. and the current secant shear modulus G. The constant
¢ = cico = O(1) has to be determined through numerical testing. This very
simple and heuristic approximation of the effect of the sub-scale is one of the
keys to the success of the stabilization procedure of the incompressible problem.
More elaborated assumptions may be needed in other situations.

Integrating the stabilization terms by parts, and recalling that the subscale
displacements vanish on the boundary, it yields

S; = (Vivy,s) = —(u,V-(2G*dev V°vy,)) (3.16a)
S2 = (g, V1) = —(u,Va) (3.16b)

The term V- (dev V*vy) in (3.16a) involves second derivatives of finite element
functions which vanish when linear elements are used. In the case of higher order
elements these derivatives can be neglected, leading to a method which is still
consistent, but with a non-optimal rate of convergence [41].
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3.4 Orthogonal Sub-Grid Scales (OSGS) and Galerking
Least Squares (GLS) stabilizations

The objective in this section is to obtain a useful expression for the sub-grid scale
displacements u to be introduced in the stabilization term S, in Eq. (3.12c).

It was argued in [47] that a very natural choice for the unknown subgrid space
V is the space orthogonal to the finite element space, referred to hereafter as V;-.
This means approximating the displacement solution space as V ~ V, & V;-. The
subsequent stabilization method is called orthogonal sub-grid scale method, and
it has already been successfully applied to several problems in fluid mechanics.

Also, the format of the Eq. (3.13), which is ezact for the fine scale and
nonlocal, strongly suggests that V -'s, and hence u, are driven by the residual of
the coarse scale, ry,. In [40] it is reasoned that the sought effect of the finer scale
is to explicitly account for the distributional effects of the residual of the coarse
scale.

Because of these two reasons, we will take v € V;-, and assume that

—(V,V-38) 2 (VP (r3)) Vv € Vi (3.17)

where Pt (x) is the orthogonal projection of x onto Vi-, which can be expressed
as Pt (x) = x — P, (x). The L? projection of x onto the finite element space, or
least square fitting, can easily be computed from the orthogonality condition

(P,(x)—x,m,)=0  Vm, €V, (3.18)

Using approximations (3.15) and (3.17), the sub-scale displacements can be
localized within each finite element ()., and be expressed as

U, =71, P (ry) €V (3.19)

where the positive sign is necessary from stability considerations.
Some remarks are in order:

1. As expected, u is sufficiently “small” compared to uy, (u ~ O (h?)).

2. With this definition, u is discontinuous across element boundaries. For
linear elements, u is piece-wise linear.
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3. Even if defined element-wise, u, cannot be condensed at element level,
because P;- () is a global operator.

4. In the localization process, it is necessary to neglect the integrals over ele-
ment faces involving the sub-scale, in front of the integrals over the element
volumes. This is justified in [41] resorting to Fourier analysis and recalling
that the subscale is associated to higher frequencies that the grid scale. It
is worth to mention that for “bubble”-type enhancements these boundary
terms are null by construction [42], [43].

5. Eq. (3.19) does not need to be interpreted point-wise, as the values of u
are not used in the stabilization procedure; only the integrals S; and S, in
Egs. (3.16a)-(3.16b) are needed.

It must be pointed out that f in (3.14) can be assumed to belong to the space
V), and, consequently, Pi- (f) = 0. Also, Vs, in (3.14) involves second derivatives
of finite element functions which vanish when linear elements are used. Taking
all this into account, expression (3.19) transforms in

ﬁe = Te (Vph — Ph (Vph)) (320)

Finally, substituting Eq. (3.20) into the expression of the stabilization term
Sy, see Eq. (3.16b), it simplifies as

Nelm

So=—> Te (Van- [Vpn— P (Vpn)]) (3.21)
e=1

Observe that this stabilization term is computed in an element by element man-
ner and, within each element, its magnitude depends on the difference between
the continuous (projected) and the discontinuous (elemental) pressure gradient.
This means that the term added to secure a stable solution decreases very rapidly
upon mesh refinement, as the finite element scale becomes finer and the projection
of the residual reduces. This happens at a greater rate than with other stabi-
lization techniques, such as the Galerkin Least Square (GLS) method, where the
stabilization terms are proportional to the residual itself , see [44], [45] and below.
The projection of the pressure gradient onto the finite element space V,, I, =

P, (Vpp) , is computed as:

(Vph M) = (Hh, M) Vny, € Vi (322)
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As a result of the above procedure, the stabilized mixed system of equations
proposed in this work to solve the problem of incompressible elasto-damage be-
havior with linear/linear interpolations for the displacement and pressure fields
is the following;:

(Vivp,s,) + (V- v, pr) — (v, f) — (Vh,f)mt = 0 Vv, (3.23a)

1
(Qh; A uh) - <Qh, ?Z%)
Nelm

~> 7 (Vo [V —IL]) = 0 Vg, (3.23)

e=1

(fou m) - (Hha 77h) =0 v, (323(3)

It is important to point out that, when using linear/linear displacement and
pressure interpolations, the only stabilization term appears in the incompress-
ibility equation (3.23b), see [1], [2], [3], [4], [5]. Observe that in it, the third
nodal variable IT}, is not other that the L,_projection (least square fitting) of the
pressure gradient, II, = P, (Vp,). The next section shows that the drawback of
accounting for an extra nodal variable can be easily overcome to achieve a robust
and efficient procedure.

An alternative stabilization method is the one known as Galerkin Least Square
(GLS), originally proposed in [44]. The corresponding stabilized discrete problem
reads:

(sth, Sh) + (V . Vh,ph) — (Vh, f) — (Vh’E)ﬁﬂt = 0 VVh (324&)

]_ Nelm
(qn, V - 1) — (QMEP}L) > 7 (Vagn-Vpr)| = 0 Van (3.24Db)
e=1

which has a format very similar to the OSGS method, but does not require the
computation of any extra nodal variable. Experience shows that the GLS method
is more diffusive that the OSGS stabilization. This means that GLS is somewhat
more “robust” than OSGS, but sometimes less sharp localizations are obtained.

3.5 Stabilization parameter

The stabilization techniques discussed in the previous section are designed to
provide stability to the incompressible elasto-damage problem. In reference [3]
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it was found that, with perfect plasticity, the stabilization parameter has to be
modified to account for the development of the plastic regime, as deformation
localizes into weak discontinuities; otherwise, pressure oscillations arise in the
vicinity of the damaged areas and pollute the solution. In [3], it was proposed to
enhance the stabilization properties using a nonlinear stabilization parameter

_ ch?
Te = 9Gr

computed as a function of the characteristic length of the element h. and the

(3.25)

current secant shear modulus G*, defined as (half) the ratio between the norms
of the deviatoric stress and total strain tensors, 2G* = |s|| /||e||. The constant
¢ = O (1) has to be determined through numerical testing.

For nonlinear constitutive models, this ratio is obviously non-constant and it
varies along the deformation process. In the softening regime, it is clear that,
as deformation evolves, the secant modulus G* decreases and, consequently, the
value of 7. increases, further relaxing the incompressibility constraint.

3.6 Consistent residual viscosity

For J,-softening materials, shear strain localizes and the modulus G* decreases
very fast with increasing deformation and, ultimately, vanishes, yielding very
large values of the stabilization parameter. At the same time, the components
of the tangent deviatoric constitutive tensor diminish, eventually leading to a
non-positive definite global stiffness matrix. It is found that these circumstances
cause numerical difficulties that translate in slow or even lack of convergence of
the solution of the nonlinear discrete equations, particularly in problems involving
singular points, where the strains reach very large values.

Therefore, it is necessary to enhance the convergence properties of the non-
linear equilibrium iterations. In this work, we use the consistent residual viscous
regularization proposed in [4] and [5]. This consists on using a residual artifi-
cial viscosity defined in terms of the orthogonal projection of the residual of the
momentum equation onto the finite element space, in the form

, heAt
G

where ¢ = O (1) is a constant, h. is the characteristic length of the element, At

¥ =c

IV — IL|| (3.26)



40 CHAPTER 3. BOUNDARY VALUE PROBLEM

is the time step size and o, is the uniaxial strength. Note that as it is defined,
¥ has units of time.

This residual viscosity acts only in those elements where the momentum equa-
tion is not exactly satisfied and that, for linear simplex, it is 9" = O (h2At) . This
means that it maintains the order of the finite element approximation, as it van-
ishes upon mesh (and time increment) refinement with the appropriate rate. The
structure of expression (3.26) suggests that it is also possible to define the vis-
cosity purely in terms of the norm of the pressure gradient, in the form
, heAt

G
This second proposal is consistent with the definition of the stabilization term
used in the original GLS method.

In the numerical examples showed below, the effective plastic and damage

9 =c

Vn]] (3.27)

viscosities, Pand 9 are taken, for each element, as
9" = max (9P, 9") (3.28a)
7" = max (9%, 97) (3.28b)

where 97 and 9% are the corresponding plastic and damage material viscosities,
respectively, and 9" is the residual viscosity.

It is well known that “viscosity”, i.e. rate-dependent nonlinear behaviour is
one of the ways to preserve the elliptic character of the mechanical problem [48].
It must be emphasized that, in this work, the objective of the use of the residual
regularization is not this preservation, but the enhancement of convergence.

3.7 Implementation and computational aspects

Due to the nonlinear dependence of the stresses on the displacements, the solution
of the system of equations (3.23a)-(3.23c) requires the use of an appropriate
incremental /iterative procedure such as the Newton-Raphson method. Within
such a procedure, the system of linear equations to be solved for the (i + 1)-th
equilibrium iteration of the (n + 1)-th time (or load) step is:

Koy G 0 (n+10) sU (nt1,i+1) R, (n+1,i)
GT _ (%M + LT) GZ SP - — | R,
0 GT _M‘r o011 0

(3.29)
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where U, 6P and 611 are the iterative corrections to the nodal values for the dis-
placements, pressure and pressure gradient, respectively, R; and R are the resid-
ual vectors associated to the satisfaction of the balance of momentum and incom-
pressibility equations, respectively, and the global matrices Koy, G, G-, M, L_
and M, come from the standard assembly procedure of the elemental contribu-
tions, for the i¢-th iteration of the n 4+ 1 step. Note that this global matrix is
symmetric, but it is not positive definite. Each one of the elemental matrices
K(© has the symmetric structure:

KiP  ghB 0 ©

[KAB](e) _ (GAB)T 7. LAB 1, (GAB)T (3.30)
0 TQGAB —Te MAB

where the entry (~)AB is a sub-matrix corresponding to the local nodes A and
B. In equation (3.30), K42 is the deviatoric component of the standard elasto-

dev

damaged tangent stiffness matrix defined as:

dev dev

K{B = / B DY BpdQ (3.31)
Qe

where DY is the deviatoric constitutive matrix and B is a standard deformation
sub-matrix. The generic term of the discrete gradient matrix operator GA? is
given by:

GAP = / [VNA] NPaQ | where [VN4] = [N4N4NA]"  (3.32)
while the lapl;cian term L4P can be expressed as:
LA = /Q (VN4 [VNE] doy (3.33)
Finally, MA# is the “mass” matricees associated to the displacement field:
MAB = / N4N?Z dQ (3.34)
Qe

The expensive monolithic solution of system (3.29) can be avoided by using
an iterative procedure, in which the pressure projection II("+1#+1) is solved inde-
pendently and explicitly. To this end, from the third equation, it is possible to
express IT™t1441) in terms of P 1441 as:

TI(n+Li+l) — (M—1)(n+1,i) G. (ntLi) p(ntlitl) o MilG p(tLitl) (3.35)

T
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The computation of the projections IT can be transformed in a straight-forward
operation by neglecting the difference in the 7. coefficient in adjacent elements
and considering an approximate lumped mass matrix M.

One further approximation can be introduced to make the solution of the
mixed system of equations more efficient from the computational point of view.
This consists in an staggered scheme, keeping the projected pressure gradient
constant during the equilibrium iterations within each time increment, taking it
equal to the corresponding value at the end of the previous time step, that is
I1(H+Lit) = TI(™) | This strategy has proved effective without loss of precision nor
robustness.

From the above, the implementation of the GLS method is straight-forward; it
is enough to delete the third equation in (3.29), together with the corresponding
third column of the global matrix, to yield:

Kdev G (10

1
G - (=M+L,
(7s2r)

(n+1,i+1) (n41,)
][]

oP R,

where the effect of the stabilization matrix L, is evident. For the OSGS, the
stabilization matrix can be formally expressed as L, = L, — GITM!G,.



4 Numerical examples

The formulation presented in the preceding sections is illustrated below in a num-
ber of benchmark problems. The proposed mixed formulation is applied using 2D
plane-strain 3-noded linear triangular meshes. The examples involve compressible
elasticity and the isotropic O-J2-VVV model with exponential softening.

Calculations are performed with an enhanced version of the finite element
program COMET [49], developed by the authors at the International Center for
Numerical Methods in Engineering (CIMNE). Pre and post-processing is done
with GiD, also developed at CIMNE [50].

The Newton-Raphson method, combined with a line search procedure is used
to solve the non-linear system of equations arising from the spatial and temporal
discretization of the weak form of the stabilized problem. Convergence of a step
is attained when the ratio between the iterative and the incremental norm of the
computed displacements is lower than 0.01 (1 %).

Values ¢ = 1 and ¢’ = 1 are used for the evaluation of the stabilization para-
meter 7. the viscous regularization, respectively. Note that this values amount
to a minimal, but substantial, perturbation of the classical problem.

4.1 Benchmark cases

In this section, some benchmark tests subjected to homogeneous states of strain
and stress are used to assess the performance and versatility of the proposed
O-J2-VVV model.

The domain used is a 0.1 x 0.1 m?

square, discretized as 2 3-noded linear
triangular elements. Plane strain conditions are assumed. The straining is applied
by imposing the X-displacement at the right edge of the square, at a constant

43
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rate of 107 m/s, both for loading and the successive unloadings and reloading.
Movement in the Y-direction is unrestrained.

The following material properties are assumed: Young’s modulus £ = 10
MPa, Poisson’s ratio v = 0.3 (recall that G = E/2(1+v), K = E/3(1 —2v)),
uniaxial damage stress o, = 10 KPa and mode 11 fracture energy Gy = 30 J/m?.

In all cases, equal time steps are performed to complete the analyses, At =
0.02 s.

4.1.1 Rate independent behaviour

First, rate independent behavior is tested. Viscous effects in the elastic, plastic
and damage components of the model are deactivated.

Figure 4.1 shows XX-stress vs. XX-strain curve for tensile straining along
the X-axis, for three different values of the overlay parameter: g = 0.9, § =
0.0 and B = 1.0. It can be observed that the envelopes of the three curves
nearly overlap; this is because the three model dissipate the same fracture energy.
However, the partial unloading/reloading branches display the different essence
of the component models. The elasto-plastic model (3 = 0.0) unloads and reloads
elastically, exhibiting inelastic permanent strains; on the other hand, the elasto-
damage model (5 = 1.0) unloads and reloads secantly, that is, through the stress-
strain origin, exhibiting loss of stiffness. As expected, the behaviour of the overlay
model (# = 0.9) represents a mixture of the two other limit cases. Notice how
the overlay model exhibits a certain amount of hysteresis, due to plastic yielding
upon unloading, even though the value of 3 is relatively high.

Figure 4.2 shows XX-stress vs. XX-strain curve for cyclic tensile/compressive
straining along the X-axis, for three different values of the overlay parameter:
6 =09 8=0.0and g = 1.0. It can be observed that the envelopes of the
three curves overlap exactly, because the three model dissipate the same fracture
energy. However, the partial unloading/reloading branches display the different
essence of the component models. In particular, note how the plastic model
(6 = 0.0) reaches the yield surface both in tension and compression, shrinking
accordingly. As before, the behaviour of the overlay model (5 = 0.9) represents
a mixture of the two other limit cases.
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4.1.2 Rate dependent behaviour

Now, rate dependent behavior is tested. To this end, viscous effects in the elas-
tic, plastic and damage components of the model are activated. Viscoelasticity is
modelled using two Maxwell elements (N = 0,1) with the participation factors
¢ = 0.75, ¢' = 0.25 and the retardation times 9¥° = oo and ¥* = 0.05 s. Vis-
coplasticity and viscodamage are controlled by identical retardation times ¥ =
94 =0.05 s.

Figure 4.3 shows XX-stress vs. XX-strain for tensile straining, three different
values of the overlay parameter: § = 0.9, 3 = 0.0 and § = 1.0. The effect of
the different viscous mechanisms is evident, comparing this Figure with Figure
4.1, where the rate independent cases where tested. Note how the peak stress
is now higher due to the plastic and damage over-stresses. However, the initial
stiffness is lower due to the viscoelastic component of the model. Notice also
that viscoelasticity produces some hysteresis for all values of 3. Even using
the same retardation times, viscous effects affect differently the viscoplastic and
viscodamage models. As before, the behaviour of the overlay model (8 = 0.9)
represents an average of the two other limit cases.

Figure 4.4 shows XX-stress vs. XX-strain curve for cyclic tensile/compressive
straining along the X-axis, for three different values of the overlay parameter:
6 =09, 6 =0.0and § = 1.0. Notice how viscosity affects differently the
viscoplastic and viscodamage models. Note also that the even the viscodamage
model (# = 1.0) exhibits a small amount of hysteresis, due to viscous effects.

4.2 Shear localization cases

In this section, two different examples are shown to assess the performance of the
proposed O-J>-VVV model in shear localization problems.

The following material properties are assumed: Young’s modulus E = 10
MPa, Poisson’s ratio v = 0.3, uniaxial damage stress 0, = 10 KPa and mode
I fracture energy Gj; = 200 J/m? Rate dependent behaviour is considered.
Viscoelasticity is modelled using two Maxwell elements (N = 0, 1) with partici-
pation factors £° = 0.75, €' = 0.25 and retardation times ¥ = oo and 9¥' = 0.05
s. Viscoplasticity and viscodamage are controlled by identical retardation times
WP =97 = 0.05 s.
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It must be emphasized again that, in this examples, the dependent behaviour
is not used to preserve the elliptic character of the problem, as similar, mesh
objective, results can be obtained for the totally inviscid limits of the model,
using the OSGS method, as shown in references [4] and [5].

In all cases 200 equal time steps are performed to complete the analyses,
At =5 x 1074, so that At/ = 100.

4.2.1 Singly perforated strip

The first example is a plane-strain singly perforated strip subjected to axial im-
posed straining. Because of the double symmetry of the domain and boundary
conditions, only one quarter of the domain (the top right quarter) needs to be
discretized. Figure 4.5a depicts the original geometry of the problem; dimensions
are 20 x 40 m? (width x height) and the radius of the perforation is r = 1 m.
Thickness is 1 m.

The computational domain is divided into an unstructured uniform mesh of
7,336 linear triangles (3,801 nodes) with an average mesh size of h, = 0.25 m, not
shown. The pre-processor used tends to introduce patches or equilateral triangles
with predominant directions at —30°, +30° and +90° with the horizontal axis.

Figure 4.6 shows (half)-load vs (half)-imposed vertical displacement curves
(recall 1 m thickness is assumed) obtained with three different overlay parameters:

Fig. 4.5: Original and deformed (x 5) geometries for singly perforated strip
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Fig. 4.8: Results for singly perforated strip. Contours for: (a) vertical
displacement, (b) pressure (c) equivalent plastic deviatoric strain and (d)
damage index

(a) 5 =0.0, (b) f=0.75 and (c) f = 1.0. Two remarks are in order. First, the
three curves show a similar limit load, but the different essence of the component
dissipative mechanisms show in the post-peak softening part curve. As it has
been explained, the differences in the responses are due to the different unloading
paths followed by the elements located outside the continuously narrowing shear
localization band.
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Fig. 4.9: Evolution of damage for singly perforated strip. Contours for
(half )-imposed vertical displacement equal to: (a) 0.015, (b) 0.020, (c) 0.025
and (d) 0.030

Figure 4.7 shows (half)-load vs (half)-imposed vertical displacement curves
(Im thickness is assumed) obtained with two uniform unstructured meshes with
two element sizes: (a) he = 0.25 m and (b) h. = 0.50 m (1,820 elements, 977
nodes). An overlay parameter 3 = 0.75 is used in this comparison. Note that the
overall global response is satisfactorily similar upon mesh refinement, with the
total area under the load-displacement curve converging to the correct amount of
mechanical dissipation dissipated to create the localization bands. No spurious
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brittleness is observed when the size of the elements is reduced. This is achieved
by the regularization procedure of the plastic and damage softening moduli.

Figure 4.8 shows the results obtained using the proposed stabilized mixed
u/p formulation, for a (half)-imposed vertical displacement 6 = 0.10 m, when
the failure mechanism is already fully developed. Control on the pressure is
completely attained, and no spurious oscillations are observed anywhere in the
domain, even though a minimal amount of stabilization has been necessary (recall
that ¢ = 1 is used for the evaluation of the stabilization parameter 7.). The
resolution of the shear bands is optimal for the mesh used, as shown by the
vertical displacement and equivalent plastic deviatoric strain plots. Discontinuity
of the displacement tangential to the slip line occurs across one single element.
The shear bands form a correct angle of approximately £45° with the horizontal
axis, irrespectively of the pronounced directional bias of the mesh. No indication
of “overshoots”or “undershoots” of any magnitude is observed at either side of
the discontinuity lines. The deformed shape of the strip (with an amplification
factor of 5) is shown in Figure 4.5.

Finally, Figure 4.9 shows the evolution of the damage index at four different
stages of the analysis, for: (a) 6 = 0.015 m, (b) 6 = 0.020 m, (¢) 6 = 0.025 m
and (d) 6 = 0.030 m. Note that the localization bands form completely at a very
early stage of the analysis, and in a quite “explosive” fashion. The damage index
of the elements inside the localization bands reaches values very close to unity,
complete shear degradation, very early during the analysis.

4.2.2 Multiply perforated strip

The last example is a plane-strain strip with four circular perforations subjected
to axial imposed straining. Because of the double symmetry of the domain and
boundary conditions, only one quarter of the domain (the top right quarter) is
discretized. Figure 4.10a depicts the original geometry of the problem; as in the
previous examples, dimensions are 20 x 40 m? (width x height) and the radius
of the perforations is » = 1 m. Thickness is 1 m.

The interest of this last example is that in it, as it will be shown below, the
symmetric collapse mechanism consists of multiple shear bands that intersect each
other and connect the perforations among them. Therefore, it is an adequate test
to assess the ability of the different formulations to deal with such a complex
situation.
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The computational domain is divided into an unstructured uniform mesh of
7,353 linear triangles (3,823 nodes) with an average mesh size of h, = 0.25 m.

Figure 4.11 shows (half)-load vs (half)-imposed vertical displacement curves
(recall 1 m thickness is assumed) obtained with obtained with three different
overlay parameters: (a) 8 = 0.0, (b) = 0.5 and (c) § = 1.0. The remarks
referred to the previous example also apply here.

Figure 4.12 shows (half)-load vs (half)-imposed vertical displacement curves
(Im thickness is assumed) obtained with two uniform unstructured meshes with
two element sizes: (a) he = 0.25 m and (b) h. = 0.50 m (1,810 elements, 978
nodes). An overlay parameter 5 = 0.75 is used in this comparison. Once again,
no spurious brittleness is observed when the size of the elements is reduced.

Figure 4.13 shows the results obtained using the proposed stabilized mixed
u/p formulation, also for a (half)-imposed vertical displacement 6 = 0.20 m. The
results obtained with this method are optimal, and only small spurious oscillations
are observed in the pressure contours. These can be completely removed by
slightly increasing the value of ¢ used for the evaluation of the stabilization term.
The resolution of the shear bands is optimal, as shown by the displacement and
equivalent deviatoric strain plots, with the discontinuities occurring across one
single element. The deformed shape of the strip (with an amplification factor of
5) is shown in Figure 4.10b.

Finally, Figure 4.14 shows the evolution of the damage index at four different

Fig. 4.10: Original and deformed (xz 5) geometries for multiply perforated strip
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Fig. 4.13: Results for multiply perforated strip with OSGS formulation.
Contours for: (a) vertical displacement, (b) pressure, (c) equivalent deviatoric
plastic strain, (d) damage index

stages of the analysis, for a (half)-imposed vertical displacement: (a) 6 = 0.020
m, (b) 6 =0.030 m, (c¢) 6 = 0.040 m and (d) 6 = 0.060 m. Notice how the central
inner and outer shear bands develop first, while the upper and lower bands form
at a later stage. Notice also that these later bands are not straight; regardless of
this, the solution captures nicely such complicated failure mechanism.
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Fig. 4.14: FEvolution of damage for multiply perforated strip. Contours for
(half )-imposed vertical displacement equal to: (a) 0.020, (b) 0.030, (c) 0.040
and (d) 0.060



5 Conclusions

This work formulates an isotropic overlay J2- Viscoelastic- Viscoplastic- Viscodamage
model (O-J2-VVV model) that encompasses the merits of both the plastic and
continuum damage formulations. This is a relatively simple constitutive model
which, nevertheless, is able to reproduce realistic rate dependent (and, in the
inviscid limit, rate independent) stress vs. strain responses which exhibit perma-
nent strains and loss of stiffness upon unloading.

A fully stable formulation of the problem is obtained using the orthogonal
sub-grid scales (OSGS) approach, which allows equal order interpolation of the
displacement and pressure fields. This translates in the achievement of three
crucial goals:

e (a) the solution of the corresponding localization boundary value problem
exists and it is unique,

e (b) the position and orientation of the localization bands is independent of
the directional bias of the finite element mesh, and

e (b) the global post-peak load-deflection curves are independent of the size
of the elements in the localization band.

A consistent residual viscous regularization is proposed and successfully ap-
plied, in order to overcome the convergence difficulties often encountered in ap-
plications involving softening behaviour and shear strain localization.

The derived method yields a robust scheme, suitable for engineering applica-
tions in 2D and 3D.

Numerical examples show, first, the versatility of the model to reproduce rate
dependent material responses; second, the tremendous advantage of the mixed

o7
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formulation over the irreductible one to predict correct failure mechanisms with
localized patterns of shear deformation, completely free from any dependence of
the mesh directional bias; and third, that stabilization techniques such as OSGS
are able to fully avoid the volumetric locking exhibited by the standard non-stable
formulations in the process of formation of shear bands, yielding a correct global
response in the softening regime.
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