

IV International Conference on Particle-Based Methods. Fundamentals and Applications PARTICLES 2015 28 - 30 September 2015, Barcelona, Spain

IACM Special Interest Conference

Numerical modelling of railway ballast behaviour using de Discrete Element Method (DEM) and spherical particles

Authors: Joaquín Irazábal, Fernando Salazar y Eugenio Oñate

- Motivation and objectives
- Railway Ballast
- Discrete Element Method (DEM)
- Software
- Ballast representation with spheric particles
- Laboratory tests
- Different particles shape
- Conclusions

MOTIVATION AND OBJECTIVES

Motivation:

Increasing interest all over the world in high-speed trains

Objectives:

- Study railway ballast properties
- <u>Develop a numerical tool to reproduce quantitatively</u> <u>the macro-mechanical behaviour of railway ballast</u> <u>using the DEM</u>
- Validate the code

RAILWAY BALLAST

Layer of <u>granular material</u> placed under the sleepers whose roles are: resisting to vertical and horizontal loads and facing climate action

Contact constitutive model:

Rigid bodies, deformation concentrated in contact points

DISCRETE ELEMENT METHOD

Algorithm:

http://www.cimne.com/dempack/ http://www.cimne.com/kratos/ http://gid.cimne.upc.es/

BALLAST REPRESENTATION WITH SPHERES

Rolling friction:

<u>Geometrical "property"</u> that consists in imposing a virtual moment opposite to particle rotation and dependent on its size

C. M. Wensrich and A. Katterfeld. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, 217:409–417, February 2012

BALLAST REPRESENTATION WITH SPHERES

Rolling friction:

<u>Geometrical "property"</u> that consists in imposing a virtual moment opposite to particle rotation and dependent on its size

C. M. Wensrich and A. Katterfeld. Rolling friction as a technique for modelling particle shape in DEM. *Powder Technology, 217:409–417, February 2012*

Kaltenbach, H.J. et al. T. Assessment of the aerodynamic loads on the trackbed causing ballast projection: results from the DEUFRAKO project aerodynamics in open air (AOA). Seul, 2008.

TEST RESULTS

Ballast properties				
Density (kg/m³)	2700	Friction coeff.	0.6	
Young Modulus (Pa)	1.2e8	Restitution coeff.	0.4	
Poisson ratio	0.18	Rolling fricition coeff.	0.33	
Mean diameter (m)	0.05			
	Input p	arameters		
Projected stone radius (m)			0.05	

1000 J

20°

45°

80°

80°

100 J

500 J

1000 J

Vertical load= 0 N Sleepers Velocity = 0.0001667 m/s

Zand and Moraal (1997) Roads and Railways Research Laboratory Technical University of Delft

Ballast properties	
Density (kg/m³)	2700
Young Modulus (Pa)	5.1e9
Poisson ratio	0.18
Mean diameter (m)	0.05
Friction coeff.	0.6
Friction coeff. ballast/sleeper	0.7
Restitution coeff.	0.4
Rolling fricition coeff.	0.33
Input parameters	
Stabilization time (s)	1.0

Ballast properties			
Density (kg/m³)	2700		
Young Modulus (Pa)	5.1e9		
Poisson ratio	0.18		
Mean diameter (m)	0.05		
Friction coeff.	0.6		
Friction coeff. ballast/sleeper	0.7		
Restitution coeff.	0.4		
Rolling fricition coeff.	0.33		
Input parameters			
Stabilization time (s)	1.0		

CIMNE⁹

CIMNE⁹

Sphere clusters:

Sphere-Tree Construction Toolkit (<u>http://isg.cs.tcd.ie/spheretree/</u>)

Triaxial test:

Diameter = 0.305 m Height = 0.61 m Confining pressure = 68.9 kPa Shear velocity = 0.038 m/s

Quian et al. (2013) Triaxial compression test device - University of Illinois

Triaxial test:

Ballast properties

Density (kg/m³)	2700			
Young Modulus (Pa)	5.1e9			
Poisson ratio	0.18			
Mean diameter (m)	0.05			
Friction coeff.	0.4			
Friction coeff. ballast/membrane	0.0			
Friction coeff. ballast/actuators	0.268			
Restitution coeff.	0.4			
Membrane properties				
Young Modulus (Pa)	1.5e6			
Poisson ratio	0.45			
Thickness (m)	0.0023			
Penalty factor (γ)	100			

Triaxial test:

Ballast properties

Density (kg/m³)	2700			
Young Modulus (Pa)	5.1e9			
Poisson ratio	0.18			
Mean diameter (m)	0.05			
Friction coeff.	0.4			
Friction coeff. ballast/membrane	0.0			
Friction coeff. ballast/actuators	0.268			
Restitution coeff.	0.4			
Membrane properties				
Young Modulus (Pa)	1.5e6			
Poisson ratio	0.45			
Thickness (m)	0.0023			
Penalty factor (γ)	100			

Triaxial test:

PARTICLES 2015

Triaxial test:

- The DEM is an appropriate method for the calculation of ballast aggregates
- Rolling friction is useful for calculations with a great amount of material
- Material stiffness is a key property when measuring deformations
- Particle packing is an important variable
- Sphere clusters are a good approach to represent real geometries with low computational cost, but more validation work should be developed

ECCOMAS Thematic Conference

IV International Conference on Particle-Based Methods. Fundamentals and Applications PARTICLES 2015 28 - 30 September 2015, Barcelona, Spain

IACM Special Interest Conference

THANK YOU FOR YOUR ATTENTION

Joaquín Irazábal (jirazabal@cimne.upc.edu) Fernando Salazar (<u>fsalazar@cimne.upc.edu</u>) Eugenio Oñate (<u>onate@cimne.upc.edu</u>)