

Continuum Modelling using the

Discrete Element Method.
Theory and Implementation in an

Object-Oriented Software Platform

M. Santasusana
E. Oñate

Publication CIMNE Nº-381, September 2012

Continuum Modelling using the

Discrete Element Method.
Theory and Implementation in an

Object-Oriented Software Platform

M. Santasusana
E. Oñate

Publication CIMNE Nº-381, September 2012

International Center for Numerical Methods in Engineering
Gran Capitán s/n, 08034 Barcelona, Spain

I

Abstract

The Discrete Element Method is a relatively new technique that has nowadays and intense

research in the field of numerical methods. In its first conception, the method was designed

for simulations of dynamic system of particles where each element is considered to be an

independent and non-deformable entity that interacts with other particles by the laws of the

contact mechanics and moves following the second Newton’s law. This first approach for the

DEM has obtained excellent results for granular media simulations or another discontinuous-

like case. The existing challenge nowadays for the DEM is to be able to simulate the behaviour

on a continuous media discretized by a mesh of particles ruled by the equations of the DEM.

Although there exist more adequate methods to solve the continuous problem as they are the

different variants of the Finite Element Method, the DEM is expected to have a better

behaviour when the failure of the media occurs; in terms of tracking the evolution of the

fracture locally between the elements of the discretization and also the post-fractural

behaviour of the material.

Nowadays, there are several DEM codes that try to solve this problem although there is no one

which can assure an accurate solution applicable universally to any case. The objective of the

present work is to develop calculation software for the Discrete Element Method included in

the platform for numerical methods KRATOS, which is developed in CIMNE. One of the goals

of the so-called DEM-Application is to be able to reproduce a wide set of engineering problems;

not only the discrete ones such as the excavation or agroalimentary applications but also to

reproduce the continuous media, simulating compression test for concrete or asphalt samples

for instance. In addition it is desired that the application permits the coupling with another

methods, particularly the Finite Element Method.

In order to do this, the present work includes the study of all the advances and ideas that,

globally in the numerical method field and particularly in CIMNE, have been discussed to give

other approaches and to keep improving and developing the to the Discrete Element Method.1

Title: Continuum modelling using the Discrete Element Method. Theory and implementation in an object-
oriented software platform.
Author: Miquel Santasusana Isach
Supervisors: Eugenio Oñate Ibáñez de Navarra, Miguel Ángel Celigueta Jordana.
Key words: Discrete Element Method, KRATOS, CIMNE, continuum simulation, C++ programming.

II

III

Resum

El Mètode dels Elements Discrets és un mètode relativament nou el qual avui dia és objecte

d’una intensa recerca en el món dels mètodes numèrics. Originalment el mètode fou concebut

per a la simulació de sistemes dinàmics de partícules on cada element és considerat com a

entitat independent i indeformable que interacciona amb les altres seguint les lleis del

contacte mecànic i es mou segons la segona llei de Newton. Aquest primer plantejament sobre

el M.E.D. a tingut molts bons resultats per a simulacions de medis granulars o qualsevol

assimilable a un medi discontinu. El repte actual per al DEM és ésser capaç de simular també el

comportament d’un medi continu discretitzat per una malla de partícules que interaccionin

segons les lleis del M.E.D. Tot i existir mètodes molt més adequats a resoldre aquest problema

com son les variants del Mètode dels Elements Finits, el M.E.D. promet tenir un millor

comportament a l’hora de seguir l’evolució de la fractura a nivell local entre els elements de la

discretització i el comportament post fracturat del material.

 Actualment, existeixen molts programes de Elements Discrets que intenten resoldre aquest

problema sense haver-n’hi cap que asseguri una solució acurada aplicable a nivell universal i

amb versatilitat. L’objectiu de la tesina és desenvolupar un programa de càlcul d’Elements

Discrets inclòs en la plataforma per mètodes numèrics KRATOS, desenvolupada al CIMNE. Un

dels objectius de l’anomenada DEM-Application és poder reproduir un ampli conjunt de

problemes d'enginyeria; no tan sols els que són merament “discrets” com el medis granulars,

tal i com poden ser l’excavació o aplicacions agroalimentàries, sinó també la simulació del

medi continu, com ara reproduir provetes de formigó, asfalt, etc. Paral·lelament es desitja que

l’aplicació permeti el càlcul acoblat amb altres mètodes, en particular amb el Mètode dels

Elements Finits.

Per dur-ho a terme, en la tesina, s’ha estudiat tot el conjunt d’avenços i idees que, en el món

dels mètodes numèrics a nivell global i a CIMNE en particular, es plantegen per donar altres

punts de vista, millorar i continuar desenvolupant el Mètode dels Elements Discrets.2

Títol: Modelització del medi continu mitjançant el Mètode dels Elements Discrets. Teoria i implementació
en una plataforma de programació orientada a objectes.
 Autor: Miquel Santasusana Isach
Supervisors: Eugenio Oñate Ibáñez de Navarra, Miguel Ángel Celigueta Jordana.
Paraules clau: Mètode dels Elements Discrets, KRATOS, CIMNE, simulació del continu, programació C++.

IV

V

Table of Contents

ABSTRACT ... I

RESUM ... II

TABLE OF CONTENTS ... V

LIST OF FIGURES ..IX

INTRODUCTION AND OBJECTIVES .. 1

PART I: THE DISCRETE ELEMENT METHOD ... 3

1. OVERVIEW OF THE METHOD ... 3

1.1. BRIEF HISTORY OF THE DISCRETE ELEMENT METHOD... 3

1.2. INTRODUCTION AND GENERAL ASPECTS OF THE DEM FORMULATION ... 3

1.2.1. Preliminary steps: ... 5

1.2.2. Contact Search ... 6

1.2.3. Evaluation of Forces ... 6

1.2.4. Integration of Motion Equations .. 7

2. DEM THEORY DISCUSSION ... 8

2.1. CONTACT DETECTION ... 8

2.1.1. Buffer Zone ... 10

2.1.2. Bounding Box/Sphere representation .. 11

2.1.3. Brute Force Search Method .. 12

2.1.4. Static Cell Search (grid-based method) .. 13

2.1.5. Dynamic Cell Search (grid-based method) ... 14

2.1.6. No binary Search Method ... 16

2.1.7. Tree-based algorithms ... 17

2.1.8. Local contact resolutions .. 19

2.2. CONSTITUTIVE MODELLING OF THE CONTACT .. 27

2.2.1. Normal interaction forces .. 28

2.2.2. Absolute position method and incremental method .. 29

2.2.3. Relative importance of the accuracy on the stiffness value ... 30

2.2.4. Indentation permitted .. 31

2.2.5. Gain of energy .. 31

2.2.6. Numerical damping and physical damping .. 33

2.2.7. Tangential interaction forces ... 36

2.2.8. Final remark on the constitutive modelling of the contact. ... 38

2.3. INTEGRATION OF THE MOTION LAWS .. 39

2.3.1. Explicit integration schemes. .. 39

2.3.2. Numerical stability of the method and critical time step ... 40

VI

3. CONTINUUM MODELLING WITH DEM ... 42

3.1. GLOBAL DERIVATION OF DEM MICRO PARAMETERS USING DIMENSIONLESS RELATIONSHIPS 43

3.2. LOCAL DEFINITION OF DEM ELASTIC CONSTITUTIVE PARAMETERS .. 45

3.3. THE EFFECTIVE CONTACTING VOLUME METHOD .. 46

3.4. ROTATIONAL SPRING .. 49

3.4.1. Justification of the rotational spring .. 49

3.4.2. Proposed stiffness for the rotational spring ... 49

3.4.3. Remarks on the rotational spring ... 50

3.4.4. Example of application ... 51

3.5. FAILURE OF THE CONTACTS, PLASTICITY AND DAMAGE ... 51

3.6. GENERATION: MODELLING THE STRUCTURE OF THE CONTINUUM ... 53

4. DEM-FEM .. 55

PART II: KRATOS DEM-APPLICATION .. 59

5. KRATOS-MULTIPHYSICS PLATFORM .. 59

5.1. WHAT IS KRATOS? ... 59

5.2. WHO MAY USE KRATOS? ... 60

5.3. WHO IS KRATOS? .. 61

5.4. WHAT MAKES KRATOS USEFUL? ... 61

5.5. KRATOS STRUCTURE ... 62

5.6. BASIC TOOLS ... 62

5.7. VERSIONING SYSTEM (SVN) ... 63

5.8. BENCHMARKING SYSTEM ... 63

6. KRATOS DEM-APPLICATION... 64

6.1. BORN OF DEM-APPLICATION... 64

6.2. CURRENT DEVELOPMENT AND COLLABORATION .. 65

7. GRAPHIC INTERFACE .. 68

7.1. GID PRE AND POST PROCESSOR ... 68

7.1.1. Pre-Process: .. 68

7.1.2. Calculation Process:.. 69

7.1.3. Post-Process ... 70

7.2. IMPLEMENTATIONS DONE IN THE PRE-PROCESSOR FOR DEM-APP. ... 71

7.2.1. Inherited Pre-Process .. 72

7.2.2. New DEM-Application Pre-Process ... 72

7.3. IMPLEMENTATIONS DONE IN THE POST-PROCESSOR FOR DEM-APP. ... 80

7.3.1. Inherited Post-Process .. 80

7.3.2. New DEM-Application Post-Process ... 80

8. IMPLEMENTATION IN KRATOS .. 82

8.1. BASIC COMPUTATIONAL SEQUENCE FOR A DISCRETE ELEMENT CODE ... 82

8.2. BASIC STRUCTURE OF THE DEM-APPLICATION ... 83

8.3. FOLDERS AND FILES IN THE APPLICATION: .. 84

8.4. EXPLANATION OF THE MAIN FILES: ... 85

8.4.1. Advanced users: ... 85

8.4.2. Developers stage .. 91

8.5. UTILITIES FOR THE DEM APPLICATION .. 98

8.5.1. Parallelization ... 98

VII

8.5.2. Compute Critical Time + Virtual Mass .. 100

8.5.3. Bounding Box + Create and Destroy ... 102

8.5.4. Plotting the different fractures ... 102

8.5.5. Initial Delta Option ... 104

8.5.6. Continuum Simulating Option .. 105

8.5.7. Neighbour Search utility and Extended Radius Search ... 105

8.5.8. Framework for the Versatility utilities .. 107

9. FUTURE OF DEM-APPLICATION.. 113

9.1. FURTHER DEVELOPMENT OF THE DEM-APPLICATION .. 113

9.2. PARALLEL RESEARCH WIT DEM/DEM-APPLICATION IN CIMNE ... 114

CONCLUSIONS.. 117

FINAL PERSONAL COMMENTS.. 118

ANNEX: CODE IMPLEMENTED .. 121

REFERENCES ... 165

VIII

IX

List of Figures

PART I: DISCRETE ELEMENT METHOD

Figure I. 1 Basic computational scheme for the DEM. .. 4

Figure I. 2 Particles on a conveyor belt ... 5

Figure I. 3 Flow of particles in a hopper .. 5

Figure I. 4 Rheological model for the contact ... 6

Figure I. 5 Grid/Cell structure .. 9

Figure I. 6 Tree structure ... 9

Figure I. 7 particles with Buffer Zone .. 10

Figure I. 8 Buffer zone example for neighbouring search ... 10

Figure I. 9 Most common types of bounding box representations ... 11

Figure I. 10 Bounding Box/Sphere and buffer zone .. 12

Figure I. 11 Static Cell construction example .. 13

Figure I. 12 Dynamic Cell Search overview ... 14

Figure I. 13 Dynamic Cell Search example .. 15

Figure I. 14 CPU cost vs. Cell size on D-Grid methods ... 16

Figure I. 15 Domain and particles representation in NBS ... 16

Figure I. 16 K-2 Tree construction ... 17

Figure I. 17 Quad-Tree structure ... 18

Figure I. 18 Oct-Tree structure .. 18

Figure I. 19 Local contact resolution after global search .. 19

Figure I. 20 Contact directions and area ... 19

Figure I. 21 Local contact example .. 20

Figure I. 22 Contact between two ellipses .. 20

Figure I. 23 Overview of the method for the ellipses.. 21

Figure I. 24 Superquadric 3D shapes ... 21

Figure I. 25 Polygon/Polyhedra contact .. 21

Figure I. 26 Corner to plane and corner to corner contact in polygons 22

Figure I. 27 Types of contact between hexahedra .. 24

Figure I. 28 Semi-spring/Semi-edge method overview. .. 24

Figure I. 29 Clusters of particles .. 25

Figure I. 31 Tablet shape particles .. 25

Figure I. 30 Cluster generated in GiD by ULCV CIMNE .. 25

Figure I. 32 Contact between convex surfaces at different time steps 26

Figure I. 33 Rheological models for the contact between two spheres...................................... 27

Figure I. 34 Contact between two spheres. .. 28

Figure I. 35 Impact between two spheres/discs. .. 30

Figure I. 36 Comparison between numerical and analytical force determination 32

Figure I. 37 Rheological representation of the contact... 33

Figure I. 38 Classical Coulomb Law and Regularized Coulomb Law. ... 36

Figure I. 39 Compression test simulation with DEM ... 45

file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592641
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592642
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592643
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592644
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592645
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592646
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592647
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592648
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592649
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592650
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592651
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592652
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592653
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592654
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592655
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592656
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592657
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592658
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592659
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592660
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592661
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592662
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592663
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592664
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592665
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592666
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592667
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592670
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592673
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592675
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592676
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592678

X

Figure I. 40 Equivalent volume corresponding to by the contact ... 46

Figure I. 41 Rheological model for the contact ... 48

Figure I. 42 Relative rotation between two particles .. 49

Figure I. 43 Rheology for the rotational spring ... 49

Figure I. 44 Ball chain with rotational spring under an ascendant load 51

Figure I. 45 Ball chain without rotational spring ... 51

Figure I. 46 Normal and tangential contact force in perfectly brittle model. 53

Figure I. 47 Gravitational deposition test by Munjiza ... 53

Figure I. 48 Fine particle mesh generated on a skull by UCLV-CIMNE .. 54

Figure I. 49 Interaction between a tool (FEM) .. 55

Figure I. 50 FEM wedge introduced in DEM domain .. 55

Figure I. 52 FEM discretization of a DEM particle ... 56

Figure I. 51 Fracture of finite element .. 56

Figure I. 53 DEM discretization of a FEM element .. 57

PART II: KRATOS DEM-APPLICATION

Figure II. 1 KRATOS basic scheme ... 60

Figure II. 2 KRATOS framework ... 62

Figure II. 3 KRATOS DEM partnership ... 65

Figure II. 4 Discrete elements from tomographies, UCLV Cuba .. 66

Figure II. 5 Extract from IMECH works .. 67

Figure II. 6 GiD Geometry editing example ... 68

Figure II. 7 DEM_explicit_solver ProblemType Options .. 69

Figure II. 8 Post process screenshot. Animation on results. ... 70

Figure II. 9 Type of visualization selection .. 70

Figure II. 10 Selection of the magnitude to be shown .. 71

Figure II. 11 DEM_explicit_solver menu.. 72

Figure II. 12 Example geometry – mesh in line entities .. 73

Figure II. 13 Cylinder meshed with GiD sphere mesh generator .. 74

Figure II. 14 GiD Sphere mesher options .. 74

Figure II. 15 Mesh resulting from miscellaneous geometry .. 75

Figure II. 16 Miscellaneous geometry definition ... 75

Figure II. 17 Conditions assignment – Nodal Values ... 76

Figure II. 18 Problem Parameters menu ... 77

Figure II. 19 DEM Materials selection ... 79

Figure II. 20 Example of rotation visualization option in 2D (CDEM) .. 81

Figure II. 21 MDPA example, nodes list. .. 85

Figure II. 22 MDPA example, list of elements. .. 86

Figure II. 23 MDPA example, example of nodal data. ... 86

Figure II. 24 Cluster of Distributed Memory Machines ... 100

Figure II. 25 Example of application for different failure types .. 103

Figure II. 26 Initial Delta remembered in a contact .. 104

Figure II. 27 Gap left by the mesher. ... 106

Figure II. 28 Framework of the Initialize algorithm implemented .. 107

file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592682
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592683
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592684
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592686
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592688
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592689
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592691
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592694
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592698
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592700
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592701
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592702
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592703
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592704
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592705
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592706
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592707
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592708
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592709
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592710
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592711
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592712
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592716
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592717
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592718
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592719
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592720

XI

Figure II. 29 Framework of the Solve algorithm implemented ... 108

Figure II. 30 Framework of the neighbour calculator utility implemented. 109

Figure II. 31 Bone regeneration in the bone-prosthesis interface .. 114

Figure II. 32 Rockfall simulation. DEM particles on a FEM domain ... 115

Figure II. 33 Interaction of drilling tool with ... 115

Figure II. 34 Simulation of an explosion on a wall ... 116

file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592721
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592722
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592723
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592724
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592725
file:///C:/Users/Miquel/Documents/ESTUDIS/TESINA%20CIMNE/TESINA%20MIQUEL%20SANTASUSANA.docx%23_Toc328592726

0

1

Introduction and objectives

This dissertation is the result of the implementation of a Discrete Element Method code in an

open source object-oriented software platform called KRATOS developed in CIMNE (Barcelona).

The result of this work is the so-called DEM-Application, which is the program that has been

coded for the author forming part of team of engineers in CIMNE.

This document presents all the discussions and the special topics that have been taken into

account in order to develop the application. A basic introduction to the Discrete Element

Method is presented in the first part of the document with the topics in discussion for the

special features and characteristics of the DEM, including the features needed to introduce the

simulation of the continuous media with the DEM.

In the second part, the KRATOS framework is introduced and the basic structure of the DEM-

application is explained. The implementations of the utilities that differentiate this application

from others are highlighted in the second part.

The objective of the DEM-Application is to have a base program for the DEM coded in a very

powerful and versatile platform, KRATOS. This permits different researchers extending and

improving the code as well as using as a closed package for projects and simulation by

advanced users and engineers.

The objective of this document is to guide those users or developers in using the program and

understanding the underlying numerical methods implemented as well as introducing them to

the theoretical aspects and capacities of the Discrete Element Method when dealing with the

continuum modelling problems.

2

3

Part II - 3
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Part I: The Discrete Element Method

1. OVERVIEW OF THE METHOD

1 . 1 . B r i e f h i s t or y o f t h e D i s c r e t e E l e m e n t M e t h o d

Peter A. Cundall [1] developed a general method to apply in rock mechanics and referenced it

as Discrete Element Method for the first time to the scientific literature in 1971. The method,

frequently called Distinct Element Method has its theoretical basis on the method that Sir

Isaac Newton established in 1697. Its first applications in engineering problems were in

geomechanics years later in 1990 described in the book Numerical Modelling in Rock

Mechanics, by Pande, G., Beer, G. and Williams, J.R. [2].

Since that point the method has been rapidly spread; an important impulse for the method

was the 1st, 2nd and 3rd International Conferences on Discrete Element Methods, which have

been a common point for researchers to publish advances in the method and its applications.

Journal articles reviewing the state of the art have been published by Williams, Bicanic,

and Bobetet al. Regarding the DEM-FEM combined method, a comprehensive treatment is

contained in the book The Combined Finite-Discrete Element Method by Munjiza [3].

1 . 2 . I n t r od u c t i o n a n d g e n e r a l a s p e c t s o f t h e D E M f or m u l a t i o n

The Discrete Element Method was firstly introduced by Cundall (1971)) [1] for the analysis of

the fracture mechanics problems and, afterwards, it had been applied to solids by Cundall and

Strack (1979) [4]. From that time to now, the method has evolved so much and has acquired

new perspectives that bring engineers the possibility to study a large type of problems. Some

of these new insights will be commented in next sections but the objective of this first

introduction is to set the bases of the original method.

The crucial difference between a DEM models and the FEM is that the material is represented

by a discontinuous particle structure without any need of a mesh in the strict sense. The

infinite number of material points of the continuum is replaced by a finite number of particles

of finite extent that interact through collisions with each other.

http://en.wikipedia.org/w/index.php?title=Nenad_Bicanic&action=edit&redlink=1
http://en.wikipedia.org/wiki/Bobet
http://en.wikipedia.org/w/index.php?title=Ante_Munjiza&action=edit&redlink=1

4

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

The DEM shows several apparent similarities compared to the “classical” mesh free methods.

However, the key difference between the DEM, on the one side, comparing with traditional

mesh-aligned methods (FEM, BEM, FDM) and also comparing with meshless methods (SPH,

MLS, PIC, etc.)1 on the other side, is that the first one describes a discontinuous media, while

the last groups describe a continuous media. This means that the methods which describe a

continuum are all based on a formal discretization, while methods like the DEM are based on a

physical discretization; i.e. elements of the DEM represent physical objects.

The method simulates the mechanical behaviour of a system formed by a set of particles

arbitrarily disposed. This method, in its original conception, considers the particles to be

discrete elements forming part of a higher more complex system. Each distinct element has an

independent movement; they interact each other due to the contacts.

Basically, the Discrete Element Method algorithm, from a computational point of view, is

based on three basic steps:

Figure I. 1 Basic computational scheme for the DEM.

1
 Mesh-Aligned Methods: FEM: Finite Element Method, BEM: Boundary Element Method, FDM: Finite

Difference Method.
Meshless Methods: DEM: Discrete Element Method, SPH: Smooth Particle Hydrodynamics, MLS: Moving
Least Squares, PIC: Particle In Cell

0

• Preliminary Steps
• Geometry discretized by particles + parameters (delta

time) + conditions

1
• Contact Search
•Global search + Local resolution

2

• Evaluation of Forces
• Contact forces characterization + Consituitive model +

Damping , etc.

3
• Integration of Motion equations
• Explicit schemes, Critical time step evaluation

1
• Contact Search
• Global search + Local resolution

 One Step

5

Part II - 5
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 P r e l i m i n a r y s t e p s : 1.2.1.

The geometry of the problem is formed by different subsets of discrete particles; normally a

determined volume is discretized by hundreds, thousands, millions of discrete elements filling

the space. This discretization would simulate the distribution of the physical objects that form

the domain; the geometry in some classical applications represent bulk materials in silos or

tanks, containers and transport of agro-industry good, chemistry and pharmaceutical

applications, soil, rock, for landslide, excavation, transport, mining.

Once the geometry is represented by discrete elements the characterization of the parameters

takes part. Many relations have been established to set the values on the model and all of

them require the information from the geometry and the macroscopic properties of the

material such as the Young modulus and the Poisson ratio.

The time step is here selected and it has to take in account several aspects:

 Time of the simulation: for long simulations, longer time steps are needed.

 For accurate detailed solutions with little indentations, a very small time step is

required.

 The range of time steps available is limited by the chosen integration scheme. In

explicit methods, which are the most used ones, the critical time step is a limitation on

the time step selection.

The conditions applicable to the system of particles are simply constrains on some degrees of

freedom for the movement of particles as well as forces applied or velocities imposed to them.

Figure I. 2 Particles on a conveyor belt Figure I. 3 Flow of particles in a hopper

6

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 C o n t a c t S e a r c h 1.2.2.

In contrast with the Finite Element Method-based methods, the DEM, has no connectivities

between the nodes by means of the elements. So the transfer of properties such as forces, and

in consequence, accelerations, velocities and displacement are possible for the contact criteria

between the pair of elements involved. The contact is determined, in the most classical way,

when one body belonging to a discrete element intersects with another body that defines

another discrete element. The contact search is a very important part of the method in terms

of computational cost (range 60%-90% of simulation time) and it is possibly the most difficult

part to treat when dealing with particles that have no spherical/circular shape.

 E v a l u a t i o n o f F o r c e s 1.2.3.

This method applies the solid-rigid mechanics in the particle level and, in principle, the discrete

elements are considered to be rigid, non deformable elements. The constitutive model or

behaviour of the material is established in the contact areas between particles.

Rheologically it can be described with a set of springs, dashpots and frictional elements. The

characterization of the parameters defining these devices is a fundamental issue. There has

been a lot of discussion and research trying to determine the correct values for these

parameters and there is not a unique universal solution. Contrarily, there are good approaches

that parameterize the contacts for specific cases that can differ from the simulations of

discrete granular media, interaction between tool and rock in excavation or continuum

simulating problems.

There are more complicated schemes than the presented on Figure I. 4 and there are also

simpler ones that would depend on what kind of problem is being analysed.

𝐾𝑡

𝑑𝑡

𝑑𝑛

𝜇

𝐾𝑛

Figure I. 4 Rheological model for the contact

7

Part II - 7
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 I n t e g r a t i o n o f M o t i o n E q u a t i o n s 1.2.4.

The only differential equation that needs to be integrated is the second-order time derivative

of the position due to the basic Newton’s-Law. The translational and rotational motion of rigid

spherical or cylindrical particles is described by means of Newton-Euler equations of rigid body

dynamics. For every element:

 ̈

 ̇

Eq. 1 Equations of motion, translation and rotation

Where is the displacement of the particle centre in a fixed (inertial) coordinate frame ,

the angular velocity, the element (particle) mass, the moment of inertia, the resultant

force, and the resultant moment about the central axes.

Vectors and are sums of all the forces and moments applied to each element:

 ∑

 ∑

Eq. 2 Expression for the applied Force and Moments

Where and are external applied forces and moments while are the resultant

forces from the interaction with the neighbouring spheres and other entities; finally

and are the forces and moments resulting from damping in the system. is the

vector connecting the centre of the particles of the target element with the contact point.

is the number of particles being in contact and are the torques due to rolling or torsion (not

related with tangential forces).

The presented equation for the rotational motion is only valid for spheres and cylinders (in 2D)

and is simplified with respect to the general form for an arbitrary rigid body with the rotational

inertial properties represented by the second order tensor.

8

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

2. DEM THEORY DISCUSSION

Many aspects that have been introduced previously in the introduction section are now

extended. In this section also, some specific features are exposed here as part of the “issues in

discussion” that are interesting for this work. Furthermore, these issues are relevant of the

interest of CIMNE researchers during the study of the method and for the implementation in

D.E.M-Application.

2 . 1 . C o n t a c t D e t e c t i o n

This represents one of the key issues of the algorithm. Depending on the number of objects

involved and the complexity of the shape, it can represent from 60 % up to 80-90 % of the

total simulation time. This means basically that the approach must be very efficient and also

the method must be adequate specifically to the case; it will not be interesting to execute a

complex algorithm that could cover any shape contact detection if our problem contains only

spherical particles.

The contact detection basically consists in determining, for every target object, which other

objects are in contact with it, and then, judge for the correspondent interaction. Normally,

objects move freely and the contact is determined when an overlap occurs, and so, then they

must interact. It is usually desired to have a very low overlapping 0.1% ~1% (this is discussed

on 2.2.4 Indentation permitted) to have realistic results, but of course, it depends on the time

step selection and the dynamism (velocity) of the particle/objects.

Well, it has already been said that the contact detection is a very expensive part of the

algorithm, therefore it’s logical to limit the search of neighbours/contacts only when it is

necessary1. Obviously there is no need to update the contacts at every time step of the

calculation (if the time step is considerably small, the neighbours will be the same from several

time step calculations) but, if delaying too much the search, it can happen to suddenly find

large indentation on a new contacting pair; so the repulsion forces would be too big, therefore

there would be a huge amount of “created” energy that would lead some problems as It will

be explained in section 2.2.5 Gain of energy. This can be solved by using the so-called buffer

zone, explained in this section.

1
 DEM-App: in the application we have introduced the possibility to choose the number of time steps

between the every contact detection search.

9

Part II - 9
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

The different contact detection can be divided in two basic stages:

 Global Contact Search: It consists on locating the list of potential contact objects for

each given target body. There are two different basic schemes: the Grid/Cell based

algorithms or the Tree based ones. There are numerous different methods and

variations for each type:

 Grid based algorithm: A general rectangular grid

is defined in the entire domain, a unified

bounding box or sphere is adopted to represent

the discrete elements; the potential contacts are

determined by selecting the surrounding cells

where each target body is centred on.

 Tree based algorithm: each element is

represented by a point. Starting from a centred

one, it splits the domain in two sub domains

obtaining points that have larger X coordinate in

one sub domain and points with smaller values of

the X in the other sub domain. The method

proceeds for next points alternating every time

the splitting dimension and obtaining a tree structure like the one shown

in the Figure I. 6. Once the tree is constructed, for every particle, the

nearest neighbours have to be determined following the tree in upwind

direction.

 Local Resolution Check: The objective is to establish the actual contact configuration.

Starting from the potential contacts or areas found in the global contact search, now

the contact is analysed in detail. This is the difficult and expensive part of the contact

detection; even for simple polygonal shapes the detection criteria is not trivial. The

complexity is much higher for 3D cases, which are the most frequent ones. 1

1 In the DEM-Application the local resolution check is not very expensive since it considers only
spheres contacts. The team is currently developing basic regular shape contacts; this is
introduced on 2.1.8 Local contact resolutions

Figure I. 5 Grid/Cell structure

Figure I. 6 Tree structure

10

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 B u f f e r Z o n e 2.1.1.

In order to solve the problem of permitting the neighbours

updating every predefined set of time steps and, also assuring

that there would not be large indentations, the concept of

buffer zone has to be introduced. The buffer zone is a safety

zone around the objects used to check whether there are other

future neighbours or not. When a simple search is performed

for contacting elements, the criteria is usually, as already said,

the indentation (overlap) between the target particle and the

possible neighbour. Using the concept of the buffer zone, the area around the target element

will be enlarged and it will be checked if there are any other elements, which are not currently

in contact with the target now, but are situated inside the buffer zone; therefore it can be

considered as a potential future neighbour in a very near time step.

These buffer zones can be used to change the frequency of neighbour search, i.e. if the search

is defined every 10 calculation time but during one of these time steps a possible future

neighbour is detected close, the search can be renewed earlier than this predefined 10 time

steps in order to capture well the moment of contact.

There are many criteria to determine the size of the buffer zone. It has to be a function of the

time step, the number of time steps between each search and the velocity of the particles.

Found on global search
(intersection with BB.)

Not neighbour by local check.

Possible future neighbor.
(Intersection with Buffer Zone)

Neighbour found in global search and
checked by local resolution.

TARGET ELEMENT

BOUNDING BOX

 Δ BUFFER ZONE

Figure I. 7 particles with

Buffer Zone

Figure I. 8 Buffer zone example for neighbouring search

11

Part II - 11
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

As many aspects of the Discrete Element Method, there are almost no parameters that can be

determined globally and be universal for all cases; contrarily, they depend on the

characteristics of the problem. For a dynamic discrete system the following expression is

proposed:

Where: = Number of time steps between each search.

 = Calculation time step.

 = Velocity of the target particle (norm of the velocity).

 = Max. velocity of the particles in the system (norm of the velocity).

 = Extension of the bounding box, defining the buffer zone (space units).

This is a very simple expression that assures that there will never be a neighbour able to pass

through the buffer zone without being detected. When the neighbour is detected inside the

bugger size, the time step can be reduced in order to capture the possible contact.

Nevertheless, this proposed expression is too conservative and there are other more efficient

expressions.

 B o u n d i n g B o x / S p h e r e r e p r e s e n t a t i o n 2.1.2.

It consists on, as a first approach for the global potential neighbours, inscribing our discrete

elements into a box/sphere in 2D or 3D. This coarser representation of the particle will

determine the area where potential neighbours can be found.

There are many different schemes to represent an arbitrarily shaped object by a simple

bounding geometry entity (volume). In video games there are a lot more sophisticated ones

but the OBB hierarchies are used frequently.

This proceeding is used when applying a tree-based or a grid-based search method; the

algorithm searches contacts between these simplified coarse representations of the particles

which is much easier because the spheres or boxes substitute the complex geometries.

Figure I. 9 Most common types of bounding box representations

12

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Once the potential neighbour particles are determined by the selected method, a more

sophisticated criterion is applied for the neighbouring detection of the actual geometry of the

elements that were detected to be possibly in contact.

The buffer zone is applied to enlarge the size of the bounding box or sphere around the

elements.

More detailed information of these issues can be found on a paper from Walizer, L.E. and J.F.

Peters. [5].

 B r u t e F o r c e S e a r c h M e t h o d 2.1.3.

The first method we are going to analyse is the simplest one, the brute search. It will be a

reference to compare the reduction of computational cost versus the complexity of the other

methods. The name is due to its simple and rudimentary approach. To find which ones are the

contacting elements to a given target, the method calculates the minimum distance between

each pair, and judges whether there is contact or not.

For every element, the method does a loop for all other elements checking for the contact.

Regardless of the complexity of the judgement, the order of the number of operations needed

is quadratic: (N2).

Figure I. 10 Bounding Box/Sphere and buffer zone

13

Part II - 13
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 S t a t i c C e l l S e a r c h (g r i d - b a s e d m e t h o d) 2.1.4.

The domain is discretized with rectangular cells (2D) or

hexahedral (3D) of the same size. The elements are associated

to the cells depending on the coordinates. The efficiency of

the method depends on the balance between the size of the

cells and the number of elements in each cell. This

homogeneous the distribution of elements is, the more

efficient the method is. There are some variants existing to

this method with adaptive meshes for the case of non uniform

element distribution.

The summarized steps of the method are:

 Mapping stage:

 Find the maximum space occupied by the objects.

 Determine the maximum size of the objects.

 Divide the space into cells of the maximum size.

 Map each object to a cell based on the position of its lower, upper corner

or central point.

 Search stage:

 1. Check the overlap between the objects within each cell.

 2. Check overlap of the objects in the cell with those in the neighbouring

cells (8 in 2D).

 Using the contact symmetry, the number of neighbouring cells to be

checked can be halved.

 Features (pros and cons):

 It is a very simple method.

 Effective for small, compact problems.

 The computer costs are usually of the order (N·log(N)).

 Very expensive for large simulations where the spatial distribution of

objects is sparse and irregular (i.e. large number of empty cells).

 The cell size must be no smaller than the maximum size of objects.

Figure I. 11 Static Cell construction

example

14

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 D y n a m i c C e l l S e a r c h (g r i d - b a s e d m e t h o d) 1 2.1.5.

This method is also a grid-based method but the

approach is quite more sophisticated. The 2D

domain case is explained next, it can be extended to

3 dimensions easily.

First of all the domain is divided in rows (or columns)

and for each row several cells are created. Each cell

is assigned the elements where its boundary box

bottom-left corner is situated on.

The proceeding starts now from the first bottom row,

going cell after cell checking the contacts between

the elements assigned to each cell.

After a cell is completed, there is a check of element migration corresponding to the cells. The

same way after a whole row is completed there is the correspondent check for elements that

migrate to the next row.

 Types of migration checks:

 Row migration: Elements are migrated to the next row if their upper y-

coordinate is greater than the lower y-coordinate of the next row. This is

done only if the next row is non-empty.

 Cell migration: Elements are migrated to the next cell if their upper x-

coordinate is greater than the lower x-coordinate of the next cell. This is

done only if the next cell is non-empty.

1 This is the method that currently we use in DEM-Application. It is implemented for the

disc/spheres neighboring search. We have developed some extra features like the radius

extension and the tolerance in the search that is explained in PART II section 8.5.7 Neighbour

Search utility and Extended Radius Search.

Figure I. 12 Dynamic Cell Search overview

15

Part II - 15
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 Types of elements in each cell: for a generic cell during the calculation, the situation is

presented in the following figure, where 4 types of elements can be differentiated.

 Type 0-0: Element 6; it’s an

element original from this row and

from this current cell. It will be

migrated to the next cell and also

to the next row.

 Type 0-1: Element 8; this element

is original from this row but is migrated from the previous cell.

 Type 1-0: Element number 2; an element migrated from the previous row

but new for the cells of this row.

 Type 1-1: element number 1; it’s an element migrated from the previous

row and also from previous cell.

 Local Checks: the necessary checks for contact proceeding cell by cell are:

 Determine contacts between the elements among the type 00.

 Determine contacts of the elements of type 00 against type 01.

 Elements type 00 against type 11.

 Elements type 01 against type 10.

 Main features of the method are:

 Dynamic processing of the cells

 Linear complexity. CPU cost can be optimized to (N).

 Very effective for large simulations.

 Not sensitive to the spatial distribution of objects.

 No performance degradation for objects with wide range of size

distribution.

 Arbitrarily choice of cell size.

 Readily extendable to any dimension.

Figure I. 13 Dynamic Cell Search example

16

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

The 4th and 5th listed features of the dynamic method represent a poweful advantage for the

usage of this method against the static one. However, the choice of the cell size is crucial to

obtain an optimal CPU cost.

Again there is no unique selection of the parameters; the optimal cell size depends on several

factors, such as object size distribution, packing density, and some other computer and

hardware issues.

Further information on this method can be found on the following reference: Perkins, E. and

J.R. Williams [6].

 N o b i n a r y S e a r c h M e t h o d 2.1.6.

The NBS (no binary search) algorithm was

proposed by Munjiza in 1998 [7] and it is

mostly convenient for problems involving large

quantity of bodies with large movements. In

optimal conditions, the total detection time is

proportional can to the number of particles,

 (N). This result is more or less independent

from the packing density which affects

insignificantly on the memory requirements.

The only limitation of the algorithm is its

applicability to systems comprising bodies of

similar size.

CELL MAINTENANCE

TOTAL

CONTACT CHECK

CPU COST

CELL SIZE
OPTIMAL

Figure I. 14 CPU cost vs. Cell size on D-Grid methods

Figure I. 15 Domain and particles representation in NBS

17

Part II - 17
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

The method starts determining the whole domain and dividing it in regular cells. First of all,

every particle will be represented by an evolving sphere or disc which would be the larger

contained in the space. The diameter of this representative volume will be the one that de cell

size determines; the domain is divided in cells of the same maximum diameter size.

Each particle is mapped to a cell and identified with and integer index for x and y. Then, for

every row the linked lists containing all the indexed particles on each row are created. The

correspondent loops are effectuated to determine optimally the neighbouring and are

explained in the reference [7]. Basically the method proceeds row by row from bottom to top

and for every particle labelled (ix, iy) the particles in the following cells have to be checked:

(ix,iy), (ix-1, iy), (ix-1, iy-1), (ix, iy-1), (ix +1, iy-1) and (ix+1, iy).

 T r e e - b a s e d a l g o r i t h m s 2.1.7.

These are alternative method to the cell-based algorithms. These methods have an average

performance of (N·logN) for the CPU time. The difference, in terms of efficiency, from the cell

methods is the strong dependency on the construction of the tree and de order of insertion of

the particles to the tree.

K-D-Tree: It consists on inserting one after another the coordinates of the particles into an

algorithm which divides the space alternatively in X, Y, Z, etc. It is extendible to any dimension.

Every new particle that is inserted is compared in the first stage against the first dimension and

it goes to the left if the value is smaller or to the right if its larger, then in the next stage the 2nd

dimension is compared and the proceeding is the same; this is being done shifting at each level

one dimension and inserting the new particles in new levels that can contain a maximum of

two particles.

Figure I. 16 K-2 Tree construction

18

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Once the tree is constructed, it is easy to identify which particles are potential neighbours to

others. This method is especially sensitive to the particle insertion order, and so the

performance is very dependent on it.

Quad-Tree: Working in 2D, the domain is divided in

rectangular cells with a maximum number of particles

of four. If any resulting cell has more than four

particles it is divided again in four cells more. While

doing this the domain discretization can be

represented in a tree scheme with four branches. This

structure allows indentifying easily the objects

belonging to the different sub domains tracking

downwards onto the. The cost of this search is of the

order of (N·log4 N).

Oct-Tree: The extension of this concept to three

dimensions in space it brings an eight element

structure. Now, the domain will be divided in cells

which will contain a maximum of eight elements. If

there is any cell with more than eight elements it will

be subdivided in eight inner cells. The search for

elements belonging to any sub domain is performed

by checking the tree from top to bottom following

the branches like the previous cases, this time the

cost of the search is about (N·log8 N). A

recommended reference for the oct-tree implementation is Raschdorf [8].

The construction of a new tree structure for each time step would be so expensive. For fine

time steps, most of the contacts will be more or less the same than the previous stage. The

information of the previous contacting pairs can be very useful to improve the current search.

These methods, like the cell-based ones, are used as a first global search stage to determine

the potential neighbours and they would need a local resolution check after it.

 Figure I. 17 Quad-Tree structure

Figure I. 18 Oct-Tree structure

19

Part II - 19
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 L o c a l c o n t a c t r e s o l u t i o n s 2.1.8.

Given that two discrete objects are potentially in contact, local contact resolution establishes if

they are indeed in contact based on their actual geometric shapes.

It is not the objective of this work to enter much in detail for these methods, which can be

much more complicated than the global search, especially for irregular shapes. This problem is

well-known because it has been studied in many disciplines apart from D.E.M., including video-

game programming. Interesting information can be found on [9-10]

If the pair is in contact, the normal and tangential contact directions, the contact point and the

characteristics of the overlap, such as the penetration, contact width and contact area, may

also need to be determined at this stage, depending on the interaction laws to be used. This

will be discussed in next section 2.2 Constitutive Modelling of the Contact

 Contact Directions

 Contact Point/Centre

 Overlap, Curvature,

 Width, Area, etc

This is the most time consuming part in contact detection. Every effort should be made to

make it computationally as efficient as possible.

Figure I. 19 Local contact resolution after global search

Figure I. 20 Contact directions and area

20

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

The complexity of the detection depends only on the shape of the bodies that are analysed.

The basic one is the contact between spheres, which is the easiest, but it can be interesting to

use ellipsoids instead or, in a higher level of complexity, polyhedral or even irregular complex

shapes can be used.

Spheres/discs

The local resolution check is obviously trivial for spheres

where; for every possible pair (detected via global search),

the only comparison needed is the distance between their

centre coordinates against the sum of the radius.

Remember that the particles are supposed to be in contact

when an indentation positive or equal to zero is presented.

In this case everything is well defined; not only the check is

easy but also the normal direction of the contact is simply

defined by joining the centres, and therefore the

tangential plane is defined; the contact point also well

defined the overlap is direct and the contacting are is geometrically easy to determine.

Ellipses/Ellipsoids/superquadrics

The general determination would involve solving a two

nonlinear (quadratic) system of equations. It normally

requires the use of an iterative procedure, such as the

Newton-Raphson method which is computationally too

expensive to apply in our case. Fortunately, there are

some other well defined approximate methods to

simplify the contact detection between two ellipses.

In general these methods are applicable to other analytically represented non-circular objects.

Unfortunately these methods are not extendible to ellipsoid 3D shapes.

Figure I. 21 Local contact example

between discs

Figure I. 22 Contact between two ellipses

21

Part II - 21
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

It is not the object of this work to enter much in detail about these methods but it is essential

to give an insight of how difficult can be entering on these aspects, and moreover, making it

efficiently.

In the next figure, just as example, it is presented the ambiguity of determining the centre and

the normal direction for the contact between to convex shapes. For a detailed description of

the methods refer to Feng, Y. lecture notes [11]

In a similar sense there are methods developed for ellipsoids and superquadric objects which

may interest the reader; to learn about that see Owen, [12].

Polygon/Polyhedron

These cases are very complicated compared to the sphere contact. The basic questions that

have to be solved now are:

 1. Are the bodies in contact?

 2. How to define the characteristic parameters?

 What is the appropriate definition of the overlap?

 How to determine the normal contact direction?

 3. What interaction laws should be associated with?

Figure I. 23 Overview of the method for the ellipses

Figure I. 24 Superquadric 3D shapes

Figure I. 25 Polygon/Polyhedra contact

22

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Local check

There are algorithms than can determine the overlap region between two polygons or

between polyhedron, with a linear complexity (N) (where N is the number of

vertices/edges).

These types of contacts are also a common operation in computer games/graphics. Significant

research has been conducted and highly efficient public codes are available, e.g. V-Clip, I-

COLLIDE, in which the temporal coherence (see page 26) plays a key part.

Characterization of the parameters

In 2D there are only three types of contacts: plane to plane (which has no problem with the

definition), plane to corner and corner to corner. In 3D this gets quite more involved.

In corner to corner contact, it is also not clear how to properly define the overlap (penetration).

The same problem also arises in FEM.

Some methods have been developed to characterize the correct normal directions and the

overlap.

 Rounding the corners: By rounding the corners with circular arcs, the difficulties

associated with the corner/corner contact may be (partially) overcome. However,

different circular radius can lead to different results. No method is available to guide

the selection of a proper radius. Thus, this treatment is also an artificial numerical

procedure.

Figure I. 26 Corner to plane and corner to corner contact in polygons

23

Part II - 23
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 Contact energy based algorithm: A functional of energy is defined in terms of the

overlap area between the two bodies, the normal direction is the variation of the area

with respect to the position and the resulting force is proportional to the derivative of

the energy with respect to the position. Depending on how the energy is defined in

terms of the area we have different models for quantifying the force. See reference

Feng, lecture notes [11].These methods have been generalized to 3D polyhedra by the

same author.

Methods for irregular shapes

The objective of many studies has been to determine a global algorithm for the contact

detection between any shapes; in this section some of the advanced techniques that

nowadays are being under research are commented. Particularly a couple of methods that are

being studied by a collaborator in KRATOS DEM-Application1. The two methods that the

KRATOS team are currently working on for future features of the program are the Discretized

finite elements contact and the Semi-Spring/Semi-Edge method

The so-called discretized finite element contact method simply consists on a simple approach

that would make the contact detection much easier when dealing with the DEM elements –

FEM elements contacting problem (see section 4. DEM-FEM). The method is an idea proposed

by C. Feng and M. Santasusana to solve the contact detection and characterization with a

coupled DEM-FEM problem; the basic idea of the method relies on using the discretized mesh

instead of the geometry to define the entities which are susceptible to the contact detection.

The idea is that if the entire continuum where the elements apply is discretized with

triangles/tetrahedra or quadrilaterals/hexahedra, these complex discrete bodies/particles

could also be discretized with the same type of mesh (except the discs/spheres, which don’t

need to be discretized).

By doing so, the possible contacts would always be triangle against triangle or quadrilateral

against quadrilateral, even in 3D. This is because, when analysing the local contact, only the

surfaces of the neighbouring bodies have to be taken into account.

1
 PhD candidate C. Feng, which is a researcher on IMECH, CAS (CHINA), who during the spring 2012 has

been a collaborator in KRATOS DEM-Application

24

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

As a first stage, a method that evaluates contacts only between triangles could be coded and

then, for the tetrahedra discretization in 3D or triangular meshes in 2D, all the contacts could

be checked easily. A next step would be doing the same with quadrilateral, also including the

easy detection against spheres and finally mixing up these commonly used geometries in most

of the FEM and DEM simulations respectively.

For instance, the contact between hexahedra should involve the different six possible

situations:

 Face against Face:

 Edge against Face:

 Vertex against Face:

 Edge against Edge:

 Edge against Vertex:

 Vertex against Vertex:

The above mentioned Semi-Spring/Semi-Edge method is a work original from Feng Chun who

defines an inner contact control points to simplify the contact detection to only 2 possibilities:

contact between semi-springs and contact between semi edges.

Some other conventional methods related with penetrating edges can be found here for

tridimensional blocks, Yung-ming, C et altri [13].

Edge to edge Edge to face

Face to face

Without face vertex in face

Vertex to vertex Vertex to edge Vertex to face

Face to face

Face vertex in face

Edge to edge Edge to face

Face to face

Without face vertex in face

Semi-spring

Target face
Semi-spring

Interpolation Node

Target face

Case (a) Case (b)

Figure I. 27 Types of contact between hexahedra

Figure I. 28 Semi-spring/Semi-edge method overview.

25

Part II - 25
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Clusters of spheres

Another technique that has been used recurrently is the representation of complex shapes1 by

the assemblage of large number of spheres. This method is permits easy implementation

because the contacting zones can be considered independent spheres, whose the contact laws

of those are well-known.

Figure I. 29 Clusters of particles

This is an alternative not only for irregular shapes but also for simple ellipsoids and polyhedra

which, with a large number of little spheres surrounding their boundary, can be accurately well

defined.

For pharmaceutical application it may be of interest this reference that treats about the tablet

shape contact, from Song, Y et altri [14]

Figure I. 31 Tablet shape particles

1

 The UCLV CIMNE classroom (CUBA) is currently working on this type of irregular particle
representations for bio-medical applications. See section 6.2 Current development and collaboration on
Part II of this work.

Figure I. 30 Cluster generated in GiD by ULCV CIMNE

26

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Temporal coherence

Figure I. 32 Contact between convex surfaces at different time steps

Due to the use of explicit time integrations for dynamic analysis (see section 1.2.4 Integration

of Motion Equations) where the time steps are generally very small (~10-6 sec.) the difference

between the two contact configurations at two consecutive time instants are normally very

small. Thus, some contact characteristics at the current time step can be used as a very good

initial guess for the next time step to significantly increase the solution convergence of the

contact resolution. This is called temporal coherence, and should be exploited wherever

possible.

27

Part II - 27
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

2 . 2 . C o n s t i t u t i v e M o d e l l i n g o f t h e C o n t a c t

This section will focus basically on the contact between spheres, which is the easiest and the

most used particle in the D.E.M. The characterization of the parameters that rule the physics

of the contact are a fundamental issue in this method. Depending on the type of simulation,

continuum simulating or discrete dynamic systems, the parameters and the models itself have

to take in account different nuances.

In essence, the contact can be described rheologically by a set of simple devices like a spring, a

dashpot and frictional or cohesive devices. However, complicated systems can be obtained

combining these different devices.

Figure I. 33 Rheological models for the contact between two spheres

These parameters that rule the forces and stresses within a contact are often called Micro

parameters of the model and have to be defined by the method:

 The stiffness parameters: that relate the forces and moments

with the displacements and rotations.

 Strength parameters: that are related with the stress limits

and determine the strength values for the normal compressive, tensile, shear and

moment stresses.

 Friction coefficient: , normally Coulomb’s friction model.

 Damping coefficients: for the translational and rotational motion.

There are two philosophies regarding the characterization of these parameters, a global

approach for every contact and a locally description that depends on each contact. Next, the

derivation of the values for these parameters is presented in a local way is presented; also

extra considerations or simplifications are discussed.

28

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 N o r m a l i n t e r a c t i o n f o r c e s 2.2.1.

The simplest D.E.M. methods must contain at least one device: the normal spring; with just

this simple model a dynamic system of frictionless particles interacting can be simulated.

Therefore, this is the starting point for any D.E.M simulation. Complementing this, the

dashpots, frictional devices, shear springs, etc. can be introduced to represent more complex

and realistic contact situations.

In general, the normal interaction force can be described:

 Eq. 3 General contact force

For the classical linear spring (Hook’s law):

 Eq. 4 Hook’s law

From the Hertzian theory, for compressive contact

between two spheres:

 Eq. 5 Hertzian general contact

 ̂ √ , ̂

 Eq. 6 Parameters for two spheres contact (Hertz)

 ̂ (

 ̂

 ̂
)

 (

)

 Eq. 7 Parameters for different radius and materials (Hertz)

Here, the generic case for the Hertzian contact between two spheres is presented. Note that

the case with one sphere and a plane is also contemplated, i.e. → .

There are many other expressions similar to this one to evaluate the behaviour in normal

direction depending on the desired case. When dealing with continuum simulations some

other expression can be used1. See section 3.3 The effective contacting volume method for

more details.

1
 In DEM-App. we can change easily from one law to other and we can apply an incremental method or

absolute method. When dealing with continuum simulations we use the expression deduced in the
section 3.3 The effective contacting volume method.

Figure I. 34 Contact between two spheres.

29

Part II - 29
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 A b s o l u t e p o s i t i o n m e t h o d a n d i n c r e m e n t a l m e t h o d 2.2.2.

There are two ways of calculating the contact force that each time one body applies to the

other due their indentation: the absolute method or the incremental method.

The first case is easier to implement; basically once the force-displacement relation is defined,

for both tension and compression cases (may differ from each other), the force can be

obtained in any time just by knowing the contact distance in such time. This method simply

requires an evaluation of the force for a given indentation for each time, independently of the

type of function and the dependency with the indentation.

In the incremental case, the position of every particle at every time is not needed for the

calculation. The new normal force is obtained just adding up to the previous force, the current

force contribution due to the current incremental displacement at every time step.

For the classical linear spring:

 Eq. 8 Algorithm for linear expression

It is easy to see that it will only work if the relation between the force and the displacement is

linear. Nonetheless, for non-linear expressions, a linearization of the function can be done in

terms of a Taylor expansion:

 Eq. 9 Taylor expansion

However, this would complicate things if the derivatives of the function have to be calculated;

although numerics can be applied again, it is explained on next section that this operations are

usually not worth it.

In contrast with the normal contacts, where the absolute method it’s easier and completely

accurate, the shear forces (if they are condisderated) have to be treated obligatory with an

incremental method. See section 2.2.7 Tangential interaction forces.

30

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 R e l a t i v e i m p o r t a n c e o f t h e a c c u r a c y o n t h e s t i f f n e s s v a l u e 2.2.3.

For anyone who has never coded or dealt with the D.E.M, or simply contact or impact

problems, it might sound strange to state that the value for the normal stiffness needn’t to be

accurate. In fact, good results can be obtained with very different values than the theoretical

ones.

Remembering that the normal contact is rheologically represented by a spring, when an

impact/contact occurs, it converts the kinematic energy to potential elastic energy and it does

the same operation back again. Therefore, regardless of the stiffness value for the spring, the

energy would be perfectly conserved.

The only difference of choosing large or small stiffness value is on the deformation observed

when a ball gets inside the other (non realistic) and the contact time; rigid springs produce fast

impacts instead of soft springs which lead to large indentations and so, larger contacting times.

In the figure this is represented by a ball that falls from an initial height, contacts with the fixed

one compressing the spring and it is repulsed back again by the elastic force, recovering the

initial height.

Figure I. 35 Impact between two spheres/discs.

The selection for a normal stiffness value has some other important implications that would be

determinant when choosing the correct value: the gaining of numerical energy, the damping,

the time step selection, the indentation permitted, etc. Some of these topics are discussed

next.

31

Part II - 31
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 I n d e n t a t i o n p e r m i t t e d 2.2.4.

Usually when simulating contacts/impacts between discrete media, the spheres represent

granular material or steel or concrete, which usually are highly non-deformable materials. A

large stiffness value should be introduced in order not to observe large unreal indentations

between the spheres, sometimes it can be even bigger than the theoretical one. In realistic

simulations, for the indentation between two rigid bodies, the indentation should be in the

range of 0.1% to 1%, which implies large stiffness values. This would incur in some “gain of

energy” in the system if no further considerations are taken into account.

 G a i n o f e n e r g y 2.2.5.

The integration methods are discussed on section 2.3 Integration of the motion laws but it

shall be advanced here that the most used methods are the explicit schemes for memory

storage reasons. The problem of these schemes is that they “gain” energy during a contact.

The reason is because a penalty method is chosen to impose the constrains of impenetrability

of the particle. Many explicit methods that can be used like the Fordward-Euler have

themselves the problem of energy gaining even in the simple system of a mass suspended on a

spring while others can assure no gaining energy for this academic case. However, when we

apply the penalty method the problem is different and all of these classical methods would win

some energy (that can be more or less negligible).

In a simple forward method example we can show the reasons of this effect: First of all, in

general, it is not feasible to capture the exact moment when spheres get in superficial contact.

The particles move until some indentation is found by the neighbour search; at that moment,

the correspondent spring force is applied with some delay and we do the same for the next

steps in a discrete way. So, as it can be seen in the next figure, we are not applying all the

correct force and so the kinematic energy is not well dissipated and the particle is able to

penetrate more than it should.

32

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

When returning back the delay is also present ant the over rated values of elastic force will act

including the last step where the particle will be already outside the contacting entity.

Another effect related with this happens for large (realistic) values of the stiffness. Happens

when the selected time step is not sufficiently small .the first time a sphere “enters” inside the

other, the first free indentation produces an enormous repulsion force that would have never

happened in the analytical case where the sphere couldn’t indent so much because the force

would have been acting for smaller values of indentation.

For real stiffness in steel or concrete time steps of (10-6) are needed to avoid this

phenomenon, which is sometimes non practical because it makes the simulations too

expensive and time consuming. The common way is to use smaller stiffness values letting the

particles have a little indentation in order to be able to use larger time steps without gaining so

much energy.

Figure I. 36 Comparison between numerical and analytical force determination

33

Part II - 33
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 N u m e r i c a l d a m p i n g a n d p h y s i c a l d a m p i n g 2.2.6.

The needing of a “non physical” damping in the DEM is due

to the numerical error accumulated in the explicit scheme as

it has been presented before. An extra damping can be

devises to kill this effect in a calibrated way; the

determination of the amount of damping needed for

balancing a determined choice of delta time and stiffness

parameters is an issue interesting to discuss.

Rheologically, the damping on the contacts, is represented by

a system formed by a spring and a dashpot like the Figure I.

37 Rheological representation of the contact. The

characterization of the value for the representative dashpot can be achieved by several ways;

basically the most used physical damping types are very frequently used in DEM simulations,

the viscous damping and the so-called background damping1. The first one is more adequate

for the dynamic simulations with impacts at a considerable speed while the second one is

especially devised for the quasi-static problems, namely the compression tests in continuum

simulations.

1
 In the DEM-Application both viscous damping and background damping have been implemented.

𝑑𝑛 𝐾𝑛

Figure I. 37 Rheological

representation of the contact.

34

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Viscous damping

The contact damping force is calculated contact by contact assuming that it is viscous type and

given by

 Eq. 10 Visco damping force

Where the relative velocity of the centres of the two particles is defined by:

 (̇ ̇) where is the displacement

Eq. 11 Relative velocity between two particles

The damping coefficient can be defined as a fraction of the critical damping for the

system of two rigid bodies with masses and connected with a spring of stiffness

with:

 √ Eq. 12 Visco damping force

with 0 ≤ α ≤ 1, and where is the reduced mass of the contact:

 Eq. 13 Reduced mass at a contact

The fraction α it is related with the coefficient of restitution , which is fractional value

representing the ratio of speeds after and before of an impact, through

√
 Eq. 14 Expression for the fraction of the critical damping

In the present work, when dealing with continuum simulations, the recommended value for

the critical damping is α = 0.9, assuming a quasi-static state for the simulated processes.

35

Part II - 35
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Background damping

The contact damping previously described is a function of the relative velocity of the

contacting bodies. It is sometimes necessary to apply damping for non-contacting particles to

dissipate their energy. However this dissipation will also be effective during a contact, which is

interesting for the continuous simulations in order to kill all the dynamic effects. Two types of

damping have been considered here, the viscous damping and the non-viscous damping

referred here as background damping. In both cases damping terms

 and

 are

added to the traditional equations of motion:

 ̈

 ̇

For the non-viscous damping, the damping force is proportional to the magnitude to the

resultant force and resultant moment in the direction of the velocity.

 ̇

 ̇

Eq. 15 Background dampings as a proportion of the magnitude

Where , are damping constants, and , are defined as

 ∑

 ∑

Eq. 16 Expression for the applied Force and Moments on a contact

As it will be commented on PART II, both damping types are implemented in DEM-Application

in a way that the user can activate or disable each one separately.

36

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 T a n g e n t i a l i n t e r a c t i o n f o r c e s 2.2.7.

In this section the frictional model for original discrete elements (detached contacts) is

explained. The tangential behaviour when the contact is cohesive (continuum simulating) can

be found on section 3 CONTINUUM MODELLING WITH DEM.

In the absence of cohesion (if the particles were not bonded at all or the initial cohesive bond

has been broken) the tangential reaction appears by friction opposing the relative motion at

the contact point. The relative tangential velocity at the contact point is calculated from

the following relationship:

With

 (̇) ̇

Eq. 17 Relative velocity of two particles in the tangential direction

Where ̇ , ̇ and , are the translational and rotational velocities of the particles and

and are the vectors connecting particle centres with contact points.

Figure I. 38 Classical Coulomb Law and Regularized Coulomb Law.

𝜇 𝑓𝑛

𝑓𝑡

𝜇 𝑓𝑛

𝑓𝑡

𝑢𝑟𝑡 𝑢𝑟𝑡
𝑘𝑡

 𝑎 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑙𝑎𝑤 𝑏 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑙𝑎𝑤

37

Part II - 37
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

The relationship between the friction force and the relative tangential displacement for

the classical Coulomb model (for a constant normal force) is shown in Figure I. 38 (a). This

relationship would produce non physical oscillations of the friction force in the numerical

solution due to possible changes of the direction of sliding velocity. To prevent this, the

Coulomb friction model must be regularized. The regularization procedure chosen involves

decomposition of the tangential relative velocity into reversible and irreversible parts
 and

 , respectively as:

Eq. 18 Tangential velocity decomposition

This is equivalent to formulating the frictional contact as a problem analogous to that of

elastoplasticity, which can be seen clearly from the friction force-tangential displacement in

the relationship in Figure I. 38 (b). This analogy allows us to calculate the friction force

employing the standard radial return algorithm. First a trial state is calculated.

Eq. 19 Trial force expression for the tangential case

And then the slip condition is checked

 Eq. 20 Slip condition checking

If , a stick contact occurs and the friction force is assigned the trial value

Otherwise (slip contact) a return mapping is performed giving

 Eq. 21 Classical return mapping for the tangential force

38

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 F i n a l r e m a r k o n t h e c o n s t i t u t i v e m o d e l l i n g o f t h e c o n t a c t . 2.2.8.

As a conclusion of this sub section it is important to remark the key factors that have to be

taken into account when (also in users’ stage) simulating either a purely discrete DEM or a

continuum simulating problem. There exist one remarkable triad of parameters that have to

be combined in an equilibrated form to end with a convention for the solution: Normal Spring

Stiffness – Delta Time – Indentation Permitted/Energy gained. The problem is obviously more

critical when dealing with dynamic simulations.

It would be desired to choose the correct stiffness derived theoretically from the contact

mechanics and also a suitable time step coarse enough to have fast calculations. After the

calculation a realistic solution with neither energy gaining nor large unrealistic indentations it

would be also expected. Unfortunately this is not always achieved and a convection should be

done assuming either some unreal indentation and avoiding energy gaining or, the other way

round, performing an extremely accurate simulation with very little time steps and

consequently long simulation times.

A further analysis should be realised to calibrate the correct choice of these parameters and

analyse the dependence and the sensitivity of these parameters with respect to the energy

gaining. Introducing some numerical damping is often the solution that permits to use the

desired realistic parameters and kill the energy gaining effect.

Stiffness

Indentation

Energy
DeltaTime

𝐾 ↑ ⟹ 𝑖𝑛𝑑𝑒𝑛𝑡 ↓ 𝐸 ↑ 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

 𝑇 ↑ ⟹ 𝑖𝑛𝑑𝑒𝑛𝑡 ~ ↑↑ 𝐸 ↑↑ 𝑛𝑜𝑛 𝑙𝑖𝑛𝑒𝑎𝑟

39

Part II - 39
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

2 . 3 . I n t e g r a t i o n o f t h e m o t i on l a w s

 E x p l i c i t i n t e g r a t i o n s c h e m e s . 2.3.1.

In the context of large simulation problems, the implicit schemes are not suitable because of

massive memory requirements. The discontinuous-based simulation methods like DEM use

explicit integration scheme. For this purpose a whole range of explicit schemes has been

developed, namely the Central Difference Scheme, Leap Frog Scheme, Newmark-Beta Method

or Runge-Kutta. Between these schemes, we can found second order, third order or even

fourth order. Higher order schemes are possible, but involve repeated force evaluations. Since

intensive CPU-time is required, higher-order schemes may not be as efficient in terms of

computational cost, in comparison with lower-order schemes. In the literature, there are a lot

of reports about comparisons between the different schemes where the stability, accuracy and

computational cost are analysed. Some details of the comparisons can be found in [15].

As an illustrative case, the Central Difference Scheme is used for the integration on the

equations of motion. It is a second-order time integration scheme originally developed in the

context of structural dynamics while in some applications it is also referred to as the Velocity

Verlet algorithm. This scheme presents a good ratio between accuracy and computational cost.

Time integration operator for the translational motion at the time step is as follow:

 ̈

 ̇

 ̇

 ̈

 ̇

Eq. 22 Central Difference Integration Scheme

40

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

The first two steps in the integration scheme for rotational motion are identical to those given

by the previous equations:

 ̇

 ̇

Eq. 23 Iterative algorithm for the rotational velocity

For rotational plane (2D) motion the rotation angle can be obtained similarly as the

displacement vector :

Eq. 24 Calculation of the step rotation

In three-dimensional motion, rotational position cannot be defined by just one vector. The

rotational velocity cannot be integrated. The vector of incremental rotation is obtained as

It must be remarked that knowledge of the rotational configuration is not always necessary. If

tangential forces are calculated incrementally, then knowledge of the vector of incremental

rotation is sufficient. This saves considerable computational cost of the time integration

scheme.

 N u m e r i c a l s t a b i l i t y o f t h e m e t h o d a n d c r i t i c a l t i m e s t e p 2.3.2.

Explicit integration in time yields high computational efficiency and it enables the solution of

large models. The known disadvantage of the explicit integration scheme is its conditional

numerical stability imposing the limitation on the time step Δt, i.e.

Where is a critical time step determined by the highest natural frequency of the system

 .

If damping exists, the critical time increment is given by

(√) Eq. 25 Critical time increment (with damping)

41

Part II - 41
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Where is the fraction of the critical damping corresponding to the highest frequency .

Exact calculation of the highest frequency would require solution of the eigenvalue

problem defined for the whole system of connected rigid particles.

In the algorithm implemented an approximate solution procedure is employed. An eigenvalue

problem can be defined separately for every rigid particle. The maximum frequency is

estimated as the maximum of natural frequencies of mass-spring systems defined for all the

particles with one translational and one rotational degree of freedom

And the natural frequency for each mass-spring system (contact) is defined as

 √

 Eq. 26 Natural frequency for the classical mass-spring system

With the spring stiffness and mi the mass of particle i. Now it is possible to rewrite the critical

time step as

 √

The effective time step is considered as a fraction of the critical time step

With

The value of has been studied by different authors. A good review can be found in [16]

where the author recommend values close to for 3D simulation, and in the

2D case.

42

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

3. CONTINUUM MODELLING WITH DEM

The Discrete Element Method has been presented in this work and in many books and papers

as a good numerical method to simulate the discontinuous media as a system of independent

particles in dynamic motion. However, when dealing with the continuum, nowadays, results

are not completely satisfactory even though a lot of research has been done. There have been,

indeed, a vast number of different approaches for this question: How shall the contact models

be characterized (micro scale parameters) in order to get the macro scale continuum

behaviour?

The challenge in all DEM models is finding an objective and accurate relationship between the

DEM parameters and the standard constitutive parameters of a continuum mechanics model

(hereafter called “continuum macro parameters”), namely the Young modulus E, the Poisson

ration and the tension and shear stresses

and , respectively.

Two different approaches can be followed for determining the DEM constitutive parameters

namely the global approach and the local approach. In the global approach uniform global

DEM properties are assumed in the whole discrete element assembly. The values of the global

DEM parameters can be found using different procedures. Some authors have used numerical

experiments for determining the relationships between DEM and continuum parameters

expressed in dimensionless form [17]. This method has been used by the authors in previous

works and is described in the next sections. Other procedures for defining the global DEM

parameters are based on the definition of average particle size measures for the whole

discrete particle assembly and then relating the global DEM and continuum parameters via

laboratory tests.

A second approach, followed in this work, is to assume that the DEM parameters depend on

the local properties of the interaction particles, namely their radii and the continuum

parameters at each interaction point. Many alternatives for defining the DEM parameters via a

“local approach” have been reported by different authors [18].

43

Part II - 43
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 This relation should yield a characterization of the media such that the model behaves in

terms of stress and strains like the continuum media does. Also the D.E.M is expected to be an

effective and powerful numerical technique for reproducing multifracture and failure of

geomaterials (soils, rocks, concrete), masonry and ceramic material, among others. There has

been a lot of research done in this field and some codes presume of obtaining good

approaches to this problem using the Discrete Element Method. Nevertheless, there is not an

absolute universal method that assures generality to the continuum modelling problem.

3 . 1 . G l o b a l d e r i v a t i o n o f D E M m i c r o p a r a m e t e r s u s i n g

d i m e n s i o n l e s s r e l a t i o n s h i p s

Global DEM mechanical parameters can be determined using the methodology developed by

Huang [19], based on the combination of dimensional analysis with numerical simulation of

standard laboratory test for rocks, namely the unconfined compression and the Brazilian tests.

The challenge in global constitutive models is finding the relationship between the continuum

material parameters: Young modulus E, Poisson’s ratio , compressive strength and tensile

strength in terms of global DEM parameters:
1. DEM material

properties also depend on other parameters related with the particle assembly

characterization, such as the average particle radius r, the material density and the porosity

of the particle assembly n. All these parameters are strongly related to the assembly

generation algorithm. The set of global DEM parameters can be completed with geometrical

parameters represented by the specimen size L (due to possible scale effect) and loading

velocity . Thus, the number of relevant parameters N is 12. We have three primary

dimensions involved: mass, length, time (p=3). Typically it is assumed that there are 9

independent parameters.

The global DEM parameters are not unique and can be modified by taking into account some

other parameters that can influence macroscopic properties. In the minimum and maximum

element radii, and , respectively, were included to the relevant parameters in orden

to better consider the influence of the element size distribution on macroscopic properties.

This influence can be taken into account indirectly through the use of the porosity n which

depends on the size distribution. The wider size distribution the lower porosity in the discrete

element model can be achieved.

1
 The micro parameters of the model are considered to be the same for all the contacts and are derived

in a general way from the macro parameters using adimensional relationships.

44

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

A general definition of the dimensionless DEM parameters includes the following set of nine

independent parameters: {

√

}. The set of parameters can be

reduced by neglecting dynamic effects and removing

√

, and . Further on, assuming

that the element size r is small compared to macroscopic dimension the influence

of the parameter

 can be negletec. The friction coefficient has influence mainly on the

post-failure material behaviour, so is generally omitted it in the relation-ships for elastic

constants and strength parameters. After these simplifications set of relevant dimensionless

parameters is reduced to the following four: {

 }. Assuming that the elastic

stiffness parameters are determined in the range in which the failure is not initiated yet, only

two dimensionless parameters should be considered: {

 } . Thus, the folowing

dimensionless functional relationships linking continuum and global DEM parameters can be

postulated as:

 (

) (

)

 (

)

 (

)

Eq. 27 Dimensionless relationships global parameters

 is a certain length parameter and is a characteristic area related to the discrete element

model. The characteristic length and area are defined in different way for 2D and 3D

problems. For 2D problems, where cylindrical particles are used, it is convenient to take as

equal to the length (height) of the particles, with a unit value. For more information,

important references in global-derived methods are Huang [20] [19] and also Oñate and Labra

[21] and Rojek [22].

45

Part II - 45
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

3 . 2 . L oc a l d e f i n i t i o n o f D E M e l a s t i c c o n s t i t u t i v e p a r a m e t e r s

This alternative philosophy is to assume that the DEM parameters depend on the local

properties of the interaction particles. Instead of defining a global set of parameters

{ } 1 each contact would have different characterization

depending on the physics of the contact and the properties of the interacting particles, namely

their radii and the continuum parameters. The method seeks the adequate parameterization

of the contacts between particles in order to obtain a model that behaves in terms of stress

and strains like the continuum media does.

This is the path that CIMNE follows; indeed, it is the most paradigmatic example of the aspects

in discussion about the continuum simulating. The next sections of this work will be

specifically related with this local definition philosophy.

First of all, it is important to clarify that the problem is not the same as the discontinuous case

in terms of dynamism and elastic deformation behaviour. In the discontinuous media

simulations it has been seen that the normal stiffness value is not such important a parameter

as it will be here, in the continuum simulating case, where we want to capture realistic strains

and stresses. Then, would the high values for the stiffness yield now the same problems that

occurred with the dynamic systems?

On one hand, the problems induced by the large repulsive forces that occurred when a particle

got inside the other in a time step won’t be present now; the particle now will move much

slowly compared to a dynamic system and so, the indentations that can occur in a given time

step are much smaller. On the other hand, most of the particles will be confined by a large

number of contacting neighbours and, when a

particle is excited by an external force, it

would impact to others and then do the same

in the opposite direction. This can easily lead

to a system that has an energy feedback and it

increases uncontrolled. That’s why here the

global damping (see section 2.2.6 Numerical

damping and physical damping) takes an

important role taking the system to a quasi-

static state and killing the dynamic effects.

1
 The same micro parameters derived (from macro parameters) locally for each contact.

Figure I. 39 Compression test simulation with DEM

46

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

3 . 3 . T h e e f f e c t i v e c o n t a c t i n g v o l u m e m e t h o d

This is an original idea from Professors E. Oñate J. Miquel and F. Zárate, from CIMNE, and it is

currently in research. This proposal theory will be implemented in DEM-Application and will be

tested once the program completely allows continuum based simulations.

It has been already mentioned that now the coefficients for the normal and tangential spring

stiffness are very important. The objective is to correctly characterise the continuum

properties to expect the same results in a global behaviour.

The method proposes to get the elastic characteristic values for linear springs in normal

direction and for the transversal one from the equivalent axial stiffness and shear stiffness

respectively that the correspondent truncated conical volume would yield.

Figure I. 40 Equivalent volume corresponding to by the contact

Axial stress:

 ∫

 ∫

∫

Eq. 28 Axial strain-stress approach

Linear variation of the radius:

47

Part II - 47
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Yields:

∫

Eq. 19: Consistent formulation for the normal stiffness.

Where

 Eq. 2 Equivalent radius for two spheres in contact.

Shear stress:

 ∫

 ∫

∫

Eq. 30: Shear strain-stress approach.

Where Eq. 3: Reduced shear area.

Linear variation of the radius:

Eq. 31: Consistent formulation for the shear stiffness.

Relationship between and :

Eq. 32: Resulting relation between normal and shear stiffness.

48

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

A formal relationship between the main parameters and the elastic stiffness coefficients

of the equivalent springs on the contact has been proposed to be used in continuum

simulating problems. Obviously there exist many others in the literature but the DEM-

Application has chosen the family of locally derived micro parameters methods. The DEM-

Application team has clearly have in mind that these stiffness parameters for the springs have

to be deduced contact by contact in order to obtain a method that could be used in generic

cases without much particular calibration; in that sense, the algorithm implemented in our

application takes the macro values of for the contacting pair and easily applies the

presented formula or any desired one1.

Figure I. 41 Rheological model for the contact

Until now two new concepts have been introduced regarding the characterization of the

contact with respect to the original DEM for discrete systems: In first place, the normal spring

has also a tensile strength and so can resist tensile forces; in second place, there exist a

classical tangential spring that resists the tangential shear forces until a certain limit. When

this tangential spring reaches the failure limit the contact becomes frictional. Afterwards, the

regularized Coulomb law is recovered; it can be interpreted as another little spring system also

with a slipping limit.

In the new section a completely innovative devise special for the continuum simulating case is

introduced: the rotational spring.

1
 The DEM-Application, and usually in many others, is quite easy to tune the values of these parameters

in order to get better results; in this sense there is no loose of generality when proceeding with this
approach since afterwards, the characterization can change if comes out not to be the proper one.

𝑘𝑇

𝑘𝑁

49

Part II - 49
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

3 . 4 . R o t a t i o n a l Sp r i n g

 J u s t i f i c a t i o n o f t h e r o t a t i o n a l s p r i n g 3.4.1.

Some authors recommend the use of an additional spring that acts opposing the relative

rotation that a contacting pair suffers in continuum simulations. The necessity of it appears

when the rotation is applied on the problem; the particles are given a rotational inertia and

also we calculate the moments that come from the forces applied on the contacts with respect

to the mass centre of these particles. When a moment applies to a certain particle that has a

rotational inertial it begins to rotate due to the angular acceleration and in principle is not

resisted by any mechanism.

Figure I. 42 Relative rotation between two particles

Note that this rotation is not resisted by the tangential spring because there is no relative

tangential displacement between the contacting points. Therefore, the rotational spring shall

be introduced to opposite the relative rotation.

 P r o p o s e d s t i f f n e s s f o r t h e r o t a t i o n a l s p r i n g 3.4.2.

The characterization of the stiffness value for the spring

can be easily done relating the tangential displacement

with the rotational one.

Applying the hypothesis that for a little rotation the

normal component of the movement is zero and all the

movement is in the tangential direction and proposing an

equation for the rotational spring we get that:

Fixed particle

Figure I. 43 Rheology for the rotational spring

50

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Eq. 33 Expression for the resistant moment in the rotational spring

Also we get the ordinary expression for the resistant shear in the tangential displacement and

we calculate the equivalent moment that it would create:

Eq. 34 Moment produced by the tangential force opposing the rotation

Finally comparing the produced moment and the resistant one we can obtain a relationship for

between the rotational spring stiffness and the shear spring stiffness.

Eq. 35 Proposed expression for the rotational spring stiffness

 R e m a r k s o n t h e r o t a t i o n a l s p r i n g 3.4.3.

While some authors insist in the necessity of a rotational spring others don’t use it. In fact

when some entity is discretized by more than one row (in 2D) of particles (spherical or not) the

combination of the normal and tangential springs act to oppose the global or local bending of

the particles; this is due to the fact that this rotation implies displacement in the normal and

tangential directions of the neighbouring particles with respect to the contacts and so, the

tangential and normal forces act. It is not clear if this spring which is indispensable in a “1 row”

case shall contribute to resist the bending mechanism or not.

The rotational spring, if it is enabled, has the same treatment than any other elastic devise; we

will apply a damping on it and it will also have a limit strength which would lead to the fracture

of the contact if its value is exceeded.

51

Part II - 51
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 E x a m p l e o f a p p l i c a t i o n 3.4.4.

In order to exemplify the functionality of this spring, a simple bending beam is presented in a

very illustrative case.

In the first figure a chain of balls is created without any rotational spring, the first ball is fixed

and the problem is calculated under gravity; the behaviour is like a chain of balls which can

have free relative rotation. On the other hand, in the second example, the rotational spring is

applied forming then a beam that resist bending moments like the one illustrated in the figure

due to an ascendant force applied on the extreme. It shall be commented that the results are

very accurate comparing the solution with the theoretical ones.

The previous examples have been done by researcher Feng Chun using the CDEM software

(see section 6.2 Current development and collaboration); The DEM-Application takes the

implementation methodology of the rotational spring from that program.

3 . 5 . F a i l u r e o f t h e c o n t a c t s , p l a s t i c i t y a n d d a m a g e

The method permits applying easily any micromechanical constitutive model with cohesion.

Given a contact defined by the properties of the contacting spheres and the forces in every

direction: normal and tangential, the fracture criterion can be established following the

classical laws of the mechanics of solids. The implemented method in the DEM-Application is

the perfect brittle elasticity, which is the simplest one, but nowadays is being extended to

other more sophisticated ones.

Figure I. 44 Ball chain with rotational spring under an

ascendant load

Figure I. 45 Ball chain without rotational spring

52

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

The elastic perfectly brittle model is characterized by linear elastic behaviour when cohesive

bonds are active. An instantaneous breakage of these bonds occurs when the interface

strength is exceeded. When two particles are bonded the contact forces in both normal and

tangential directions are calculated from the linear constitutive relationships:

Eq. 11: Linear elastic force displacement relationship.

Where and are the normal and tangential contact forces, respectively, and are n the

interface stiffness in the normal and tangential directions and , the normal ad tangential

relative displacements, respectively.

Cohesive bonds are broken instantaneously when the interface strength is exceeded in the

tangential direction by the tangential contact force or in the normal direction by the tensile

contact force. The failure (decohesion) criterion is written (for 2D) as:

Where and are the interface strengths in the normal and tangential directions,

respectively. In the absence of cohesion the normal contact force can be only compressible, i.e.

And the (positive) tangential contact force is given by the Coulomb friction law, with

being the Coulomb friction coefficient:

 Eq. 12: Coulomb’s friction law

Contact laws for the normal and tangential directions for the elastic perfectly brittle

model are shown in next figures:

𝝉

53

Part II - 53
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Figure I. 46 Normal and tangential contact force in perfectly brittle model.

Other more sophisticated models can be applied to the DEM for the failure of the

contacts: elastoplastic contact with linear softening, hardening, exponential plasticity

laws, contacts with elastic damage, etc.

3 . 6 . G e n e r a t i o n : m o d e l l i n g t h e s t r u c t u r e o f t h e c o n t i n u u m

Given a geometric definition of the media, the discrete element mesh has to be generated. A

fundamental aspect when simulating the continuum is to obtain a good packaging, i.e. the

minimum voids inside the domain. Several techniques have been developed to perform a

generation that fills a given volume with a good packaging; originally the way to obtain these

meshes was to fill a volume by gravitational deposition of a pack of particles.

𝝈

𝑅𝑛

𝑢𝑛

𝑅𝑡

𝑢𝑡

Figure I. 47 Gravitational deposition test by Munjiza

54

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

 This method gives a good packaging but it is computationally inefficient since we have to do a

DEM discontinuum simulation with a large number of particles. Find more information about

this on [3] Munjiza.

 Other methods for the generation of the DEM mesh are algorithms of generation of particles

that try to fill the volume with a determined distribution of sizes or assuring a determined

volume of voids in the domain. There exist a large number of generators of this type in the

DEM software; GiD has its own generator and is the one used in the DEM-Application. It will be

explained in further detail in Part II 8.5.7 Neighbour Search utility and Extended Radius Search

that this generator, like many others, introduce some gaps between particles; in that section a

special utility of the DEM-Application is presented that helps solving this. On the other hand

there are also other generators that produce a more dense packing and don’t have these

problems; however this kind of generators often present initial indentations between particles.

Another utility has been devised for the DEM-Application to solve this problem and be able to

use these dense packing generators.

Finally, some new advanced geometry definition and sphere generator methods are being

used nowadays for the DEM. By the use of tomography scans a detailed geometry of parts of

the body such as bones, organs and vessels can be represented with thousands of particles.

This is a topic in discussion that is especially interesting for the KRATOS research group in order

to give the DEM new applications.

Figure I. 48 Fine particle mesh generated on a skull by UCLV-CIMNE

55

Part II - 55
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

4. DEM-FEM

This is the current challenge of the Discrete

Element Method. From the experience taken

from the study of the continuous and the

discontinuous media with DEM It can be

announced that nowadays there is no a unique

effective methodology to describe the continuum

media although there are several “well-posed” for

the discrete particle physics. Further research has

to be done in the continuum simulation via DEM

but nowadays this method is proficient with the

discrete media. What comes next is the idea of combining to methods that are efficient in their

respective fields to simulate coupled problems where both phenomena can be presented.

This has recently been properly studied but there is nowadays an increasing interest on this

subject. One of the most important applications of the DEM-FEM applications is on the

interaction between granular materials and excavation tools. A recommended reference on

this issue is: [20] by Huang.

There are different possible points of view of the DEM-DEM coupled problem:

 Interaction between FEM-discretized bodies and DEM-discretized domain: For

simulations of excavation problems generally to analyse the stresses on the tools used

in the excavation. This is a useful method to test the strength and the wear or the

mechanical devices.

Figure I. 49 Interaction between a tool (FEM)

and rocks (DEM)

Figure I. 50 FEM wedge introduced in DEM domain

56

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

Figure I. 51 Fracture of finite element

discretized media

 Creation of DEM particles from fractured FEM elements: Transition from continuum to

discontinuum in the combined finite-discrete element method occurs through fracture

and fragmentation processes. A typical combined finite-discrete element method

based simulation, such as rock blasting, may start with a few discrete elements and

finish with a very large number of discrete elements. Fracture in general occurs

through alteration, damage, yielding or failure of microstructural elements of the

material. To describe this complex, material-dependent phenomenon, the alteration of

stress and strain fields due to the presence of microstructural defects and stress

concentrations must be taken into

account. In order to simulate the friction

and the interaction that is generated in

the continuum when a crack appears on

the FEM domain it is possible to analyse

it generating DEM particles in that zone.

A recommended reference is Munjiza, A:

The Combined Finite Discrete Element

Method [3].

 FEM discretization of the DEM particles: This is a way to introduce the deformation of

the particles and the detailed stress field on the DEM particles. Also it can be possible

to track the fractures in the DEM particle. This method is not very much used because

of the high cost that it leads.

Figure I. 52 FEM discretization of a DEM particle

57

Part II - 57
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 DEM discretization of the FEM elements: when a finite element reaches the limit

stresses it is substituted by a set of discrete elements in order to capture the fracture

and the frictional behaviour of the fractured parts of the continua.

Figure I. 53 DEM discretization of a FEM element

Without entering on these methods, a few ideas shall be kept in mind when coupling the two

problems. First of all, and very important, the search becomes much more complicated. Even if

all the media is discretized with spheres, there would be numerous contacts between spherical

entities and non spherical entities; therefore it would be necessary to recover the methods

presented on section 2.1 Contact Detection. Also, the treatment of the contacts between the

FEM elements and DEM elements it is a complicated issue; how to characterize the force that a

DEM element introduces to each node of the FEM element when these entities intersect, and

afterwards determine the stresses, is not an easy problem.

In CIMNE the DEM-FEM application has been developed in parallel with the DEM application

and all the DEM discretized elements that appear in DEM-FEM are characterized in the same

way as the original DEM particles from the DEM-Application. The basic concepts of the

implementation of the DEM-Application are explained in the next part of this work.

58

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part I: Discrete Element Method

59

Part II - 59
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Part II: KRATOS DEM-Application

5. KRATOS-MULTIPHYSICS PLATFORM

Free Multi-physics F.E.M.-Based C++ Open Source Code

5 . 1 . W h a t i s K R A T O S ?

KRATOS was born a framework for building multi-disciplinary finite element programs and has

been extended more generally to other engineering application. It provides several tools for

easy implementation of FEM-like engineering applications and a common platform for natural

interaction of the same in different ways.

KRATOS is an innovative variable base interface designed and implemented to be used at

different levels of abstraction and to be very clear and extendible. A very efficient and flexible

data structure can be used to store any type of data in a type-safe manner. An extendible IO is

also present to overcome a bottleneck in dealing with multi-disciplinary problems and the

major interpreting task is given to the Python interpreter.

The kernel and application approach is used to reduce the possible conflicts arising between

developers of different fields and layers are designed to reflect the working space of different

people also considering their programming knowledge. It permits to create your new

application starting from a template for every basic generic part of your program. The

application connects to the main KRATOS general structure and it benefits of its data base

common utilities for general FEM-like engineering programs ready to be used, the IO structure

to interact with graphical interfaces and the powerful and optimized usage of the combined

C++ and python languages.

http://www.cimne.com/kratos/related.asp#python
http://www.cimne.com/kratos/intro.asp#layer

60

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Figure II. 1 KRATOS basic scheme

5 . 2 . W h o m a y u s e K R A T O S ?

Some potential users of KRATOS are:

 Research engineers: These developers are considered to be more expert in numerical

methods and engineering calculation methods, from the physical and mathematical

points of view, than in C++ programming. For this reason, KRATOS provides their

requirements without involving them in advanced programming concepts.

 Application Developers: These users are less interested in finite element programming

and their programming knowledge may vary from very expert to higher than basic.

They may use not only KRATOS itself but also any other applications provided by finite

element developers, or other application developers. Developers of optimization

programs or design tools are the typical users of this kind.

 Package Users Engineers: and designers are other users of KRATOS. They use the

complete package of KRATOS and its applications to model and solve their problem

without getting involved in internal programming of this package. For these users

KRATOS has to provide a flexible external interface to enable them use different

features of KRATOS without changing its implementation.

Main KRATOS

(Kernel)

Application 1

Application 2

My application

61

Part II - 61
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

5 . 3 . W h o i s K R A T O S ?

The KRATOS structure, due to its multi disciplinary nature, has to support the wide variety of

algorithms involved in different areas. That's the principal reason that explains the variety of

people, mostly engineers, composing the KRATOS Community.

I encourage you to visit the website http://KRATOS-wiki.cimne.upc.edu/index.php/Main_Page

to learn more about KRATOS.

5 . 4 . W h a t m a k e s K R A T O S u s e f u l ?

KRATOS is MULTI-PHYSICS. One of the main topics in engineering nowadays is the

combination of different analysis (thermal, fluid dynamic, structural) with optimising methods

in one global software package with just one user interface and, even more, the possibility to

extend the implemented solution to new problems.

KRATOS is FINITE ELEMENT METHOD (FEM) based. Many problems in engineering and applied

science are governed by Partial Differential Equations (PDE), easily handled by computer

thanks to numerical methods. The FEM is one of the most powerful, flexible and versatile

existing methods.

KRATOS is OBJECT ORIENTED. An integration of disciplines,

in the physical as well as in the mathematical sense,

suggests the use of the modern object oriented philosophy

from the computational point of view. The modular design,

hierarchy and abstraction of these approaches fits to the

generality, flexibility and reusability required for the

current and future challenges in numerical methods.

KRATOS is OPEN SOURCE. The main code and

program structure is available and aimed to grow with

the need of any user willing to expand it. The GNU

Lesser General Public License allows using and

distributing the existing code without any restriction,

but with the possibility to develop new parts of the

code on an open or close basis depending on the

developers.

http://kratos.cimne.upc.es/kratoswiki/index.php/Who_are_we
http://kratos-wiki.cimne.upc.edu/index.php/Main_Page
http://kratos.cimne.upc.es/kratoswiki/index.php/File:Oop.jpg
http://kratos.cimne.upc.es/kratoswiki/index.php/File:Manos.jpg

62

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

KRATOS is FREE because is devoted mainly to developers, researchers and students and,

therefore, is the most fruitful way to share knowledge and built a robust numerical methods

laboratory adapted to their users' needs. Free because you have the freedom to modify and

distribute the software. The one thing you're not able to do with free software is take away

other people's freedom. Read the license for more detailed information in KRATOS webpage.

5 . 5 . K R A T O S s t r u c t u r e

An object-oriented structure has been designed to maximize the reusability and extensibility of

the code. This structure is based on finite element methodology and many objects are

designed to represent the basic finite element concepts. In this way the structure becomes

easily understandable for developers with a finite element method background. In this design,

Vector, Matrix, and Quadrature represent the basic numerical concepts. Node, Element,

Condition, and DoF are defined directly from finite element concepts. Model, Mesh, and

Properties are from the practical methodology used in finite element modelling

complemented by ModelPart, and

SpatialContainer, for organizing

better all data necessary for analysis.

IO, LinearSolver, Process, and

Strategy represent the different

steps of a finite element program

flow. Finally Kernel and Application

are defined for library management

and its interface definition.

5 . 6 . B a s i c t o o l s

Different reusable tools have been implemented to help developers in writing their

applications in KRATOS. Several geometries and different quadrature methods are provided

and their performances are optimized. Their flexible design and general interface make them

suitable for use in different applications. Their optimized performance makes them

appropriate not only for academic applications but also for real industrial simulations.

Figure II. 2 KRATOS framework

63

Part II - 63
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

An extensible structure for linear solvers has been designed and different common solvers

have been implemented. In this design the solver encapsulates only the solving algorithms and

all operations over vectors and matrices are encapsulated in space classes. In this way solvers

become independent of the type of mathematical containers and can be used to solve

completely different types of equations systems like symmetric, skyline, etc. This structure also

allows highly optimized solvers (for just one type of matrices or vectors) to be implemented

without any problem.

5 . 7 . V e r s i o n i n g s y s t e m (SV N)

Apache Subversion, SVN, is a software versioning and revision control system distributed

under an open source license. KRATOS main developers are attached into a subversion sharing

network in order to up-load their developments and up-date the current and historical

versions of files from the basic code or from new application parts being developed by others.

This way, a new integration method, for instance, can be developed by anyone and included in

KRATOS database; after that, any other user or developer can update the modified parts of

their code and they get instantaneously the integration method.

In order to avoid conflicts between implementations from different people, there is also a

benchmarking system checking for the correct functioning and compilation of any new

implementation.

5 . 8 . B e n c h m a r k i n g s y s t e m

Every night, the cluster of CIMNE automatically updates KRATOS using the versioning system,

after that, it compiles everything and runs different preset cases for each application.

These cases are tests that have been specially designed for each application. They consist on a

simple application usage to calculate a predefined problem that has a predetermined known

solution.

If the cluster doesn’t get the expected solutions when running the case or, moreover, if the

cluster is not able to compile the code after a new contribution from a developer onto the

versioning system, everyone gets a warning reporting the problem. If this is the case, the last

uploads have to be revised for the good functioning of every application.

http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Open_source_license
http://en.wikipedia.org/wiki/Source_code

64

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

6. KRATOS DEM-APPLICATION

6 . 1 . B or n o f D E M - A p p l i c a t i on

In year 2011 CIMNE’s director, Eugenio Oñate, considered interesting to start developing a

Discrete Element Method in the KRATOS environment as many other Finite Element Methods

had been implemented.

The seed for the code was taken from the CIMNE’s current DEM program called DEM-PACK;

this precedent program had been developed in Fortran language by some CIMNE doctoral

researchers who had built their own code from scratch. DEM-PACK is nowadays the program

that CIMNE uses for its projects as it is in fact a complete program that permits elaborating

studies for numerous case simulations.

However as the technique and research advances, new methods and approaches has been

introduced in the Discrete Element Method and also in computer science:

 Concerning to the DEM theory, it has been already explained some of these advances

in the first part of this document; this refers to the new ideas about continuum-

simulating, clusters of particles and arbitrary shape contacting just to name a few.

 The advances in computer science that shall be considered are, for instance, the power

of the parallelization techniques.

 KRATOS is prepared to connect different applications, in this sense it will be easier to

create a DEM-FEM application.

Also, a more versatile developing interface like KRATOS was needed in programs like DEM-

Pack. Being part of KRATOS helps in the code improvement and makes the cooperation

between different developers easier. Many of the technical problems that could appear during

the implementation can be solved by the help from the KRATOS community that may have

faced similar problems performing similar solutions.

The philosophy of CIMNE nowadays is to gradually transcribe or rewrite every code used in the

centre onto the KRATOS framework due to its numerous advantages. The past years every

developer or group had been creating their own code with their preferred programming

language and structure. This way the final result was a good program from a user level but not

a code ready to be improved, extended or revised for others in a developer stage.

65

Part II - 65
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

KRATOS DEM-Application is the result of this concern, to rewrite and improve a more

ambitious code for the Discrete Element Method to substitute in long-term the currently used

DEM-Pack.

6 . 2 . C u r r e n t d e v e l o p m e n t a n d c o l l a b or a t i o n

As KRATOS is an open-source platform the collaboration between different institutions and

particular developers it’s one of its benefits.

Currently the DEM-Application is being developed by the author of this work, Miquel

Santasusana Isach, and other doctoral and post-doctoral researchers in CIMNE: Miguel Ángel

Celigueta Jordana, Nelson Lafontaine, etc.

Fortunately, the power of KRATOS has awakened interest in many other research institutions

and some others have joined the KRATOS discipline and so the DEM-Application team has

been increased. This is the case of the Cuban CIMNE Classroom1 UCLV-CIMNE, and also The

Institute of Mechanics, Chinese Academy of Sciences IMECH,CAS.

Figure II. 3 KRATOS DEM partnership

1
 The CIMNE Classrooms are physical spaces jointly created by CIMNE and a University for the

development of training, research and technology transfer activities.

CIMNE
DEM-app.

team

(BCN)

IMECH

Beijing

UCLV

La
Habana

DEM-PACK KRATOS-DEM

66

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

SEED: The first implementation was done by an ex-doctoral researcher on CIMNE who started,

in 2011, building the code in KRATOS environment taking the idea from the existing CIMNE’s

DEM code: DEM-PACK. The new team has started working in it since February 2012.

CIMNE DEM-APP. TEAM (CATALUNYA): Several works are being done by the core team. First of

all, a step-by-step development of the very basics of the method has been done; also the

implementation of new different utilities and case possibilities. Secondly, the validation of

each one, taking the ideas from the best current programs abroad while being validated with

the most serious theoretical studies; in parallel, our own new formulations are being deduced.

Also some research is being done in new ideas and usages of DEM, particularly in terms of

continuum simulations. Finally the Barcelona team manages all the collaborations and tries to

merge the incoming implementations and does the corresponding feedback.

UCLV (CUBA): This CIMNE classroom has developed its own DEM code and they have

sophisticated integration schemes, search contacts routines, particle type implementation, etc.

They help the CIMNE team in improving the application’s abovementioned utilities. Currently

the UCLV is developing bio-medical applications for the DEM with advanced cluster grouping

techniques.

Figure II. 4 Discrete elements from tomographies, UCLV Cuba

Micro-Scale

67

Part II - 67
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

IMECH, CAS (CHINA): IMECH has a powerful DEM code called CDEM that performs the

simulation of not only discrete problems but also DEM-FEM coupled problems. The research

centre helps KRATOS-DEM implementing basic functions for contact force calculation and

integration algorithms. The objective is to develop also a DEM-FEM method to KRATOS-DEM as

it is explained on part I of this document.

Figure II. 5 Extract from IMECH works

68

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

7. GRAPHIC INTERFACE

7 . 1 . G i D P r e a n d P o s t P r oc e s s o r

KRATOS applications are highly compatible with graphical interfaces. The one that CIMNE has

been using for KRATOS and many other ProblemTypes is GiD interface which has its origins on

CIMNE itself. In parallel a new specific graphical interface is being developed for the KRATOS

package in order to improve the problem definition of the different applications that KRATOS

supports. In the present section the GiD interface will be introduced as it is the currently used

one and in next sections the specific implementations and the usage of this software for the

development and testing of DEM-Application is explained in detail.

GiD is a versatile multipurpose software that provides a graphical support to the pre-process

and the post-process stage.

 P r e - P r o c e s s : 7.1.1.

This stage consists on setting the geometry and the data for the problem definition (forces,

movements, properties...) as well as imposing boundary conditions and the calculation options.

After the problem definition GiD also dispose of different mesh generators for the FEM (or

others) problem calculation.

Geometry: GiD Pre Process is a CAD system that

features the widely used NURBS surfaces

(trimmed or not) for the geometry definition.

Typically geometrical operations can be used as

transformations (translations, rotations, etc.),

Boolean operations in surfaces and volumes. A

complete set of tools are provided for quick

geometry definition.

Figure II. 6 GiD Geometry editing example

69

Part II - 69
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

ProblemType:

The user can load to GiD a specific ProblemType. When a ProblemType is loaded, some specific

options from the particular case appear, such as conditions or calculation parameters. The

geometry will be used by the ProblemType to effectuate the physical calculation.

Figure II. 7 DEM_explicit_solver ProblemType Options

 C a l c u l a t i o n P r o c e s s : 7.1.2.

Once the geometry is drawn and the conditions, loads and parameters that each ProblemType

requires are defined, the calculation shall be done. When the Calculate button of GiD is used,

the ProblemType reads the geometry, applies the conditions and so one and calculates the

problem. It has to be remarked that GiD doesn’t calculate, it triggers the ProblemType inner

calculation.

70

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

 P o s t - P r o c e s s 7.1.3.

 GiD passes from the Pre to the Post with a simple button click. The options that the user has in

each part of the program are different; In the Post there is numerous utilities aiming to plot

and analyse the results.

In the View Results tab many types of visualization are available to represent the accessible

output data. The View Results & Deformation window

permits to choose the representation of the results

either on the original mesh or on the deformed one,

selecting a suitable scale. On the View results is

possible to select first of all a type of representation;

the available representations are Display Vectors,

Contour Fills, Contour Lines, etc depending on which

one the user considers that is the best for every

different type of result. It’s frequent to represent the

vector magnitudes such as a force, velocity or

displacement in a vector display and the scalar

magnitudes like von misses stress or strains, energy,

etc in colour scales.

Figure II. 8 Post process screenshot. Animation on results.

Figure II. 9 Type of visualization selection

71

Part II - 71
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Once the type of visualization method is chosen, the analysis variable to display is selected. In

the next figure there are three different magnitudes, let’s say displacement, force and velocity

available for the visualization. In general the analysis program is the one who stores and

prepares the output values for the GiD PostProcessor to display. In the particular case of the

KRATOS DEM-Application it’s easy to select which nodal variable (the ones which have

information in every output time step) has to be loaded in the output.

As the reader can see from the figure, vector magnitudes such as the displacement can be

plotted in any component and also its scalar modulus.

7 . 2 . I m p l e m e n t a t i o n s d on e i n t h e P r e - P r oc e s s or f o r D E M - A p p .

One of the first meetings that the author of this work, M. Santasusana, and its supervisor and

partner of the DEM-Application, M.A. Celigueta , had when the project began, served to set

the first priorities for the new implementations that had to be done in the DEM-Application.

The resulting lists noted down was a pretty large list indeed, nevertheless the team realised

that the first action to be done was getting a quick and user-friendly Pre-Processor in GiD.

Why a improving the Pre-Processor first? A useful and comfortable Pre-Processor is necessary

in order to test more quickly any implementation that is incorporated to the application. For

every new damping, every new contact criteria, every material parameter, any new

implementation, several test have to be created with a pre-processor to analyse the results

Figure II. 10 Selection of the magnitude to be shown

72

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

 and check for errors or malfunctioning. So, the starting point was improving the Pre-Processor

interface generated by the DEM-Application ProblemType in GiD. Next, the original state of the

Pre-Processor is presented and the improvements done within the framework of this work.

 I n h e r i t e d P r e - P r o c e s s 7.2.1.

The Pre-Process interface that was available when the DEM-Application began was very simple.

It had a very few options and what is more important; it was very slow and tedious to create a

simple example. In the inherited Pre, points were used to represent the particles; All the

assignations, included the radius, were needed to simulate the sphere or circle. In the Post,

this had to be taken in account in order to represent the spheres instead of points.

The properties assignment to the spheres or circles had to be done property by property and

the material concept was not defined. This made easier to forget the assignment of some

condition or properties and so yield problems or errors during the calculation. That is the main

reason to create a new useful and user-friendly ProblemType, to ease and accelerate the

problem definition.

 N e w D E M - A p p l i c a t i o n P r e - P r o c e s s 7.2.2.

There have been changes done in the following aspects of the pre-process:

 Geometry- Mesh definition.

 Condition assignment –“Nodal Values”

 Problem Parameters

 Material assignment.

First of all, the user has to dispose of the DEM_explicit_solver ProblemType (the current name

for the DEM-Application), which can be loaded in GiD by the Data -> ProblemType tab.

Once the problem is loaded, a new drop down tab appears in GiD with five different options.

Figure II. 11 DEM_explicit_solver menu

73

Part II - 73
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Geometry and Mesh definition:

The geometry edition has been improved in order to make the problem definition easier and

versatile. In the new ProblemType spheres/circles can be generated on any geometry: points,

lines, regular and irregular surfaces and volumes. Some processes in TCL language has been

coded in order to create sphere or circle elements on these geometries.

The development of the DEM-FEM application was in parallel with DEM application; in that

sense the ProblemType was designed to be applicable to DEM-FEM also. That would require

having geometries meshed with finite elements and geometries meshed with discrete

elements, i.e. spheres and circles. What GiD really does, when meshing a geometry defined by

the user, is meshing it with the chosen criteria: regular or irregular finite element meshes.

Afterwards it automatically applies some operations on the mesh defined by the developer,

following the instructions of a code written in TLC programming language. Here is where it has

been specified to create spheres or circle on those finite element meshes where the user had

applied a radius condition. The sphere or circle is created in the centre of the finite element

created by the mesh.

Example with a line (geometry) meshed with 4 regular linear elements. The second one has a

radius condition applied on it.

 Figure II. 12 Example geometry – mesh in line entities

74

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Apart from the commented regular and irregular mesh criteria that permit choosing different

type of elements: tetrahedron, quadrilateral, triangles, rectangles, etc. there is a sphere and

circle mesher available that had been created especially for the DEM-Pack programme. This

mesh criterion directly creates spheres on a volume or circles on a surface with some

predefined options in the mesh options menu. In this case that geometry needn’t to have a

radius condition applied on it; the mesher creates different sizes of spheres on the volume (or

circles in the surface) depending on the options of the mesher.

Figure II. 13 Cylinder meshed with GiD sphere mesh generator

Figure II. 14 GiD Sphere mesher options

75

Part II - 75
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Next, an example is presented where different geometries in 2D and 3D are meshed, some of

them have a radius condition applied while others not. Also here the three types of mesh

criteria commented above are applied on the geometries to mesh.

Id Geometry Radius condition Mesh

1 Point ON Regular

2 Volume ON Irregular

3 Volume OFF Irregular

4 Surface ON Irregular

5 Surface ON Regular

6 Surface OFF Irregular

7 Line ON Regular

1

2

3

4

5

6

7

Figure II. 16 Miscellaneous geometry definition Figure II. 15 Mesh resulting from miscellaneous geometry

76

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Condition assignment – Nodal data.

Currently there are only two conditions that can be

applied to the geometry elements: An imposed velocity

and an assigned radius. The assignment can be done to

any geometry, point, line surface or volume and the

condition will be transferred to the discrete elements

that will be created by the mesh on the selected entities.

For example, applying the radius condition to a line and

meshing it, several spheres of the selected radius will be

created in the line.

The velocity condition permits establishing an initial value for the velocity in the three

components (X, Y, Z) on a discrete element. It also can be defined as a fixed value if the body

has to have, on any of the three components of velocity, an unchangeable value.

In newer versions of the ProblemType, there will be the applied force and applied moment

condition implemented (it is currently being implemented).

Problem Parameters:

Here, general parameters of the problem are defined.

 Number of Processors: In a multi-core computer it may be interesting to calculate the

problem in parallel to save time. Many of the loops that are implemented in the DEM-

Application have been parallelized with OpenMP (see section 8.5.1 Parallelization).

This option is equivalent to define the environment variable: OMP_NUM_THREADS = X.

At a certain number of particles it is worth it to parallelize the code.

 Solver selection: Here, the integration scheme is selected for obtaining the

displacements of the particles from his accelerations, given a time step. There are

currently the Forward Euler, the mid-point rule and the constant average acceleration

(Newmark beta-method) schemes. Some more sophisticated like Runge-Kutta and so

on are being developed. See Part I: Section 2.3 Integration of the motion laws.

Figure II. 17 Conditions assignment – Nodal Values

77

Part II - 77
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 Solution Type: It has also been commented in

the first part that the normal forces at a given

time step can be calculated with an absolute

way or in an incremental way. It might have

more interest for the developers than the

common users of the application.

 Damping Ratio Type: There are two possible

damping types that can be applied. The

viscodamping that acts when a contact force

acts upon a sphere; the damping magnitude is

proportional to the velocity up to a constant

defined here. The local damping is a damping

that acts lowering the unbalanced forces

proportionally to their magnitude. It is

especially interesting to apply this damping in

quasi-static problems, i.e. continuum

simulating problems.

 Continuum Option: These specific options

like the Delta Option and Rotation Option

have a switch that activates or deactivates the set of functions needed to take in

account these problems. When simulating the continuum with the DEM-Application

the program becomes more expensive because the problem is more complex; that is

the reason why is recommendable to disable these options if is not being used.

Delta Option: Following the same idea than for the Continuum Option, disabling this

option will save some time of the calculation; otherwise enabling it will permits to

define a geometry with a mesh of spheres where the initial indentations given

between the sphere are considered as passive indentations, producing no repulsive

contact force. The opposite also holds; for a little separation between particles, they

will be considered neighbours and can represent an unfractured continuum if the

previous option is activated. When the Delta Option is activated, a new option appears

for the radius extension. In This extension of the radius for the neighbouring search is

defined as a percentage of the particle’s radius.

Figure II. 18 Problem Parameters menu

78

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

 Rotation Option: This works similar to the previous options, activating or disabling the

rotation to our problem and also requiring more time in the calculation. Once this

option is activated the user can define whether the rotational spring is activated.

 Search step: Here the user selects how many steps are desired to wait until a new

neighbour search is computed. Remember that the neighbouring search is usually the

most expensive operation in terms of computational cost. For quasi-static problems

this value can be considerably higher than in dynamic problems.

 Time parameters: Here the following can be defined: the total time of the calculation,

the safety factor to apply on the critical time step calculation, the maximum desired

time step (the program will take the maximum one if it is lower than the critical one)

and the output time step that defines the time between the exportation of results that

will be printed in GiD for instance.

 Dimensions: GiD automatically detects if the problem is 2D or 3D depending on the

definition of the geometry. The option to choose manually between 2D and 3D

calculation has been implemented in order to have the possibility to choose if the

calculation is performed with a 2d cylinder or 3d sphere in a 2D domain.

Material Assignment:

This is completely new for any DEM ProblemType in CIMNE. The inherited ProblemType and

the DEM-Pack ProblemType needed to assign each property, one by one to the different

entities or group of entities.

Now, the user can define its own materials that include all the necessary physical properties

and assign with only one action all these properties at once.

 Continuum Group: This is one of the innovations of this application. A group identifier

(0, 1, 2, 3...) can be assigned to any entity as a label. Entities with the same material

properties can belong to different group in order to have a “non-cohesive” interface or

otherwise two different materials can compose the same continuum “cohesive” body.

The group zero is reserved for the materials or particles that won’t resist any tension

between particles. See 8.5.6 Continuum Simulating Option.

79

Part II - 79
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 Particle density: This will determine the

mass of the discrete element.

 Young modulus: This is the parameter that

has more influence in the stiffness of the

contact springs. In an ideal case it would

take the value of the representing material

but in order to save calculation time, a

smaller value can be adopted as it is

explained on Part I: Section 0

 Relative importance of the accuracy on the

stiffness value

 Poisson ratio: This also affects the

determination of the stiffness for the

springs. The correct value shall be used.

 Cohesion: This value determines the

ultimate admissible shear stress (in terms of

force). If this value is exceeded, the contact

becomes frictional.

 Friction: This value corresponds to the angle of internal friction of the material; the

calculation of the friction forces is obtained by means of its tangent.

 Tension: Determines the ultimate tensile strength that the contact can hold in terms of

forces (Newtons).

 LocalDampRatio: Affects on the persistent damping that acts whenever an unbalanced

force is present onto a body.

 Static friction coefficient: To calculate the static friction force opposing the movement.

 Dynamic friction coefficient: For the friction forces when slipping exists.

 Visco Damp Coeff: This applies to the coefficient for the viscous damping.

Figure II. 19 DEM Materials selection

80

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

7 . 3 . I m p l e m e n t a t i o n s d on e i n t h e P o s t - P r oc e s s o r f or D E M - A p p .

As it has been commented in previous sections, GiD Post-Process performs the visualization of

the results that KRATOS obtains during the calculation.

There have been only a few modifications done in the Post-Process but there is still some work

to do in improving this aspect as it will be commented later on.

 I n h e r i t e d P o s t - P r o c e s s 7.3.1.

First of all, as it has been exposed in the previous section, the point entity has been used to

define the particles’ geometry. This was a problem for the representation in the Post where

just points are represented instead of the real spheres with the corresponding radius. One

feature that GiD offers to the user in order to simulate the sphere is to enlarge point by point

the representation size until it has the required radius. This has to be done manually and can

incur in some problems in the animation.

As it has been already commented, the Post permits visualizing determined output variables

that KRATOS stores during the calculation. In the inherited code the three components of the

displacement, the velocity and the unbalanced force were exported for the viusalitzation; GiD

is able to represent with different techniques, as it has been said, any component of these

variables and also the resultant vector norm.

 N e w D E M - A p p l i c a t i o n P o s t - P r o c e s s 7.3.2.

Due to the introduction of the spheres and circles entities to the mesh of the Pre-Process, one

of the implementations needed was already satisfied; now, the visualization does not depend

anymore on the enlarged size of the represented point; it captures the sphere or circle real

assigned size.

Advanced representation features:

 Fracture type output: It has been commented in Part I (see 3.5 Failure of the contacts,

plasticity and damage) that it can be interesting to store the dominating fracture type

when a particle is detached from the continuum. KRATOS permits representing any

81

Part II - 81
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

variable that can be stored on the nodes; as it is explained on section 7.1.3 Post-

Process, GiD can represents in many ways, for example setting a range of colours.

 Utility for the rotation visualization: When the rotation option is applied the results

may vary for the groups of particles that now will be affected by the moments; also

the single particles will rotate due to the moments and the results will vary indeed,

though, from the original visualization it is not possible to determine whether it is a

rotating or a not rotating particle. This has been solved in a very illustrative way in the

CDEM program where we visualize a radial stroke in the particle that rotates

accordingly to the rotation of the particle. This is an original solution for representing

the 2D effect. For the 3D effect, the DEM team is developing an X, Y, Z local initial axis

that will rotate following the motion of the particle.

With rotation

Without rotation

Figure II. 20 Example of rotation visualization option in 2D (CDEM)

82

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

8. IMPLEMENTATION IN KRATOS

The objective of this section is to introduce the interested lector to the basic structure of the

DEM-Application that has been implemented in the KRATOS platform during the course of this

work. Also a briefly explanation of the different files can be found for any developer interested

in the functioning of KRATOS and the approach for the DEM-Application

8 . 1 . B a s i c c om p u t a t i o n a l s e q u e n c e f or a d i s c r e t e e l e m e n t c o d e

The first algorithm was proposed by Cundall [4] and it doesn’t differ so much from the DEM-

Applciation one . The code developed as most of the commercial codes that use the Discrete

Element Methods, has a basic sequence calculation that is roughly based in the same steps.

Loop Particles

Search contacts

Forces, Moments evaluation

Force and Moments recalculation

Loop time Steps

Integration: Acceleration Velocity Displacement /Rotation

Check critical time step

Failure criteria Plasticity Damage
Continuum

Simulation

Next particle

Next Time Step

Check for slipping

83

Part II - 83
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

8 . 2 . B a s i c s t r u c t u r e o f t h e D E M - A p p l i c a t i o n

It has been commented in the section 5. KRATOS-multiphysics platform that the platform is

oriented to implement FEM-based applications; some of the applications that are already

implemented are: Incompressible fluid App., Structural App., PFEM App., Meshing App.,

ThermoMechanical App, kElectrostatic App., etc. However, a Discrete Element-based method

has been also implemented, without problems, in the KRATOS platform. The differences are

minor comparing structure of our application and the one from other applications because one

of the principal recommendations when implementing in KRATOS is trying to keep the same

format in order to be more accessible to the other developers. The other fundamental reason

is to be able then to couple easily two different applications. In that sense, a complete

restructuration of the DEM-Application was made when the DEM-Application project started;

there have been an intense work done on it to match the application to the dictated structure

that would make it much more versatile

84

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

8 . 3 . F o l d e r s a n d f i l e s i n t h e a p p l i c a t i o n :

Elements available

Spheric_DEM-FEM_particle derives from

Spheric_particle and has the extra features

for the DEM_FEM problem.

ProblemType

A folder ready to copy to GiD and a

problemtype generator that creates these

packages with the new implementations

CustomPython

These files translate the strategies and the

utilities defined in C++ language to be able

to call them from python scripts.

Schemes

Two explicit integration schemes available,

this clases derive from a base class

integration_scheme.h

Strategy

The main script that calls subsequencially

the shcemes and the functions on the

elements during the loop.

Utilities

Geometric functions predefined, the

neighbouring search function, the

configuration of the particle, etc.

Python Solver

Python interface where the main function

of the strategy such as Initialize or Solve

are called. Adding the nodal variables.

DEM_application

Here the variables that will be used are

created and registered to python and

KRATOS.

85

Part II - 85
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

8 . 4 . E x p l a n a t i on of t h e m a i n f i l e s :

Here, a brief explanation of the files and the main functions of the DEM-Application are

presented with the objective to give a general overview of the capacities and functioning of

the program. For the reader interested in the details of the code, developers and advanced

users, in the annex the code for the DEM-application is attached.

 A d v a n c e d u s e r s : 8.4.1.

The advanced users of the KRATOS applications won’t enter inside the C++ encoding of the

application but they would use the python files to code, with this basic language, some

instructions that permit a rapid interaction and modifications with no needing to compile.

When an engineer is running a case, frequently would have the necessity to apply an extra

force to some particles of the domain, to change the material of several bodies, to extend the

simulation time to eliminate, create or modify some existent discrete elements, etc. Most of

these useful operations can be done in the following python scripts avoiding the needing to

modify the created example with the graphical interface.

Very often the user needs to modify punctually the coordinates of an element, its properties,

eliminate one or create a new one. This can be done quickly modifying another file with the

extension “mdpa”; this file is auto-generated by the graphical interface.

*.mdpa: mdpa is the extension of the file that contains all the information of the ModelPart

that GiD creates from the geometry, properties and conditions definition. This file is translated

automatically by means of the GiD I/O module which will create the different elements and

assign the corresponding properties and values of the elemental and nodal variables

interpreting the information on this file.

Nodes List: listing of every node with its three coordinates.

Figure II. 21 MDPA example, nodes list.

86

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Elements List: listing of every element with its connectivities (nodes assigned).

Figure II. 22 MDPA example, list of elements.

Nodal Data: for every variable predefined in GiD, the list of the nodes, the condition of fixity on

the variable and the value is presented.

Figure II. 23 MDPA example, example of nodal data.

The advanced users of the application can find it useful to edit this file to change some options

and determine special conditions manually without needing to modify the geometry or the

properties using a graphical interface, such as GiD.

PythonScript: This file, usually named as Script.py written in Python language is the main script

that the users launch to trigger the calculation of the problem. This file is included in the

ProblemType folder of the application that any user of the application (basic or advanced)

would have linked with the Pre/Postprocessor software, for example GiD.

87

Part II - 87
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

COMMENTS

The first part defines the “includes”

necessaries to link the KRATOS folders and

the DEM-App. The model part is created

and the input file name is captured.

Here the solver strategy is chosen, the

variables are added to the solver.

Setting the buffer size: This determines the

historical database of the problem. By

setting the value of 0,1,2,3, etc. there will

be access to the current value of the nodal

variables, to the current and the previous

time step value, to the current and the two

preceding values, and so on.

The values for the different options and

variables that KRATOS would use in the

application can be imported here in a very

intuitive way. These values have been

exported by GiD to the _var file: the

integration scheme, the type of solution,

type of damping, the time step, the output

time step for the results, etc.

88

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

COMMENTS

After the definition of several options and

parameters the function Initialize() of the

solver is called.

Here also the time step is determined and

the main loop is devised by a while

structure. For every time step the function

Solve() of the solver is executed.

At some time steps the different results are

exported to GiD, this way, they are

available for the visualizaton them in the

Postprocessor.

89

Part II - 89
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

This code is totally manageable and easy to tune the different parameters. The changes on

this file don’t require recompilation. The reason of the usage of these two languages is that

until a certain level of usage is interesting to interact with the application with easiness and,

very important, without recompiling. After this level, C++ is a more powerful language with

much more possibilities with a more efficient use of the memory and better in terms of

computing time.

There are two ways to run this file:

From Terminal: From the folder where the GiD case has been created, the so-called script.py

can be triggered with the preceding instruction python (in Linux).

Figure II. 1: Snapshot of the terminal in Linux.

From GiD : (or other graphical interface) with the calculate button:

Figure II. 2: Snapshot of the GiD interface when running a case.

Solver: This file, named as Sphere_strategy.py in our DEM-App., is written also in Python

language and it’s the last door to the core of the program written in C++ language.

AddVariables (model_part): In this file the first definition is about which variables will be

stored in the nodes for every time step and also the value of these variables would be available

for different times depending on the buffer size selected.

 Sphere_strategy.py

90

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

AddDofs (model_part): Also here the degrees of freedom are set here. These variables would

accept initial conditions defined on GiD.

The constructor of the class of the solver is defined then and some variables and options are

defined here with the default values that the user sets.

The Initialize (self): function is called by the script.py script as it has been seen. In that script

the parameters for the calculation should be imported from GiD or set automatically. Now

when initializing these values are stored into variables that are accessible in the different files

of the application by means of the ProcessInfo (a data container in KRATOS). Also the Initialize

function calls the Initialize function of the solver.

After that the script stores the variables, usually related with options, defined here or in the

Script.py to the ProcessInfo container. This container is accessible in the C++ files where value

set by the user for these variables may be used in the calculation.

 Sphere_strategy.py

 Sphere_strategy.py

91

Part II - 91
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 D e v e l o p e r s s t a g e 8.4.2.

In a higher level, the developers that want to implement or modify some functions of the

application are required to have a certain level of knowledge in C++ programming language. In

addition, some introduction or practice in KRATOS framework is necessary.

Strategy: This file is called explicit_solver_strategy.h in our application; it is the principal

framework of the application, it calls the different functions and utilities.

Basically the Initialize() function realizes the first neighbouring search and initializes the

elements. In addition, if the case has the indentation option activated (delta_option) or it is

trying to simulate the continuum (continuum_simulation_option) the program will call the

function that stores the results of this first neighbouring search to each particle. See section

8.5.5 Initial Delta Option and 8.5.6 Continuum Simulating Option.

Afterwards, the function Solve() is called from the Script.py, through the sphere_strategy.h.

explicit_solver_strategy.h

 explicit_solver_strategy.h

92

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Each one of these functions is a sub function defined in the same Strategy file that they

subsequently call the corresponding script that handles each operation. For example, in the

strategy, the function SearchNeighbours () is simply a recalling to the Neighbour_Calculator ()

search function that is stored on the Utilities folder.

After doing the operation we would have found all the neighbours for every particle and we

can proceed with the Get Forces module. The Get Forces function initializes the parallelization

for every particle defined in the model part. Then inside the loop over the particle, the

function ComputeForces (), which is included in the element, is called.

Parallelization: (see 8.5.1 Parallelization)

Also the parallelization has to be defined here when a loop over the particles is performed. The

parallelization implemented here is the OpenMP1. To parallelize or not is a decision on the user

and it is reflected as an option that can be activated or disabled from GiD interface, also there

is a variable to set the number of threads desired for the parallelization.

As an example the function ApplyLocalDampings (), is presented here to see what the aspect

of a loop is over all the particles parallelized by means of OpenMP.

1 OpenMP (Open Multiprocessing) is a application programming interface that supports multi-
platform shared memory multiprocessing programming in C, C++, and Fortran.
OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface for
developing parallel applications for platforms ranging from the standard desktop computer to the
supercomputer.

 explicit_solver_strategy.h

 explicit_solver_strategy.h

http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Desktop_computer
http://en.wikipedia.org/wiki/Supercomputer

93

Part II - 93
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

All these lines of code what are simply doing is to divide the number of elements in the model

part where we have to apply some Damping in different sets that will be send separately to the

selected number of threads. For every particle the specified function is calculated normally.

Without loose of generality, in this script different elements can be used. When the model part

is read, every particle is assigned to one of the elements defined in the Elements folder. The

strategy will call the Calculate (), and other functions that are public and bridge to the private

functions of the elements no matter which one it is. In this sense we can define several types

of elements that should have the same entry functions but they can be specially defined in a

different way in each element.

Utilities folder: In our applications there are not a lot of utilities defined yet but they can be

introduced separately to complete new features for the DEM application. Currently there is

the neighbour_calculator.h utility which is a fundamental function for the DEM and will be

detailed next. The GeometryFunctions.h is a file that would make easier the operations like

transformation of coordinates, the vector and scalar product of vectors, the calculation of the

norms in different spaces, etc. Also the particle_configure.h is present, which defines a set of

inline functions necessaries in other parts of the code, such as distances between points,

intersection of the particles, etc. Finally the create_and_destroy.h utility is basically used

currently for the destruction of the particles that get out from a determined bounding box.

These functions are utilities in the literal sense and will be explained in the section 8.5 Utilities

for the DEM application.

 explicit_solver_strategy.h

94

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Schemes folder: From the strategy, the ComputeIntermedialVelocityAndNewDisplacement ()

function is called. An object of the class scheme is created; it would solve the integration in

time of the movement. The created different schemes, which can be called from the strategies,

solve the differential equations in time using an explicit method. Currently the Mid Point Rule

and the Forward Euler are implemented and some high order schemes are being developed by

collaborators in UCLV CIMNE classroom (CUBA), see section 6.2 Current development and

collaboration.

Elements folder: Currently the application disposes of three elements, the Discrete_Element,

the Spheric_particle and the Sheric_DEM-FEM_particle. The Discrete_Element.cpp/.h is directly

derived from the KRATOS base class Element.cpp/.h, the main element for this application

were the different elements of the applications derive from.

Discrete_Element.cpp/.h: It has been derived to differentiate from the basic class. As a derived

class it inherits all the functions and members defined in the base class. Here nothing new has

been implemented yet but it is devised to have the characteristic definitions that define

differently this element with respect to the basic one. Also this is the base of all the elements

that the application would include.

The functions that this element has are the same as the ones that base Element.h has. These

functions are needed to be generic and very basic; in the strategy these are the only functions

available to call for a generic element; once we are inside these functions in our derived

element we can implement differently the functions to redirect to the new private functions

that will be implemented new in our elements.

Figure II. 3. Base element class and derivate classes

95

Part II - 95
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

General functions (used in DEM App.) to access the elements:

Initialize(), CalculateRightHandSide(), GetDofList(),

InitializeSolutionStep(), Calculate().

Currently there are only two derived elements that are commented next: the

Spheric_particle.cpp/.h and the Spheric_DEM-FEM_particle.cpp/.h which are elements

designed to represent obviously spheres as a discrete body of analysis. In the future possibly

the application will have other elements like Ellipsoid_particle or Tetrahedron_particle, etc.

which will derive from the Discrete_Element.h but they probably would need a different

definition of the functions to take in account the differences in geometry.

Spheric_Particle.cpp/.h: This is the file of the DEM Application that has had more work done

on it. The functions contained on it were completely written new with the help and the

experience of other researchers and one of the collaborators, Feng Chun. (See section

6.2.Current development and collaboration and section 9.Future of dem-application). Next, a

list of the more important functions is presented. A brief explanation of them is also included:

Entry functions:

 void SphericParticle::Initialize():This function is an “entry” function, in the

sense that is a function inherited from the base class; these functions are used to call

subsequently private functions that are specific for the derived element.

 void SphericParticle::InitializeSolutionStep(): This function will be called

once, during the first iteration and will recall the SetInitialContacts() function.

 void SphericParticle::CalculateRightHandSide(): This function calls different

force and moment calculation functions.

 void SphericParticle::Calculate(): The calculate function permits passing the

name of a variable and depending on the value of this name we can implement

different calculations or callings to other functions. It represents a useful way to enter

to more complex functions of the elements by means of a simple generic one. In the

DEM-Application, the function calculates either the critical time step or recalls the

damping functions.

96

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

 Private functions:

 void SphericParticle::SetInitialContacts():This function is called from

InitializeSolutionStep()if the delta_option or continuum_simulation_option are

activated. It stores for the first search the neighbour that every particle has. This is

needed for the continuum simulation and the indentation permitted in the generation

as it will be explained in detail in section: 8.5 Utilities for the DEM application.

 void SphericParticle::ComputeParticleContactForce()
1
:This function is

possibly the most complex function in the application. It will be called from the

strategy by means of the GetForce(); this one constructs a loop over the particles

(parallelized) and for each one, it gets into this private function by means of

CalculateRightHandSide(). It has the following parts:

Initial operations:

 Reading of the conditions and options activated.

 Getting particle properties (including force and moment vectors)

Loop over the neighbours:

 Getting the neighbour properties

 Evaluation of the equivalent parameters.

 Calculating the relative distance and displacements with respect to the

previous step.

 Add the contributions of the rotational motion.

 Evaluate the forces in local coordinates

 Check for the failures

 Apply viscous damping contact by contact

 Transforming to global coordinates and adding up forces and moments.

 Returning back the rotational moments

1
 The detailed implementation of the function can be found on the annex.

97

Part II - 97
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 void SphericParticle::ApplyLocalForcesDamping():This function is called from

ApplyLocalDampings() in the strategy just after the GetForce() function. It opens a

parallelized loop over the particle and enters, via the entry function

Calculate(PARTICLE_LOCAL_DAMP_RATIO,...), which calls this function in the

Spheric_Particle.cpp element class. The function applies a global damping to the

forces.

 void SphericParticle::ApplyLocalMomentsDamping():This function is called in

the same way than the previous one; after applying the damping to the forces, if the

rotation option is activated, the damping is applied to the moments.

 void SphericParticle::ComputeParticleRotationSpring(): A similar

proceeding to ComputeParticleContactForce() function is performed here. Given a

relative rotation between two particles upon a contact, the rotational spring acts

opposing this effect. The function is called by the same way than

ComputeParticleContactForce(); if the rotation option is activated the function is

calculated after the force calculations.

Spheric_DEM_FEM_Particle.cpp/.h: As it has been commented repeatedly, in parallel with the

implementation of the DEM Application, a DEM-FEM Application has been developed

combining elements from the Structural Application and the elements from the DEM

Application. The application combines these two elements in the same program but

unfortunately when these elements have to interact between them they need some extra

functions that the Spheric_Particle.cpp/.h doesn’t need to include. That is why in this case is

useful to derive a class that would inherit all the basic functions of his base class and also the

new ones exclusively for the interaction with the elements from the structural application. The

functions are not detailed here as it is part of another application development and it has no

further interest for our application by now.

98

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

8 . 5 . U t i l i t i e s f or t h e D E M a p p l i c a t i o n

In this section, the topics discussed are basically the troubleshooting of the problems and the

approaches that have been done during the implementation of the DEM-Application. Since the

main structure has already been explained roughly and it doesn’t differ so much from the

classical DEM algorithms, the next points deal with special features that have been devised in

order to have a versatile and efficient code with a strong robust core.

 Efficiency: Parallelization of the code, Critical time and Virtual Mass method.

 Visualization: Bounding Box, Create & Destroy utility, Fracture and Rotation Plotting.

 Versatility: Initial Delta option, Continuum option, Extended Radius Search.

The utilities implemented for efficiency and visualization can be considered as simple utilities

introduced to the code while the three utilities for versatility implied a global restructuration

of the code. After the explanation of these utilities a framework is attached where the logical

process of the algorithm is exposed.

 P a r a l l e l i z a t i o n 8.5.1.

A Discrete Element Method code without parallelization has a very limited use in practice; the

reality is that for considerably large amount of particles (common simulations) the code needs

to be parallelized to be competitive against other methods. The good thing of DEM is that the

parallelization is quite easy to achieve; the method in its original concept is based on

calculating each particle independently, i.e. from the forces that we obtain on a target particle,

it evolves in an explicit time step scheme, independently from the other particles. In this sense

the main processes in the computational scheme: force calculation, evolve motion, search

neighbours can be parallelized.

There exist two types of remarkable architectures for computers, the Shared Memory

Machines and the Distributed Memory Machines. In computer science, Distributed

Memory refers to a multiple-processor computer system in which each processor has its own

private memory. Computational tasks can only operate on local data, and if remote data is

required, the computational task must communicate with one or more remote processors. In

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Computer_memory

99

Part II - 99
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

contrast, a Shared Memory multi processor offers a single memory space used by all

processors.

There are two widespread techniques of parallelization suitable for C++ language, OpenMP

and MPI, which can be implemented in KRATOS and are currently being introduced to DEM-

Application. The suitable technique for SMM is Open MP (Open Multiprocessing); it permits

parallelizing the loops of the process by using compilation directives so the code runs in serial

until the loop, runs the loop on parallel and then reverts back to serial. This can be done by

splitting the loop and calculating each part by the different CPU of the same computer;

OpenMP runs on a shared memory system so most part of the personal computers would

permit parallelizing the calculation and saving time. OpenMP works fine if every unit step of

the loop is independent from the others so can be split without problems; the DEM permits

doing so. Next, an example of parallelization by OpenMP for the DEM-Application is presented.

It is a partitioning of the loop over the particles for the different threads of the computer.

explicit_solver_strategy.h

http://en.wikipedia.org/wiki/Shared_memory

100

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

For DMM architecture the suitable

technology is the MPI (Message Passing

Interface); this would permit running a

case, usually with large number of

particles in a computer cluster where

hundreds, thousands or more CPUs

intervene in the calculation. With MPI the

entire code is launched on each node

which would store the data in its own

memory. The passing of information and

the synchronization of the calculation can

be controlled. It is also possible to

combine MPI with OpenMP to get the best of every technology.

 C o m p u t e C r i t i c a l T i m e + V i r t u a l M a s s 8.5.2.

Critical time

This operation is done at the first time step, a loop over all the particles is done and for each

one, we calculate it critical time step depending on the normal spring stiffness value. This

function is very simple and it neither considers the tangential spring nor the rotational one.

However there is an “experimentally determined” factor for reducing the critical time step

when we introduce the rotation to the particles.

This simple formula for the normal spring is always on the safety side because the K taken for

the critical times step will be the maximum one, corresponding to the biggest particle. This K

will appear only if the biggest sphere contacts another one with the same radius. The

implemented expressions for the values of can be found on the code on the annex.

 With

Next, the simple calculation performed on the DEM-Application is presented:

Figure II. 24 Cluster of Distributed Memory Machines

101

Part II - 101
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Calculate (DEM_DELTA_TIME,)

Please refer to section 2.3.2 Numerical stability of the method and critical time step in PART I,

where the critical time step calculation is discussed.

Virtual mass method

The virtual mass method is a method implemented by Feng Chun (see section 6.2 Current

development and collaboration) especially for the DEM-FEM_Application. It will be adapted

also to the DEM-Application. It is a method appropriated for the quasi-static problems such as

compression test, where the dynamic effects are no longer important.

In DEM_FEM_Application, explicit method is adopted, so the stable time step of numerical

system depends on the smallest time step among the critical time steps of FEM elements and

DEM contacts. In an optimized case, the calculation of the critical time step should be done at

several time steps as the contacts renew; In heterogeneous meshes the critical time step may

vary seriously from one time step to the other and therefore it will increase the computation

time dramatically. To solve the problem above mentioned the virtual mass method is adopted.

By adjusting the mass of FEM elements and DEM particles, the critical time step of each

contact entity, becomes the same (equal 1, for example). In that sense the critical time step is

determined for all the simulation and won’t be a limitation of the problem calculation.

During evolvement calculation, accelerations of particles are obtained according to virtual

mass (real unbalanced forces divide virtual mass); in that sense the dynamic motion wouldn’t

be correctly calculated and that’s why this method should only be used in static or quasi-static

problems.

spheric_particle.cpp

102

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

 B o u n d i n g B o x + C r e a t e a n d D e s t r o y 8.5.3.

This utility is devised for dynamic system simulation where the movement of the particles in

the domain it is dominant. The bounding box concept (differing from the one view on Part I

section 2.1.2 Bounding Box/Sphere representation) it’s a surrounding box that includes all the

particles present in the domain at the initial state. Whenever a particle gets out of that domain

it is destroyed. In a dynamic problem is easy to happen that a particle goes far of the initial

domain or moreover fades away indefinitely by the effect of the gravity; that would lead to an

enlargement of the visualization domain and consequently problems in the display of the

results. If this option is activated the domain will remain more or less fixed on the initial place

and the particles that go far away are no longer of our interest.

 P l o t t i n g t h e d i f f e r e n t f r a c t u r e s 1 8.5.4.

In the DEM-Application it is possible to simulate the continuum as it has been explained and in

the previous section where the details for the delta option, the continuum simulation and the

extended search are exposed. These utilities configure the instrumentation that the code need

for the simulation of continuous medium problems. In these simulations the particles will pass

from a “cohesive” state to a detached configuration when some failure criterion is reached.

The objective of this utility for visualization is to identify particle by particle the cause of the

detachment.

In general, it may be difficult (or simply impracticable) to plot the fracture type (shear, tensile,

etc) for every contact pair; however, in a test with a large number of particles we may find

useful to plot the dominant type of fracture that the detached particle suffered in its change

from continuous to discontinuous state. The idea consists in determining an integer for the

different failure types that could occur in a contact (can be defined by the user), namely the

shear failure, tensile, Von misses criterion, etc.

1
 This utility is still in development and it’s not present on the DEM-Application yet. In the DEM-

Application the Contact Failure Id is active and used to distinguish whether a contact is “cohesive” or
detached during the calculation but the exportation to the global failure mode of the particle depending
on its contacts and the visualization is not implemented yet.

103

Part II - 103
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

First of all clarify that depending on the fracture criterion chosen for the there would be

different classifications of the fracture type. For example, we need only two categories if we

simply consider independently the tensile stress limit and shear stress limit. On the other hand

if we set models like Von Misses or Rankine, which evaluate the global stress state or simply

the principal one, we may not have distinction for type of failure.

This is the proposed criteria for the DEM-App. (Falure of the contacts):

Contact Failure Id = 0 Still attached, tensile and shear strength.

Contact Failure Id = 1 Generally detached: Not initial neighbours, not same continuum group

Contact Failure Id = 3 Tension failure, neither tensile strength applicable nor shear.

Contact Failure Id = 4 Shear failure, neither tensile strength applicable nor shear.

Contact Failure Id = 5 Von Misses failure criteria, etc. (can be defined by the user)

Note that the Contact Failure Id = 2 is not defined. The idea is to reserve this identifier for the

partially detached particles, the ones that neither the shear nor the tensile are dominant (for

example). We will distinguish now between Contact Failure Id. and Particle Failure Id.

Particle Failure Id = 0 All contacts are still attached.

Contact Failure Id = 1 Generally detached: From a discontinuous group or surrounded by
particles from other groups

Contact Failure Id = 2 Partially detached. Some contacts detached. Not a dominant case.

Contact Failure Id = 3 Tension failure dominant in the contacts.

Contact Failure Id = 4 Shear failure dominant in the contacts.

Contact Failure Id = 5 Other used-defined criteria.

Some criterion has to be defined to determine when, in a target particle, it will be considered

that the dominating fracture type is one of the occurring contact failures.

Figure II. 25 Example of application for different failure types

a) PARTIALLY DETACHED

4 attached contacts

1 tensile failure

1 shear failure

b) TENSILE FAILURE

2 attached contacts

3 tensile failure

1 shear failure

 𝑎 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑡𝑎𝑐 𝑒𝑑 𝑏 𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡

104

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

 I n i t i a l D e l t a O p t i o n 8.5.5.

The geometry - mesh options have been exposed in section 7.2.2 New DEM-Application Pre-

Process where the GiD Sphere mesher has been explained. It is very common to mesh real

case problems with meshers like this in order to fill a determined volume with some set of

spheres with different radius (or not) depending on the meshing options. The GiD Sphere

mesher is the one that is available in GiD but there are others developed for other groups that

should be used for DEM-Application; in particular, UCLV (CUBA) CIMNE classroom is

developing a sophisticated generator that will probably be linkable to GiD.

Some of these generators, including the one from UCLV, may produce some indentation

between particles created to fill a determined geometry. In the original DEM conception this

would lead to considerable problems because these indentations would result into large forces

and “explosions” due to the repulsive tendency of the particles. In our application, this issue

has been taken into account and (if the option is activated) we let the particles have an initial

passive indentation that doesn’t produce any force.

The complexity of the implemented algorithm that allows doing so is due to the fact that we

want this indentation to be remembered for the next eventual collisions with these two

particles. This avoids gaining volume and energy from nowhere but involves pretty much the

algorithm. A framework of this implementation is on 8.5.8 Framework for the Versatility

utilities.

.

Figure II. 26 Initial Delta remembered in a contact

t=0
No contact! Contact now!

105

Part II - 105
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 C o n t i n u u m S i m u l a t i n g O p t i o n 8.5.6.

It has been commented in the part one that the tendency nowadays in DEM research is to find

suitable ways to reproduce the behaviour of the continuum by outfitting the discrete particles

with some resistant mechanisms. There have been many theories and approaches to this

problem and there is not a unique accurate solution for the characterization of the properties

that would differentiate the discrete element as a continuum simulating one. Regardless of the

characterization we do, when we deal in a program with: non-cohesive discrete particles,

continuum simulating particles (cohesive) and the possibility to change from one state to the

other by means of the fracture, the algorithm that has to be devised become involved in a

similar way that the Delta option does. This is also present in 8.5.8 Framework for the

Versatility utilities.

 N e i g h b o u r S e a r c h u t i l i t y a n d E x t e n d e d R a d i u s S e a r c h 8.5.7.

Neighbour Search.h: this is a basic function of our application and the implementation of it has

been complex. The original function was much more basic; it consisted simply in a calling to

other functions that are in the KRATOS libraries that can be used for any application. In

KRATOS, many neighbouring search functions like: static bins, dynamic bins, Oct-tree, etc. are

already implemented ready to be used in different applications. What was implemented new

in this file is the generalization to a neighbouring search that permits including the options of

some initial indentation between the particles and the continuum simulating option.

Summarizing, the utility included in a C++ header file is the coupling of a basic search function

with a set of loops and operations that permit the treatment of the Continuum Simulating

problem and the Initial Delta utility.

Apart from these utilities, it was interesting to give an extra feature to the basic search that is

the possibility to consider a particle to be a neighbour of a target one even if there is a little

separation between them. This is very frequent to happen with the sphere mesh generators;

including the GiD mesher whose example is shown in Figure II. 27 Gap left by the mesher.

106

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Developers from KRATOS have implemented a modification to the bins function that searches

for the contacts introducing a new parameter that is the radius of search. The original function

took the radius of the target particle as the radius of search for neighbours and it used to find

only the particles that where at a distance (tangent or indented). Now, with this

utility, the becomes enlarged by some percentage.

Normally the extension is . If the value needed is larger, it should be considered to

revise the generation. This initial separation is stored and treated in the same way like the

indentation in the Initial Delta option.

Figure II. 27 Gap left by the mesher.

107

Part II - 107
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

 F r a m e w o r k f o r t h e V e r s a t i l i t y u t i l i t i e s 8.5.8.

Initialize function:

This function is called only in the first iteration of the process. Here the neighbouring search is

done with the extension over the radius. After the neighbours are set, this search is stored as

the Initial Neighbours for every particle. After doing this, the values of the failure and the initial

delta will be characterized.

If two contacting particles belong to the same continuum group they are attached and they

will have tensile strength so, the failure is set to 0. The particles that have different group or

the ones that belong to the zero group are considered to have a failure type=1 (generally

detached). The distance between the centres of these particles is compared against the sum of

their radius and also the Initial Delta is stored for every Initial Neighbour for every target

particle.

Figure II. 28 Framework of the Initialize algorithm implemented

108

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Main Solve function:

These are the basic steps of the DEM: Calculate Forces – Evolve Motion – Search Neighbours.

When calculating the forces we have to check the Failure Id in order to apply tensile forces or

not, shear forces or friction, etc... The Contact Failure Id is the flag (see section 8.5.4 Plotting

the different fractures) used in order to distinguish between a continuum simulating treatment

of the contact or an original DEM treatment.

The forces that result from the calculation can overpass the limits established for the elastic

regime; depending on the failure criterion defined, some contact can be considered detached.

The fracture criteria implemented can be various and also more sophisticated codes can be

implemented like damage or plasticity; most of these models have not been implemented yet.

Regardless of the criterion, when we overpass the fracture limit (being tensile, shear or

whatever stress) the contact has to change from a continuum simulating to a detached one.

For every contact calculation we also need to recover the Initial Delta for the contacting pairs if

it is applicable.

The evolve motion process consists only in integrating the accelerations to get the

displacements, it has been explained in Part I: 1.2.4 Integration of Motion Equations.

Figure II. 29 Framework of the Solve algorithm implemented

109

Part II - 109
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

The neighbouring search without any tolerance or extension is simply the search for the

particles that are in a distance . The extended radius shall be used only during the

first step. The next framework explains the functioning of the neighbour_calculator.h file.

Neighbour search algorithm:

This utility file has been developed in a very robust and general way to permit the

neighbouring search for different type of element; as an example, the DEM-FEM strategy calls

the same function with another type of element without any modification. It is a C++ template

class that permits the calling with several type definitions and different elements and

dimensions (2D or 3D) for the dynamic bins search. As it has been commented it also permits a

parameter to determine an extension for the radius of search.

In order to deal with the Continuum option and Initial Delta utility the algorithm complicates.

Figure II. 30 Framework of the neighbour calculator utility implemented.

 1

 2

 3

 4

110

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Old Neighbours storing: Before the New search is done, all the necessary information is

stored on the Old_neighbours, Old_forces, Old_Failure_Id, and Old_Delta arrays.

Initializations for the new search: The New search is performed and the New array

parameters are initialized as zero for the forces and the deltas and equal to one for the

failure id.

Recovering data from Old and Initial Neighbours: For the New_Neighbours we want to

recover the information that we already got if they were previous neighbours

(Old_Neighbours), namely the forces and the failure id. From the Initial_Neighbours we

will copy the Initial Delta data those New_Neighbours that coincide with an Initial

Neighbour.

Missing Old Neighbours: Finally we have to check for those Old_Neighbours that

couldn’t be found by the ordinary search because they formed part from a continuum

simulating contact and they were separated from the target particle due to a tensile

strain. (Remember that the neighbour search for the main loop is without any radius

extension). We need to do a push-back on the New_ Neighbours including these not

detected neighbours with the corresponding Old information. This is explained is an

illustrative figure after the framework.

Example for the search algorithm:

1

2 3

T

4

5

6

1

2 3

T

4
5

6

Initial state t=0 Time t1 >0

 4

 3

 2

 1

111

Part II - 111
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

Characteristics of the particles at time T=0:

Id Continuum group Neighbour? Observations

T 1 (blue) - The target particle has 4 neighbours: 2,3,4,5

1 1 (blue) NO Not in extended radius.

2 1 (blue) YES Same group – Cohesive.

3 1 (blue) YES In extended radius. Same group – Cohesive.

4 2 (red) YES Not same group – non cohesive.

5 2 (red) YES Delta will be stored. Not same group – non cohesive.

6 3 (green) NO -

Characteristics of the particles at time T=T1:

Id Continuum group Neighbour? Observations

T 1 (blue) - The target particle has 4 neighbours: 2,3,5,6

1 1 (blue) NO In extended radius. But search without extension on T>0

2 1 (blue) YES Separated but remembered from previous neighbours.

3 1 (blue) YES Remembered still attached by tensile strength.

4 2 (red) NO Lost neighbour.

5 2 (red) YES -

6 3 (green) NO New neighbour.

Take special attention to the particle number 2: The new search performed in T1 does not find

particle 2 as a neighbour because these searches are without any extension of the radius.

However, recalling we recover the neighbours 2 and also 3 which was previously in the

same condition. Particle number 1 for example is now closer than particle number 3 but it is

not a new neighbour because it will only be if the contact is on the surface; although it is from

the same continuum group it won’t be a cohesive neighbour because it is not an initial

neighbour.

 4

1

2 3

T

4
5

6

Time T2 >T1

112

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

Characteristics of the particles at time T=T2:

Id Continuum group Neighbour? Observations

T 1 (blue) - The target particle has 6 neighbours: 1, 2, 3*, 4, 5, 6**

1 1 (blue) YES New contact. But non cohesive despite same group.

2 1 (blue) YES Separated but remembered from previous neighbours.

3 1 (blue) YES Tensile failure. *Not neighbour for the next step.

4 2 (red) NO Neighbour again, contact on the surface

5 2 (red) YES Fake neighbour**. Not contact force applicable.

6 3 (green) NO Nothing new with respect to the previous step.

The particle 1 is now a new neighbour but not with continuum properties (tensile or shear

strength) because it doesn’t belong to the initial neighbour list.

The particle number three was found as a recovered neighbour but during the check for the

forces the tensile strength was exceeded and at this time the Failure Id changes for this

contact being detached for the next steps. Although it belongs to the initial neighbour list,

whenever this particle contacts again the target, the contact won’t be cohesive anymore due

to the fracture Id stored.

The particle number 5 is found in the common search because the particles intersect; however,

when the force is calculated the program will read the value of the delta stored and would

determine that there is no contact force. This particle will transmit a compressive force only

when it comes back and hits the Target particle in a distance closer or equal the value of the

delta. Contrarily the neighbour 4 collides normally when the surfaces intersect.

Remark on versatility utilities:

As a final remark on the versatility utilities it shall be commented that the use of these utilities

should be restricted to the quasi-static problems where the contacts doesn’t change so much

and the continuum simulating problem is present. However the application is designed in a

general way so we can combine discrete elements with continuum simulating particles in

dynamic or static conditions. Obviously if we make use of all these utilities the calculation

increases the cost in CPU time and memory.

Disabling the utilities with a simple switch ON/OFF is crucial in order to skip complex

calculations in the cases that they are not necessary.

113

Part II - 113
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

9. FUTURE OF DEM-APPLICATION

9 . 1 . F u r t h e r d e v e l o p m e n t of t h e D E M - A p p l i c a t i on

Fortunately the Discrete Element Method has a remarkable interest nowadays in CIMNE as

well as in many research institutions. A lot of research is being done in the different fields

where the DEM is applicable. One of the fields which the DEM has to tend now and is of our

interest in CIMNE is to simulate correctly the continuum behaviour in elasticity using a local

rigorous characterization of the contacts and get good results for the tracking of the fracture

and the post-fracture behaviour.

Regarding the DEM-Application, the team have a considerable list of new features and

modifications to introduce to the application which is in fact just the foundation of an

ambitious project. To name some examples:

 Pre/Post: Applied forces condition should be introduced to the ProblemType, also

some tracking method for the rotations in 3D.

 Constitutive modelling: models of plasticity and elastic damage should be introduced.

 Elements: New elements, ellipsoids, tablet type, polyhedral shapes such as cubes,

prisms, tetrahedron, clusters of spheres and DEM blocks concept.

 Non-DEM bodies: rigid boundaries and objects

 Integration: high order scheme for the integration of the motion laws.

 Neighbouring search: Advanced search schemes with linear complexity. Neighbouring

search feasible for difficult shapes.

 Parallelization: MPI and OpenMP optimized for the principle functions as the force

calculation, the neighbour search and the evolving motion.

 Generation: a high-quality generator is needed to mesh complex geometries with high

order of compacity. Also links for the mesh to the advanced technology such as

tomography.

 Revision: Checking of the implemented functionalities, cleaning the code, improving

the efficiency of the programming.

114

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

9 . 2 . P a r a l l e l r e s e a r c h w i t D E M / D E M - A p p l i c a t i o n i n C I M N E

In this section I am pleased to introduce the work that other researchers in CIMNE are doing in

the field of the Discrete Element Methods. Some of them will use the DEM-Application as a

base; they also collaborate on the development of the DEM itself or customize some utilities

for their particular application.

PhD candidates Javiera Valdivia, Nerea Mangado

Biomedical application for DEM: bone regeneration in prosthesis interface

The main specific goal is the development of new computational models using Discrete

Element Methods for the analysis of the bone-implant-living-interfaces and prostheses

mechanics. This modelling is of high concern in order to get a realistic response of the bone

integration with the prostheses stems. The objective of these simulations is to help medical

doctors to predict the long-term evolution of bones and to detect eventual pathologies.

DEM-Application will develop a module that would Include some biological reaction

functions depending on time and some spurs to represent the behaviours of the bone

regeneration cells on an interface bone-prosthesis that would be also simulated with

discrete elements as a porous media.

Keywords: Bone, Prostheses, Biomedics.

Figure II. 31 Bone regeneration in the bone-prosthesis interface

115

Part II - 115
Miquel Santasusana Isach

Enginyeria de Camins, Canals i Ports

PhD candidate Chun Feng

DEM & FEM coupling: landslide simulation

Landslide is one of the most serious geological disasters in the world. To simulate the

evolvement of landslide well, the DEM & FEM coupled method should be introduced into

KRATOS. For the sliding body, the DEM should be used, while for the bedding rock, the FEM

should be adopted. My work in CIMNE is to create the DEM & FEM Application, program the

coupling strategy, and make it possible to simulate the DEM & FEM coupled problems. So

collaborating with DEM KRATOS team is crucial.

Keywords: Landslide, DEM-FEM coupling, bedding rock.

CIMNE researcher Ferran Arrufat

DEM, drilling simulations

As global demand for energy pushes oil

operators into increasingly challenging

environments, the need of a high level

assurance to drill at minimum risk is a

must. Discrete element models had been

rarely used to simulate drill bits, but with

a good definition of the considered

material properties, it is possible to

simulate the rotation of the bottom hole

assembly through the fractured ground.

Keywords: Drilling, Tool-Rock Interaction, DEM applications.

Figure II. 32 Rockfall simulation. DEM particles on a FEM domain

Figure II. 33 Interaction of drilling tool with

DEM-discretized rocky media.

116

Continuum modeling using the Discrete Element Method.

Theory and implementation in an object-oriented software platform.

Part II: KRATOS DEM-Application

PhD Candidate Victor Eduardo

DEM Explosion

To estimate the structural damage caused by the detonation, multiple numerical simulations

have been performed varying the quantity of explosive load and the distance between the

structure and the detonation for each scenario. Afterwards, compression tests were

performed in the resulting structure, getting its maximum load capacity and stiffness after

the detonation in order to quantify the damage.

Keywords: Explosion, Structural damage, DEM applications.

Apart from these parallel works, the DEM-Application team has the collaboration of many

researchers and institutions that have been commented. In addition, some students from the

Civil Engineering school of Barcelona have recently joined us, expanding the DEM-Application

team of KRATOS.

Figure II. 34 Simulation of an explosion on a wall

117

Conclusions

Regarding to the Discrete Element Method it has to be mentioned that it is an excellent

method when facing the simulation of the discontinuous media problems. Not only for its

theory conception which is so adequate for the dynamic problems but also from a numerical

and computational point of view; the use of explicit methods combined with essence of the

DEM that permits considering each particle independent from the others, allows implementing

a powerful code that is almost completely parallelizable and makes the method have no

competitor in this field.

Contrarily its usage when dealing with simulations of the continuum is still doubtful. The great

expectations that this method has in this field is the great capacity to track the fracture and

simulate the frictional behaviour of the post fractured areas where the discrete particles

generated would be well described with the DEM. However the characterization of the

parameters for the correct behaviour of the discrete particles when simulate the continuum is

neither unique nor universally known; simply there are good approaches for both the elastic

behaviour and for the plastic or failure stage in particular cases.

Concerning to KRATOS, say that it is a magnificent platform for any numerical method

application. It has been conceived as a framework for FEM-base codes but it has represented

an unsurpassable platform for the DEM-Application. A part from the utilities and the libraries

that KRATOS provide, the possibility of coupling different applications is one of its greatest

pros. The DEM-FEM application is an example of this versatility; the application combines the

DEM-Application with the Structural Application (also from KRATOS) without any compatibility

problem and with high facility. Another excellent feature of KRATOS is that it is an open source

free platform that can be used by anyone and anywhere; this will definitely lead this complete

platform to a great success.

 DEM-Application is still on development; what is now available is a basic program that can be

incorporated to a graphic interface such as GiD that permits doing basic simulations of DEM

with spherical and circular elements for continuous and discontinuous media problems. This

work has represented the beginning of the development for this ambitious program that have

been founded on a very wide and versatile structure to permit a large set of possibilities that

can be implemented for anyone interested in joining the DEM-Application team.

118

Final Personal Comments

Justification of the document presented

This work has claims to be a guide for engineers and developers interested in the

implementation of a code for the Discrete Element Method, specially the DEM-Application

developed in CIMNE. The code is explained only to a certain detail to understand the basic

structure and the capabilities and reasons to be of the utilities and parts of the program;

however, a detailed description of the code is not given for two basically reason. This first one

is because the objective of the work is not to be a manual of usage of the code (which is not

closed yet) but a guide as it is already said. Secondly, mention that the code is in a constant

development stage; from the first week of the redaction of this work and also in the very last

day, changes have been done daily in the program. This has introduced also difficulties to the

redaction of the document since a lot of figures and information has had to be updated.

What’s next?

Although the application presents a good base for new implementations in a developer’s stage

and also a basic program for the DEM continuous and discontinuous simulations, it is not a

“long term release” version. This means that now the program needs to enter a stage where it

has to be done loads of validations of accuracy of the program, tests for the robustness of the

code, solving of bugs that would appear improvement of the efficiency and the use of

programming languages, etc. There is still a hard work to do to consolidate what it has been

implemented in this first stage.

Not only a final undergraduate thesis

This work has represented the final thesis for the author’s undergraduate course in the

E.T.S.E.C.C.P.B, school of civil engineering. Fortunately the DEM-Application and the present

document itself are of the interest of many other students and researchers.

119

The DEM is a method that is trendy nowadays and there are a lot of research institutions

interested on it and also students and PhD candidates. During the implementation of the

program the KRATOS team received the collaboration from many other researchers, not only

from CIMNE but also, as it has been commented, from Cuba and China. This work has been

used for all of them for their respective thesis or works, combining different methods with the

DEM from KRATOS or sharing technology to improve the applications. Also, recently new

undergraduate students have joined the DEM-Application team and they have started helping

in the development and validation of this program; they would probably extend the contents

of this work and code new features to the program as a part of the respective final thesis of

their courses.

Personal challenges

The Implementation of a DEM program requires a lot of knowledge that has been completely

new for me. First of all, regarding the theory of DEM I had just a rough idea of the method so

it has been a learning process while reviewing the state of art of the method and studying the

different approaches and the last advances in the field.

Apart from the theory of DEM, it has been a challenge for me to learn from scratch the

programming languages that have permitted me implementing the method: C++ and Python.

Moreover, the KRATOS framework itself is a work tool that requires some training and practise,

especially if the user background is not computer science. Finally, although I knew how to

manage the GiD Pre-Processor in a user stage, the development of a new Problem Type gave

me the possibility to use GiD as an advanced user.

I consider that this learning process has been so satisfactory for me at the same time that I’ve

realised that the C++ or an equivalent programming language are useful tools that any

engineer should know.

Personal satisfaction

It only remains to the author to express his personal satisfaction for the work completed

during this period being part of the KRATOS team in CIMNE. The DEM-Application is just the

beginning of an ambitious project that the current developers will be pleased to keep forming

part of it, completing and improving the current program.

120

121

Annex: Code Implemented

As an annex part of the code implemented for the DEM-Application is attached. The files

needed to compile and run the code are organized in folders and subfolders in the general

KRATOS directory that can be found online in the following repository:

https://svn.cimne.upc.edu/p/kratos/kratos

The KRATOS files are updated daily whenever a developer uploads any modification. The code

is completely free and open-source; therefore you can feel free to download it, use the

available ProblemTypes and customize your own application. Please visit http://kratos-

wiki.cimne.upc.edu for further information.

Since the DEM-Application itself has a lot of files and they depend also on many others from

the KRATOS Kernel (main common files), in this annex just a few of the most important files

from the DEM-Application are presented; they have been specially coded for the DEM-

Application and can include all the utilities, the strategies and the important functionalities

that have been commented during this work. It can serve as an auxiliary material for the

lecture of the Part II for the readers interested in the implementation and the possible

developers or advanced users.

The attached files are:

FOLDER FILES

Custom Elements shperic_particle.cpp

Custom ProblemType script.py

Custom Strategies explicit_solver_strategy.h, constant_average_acc_scheme.h

Custom Utilities neighbours_calculator.h, particle_configure.h
Python Scrips sphere_strattegy.py

https://svn.cimne.upc.edu/p/kratos/kratos
http://kratos-wiki.cimne.upc.edu/
http://kratos-wiki.cimne.upc.edu/

122

// System includes
#include <string>
#include <iostream>

// External includes

// Project includes
#include "includes/define.h"
#include "spheric_particle.h"
#include "custom_utilities/GeometryFunctions.h"
#include "DEM_application.h"

namespace Kratos
{

 SphericParticle::SphericParticle(IndexType NewId, GeometryType::Pointer pGeometry) :

DiscreteElement(NewId, pGeometry) {}

 SphericParticle::SphericParticle(IndexType NewId, GeometryType::Pointer pGeometry,

PropertiesType::Pointer pProperties)
 : DiscreteElement(NewId, pGeometry, pProperties)
 {}

 SphericParticle::SphericParticle(IndexType NewId, NodesArrayType const& ThisNodes)
 : DiscreteElement(NewId, ThisNodes)
 {}

 Element::Pointer SphericParticle::Create(IndexType NewId, NodesArrayType const& ThisNodes,

PropertiesType::Pointer pProperties) const
 {
 return DiscreteElement::Pointer(new SphericParticle(NewId, GetGeometry().Create(ThisNodes),

pProperties));
 }

 /// Destructor.
 SphericParticle::~SphericParticle(){}

 void SphericParticle::Initialize(){

 KRATOS_TRY

 mDimension = this->GetGeometry().WorkingSpaceDimension();

 double density = GetGeometry()(0)->FastGetSolutionStepValue(PARTICLE_DENSITY);
 double radius = GetGeometry()(0)->FastGetSolutionStepValue(RADIUS);
 double& mass = GetGeometry()(0)->FastGetSolutionStepValue(NODAL_MASS);

 double & Inertia = GetGeometry()(0)->FastGetSolutionStepValue(PARTICLE_INERTIA);
 double & MomentOfInertia = GetGeometry()(0)-

>FastGetSolutionStepValue(PARTICLE_MOMENT_OF_INERTIA);

 mContinuumGroup = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_CONTINUUM);
 mFailureId = !(mContinuumGroup);

 if(mDimension ==2)
 {
 mass = M_PI * radius * radius * density;

 mRealMass = mass;

 Inertia = 0.25 * M_PI * radius * radius * radius * radius ;

 MomentOfInertia = 0.5 * radius * radius;

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 123

 }
 else
 {
 mass = 4.0 / 3.0 * M_PI * radius * radius * radius * density;

 mRealMass = mass;

 Inertia = 0.25 * M_PI * radius * radius * radius * radius ;

 MomentOfInertia = 0.4 * radius * radius;
 }

 KRATOS_CATCH("")

 }

 void SphericParticle::CalculateRightHandSide(VectorType& rRightHandSideVector,ProcessInfo&

rCurrentProcessInfo){

 ComputeParticleContactForce(rCurrentProcessInfo);

 if((rCurrentProcessInfo[ROTATION_OPTION] != 0) && (rCurrentProcessInfo[ROTATION_SPRING_OPTION]
!= 0))

 {
 ComputeParticleRotationSpring(rCurrentProcessInfo);
 }

 }
 void SphericParticle::EquationIdVector(EquationIdVectorType& rResult, ProcessInfo&

rCurrentProcessInfo){}
 void SphericParticle::MassMatrix(MatrixType& rMassMatrix, ProcessInfo& rCurrentProcessInfo)
 {

 double radius = GetGeometry()(0)->GetSolutionStepValue(RADIUS);
 double volume = 1.333333333333333*M_PI*radius*radius*radius;
 double density = GetGeometry()(0)->GetSolutionStepValue(PARTICLE_DENSITY);
 rMassMatrix.resize(1,1);
 rMassMatrix(0,0) = volume*density;

 }

 void SphericParticle::SetInitialContacts(int case_opt) //vull ficar que sigui zero si no son veins
cohesius.

 {

 // DEFINING THE REFERENCES TO THE MAIN PARAMETERS

 ParticleWeakVectorType& r_neighbours = this->GetValue(NEIGHBOUR_ELEMENTS);

 this->GetValue(PARTICLE_INITIAL_DELTA).resize(r_neighbours.size());

 ParticleWeakVectorType& r_initial_neighbours = this-
>GetValue(INITIAL_NEIGHBOUR_ELEMENTS);

 unsigned int i=0;

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 124

 //SAVING THE INITIAL NEIGHBOURS, THE DELTAS AND THE FAILURE ID

 for(ParticleWeakIteratorType_ptr ineighbour = r_neighbours.ptr_begin();
 //loop over the neighbours and store into a initial_neighbours vector.

 ineighbour != r_neighbours.ptr_end(); ineighbour++){

 if (this->Id() != ((*ineighbour).lock())->Id()){

 array_1d<double,3> other_to_me_vect = this->GetGeometry()(0)->Coordinates() -
((*ineighbour).lock())->GetGeometry()(0)->Coordinates();

 double distance = sqrt(other_to_me_vect[0] * other_to_me_vect[0]
+

 other_to_me_vect[1] * other_to_me_vect[1] +
 other_to_me_vect[2] * other_to_me_vect[2]);

 double radius_sum = this->GetGeometry()(0)-
>GetSolutionStepValue(RADIUS) + ((*ineighbour).lock())->GetGeometry()(0)-
>GetSolutionStepValue(RADIUS);

 double initial_delta = radius_sum - distance;

 int r_other_continuum_group = ((*ineighbour).lock())->GetGeometry()(0)-
>GetSolutionStepValue(PARTICLE_CONTINUUM);

 /* this loop will set only the 0 (contunuum simulating case) to the initial
neighbours. The force calculator will change this

 * values depending of the type of failure as it is describre here:
 *
 * mContactFailureId values:
 * 0 := Still a continuum simulating contact
 * 1 := General detachment (no initial continuum case: non continuum

simulating particles or particles from diferent continuum group.)
 * 2 := Partially detached
 * 3 := tensile case
 * 4 := shear case
 * 5 :=von Misses.....M: define new cases...
 */

 if((r_other_continuum_group == mContinuumGroup) || (fabs(initial_delta)>1.0e-6
))

 //THESE ARE THE CASES THAT NEED TO STORE THE INITIAL NEIGHBOURS
 {

 r_initial_neighbours.push_back(*ineighbour);

 this->GetValue(PARTICLE_INITIAL_DELTA)[i] = initial_delta;
 this->GetValue(PARTICLE_CONTACT_DELTA)[i] = initial_delta;

 if (r_other_continuum_group == mContinuumGroup && (mContinuumGroup != 0))
{this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[i]=0; }

 else this-
>GetValue(PARTICLE_CONTACT_FAILURE_ID)[i]=1;

 } // FOR THE CASES THAT NEED STORING INITIAL NEIGHBOURS

 else mFailureId=1;

 i++;

 }//if I found myself.

 } //end for: ParticleWeakIteratorType ineighbour
 }//SET INITIAL CONTACTS.

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 125

 void SphericParticle::ComputeParticleContactForce(const ProcessInfo& rCurrentProcessInfo)

 {

 KRATOS_TRY

 ParticleWeakVectorType& r_neighbours = this->GetValue(NEIGHBOUR_ELEMENTS);

 vector<double>& r_VectorContactInitialDelta = this-
>GetValue(PARTICLE_CONTACT_DELTA);

 // PROCESS INFO

 const array_1d<double,3>& gravity = rCurrentProcessInfo[GRAVITY];

 double dt = rCurrentProcessInfo[DEM_DELTA_TIME];
 int damp_id = rCurrentProcessInfo[DAMP_TYPE];
 int type_id = rCurrentProcessInfo[FORCE_CALCULATION_TYPE];
 int rotation_OPTION = rCurrentProcessInfo[ROTATION_OPTION];

 int case_OPTION = rCurrentProcessInfo[CASE_OPTION];
 bool delta_OPTION;
 bool continuum_simulation_OPTION;

 switch (case_OPTION) {
 case 0:
 delta_OPTION = false;
 continuum_simulation_OPTION = false;
 break;
 case 1:
 delta_OPTION = true;
 continuum_simulation_OPTION = false;
 break;
 case 2:
 delta_OPTION = true;
 continuum_simulation_OPTION = true;
 break;
 case 3:
 delta_OPTION = false;
 continuum_simulation_OPTION = true;
 break;
 default:
 delta_OPTION = false;
 continuum_simulation_OPTION = false;
 }

 // GETTING PARTICLE PROPERTIES

 int continuum_group = mContinuumGroup;

 double Tension = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_TENSION);
 double Cohesion = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_COHESION);
 double FriAngle = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_FRICTION);
 double Friction = tan(FriAngle / 180.0 * M_PI);

 double radius = this->GetGeometry()[0].GetSolutionStepValue(RADIUS);
 double critic_damp_fraction = this->GetGeometry()[0].GetSolutionStepValue(VISCO_DAMP_COEFF);
 double mass = mRealMass;

 double young = this->GetGeometry()[0].GetSolutionStepValue(YOUNG_MODULUS);
 double poisson = this->GetGeometry()[0].GetSolutionStepValue(POISSON_RATIO);

 array_1d<double,3>& force = this->GetGeometry()[0].GetSolutionStepValue(RHS);.

 array_1d<double,3> applied_force = this->GetGeometry()
[0].GetSolutionStepValue(APPLIED_FORCE);

 force = mass*gravity + applied_force;

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 126

 array_1d<double, 3 > & mRota_Moment = this->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_MOMENT);

 size_t iContactForce = 0;

 for(ParticleWeakIteratorType neighbour_iterator = r_neighbours.begin();
 neighbour_iterator != r_neighbours.end(); neighbour_iterator++)
 {
 // GETTING NEIGHBOUR PROPERTIES

 double other_radius = neighbour_iterator->GetGeometry()(0)-
>GetSolutionStepValue(RADIUS);

 double other_critic_damp_fraction = neighbour_iterator->GetGeometry()(0)-
>GetSolutionStepValue(VISCO_DAMP_COEFF);

 double equiv_visc_damp_ratio = (critic_damp_fraction +
other_critic_damp_fraction) / 2.0;

 double other_young = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(YOUNG_MODULUS);

 double other_poisson = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(POISSON_RATIO);

 double other_tension = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_TENSION);

 double other_cohesion = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_COHESION);

 double other_FriAngle = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_FRICTION);

 // CONTINUUM SIMULATING PARAMETERS:

 double initial_delta = 0.0;
 double CTension = 0.0;
 double CCohesion = 0.0;

 array_1d<double,3>& mContactForces = this->GetValue(PARTICLE_CONTACT_FORCES)

[iContactForce];

 if (continuum_simulation_OPTION && (continuum_group!=0) && (this-

>GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce]==0))
 {

 CTension = (Tension + other_tension) * 0.5;
 CCohesion = (Cohesion + other_cohesion) * 0.5;
 }

 if(delta_OPTION && (iContactForce < r_VectorContactInitialDelta.size()))
 {
 initial_delta = r_VectorContactInitialDelta[iContactForce];
 }

 // BASIC CALCULATIONS

 array_1d<double,3> other_to_me_vect = this->GetGeometry()(0)->Coordinates() -
neighbour_iterator->GetGeometry()(0)->Coordinates();

 double distance = sqrt(other_to_me_vect[0] * other_to_me_vect[0] +
 other_to_me_vect[1] * other_to_me_vect[1] +
 other_to_me_vect[2] * other_to_me_vect[2]);

 double radius_sum = radius + other_radius;

 double indentation = radius_sum - distance - initial_delta;
 double equiv_radius = 2* radius * other_radius / (radius + other_radius);
 double equiv_area = M_PI * equiv_radius * equiv_radius;
 double equiv_poisson = 2* poisson * other_poisson / (poisson + other_poisson);
 double equiv_young = 2 * young * other_young / (young + other_young);

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 127

 Friction = tan((FriAngle + other_FriAngle) * 0.5 / 180.0 * M_PI);

 double kn = M_PI * 0.5 * equiv_young * equiv_radius;
 double ks = kn / (2.0 * (1.0 + equiv_poisson));

 // FORMING LOCAL CORDINATES

 double NormalDir[3] = {0.0};
 double LocalCoordSystem[3][3] = {{0.0}, {0.0}, {0.0}};
 NormalDir[0] = other_to_me_vect[0];
 NormalDir[1] = other_to_me_vect[1];
 NormalDir[2] = other_to_me_vect[2];
 GeometryFunctions::ComputeContactLocalCoordSystem(NormalDir, LocalCoordSystem);

 // VELOCITIES AND DISPLACEMENTS

 array_1d<double, 3 > vel = this->GetGeometry()(0)-
>GetSolutionStepValue(VELOCITY);

 array_1d<double, 3 > other_vel = neighbour_iterator->GetGeometry()(0)-
>GetSolutionStepValue(VELOCITY);

 double DeltDisp[3] = {0.0};
 double DeltVel [3] = {0.0};

 DeltVel[0] = (vel[0] - other_vel[0]);
 DeltVel[1] = (vel[1] - other_vel[1]);
 DeltVel[2] = (vel[2] - other_vel[2]);

 //DeltDisp in global cordinates

 DeltDisp[0] = DeltVel[0] * dt;
 DeltDisp[1] = DeltVel[1] * dt;
 DeltDisp[2] = DeltVel[2] * dt;

 if (rotation_OPTION == 1)
 {

 double velA[3] = {0.0};
 double velB[3] = {0.0};
 double dRotaDisp[3] = {0.0};

 array_1d<double, 3 > AngularVel = this->GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

 array_1d<double, 3 > Other_AngularVel = neighbour_iterator->GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

 double Vel_Temp[3] = { AngularVel[0], AngularVel[1],

AngularVel[2]};
 double Other_Vel_Temp[3] = {Other_AngularVel[0], Other_AngularVel[1],

Other_AngularVel[2]};
 GeometryFunctions::CrossProduct(Vel_Temp, LocalCoordSystem[2],

velA);
 GeometryFunctions::CrossProduct(Other_Vel_Temp, LocalCoordSystem[2], velB);

 dRotaDisp[0] = -velA[0] * radius - velB[0] * other_radius;
 dRotaDisp[1] = -velA[1] * radius - velB[1] * other_radius;
 dRotaDisp[2] = -velA[2] * radius - velB[2] * other_radius;
 //////contribution of the rotation vel
 DeltDisp[0] += dRotaDisp[0] * dt;
 DeltDisp[1] += dRotaDisp[1] * dt;
 DeltDisp[2] += dRotaDisp[2] * dt;

 }//if rotation_OPTION

 double LocalDeltDisp[3] = {0.0};
 double LocalContactForce[3] = {0.0};
 double GlobalContactForce[3] = {0.0};
 //double GlobalContactForceOld[3] = {0.0};

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 128

 GlobalContactForce[0] = mContactForces[0];
 GlobalContactForce[1] = mContactForces[1];
 GlobalContactForce[2] = mContactForces[2];

 GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, DeltDisp, LocalDeltDisp);
 GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, GlobalContactForce,

LocalContactForce);

 // FORCES

 if ((indentation > 0.0) || (this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce]

== 0))
// This conditions take in acount the fact that the particles must remember their
initial delta's between initial neighbours.

 {
 LocalContactForce[0] += - ks * LocalDeltDisp[0]; // 0: first tangential
 LocalContactForce[1] += - ks * LocalDeltDisp[1]; // 1: second tangential
 LocalContactForce[2] += - kn * LocalDeltDisp[2]; // 2: normal force
 }

 //ABSOLUTE METHOD FOR NORMAL FORCE (Allows non-linearity)

 if(type_id == 2)
 // 1--- incremental; 2 --- absolut i amb el cas hertzià
 {
 if(indentation > 0.0)
 {
 LocalContactForce[2] = kn * pow(indentation, 1.5);
 }
 else
 {
 LocalContactForce[2] = kn * indentation;
 }
 }

 // TENSION FAILURE

 if (-LocalContactForce[2] > (CTension * equiv_area))
 {
 LocalContactForce[0] = 0.0;
 LocalContactForce[1] = 0.0;
 LocalContactForce[2] = 0.0;

 this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce] = 3.0; //tensile

failure case.
 }

 // SHEAR FAILURE

 else
 {
 double ShearForceMax = LocalContactForce[2] * Friction + CCohesion *

equiv_area; // MOHR COULOMB MODEL.
 double ShearForceNow = sqrt(LocalContactForce[0] * LocalContactForce[0]
 + LocalContactForce[1] * LocalContactForce[1]);

 //Not normal contribution for the tensile case

 if(LocalContactForce[2] < 0.0)
 {
 ShearForceMax = CCohesion * equiv_area;
 }

 //No cohesion or friction, no shear resistance

 if(ShearForceMax == 0.0)
 {
 LocalContactForce[0] = 0.0;
 LocalContactForce[1] = 0.0;

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 129

 }

 else if(ShearForceNow > ShearForceMax)
 {
 LocalContactForce[0] = ShearForceMax / ShearForceNow *

LocalContactForce[0];
 LocalContactForce[1] = ShearForceMax / ShearForceNow *

LocalContactForce[1];

 this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce] = 4.0;
 }
 }

 // VISCODAMPING (applyied locally)

 if (damp_id == 2 || damp_id == 3)
 {
 double visco_damping[3] = {0,0,0};

 if(abs(equiv_visc_damp_ratio * DeltVel[2]) > abs(LocalContactForce[2]))

{visco_damping[2]= LocalContactForce[2]; }
 else { visco_damping[2]= equiv_visc_damp_ratio * DeltVel[2]; }

 LocalContactForce[0] = LocalContactForce[0] - visco_damping[0];
 LocalContactForce[1] = LocalContactForce[1] - visco_damping[1];
 LocalContactForce[2] = LocalContactForce[2] - visco_damping[2];
 }

 // TRANSFORMING TO GLOBAL FORCES AND ADDING UP

 GeometryFunctions::VectorLocal2Global(LocalCoordSystem, LocalContactForce,
GlobalContactForce);

 force[0] += GlobalContactForce[0];
 force[1] += GlobalContactForce[1];
 force[2] += GlobalContactForce[2];

 // SAVING INTO THE LOCAL SYSTEM ARRAYS FOR NEXT STEPS

 mContactForces[0] = GlobalContactForce[0];
 mContactForces[1] = GlobalContactForce[1];
 mContactForces[2] = GlobalContactForce[2];

 if (rotation_OPTION == 1)
 {

 double MA[3] = {0.0};
 GeometryFunctions::CrossProduct(LocalCoordSystem[2], GlobalContactForce, MA);
 mRota_Moment[0] -= MA[0] * radius;
 mRota_Moment[1] -= MA[1] * radius;
 mRota_Moment[2] -= MA[2] * radius;

 }

 iContactForce++;

 }//for each neaighbour

 KRATOS_CATCH("")

 }//ComputeParticleContactForce

 void SphericParticle::ApplyLocalForcesDamping(const ProcessInfo& rCurrentProcessInfo)

 {
 array_1d<double,3>& force = this->GetGeometry()[0].GetSolutionStepValue(RHS);
 double LocalDampRatio = this->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_LOCAL_DAMP_RATIO);

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 130

 // LOCAL DAMPING OPTION FOR THE UNBALANCED FORCES (IN GLOBAL CORDINATES).

 for (int iDof = 0; iDof < 3; iDof++)
 {
 if (this->GetGeometry()(0)->GetSolutionStepValue(VELOCITY)[iDof] > 0.0)
 {
 force[iDof] = force[iDof] - LocalDampRatio * fabs(force[iDof]);
 }
 else
 {
 force[iDof] = force[iDof] + LocalDampRatio * fabs(force[iDof]);
 }
 }

 } //ApplyLocalForcesDamping

 void SphericParticle::ApplyLocalMomentsDamping(const ProcessInfo& rCurrentProcessInfo)

 {
 array_1d<double, 3 > & RotaMoment = this->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_MOMENT);
 double LocalDampRatio = this->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_LOCAL_DAMP_RATIO);

 // LOCAL DAMPING OPTION FOR THE UNBALANCED FORCES (IN GLOBAL CORDINATES).

 for (int iDof = 0; iDof < 3; iDof++)
 {
 if (this->GetGeometry()(0)->GetSolutionStepValue(ANGULAR_VELOCITY)[iDof] > 0.0)
 {
 RotaMoment[iDof] = RotaMoment[iDof] - LocalDampRatio * fabs(RotaMoment[iDof]);

 }
 else
 {
 RotaMoment[iDof] = RotaMoment[iDof] + LocalDampRatio * fabs(RotaMoment[iDof]);
 }
 }

 } //ApplyLocalMomentsDamping

 void SphericParticle::ComputeParticleRotationSpring(const ProcessInfo& rCurrentProcessInfo)
 {

 double dt = rCurrentProcessInfo[DEM_DELTA_TIME];

 double Tension = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_TENSION);
 double Cohesion = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_COHESION);
 double young = this->GetGeometry()[0].GetSolutionStepValue(YOUNG_MODULUS);
 double poisson = this->GetGeometry()[0].GetSolutionStepValue(POISSON_RATIO);
 double radius = this->GetGeometry()[0].GetSolutionStepValue(RADIUS);
 double inertia = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_INERTIA);

 array_1d<double, 3 > & mRota_Moment = GetGeometry()(0)-
>FastGetSolutionStepValue(PARTICLE_MOMENT);

 ParticleWeakVectorType& rE = this->GetValue(NEIGHBOUR_ELEMENTS);

 Vector & mRotaSpringFailureType = this->GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE);

 size_t iContactForce = 0;

 for(ParticleWeakIteratorType ineighbour = rE.begin(); ineighbour != rE.end(); ineighbour++)
 {

 {

 array_1d<double, 3 > & mRotaSpringMoment = this->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)[
iContactForce];

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 131

 double other_radius = ineighbour->GetGeometry()(0)->FastGetSolutionStepValue(RADIUS);
 double other_young = ineighbour->GetGeometry()

[0].GetSolutionStepValue(YOUNG_MODULUS);
 double other_poisson = ineighbour->GetGeometry()

[0].GetSolutionStepValue(POISSON_RATIO);
 double other_tension = ineighbour->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_TENSION);
 double other_cohesion = ineighbour->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_COHESION);
 double other_inertia = ineighbour->GetGeometry()(0)-

>FastGetSolutionStepValue(PARTICLE_INERTIA);

 Tension = (Tension + other_tension) * 0.5;
 Cohesion = (Cohesion + other_cohesion) * 0.5;

 double equiv_radius = (radius + other_radius) * 0.5 ;
 double equiv_area = M_PI * equiv_radius * equiv_radius;
 double equiv_poisson = (poisson + other_poisson) * 0.5 ;
 double equiv_young = (young + other_young) * 0.5;

 double kn = equiv_young * equiv_area / (2.0 * equiv_radius);
 double ks = kn / (2.0 * (1.0 + equiv_poisson));

 array_1d<double,3>& mContactForces = this->GetValue(PARTICLE_CONTACT_FORCES)[
iContactForce];

 array_1d<double,3> other_to_me_vect = GetGeometry()(0)->Coordinates() - ineighbour-

>GetGeometry()(0)->Coordinates();

 /////Cfeng: Forming the Local Contact Coordinate system
 double NormalDir[3] = {0.0};
 double LocalCoordSystem[3][3] = {{0.0}, {0.0}, {0.0}};
 NormalDir[0] = other_to_me_vect[0];
 NormalDir[1] = other_to_me_vect[1];
 NormalDir[2] = other_to_me_vect[2];
 GeometryFunctions::ComputeContactLocalCoordSystem(NormalDir, LocalCoordSystem);

 double LocalRotaSpringMoment[3] = {0.0};
 double GlobalRotaSpringMoment[3] = {0.0};
 double GlobalRotaSpringMomentOld[3] = {0.0};

array_1d<double, 3 > AngularVel = GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

 array_1d<double, 3 > Other_AngularVel = ineighbour->GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

 double DeltRotaDisp[3] = {0.0};
 DeltRotaDisp[0] = -(AngularVel[0] - Other_AngularVel[0]) * dt;
 DeltRotaDisp[1] = -(AngularVel[1] - Other_AngularVel[1]) * dt;
 DeltRotaDisp[2] = -(AngularVel[2] - Other_AngularVel[2]) * dt;

 double LocalDeltRotaDisp[3] = {0.0};
 GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, DeltRotaDisp,

LocalDeltRotaDisp);

 GlobalRotaSpringMomentOld[0] = mRotaSpringMoment[0];
GlobalRotaSpringMomentOld[1] = mRotaSpringMoment[1];
GlobalRotaSpringMomentOld[2] = mRotaSpringMoment[2];

 GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, GlobalRotaSpringMomentOld,

LocalRotaSpringMoment);

 double Inertia_I = (inertia + other_inertia) * 0.5;
 double Inertia_J = Inertia_I * 2.0;

 LocalRotaSpringMoment[0] += - Inertia_I * LocalDeltRotaDisp[0] * kn / equiv_area;
LocalRotaSpringMoment[1] += - Inertia_I * LocalDeltRotaDisp[1] * kn / equiv_area;
LocalRotaSpringMoment[2] += - Inertia_J * LocalDeltRotaDisp[2] * ks / equiv_area;

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 132

 ////Judge if the rotate spring is broken or not
 double GlobalContactForce[3] = {0.0};
 double LocalContactForce [3] = {0.0};

 GlobalContactForce[0] = mContactForces[0];
 GlobalContactForce[1] = mContactForces[1];
 GlobalContactForce[2] = mContactForces[2];
 GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, GlobalContactForce,

LocalContactForce);

 double ForceN = LocalContactForce[2];
 double ForceS = sqrt(LocalContactForce[0] * LocalContactForce[0] +

LocalContactForce[1] * LocalContactForce[1]);
 double MomentS = sqrt(LocalRotaSpringMoment[0] * LocalRotaSpringMoment[0] +

LocalRotaSpringMoment[1] * LocalRotaSpringMoment[1]);
 double MomentN = LocalRotaSpringMoment[2];

 //////bending stress and axial stress add together, use edge of the bar will failure
first

 double TensiMax = -ForceN / equiv_area + MomentS / Inertia_I * equiv_radius;
 double ShearMax = ForceS / equiv_area + fabs(MomentN) / Inertia_J * equiv_radius;

 if(TensiMax > Tension || ShearMax > Cohesion)
 {
 mRotaSpringFailureType[iContactForce] = 1;

 LocalRotaSpringMoment[0] = 0.0;
 LocalRotaSpringMoment[1] = 0.0;
 LocalRotaSpringMoment[2] = 0.0;
 }

 GeometryFunctions::VectorLocal2Global(LocalCoordSystem, LocalRotaSpringMoment,
GlobalRotaSpringMoment);

 mRotaSpringMoment[0] = GlobalRotaSpringMoment[0];
 mRotaSpringMoment[1] = GlobalRotaSpringMoment[1];
 mRotaSpringMoment[2] = GlobalRotaSpringMoment[2];

 ////feedback, contact moment----induce by rotation spring
 mRota_Moment[0] -= GlobalRotaSpringMoment[0];
 mRota_Moment[1] -= GlobalRotaSpringMoment[1];
 mRota_Moment[2] -= GlobalRotaSpringMoment[2];
 }

 iContactForce++;
 }

 }//ComputeParticleRotationSpring

 void SphericParticle::DampMatrix(MatrixType& rDampMatrix, ProcessInfo& rCurrentProcessInfo){}

 void SphericParticle::GetDofList(DofsVectorType& ElementalDofList, ProcessInfo&
CurrentProcessInfo){

 ElementalDofList.resize(0);

 for (unsigned int i = 0; i < GetGeometry().size(); i++)
 {
 ElementalDofList.push_back(GetGeometry()[i].pGetDof(DISPLACEMENT_X));
 ElementalDofList.push_back(GetGeometry()[i].pGetDof(DISPLACEMENT_Y));

 if (GetGeometry().WorkingSpaceDimension() == 3)
 {
 ElementalDofList.push_back(GetGeometry()[i].pGetDof(DISPLACEMENT_Z));
 }
 }
 }

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 133

 void SphericParticle::InitializeSolutionStep(ProcessInfo& rCurrentProcessInfo)
 {

 int case_opt = rCurrentProcessInfo[CASE_OPTION];
 int mSwitch = rCurrentProcessInfo[DUMMY_SWITCH];

 if((mSwitch==0) && (case_opt!=0))
 {
 SetInitialContacts(case_opt);
 }

 array_1d<double,3>& force = this->GetGeometry()[0].GetSolutionStepValue(RHS);
 noalias(force) = ZeroVector(3);

 }
 void SphericParticle::FinalizeSolutionStep(ProcessInfo& CurrentProcessInfo){}

 void SphericParticle::Calculate(const Variable<double>& rVariable, double& Output, const
ProcessInfo& rCurrentProcessInfo)

 {

 if (rVariable == DEM_DELTA_TIME)
 {
 double E = this->GetGeometry()(0)->FastGetSolutionStepValue(YOUNG_MODULUS);
 double K = E * M_PI * this->GetGeometry()(0)->FastGetSolutionStepValue(RADIUS);
 Output = sqrt(mRealMass / K);

 if(rCurrentProcessInfo[ROTATION_OPTION] == 1)
 {
 Output = Output * 0.5; /
 }
 } //CRITICAL DELTA CALCULATION

 if (rVariable == PARTICLE_LOCAL_DAMP_RATIO)
 {
 int damp_id = rCurrentProcessInfo[DAMP_TYPE];
 int rotation_OPTION = rCurrentProcessInfo[ROTATION_OPTION];

 if (damp_id == 1 || damp_id == 3)
 {
 ApplyLocalForcesDamping(rCurrentProcessInfo);

 if (rotation_OPTION != 0)
 {
 ApplyLocalMomentsDamping(rCurrentProcessInfo);
 }
 }
 } //DAMPING
 }

 void SphericParticle::Calculate(const Variable<array_1d<double, 3 > >& rVariable,
array_1d<double, 3 > & Output, const ProcessInfo& rCurrentProcessInfo){}

 void SphericParticle::Calculate(const Variable<Vector >& rVariable, Vector& Output, const
ProcessInfo& rCurrentProcessInfo){}

 void SphericParticle::Calculate(const Variable<Matrix >& rVariable, Matrix& Output, const
ProcessInfo& rCurrentProcessInfo){}

} // namespace Kratos.

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 134

import DEM_explicit_solver_var
import time as timer

from KratosMultiphysics import *
from KratosMultiphysics.DEMApplication import *

#defining a model part for the solid part
my_timer=Timer();
solid_model_part = ModelPart("SolidPart");
###

#introducing input file name
input_file_name = DEM_explicit_solver_var.problem_name

import sphere_strategy as SolverStrategy
SolverStrategy.AddVariables(solid_model_part)

#reading the solid part
gid_mode = GiDPostMode.GiD_PostBinary
multifile = MultiFileFlag.MultipleFiles
deformed_mesh_flag = WriteDeformedMeshFlag.WriteDeformed
write_conditions = WriteConditionsFlag.WriteConditions

gid_io = GidIO(input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions)
model_part_io_solid = ModelPartIO(input_file_name)
model_part_io_solid.ReadModelPart(solid_model_part)

#setting up the buffer size: SHOULD BE DONE AFTER READING!!!
solid_model_part.SetBufferSize(2)

##adding dofs
SolverStrategy.AddDofs(solid_model_part)

#creating a solver object
dimension=DEM_explicit_solver_var.domain_size;
solver = SolverStrategy.ExplicitStrategy(solid_model_part, dimension);

##Obtaning options and values
integration_scheme = DEM_explicit_solver_var.Integration_Scheme
if (integration_scheme == 'forward_euler'):
 time_scheme = FowardEulerScheme()
elif (integration_scheme == 'mid_point_rule'):
 time_scheme = MidPointScheme()
elif (integration_scheme == 'const_average_acc'):
 time_scheme = ConstAverageAccelerationScheme()
else:
 print('scheme not defined')

solution_type = DEM_explicit_solver_var.SolutionType

if(solution_type == "Absolutal"):
 type_id = 2
else:
 type_id = 1

damp_ratio_type = DEM_explicit_solver_var.DampRatioType
if(damp_ratio_type == "ViscDamp"):
 damp_id = 2
elif(damp_ratio_type == "LocalDamp"):
 damp_id = 1
else:
 damp_id = 3

gravity = Vector(3)
gravity[0] = DEM_explicit_solver_var.gravity_x
gravity[1] = DEM_explicit_solver_var.gravity_y
gravity[2] = DEM_explicit_solver_var.gravity_z
solver.gravity=gravity

CUSTOM PROBLEMTYPES - script.py

Annex - 135

#options for the solver

continuum_option = DEM_explicit_solver_var.ContinuumOption
delta_option = DEM_explicit_solver_var.DeltaOption
search_radius_extension=DEM_explicit_solver_var.search_radius_extension

rotation_option =DEM_explicit_solver_var.RotationOption
rotation_spring_option=DEM_explicit_solver_var.RotationalSpringOption

if(delta_option=="OFF"):
 search_radius_extension=0.0;

solver.time_scheme=time_scheme
solver.type_id=type_id

if(continuum_option =="ON"):
 solver.continuum_simulating_OPTION=True

solver.search_radius_extension=search_radius_extension

if(delta_option =="ON"):
 solver.delta_OPTION=True

solver.search_radius_extension=search_radius_extension

if(rotation_option =="ON"):
 solver.rotation_OPTION=1
if(rotation_spring_option =="ON"):
 solver.rotation_spring_OPTION=1

#for critical time step calculation
solver.safety_factor = DEM_explicit_solver_var.dt_safety_factor

time settings

final_time = DEM_explicit_solver_var.max_time
output_dt = DEM_explicit_solver_var.output_dt
dt = DEM_explicit_solver_var.max_time_step

bounding box

n_step_destroy_distant = DEM_explicit_solver_var.search_step
n_step_search = DEM_explicit_solver_var.search_step
solver.n_step_search = n_step_search
bounding_box_enlargement_factor = 2.0

extra_radius = 0.0
max_radius = 0.0
min_radius = 0.0
first_it = True

#calculation of search radius
for node in solid_model_part.Nodes:

 rad = node.GetSolutionStepValue(RADIUS)
 if rad > max_radius:
 max_radius = rad
 if first_it == True:
 min_radius = rad
 first_it = False
 if rad < min_radius:
 min_radius = rad

extra_radius = 2.5 * max_radius
prox_tol = 0.000001 * min_radius #currently not in use.
bounding_box_enlargement_factor = max(1.0 + extra_radius, bounding_box_enlargement_factor)

solver.enlargement_factor = bounding_box_enlargement_factor

CUSTOM PROBLEMTYPES - script.py

Annex - 136

#Initialize the problem.

solver.Initialize()

#initializations
time = 0.0
step = 0
time_old_print = 0.0

current_pr_time = timer.clock()
current_real_time = timer.time()

print 'Calculation starts at instant: ' + str(current_pr_time)
while(time < final_time):

 print "TIME STEP = ", step

 time = time + dt

 #if ((step + 1) % n_step_destroy_distant == 0):

 #solver.Destroy_Particles(list_of_particles_pointers, solid_model_part)

 solid_model_part.CloneTimeStep(time)
 solid_model_part.ProcessInfo[TIME_STEPS] = step

 solver.Solve()

############## GiD IO ###############

 time_to_print = time - time_old_print
 print str(time)

 if(time_to_print >= DEM_explicit_solver_var.output_dt):
 gid_io.InitializeMesh(time);
 gid_io.WriteSphereMesh(solid_model_part.GetMesh());
 gid_io.FinalizeMesh();

gid_io.InitializeResults(time, solid_model_part.GetMesh());
 gid_io.WriteNodalResults(VELOCITY, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(DISPLACEMENT, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(RHS, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(RADIUS, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(PARTICLE_COHESION, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(PARTICLE_TENSION, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(PARTICLE_FAILURE_ID, solid_model_part.Nodes, time, 0)

 if (rotation_option == 1):
 gid_io.WriteNodalResults(ANGULAR_VELOCITY, solid_model_part.Nodes, time, 0)
 gid_io.WriteNodalResults(MOMENT, solid_model_part.Nodes, time, 0)
 #gid_io.Flush()
 gid_io.FinalizeResults()

time_old_print = time

 step += 1

print 'Calculation ends at instant: ' + str(timer.time())
elapsed_pr_time = timer.clock() - current_pr_time
elapsed_real_time = timer.time() - current_real_time
print 'Calculation ends at processing time instant: ' + str(timer.clock())
print 'Elapsed processing time: ' + str(elapsed_pr_time)
print 'Elapsed real time: ' + str(elapsed_real_time)
print (my_timer)
print "COMPLETED ANALYSIS"

CUSTOM PROBLEMTYPES - script.py

Annex - 137

CUSTOM PROBLEMTYPES - script.py

Annex - 138

#if !defined(KRATOS_EXPLICIT_SOLVER_STRATEGY)
#define KRATOS_EXPLICIT_SOLVER_STRATEGY

#include "utilities/timer.h"

/* System includes */
#include <limits>
#include<iostream>
#include<iomanip>
#include <iostream>

/* External includes */
#ifdef _OPENMP
#include <omp.h>
#endif

#include "boost/smart_ptr.hpp"

/* Project includes */
#include "includes/define.h"
#include "utilities/openmp_utils.h"
#include "includes/model_part.h"
#include "solving_strategies/strategies/solving_strategy.h"
#include "solving_strategies/schemes/scheme.h"
#include "custom_elements/spheric_particle.h"
#include "includes/variables.h"

#include "custom_utilities/neighbours_calculator.h"
#include "custom_strategies/schemes/integration_scheme.h"

namespace Kratos
{
 template<
 class TSparseSpace,
 class TDenseSpace,
 class TLinearSolver>
 class ExplicitSolverStrategy : public SolvingStrategy<TSparseSpace,TDenseSpace,TLinearSolver>
 {
 public:

 typedef SolvingStrategy<TSparseSpace,TDenseSpace,TLinearSolver> BaseType;
 typedef typename BaseType::TDataType TDataType;
 typedef typename BaseType::TBuilderAndSolverType TBuilderAndSolverType;
 typedef typename BaseType::TSchemeType TSchemeType;
 typedef typename BaseType::DofsArrayType DofsArrayType;
 typedef typename Element::DofsVectorType DofsVectorType;
 typedef ModelPart::NodesContainerType NodesArrayType;
 typedef ModelPart::ElementsContainerType ElementsArrayType;
 typedef ModelPart::ConditionsContainerType ConditionsArrayType;
 typedef ModelPart::NodesContainerType::ContainerType NodesContainerType;
 typedef ModelPart::ElementsContainerType::ContainerType ElementsContainerType;
 typedef ModelPart::ConditionsContainerType::ContainerType ConditionsContainerType;

 /// Pointer definition of ExplicitSolverStrategy
 KRATOS_CLASS_POINTER_DEFINITION(ExplicitSolverStrategy);

 /// Default constructor.
 ExplicitSolverStrategy(){}

 ExplicitSolverStrategy(ModelPart& model_part,

 const int dimension,
 const double damping_ratio, masa

 const double fraction_delta_time,
 const double max_delta_time,
 const double n_step_search,
 const double safety_factor,

 const bool MoveMeshFlag,
 const bool delta_option,
 const bool continuum_simulating_option,

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 139

 typename IntegrationScheme::Pointer pScheme
)
: SolvingStrategy<TSparseSpace,TDenseSpace,TLinearSolver>(model_part,
MoveMeshFlag),

 mdimension(dimension)
 {

 mdelta_option = delta_option;
 mcontinuum_simulating_option = continuum_simulating_option;
 mvirtual_mass = false;
 mElementsAreInitialized = false;

 mConditionsAreInitialized = false;
 mCalculateOldTime = false;

 mSolutionStepIsInitialized = false;
 mInitializeWasPerformed = false;

 mComputeTime = false;
 mInitialConditions = false;

 mdamping_ratio = damping_ratio;
 mfraction_delta_time = fraction_delta_time;
 mmax_delta_time = max_delta_time;
 molddelta_time = 0.00;
 mtimestep = 0.00;
 mpScheme = pScheme;

 mtimestep = max_delta_time;
 mnstepsearch = n_step_search;
 msafety_factor = safety_factor;

}
 /// Destructor.
 virtual ~ExplicitSolverStrategy(){}

 double Solve()
 {

KRATOS_TRY

 std::cout<<std::fixed<<std::setw(15)<<std::scientific<<std::setprecision(5);
 ModelPart& r_model_part = BaseType::GetModelPart();

ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();

 int time_step = rCurrentProcessInfo[TIME_STEPS];

 std::cout<<"--"<<std::endl
;

 std::cout<<" KRATOS DEM APPLICATION. TIME STEPS = " << time_step
<<std::endl;

std::cout<<"--"<<std::endl
;

 //STRATEGY:

 //0.PREVIOUS OPERATIONS

 if(mComputeTime==false){
 ComputeCriticalTime();
 mComputeTime = true;
}

 //1.0
 InitializeSolutionStep();

 //1. Get and Calculate the forces
 GetForce();

 //1.1. Calculate Local Dampings
 ApplyLocalDampings();

 //2. Motion Integration
 ComputeIntermedialVelocityAndNewDisplacement();

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 140

 //3. Neighbouring search. Every N times.

 if ((time_step + 1)%mnstepsearch == 0)
 {
 SearchNeighbours(r_model_part,false); //extension option false;
 }

 std::cout <<"FINISHED SOLVE"<<std::endl;
return 0.00;
KRATOS_CATCH("")

 }

 void CalculateVirtualMass()
 {
 KRATOS_TRY

 if(mvirtual_mass == true)
 {
 ModelPart& r_model_part = BaseType::GetModelPart();
 ElementsArrayType& pElements = r_model_part.Elements();

 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
;
 typename NodesArrayType::iterator inode;
 for(inode = r_model_part.NodesBegin(); inode != r_model_part.NodesEnd(); inode++)
 {
 inode->FastGetSolutionStepValue(NODAL_MASS) = 0.0;
 }

 typename ElementsArrayType::iterator it_begin=pElements.ptr_begin();
 typename ElementsArrayType::iterator it_end=pElements.ptr_end();
 for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
 {
 double Young = it->GetProperties()[YOUNG_MODULUS];
 double Length = it->GetGeometry().Length();
 double Volume = 0.0;
 double VirtualMass = 0.0;

 Element::GeometryType& geom = it->GetGeometry();

 if (geom.size() == 1)
 {
 VirtualMass = Young * M_PI * it->GetGeometry()(0)-

>FastGetSolutionStepValue(RADIUS);
 if(rCurrentProcessInfo[PARTICLE_IF_CAL_ROTATE] == 1)
 {
 VirtualMass = VirtualMass * 2.5;
 }
 }
 else if (it->GetGeometry().Dimension() == 2 && geom.size() > 2)
 {
 Volume = it->GetGeometry().Area();

 VirtualMass = Young / (Length * Length) * Volume;
 }
 else if (it->GetGeometry().Dimension() == 3 && geom.size() > 3)
 {
 Volume = it->GetGeometry().Volume();

 VirtualMass = Young / (Length * Length) * Volume;
 }

 for (unsigned int i = 0; i <geom.size(); i++)
 {
 double& mass = geom(i)->FastGetSolutionStepValue(NODAL_MASS);
 mass = mass + VirtualMass / (double)geom.size();
 }
 }
 }

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 141

 mIfHaveCalVirtualMass = true;

 KRATOS_CATCH("")
 }

void Initialize()
 {
 KRATOS_TRY

 ModelPart& r_model_part = BaseType::GetModelPart();

 //1. Search Neighbours with tolerance

 bool extension_option = true;
 SearchNeighbours(r_model_part,extension_option);

 //2. Initializing elements
 if(mElementsAreInitialized == false)
 InitializeElements();
 mInitializeWasPerformed = true;

 // 3. Set Initial Contacts
 if(mdelta_option || mcontinuum_simulating_option){
 Set_Initial_Contacts(mdelta_option, mcontinuum_simulating_option);
 }

 KRATOS_CATCH("")
 }

void GetForce()
{

 KRATOS_TRY

 Vector rhs_cond;

 ModelPart& r_model_part = BaseType::GetModelPart();
 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
 ElementsArrayType& pElements = r_model_part.Elements();

 #ifdef _OPENMP
 int number_of_threads = omp_get_max_threads();
 #else
 int number_of_threads = 1;
 #endif

 vector<unsigned int> element_partition;
 OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

 unsigned int index = 0;

 #pragma omp parallel for private(index)
 for(int k=0; k<number_of_threads; k++)

 {

 typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
 typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
 for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
 {

 (it)->CalculateRightHandSide(rhs_cond, rCurrentProcessInfo);

 } //loop over particles

 }// loop threads OpenMP

 KRATOS_CATCH("")

}

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 142

void ComputeIntermedialVelocityAndNewDisplacement()
{

 ModelPart& r_model_part = BaseType::GetModelPart();
 mpScheme->Calculate(r_model_part);

 }

 void ComputeCriticalTime()

{
 KRATOS_TRY

 ModelPart& r_model_part = BaseType::GetModelPart();
 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();

 if(mvirtual_mass == true)
 {
 if(mtimestep > 0.9)
 {
 mtimestep = 0.9;
 }

 std::cout<<"******************Virtual Mass TimeStep is Used******************"
<<std::endl;

 }
 else
 {
 double TimeStepTemp = 0.0;
 ElementsArrayType& pElements = r_model_part.Elements();

 typename ElementsArrayType::iterator it_begin = pElements.ptr_begin();
 typename ElementsArrayType::iterator it_end = pElements.ptr_end();

 for(ElementsArrayType::iterator it = it_begin; it!= it_end; it++)
 {
 it->Calculate(DEM_DELTA_TIME, TimeStepTemp, rCurrentProcessInfo);
 KRATOS_WATCH(TimeStepTemp)
 if(mtimestep > TimeStepTemp)
 {
 mtimestep = TimeStepTemp;
 }
 }

 mtimestep = msafety_factor * mtimestep;

 std::cout<<"******************Real Mass TimeStep is Used******************"
<<std::endl;

 }

 rCurrentProcessInfo[DEM_DELTA_TIME] = mtimestep;

 std::cout<<"******************Calculating TimeStep Is "<<mtimestep<< "******************"
<<std::endl;

 KRATOS_CATCH("")

}

 void ApplyLocalDampings()
 {

 KRATOS_TRY

 ModelPart& r_model_part = BaseType::GetModelPart();
 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
 ElementsArrayType& pElements = r_model_part.Elements();

 #ifdef _OPENMP
 int number_of_threads = omp_get_max_threads();
 #else
 int number_of_threads = 1;

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 143

 #endif

 vector<unsigned int> element_partition;
 OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

 unsigned int index = 0;

 #pragma omp parallel for private(index)
 for(int k=0; k<number_of_threads; k++)

 {

 typename ElementsArrayType::iterator
it_begin=pElements.ptr_begin()+element_partition[k];

 typename ElementsArrayType::iterator
it_end=pElements.ptr_begin()+element_partition[k+1];

 double dummy = 0.0;

 for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
 {

 it->Calculate(PARTICLE_LOCAL_DAMP_RATIO, dummy, rCurrentProcessInfo);

 } //loop over particles
 }// loop threads OpenMP

 KRATOS_CATCH("")

 }//Apply local damps

void InitializeSolutionStep()
{

 KRATOS_TRY

 ModelPart& r_model_part = BaseType::GetModelPart();
 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
 ElementsArrayType& pElements = r_model_part.Elements();

 #ifdef _OPENMP
 int number_of_threads = omp_get_max_threads();
 #else
 int number_of_threads = 1;
 #endif

 vector<unsigned int> element_partition;
 OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

 unsigned int index = 0;

 #pragma omp parallel for private(index)
 for(int k=0; k<number_of_threads; k++)

 {

 typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
 typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
 for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
 {

 (it)->InitializeSolutionStep(rCurrentProcessInfo); //we use this function to call the
set initial contacts and the add continuum contacts.

 } //loop over particles

 }// loop threads OpenMP

 KRATOS_CATCH("")

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 144

}

 void BoundingBoxUtility(double enlargement_factor)
{

 KRATOS_TRY

 ModelPart& r_model_part = BaseType::GetModelPart();
ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();

 Calculate_Surrounding_Bounding_Box(r_model_part,enlargement_factor);

 KRATOS_CATCH("")

} //BoundingBoxUtility()

void MoveMesh()
{
}

void FinalizeSolutionStep()
{
}

void CalculateEnergies()
{
}

 protected:

 private:

 const unsigned int mdimension;
 unsigned int minitial_conditions_size;
 unsigned int mcontact_conditions_size;
 bool mInitialCalculations;
 bool mElementsAreInitialized;
 bool mConditionsAreInitialized;
 bool mCalculateOldTime;
 bool mSolutionStepIsInitialized;
 bool mComputeTime;
 bool mInitializeWasPerformed;
 bool mInitialConditions;
 bool mdelta_option;
 bool mcontinuum_simulating_option;

 bool mvirtual_mass;

 double mdamping_ratio;
 double malpha_damp;
 double mbeta_damp;
 double mfraction_delta_time;
 double mmax_delta_time;
 double molddelta_time;
 double mtimestep;
 int mnstepsearch;
 double msafety_factor;

 typename IntegrationScheme::Pointer mpScheme;

 void InitializeElements()
 {
 KRATOS_TRY
 ModelPart& r_model_part = BaseType::GetModelPart();
 ElementsArrayType& pElements = r_model_part.Elements();

 //Matrix MassMatrix;
 #ifdef _OPENMP
 int number_of_threads = omp_get_max_threads();
 #else

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 145

 int number_of_threads = 1;
 #endif

 vector<unsigned int> element_partition;
 OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

 #pragma omp parallel for
 for(int k=0; k<number_of_threads; k++)
 {
 typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
 typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
 for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
 {

 (it)->Initialize();
 }
 }

 mElementsAreInitialized = true;
 KRATOS_CATCH("")
 }

 void Set_Initial_Contacts(const bool& delta_OPTION, const bool& continuum_simulating_OPTION)
 {

 KRATOS_TRY

ModelPart& r_model_part = BaseType::GetModelPart();
 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
 ElementsArrayType& pElements = r_model_part.Elements();

 #ifdef _OPENMP
 int number_of_threads = omp_get_max_threads();
 #else
 int number_of_threads = 1;
 #endif

 vector<unsigned int> element_partition;
 OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

 unsigned int index = 0;

 #pragma omp parallel for private(index)
 for(int k=0; k<number_of_threads; k++)

 {
 typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
 typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
 for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
 {

 (it)->InitializeSolutionStep(rCurrentProcessInfo); //we use this function to call the

set initial contacts and the add continuum contacts.

 } //loop over particles

 }// loop threads OpenMP

 KRATOS_CATCH("")
 } //Set_Initial_Contacts

 void SearchNeighbours(ModelPart r_model_part,bool extension_option)
 {

 typedef DiscreteElement ParticleType;
 typedef ParticleType::Pointer ParticlePointerType;
 typedef ElementsContainerType ParticleContainerType;
 typedef WeakPointerVector<Element> ParticleWeakVectorType;
 typedef typename std::vector<ParticlePointerType>

ParticlePointerVectorType;

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 146

 typedef typename std::vector<ParticlePointerType>
ParticlePointerVectorType;

 typedef WeakPointerVector<Element>::iterator
ParticleWeakIteratorType;

 typedef typename std::vector<ParticleType>::iterator ParticleIteratorType;
 typedef typename std::vector<ParticlePointerType>::iterator

ParticlePointerIteratorType;
 typedef std::vector<double> DistanceVectorType;
 typedef std::vector<double>::iterator DistanceIteratorType;

 ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
 ParticleContainerType& pElements = r_model_part.ElementsArray();

 if (mdimension == 2)

 Neighbours_Calculator<2, ParticleType>::Search_Neighbours(pElements, rCurrentProcessInfo,
extension_option);

 else if (mdimension == 3)

 Neighbours_Calculator<3, ParticleType>::Search_Neighbours(pElements, rCurrentProcessInfo,
extension_option);

 }//SearchNeighbours

 }; // Class ExplicitSolverStrategy

} // namespace Kratos.

#endif // KRATOS_FILENAME_H_INCLUDED defined

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 147

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 148

#if !defined(KRATOS_CONSTANT_ACERAGE_ACCELERATION_SCHEME_H_INCLUDED)
#define KRATOS_CONSTANT_ACERAGE_ACCELERATION_SCHEME_H_INCLUDED

// System includes
#include <string>
#include <iostream>

// External includes

// Project includes
#include "integration_scheme.h"
#include "includes/define.h"
#include "utilities/openmp_utils.h"
#include "includes/model_part.h"
#include "utilities/openmp_utils.h"

namespace Kratos
{

 class ConstAverageAccelerationScheme : public IntegrationScheme
 {
 public:

 typedef ModelPart::NodesContainerType NodesArrayType;

 /// Pointer definition of ConstAverageAccelerationScheme
 KRATOS_CLASS_POINTER_DEFINITION(ConstAverageAccelerationScheme);

 /// Default constructor.
 ConstAverageAccelerationScheme(){}

 /// Destructor.
 virtual ~ConstAverageAccelerationScheme(){}

 void Calculate(ModelPart& model_part)
 {
 KRATOS_TRY
 KRATOS_WATCH("hola wwi")

ProcessInfo& CurrentProcessInfo = model_part.GetProcessInfo();
NodesArrayType& pNodes = model_part.Nodes();

double aux = 0;

 array_1d<double, 3 > new_accel;
 array_1d<double, 3 > prev_accel;

double delta_t = CurrentProcessInfo[DELTA_TIME];

 vector<unsigned int> node_partition;
NodesArrayType::iterator it_begin = pNodes.ptr_begin();
NodesArrayType::iterator it_end = pNodes.ptr_end();
int number_of_threads = 1; //OpenMPUtils::GetNumThreads();
OpenMPUtils::CreatePartition(number_of_threads, pNodes.size(), node_partition);

#pragma omp parallel for firstprivate(aux) shared(delta_t)
for(int k=0; k<number_of_threads; k++)
{
 NodesArrayType::iterator i_begin=pNodes.ptr_begin()+node_partition[k];
 NodesArrayType::iterator i_end=pNodes.ptr_begin()+node_partition[k+1];
 for(ModelPart::NodeIterator i=i_begin; i!= i_end; ++i)
 {

 array_1d<double, 3 > & vel = i->FastGetSolutionStepValue(VELOCITY);
 array_1d<double, 3 > & displ = i->FastGetSolutionStepValue(DISPLACEMENT);
 array_1d<double, 3 > & coor = i->Coordinates();

 array_1d<double, 3 > & initial_coor = i->GetInitialPosition();
 array_1d<double, 3 > & force = i->FastGetSolutionStepValue(RHS);

 array_1d<double, 3 > & prev_force = i->FastGetSolutionStepValue(RHS,1);
 const double mass = i->FastGetSolutionStepValue(NODAL_MASS);

CUSTOM_STRATEGIES - constant_average_acceleration_scheme.h

Annex - 149

 aux = delta_t / mass;

 new_accel = force / mass;
 prev_accel = prev_force / mass;

 if((i->pGetDof(DISPLACEMENT_X)->IsFixed() == false) && ((i->IsFixed(VELOCITY_X))== false
))

 {
 displ[0] += delta_t * vel[0] + 0.5 * delta_t * delta_t * (prev_accel[0] +

new_accel[0]);
 vel[0] = vel[0] + 0.5 * delta_t * (prev_accel[0] + new_accel[0]);

 coor[0] = initial_coor[0] + displ[0];

 prev_accel[0] = new_accel[0];

 }

 if((i->pGetDof(DISPLACEMENT_Y)->IsFixed() == false) && ((i->IsFixed(VELOCITY_Y))== false

))
 {

 displ[1] += delta_t * vel[1] + 0.5 * delta_t * delta_t * (prev_accel[1] +
new_accel[1]);

 vel[1] = vel[1] + 0.5 * delta_t * (prev_accel[1] + new_accel[1]);

 coor[1] = initial_coor[1] + displ[1];
 prev_accel[1] = new_accel[1];

 }

 if((i->pGetDof(DISPLACEMENT_Z)->IsFixed() == false) && ((i->IsFixed(VELOCITY_Z))== false
))

 {
 displ[2] += delta_t * vel[2] + 0.5 * delta_t * delta_t * (prev_accel[2] +

new_accel[2]);
 vel[2] = vel[2] + 0.5 * delta_t * (prev_accel[2] + new_accel[2]);

 coor[2] = initial_coor[2] + displ[2];

 prev_accel[2] = new_accel[2];
 }
 }
}
KRATOS_CATCH(" ")

 }

 /// Turn back information as a string.
 virtual std::string Info() const
 {

std::stringstream buffer;
 buffer << "ConstAverageAccelerationScheme" ;
 return buffer.str();
 }

 /// Print information about this object.
 virtual void PrintInfo(std::ostream& rOStream) const {rOStream <<

"ConstAverageAccelerationScheme";}

 /// Print object's data.
 virtual void PrintData(std::ostream& rOStream) const {}

 protected:

 private:

 /// Assignment operator.
 ConstAverageAccelerationScheme& operator=(ConstAverageAccelerationScheme const& rOther)
 {
 return *this;
 }

CUSTOM_STRATEGIES - constant_average_acceleration_scheme.h

Annex - 150

 /// Copy constructor.
 ConstAverageAccelerationScheme(ConstAverageAccelerationScheme const& rOther)
 {

*this = rOther;
 }

 }; // Class ConstAverageAccelerationScheme

 /// input stream function
 inline std::istream& operator >> (std::istream& rIStream,

 ConstAverageAccelerationScheme& rThis){return rIStream;}
 /// output stream function
 inline std::ostream& operator << (std::ostream& rOStream,

 const ConstAverageAccelerationScheme& rThis)
 {
 rThis.PrintInfo(rOStream);
 rOStream << std::endl;
 rThis.PrintData(rOStream);

 return rOStream;
 }
 ///@}

 ///@} addtogroup block

} // namespace Kratos.

#endif // KRATOS_CONSTANT_ACERAGE_ACCELERATION_SCHEME_H_INCLUDED defined

CUSTOM_STRATEGIES - constant_average_acceleration_scheme.h

Annex - 151

CUSTOM_STRATEGIES - constant_average_acceleration_scheme.h

Annex - 152

#if !defined(KRATOS_NEIGHBOURS_CALCULATOR)
#define KRATOS_NEIGHBOURS_CALCULATOR

#include "includes/define.h"
#include "includes/model_part.h"
#include "spatial_containers/spatial_containers.h"
#include "containers/weak_pointer_vector.h"
#include "containers/pointer_vector.h"
#include "containers/pointer_vector_set.h"

#include "custom_utilities/discrete_particle_configure.h"

namespace Kratos {

 template<
 std::size_t TDim,
 class TParticle
 >

 class Neighbours_Calculator {
 public:
 typedef DiscreteParticleConfigure < 3 > ConfigureType;
 typedef TParticle Particle;
 typedef typename Particle::Pointer ParticlePointer;
 typedef ModelPart::ElementsContainerType::ContainerType ParticleVector;
 typedef ParticleVector::iterator ParticleIterator;
 typedef ModelPart::ElementsContainerType ParticlePointerVector;
 typedef ParticlePointerVector::iterator ParticlePointerIterator;
 typedef ConfigureType::PointType PointType;
 typedef ConfigureType::DistanceIteratorType DistanceIteratorType;
 typedef ConfigureType::ContainerType ContainerType;
 typedef ConfigureType::PointerType PointerType;
 typedef ConfigureType::IteratorType IteratorType;
 typedef ConfigureType::ResultContainerType ResultContainerType;
 typedef ConfigureType::ResultPointerType ResultPointerType;
 typedef ConfigureType::ResultIteratorType ResultIteratorType;
 typedef ConfigureType::ContactPairType ContactPairType;
 typedef ConfigureType::ContainerContactType ContainerContactType;
 typedef ConfigureType::IteratorContactType IteratorContactType;
 typedef ConfigureType::PointerContactType PointerContactType;
 typedef ConfigureType::PointerTypeIterator PointerTypeIterator;
 typedef WeakPointerVector<Element> ParticleWeakVector;
 typedef typename ParticleWeakVector::iterator ParticleWeakIterator;
 typedef ParticleWeakVector::ptr_iterator ParticleWeakIteratorType_ptr;
 typedef std::vector<double> DistanceVector;
 typename DistanceVector::iterator DistanceIterator;
 typedef std::vector<array_1d<double, 3 > > TangDisplacementsVectorType;
 typedef TangDisplacementsVectorType::iterator TangDisplacementsIteratorType;

 //***

 typedef Bucket < TDim, Particle, ParticlePointerVector> BucketType;

 typedef BinsObjectDynamic <ConfigureType> bins;

 /// Pointer definition of Neighbour_calculator

 virtual ~Neighbours_Calculator() {
 };

 static void Search_Neighbours(ContainerType& pElements, ProcessInfo& rCurrentProcessInfo, bool
extension_option) {

 KRATOS_TRY

 double radius_extend = 0.0;
 if (extension_option) radius_extend = rCurrentProcessInfo[SEARCH_RADIUS_EXTENSION];
 const int case_OPTION = rCurrentProcessInfo[CASE_OPTION];
 bool delta_OPTION = false;

CUSTOM UTILITIES - neighbour_calculator.h

Annex - 153

 bool continuum_simulation_OPTION = false;

 switch (case_OPTION) {
 case 0:
 delta_OPTION = false;
 continuum_simulation_OPTION = false;
 break;
 case 1:
 delta_OPTION = true;
 continuum_simulation_OPTION = false;
 break;
 case 2:
 delta_OPTION = true;
 continuum_simulation_OPTION = true;
 break;
 case 3:
 delta_OPTION = false;
 continuum_simulation_OPTION = true;
 break;
 default:
 delta_OPTION = false;
 continuum_simulation_OPTION = false;
 }

 boost::timer kdtree_construction;
 unsigned int MaximumNumberOfResults = 100;
 ResultContainerType Results(MaximumNumberOfResults);
 DistanceVector ResultsDistances(MaximumNumberOfResults);
 bins particle_bin(pElements.begin(), pElements.end());
 boost::timer search_time;
 //**

**

 ResultIteratorType results_begin;
 DistanceIteratorType result_distances_begin;
 //loop over all of the particles in the list to perform search
 for (IteratorType particle_pointer_it = pElements.begin();
 particle_pointer_it != pElements.end(); ++particle_pointer_it)
 {
 Element::GeometryType& geom = (*particle_pointer_it)->GetGeometry();
 double search_radius = (1.0 + radius_extend) * geom(0)->GetSolutionStepValue(RADIUS);

 //find all of the new particles within the radius
 //looks which of the new particles is inside the radius around the working particle

 results_begin = Results.begin();
 result_distances_begin = ResultsDistances.begin();

 (*particle_pointer_it)->GetValue(NUMBER_OF_NEIGHBOURS) =
particle_bin.SearchObjectsInRadius(*(particle_pointer_it),

 search_radius, results_begin, result_distances_begin, MaximumNumberOfResults) - 1;

 // SAVING THE OLD NEIGHBOURS, FORCES, FAILURE TYPES AND NUMBER OF NEIGHBOURS.

 ParticleWeakVector TempNeighbours;
 TempNeighbours.swap((*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS));

 vector< array_1d<double, 3 > > TempContactForce;
 TempContactForce.swap((*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES));

 vector< double > TempContactFailureId;
 TempContactFailureId.swap((*particle_pointer_it)-

>GetValue(PARTICLE_CONTACT_FAILURE_ID));

 vector< double > TempContactDelta;
 TempContactDelta.swap((*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA));

 vector< double > TempRotateSpringFailType;
TempRotateSpringFailType.swap((*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE));

CUSTOM UTILITIES - neighbour_calculator.h

Annex - 154

 vector< array_1d<double, 3 > > TempRotateSpringMoment;
 TempRotateSpringMoment.swap((*particle_pointer_it)-

>GetValue(PARTICLE_ROTATE_SPRING_MOMENT));

 int n_neighbours = (*particle_pointer_it)->GetValue(NUMBER_OF_NEIGHBOURS);

 // CLEARING AND INITIALITZING.

 (*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS).clear();
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES).clear();
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID).clear();
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA).clear();

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE).clear();
 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT).clear();

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES).resize(n_neighbours);
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID).resize(n_neighbours);
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA).resize(n_neighbours);

 (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE).resize(n_neighbours);

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT).resize(n_neighbours);

 // GETTING NEW NEIGHBOURS

 int neighbour_counter = 0;

 for (ResultIteratorType neighbour_it = Results.begin(); neighbour_counter !=
n_neighbours + 1; ++neighbour_it)

 {
 if ((*particle_pointer_it)->Id() != (*neighbour_it)->Id()) { //the bins search finds

the particle itself

 (*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS).push_back(*neighbour_it);

 // LOOP TO EXTEND THE VECTORS AND SET A 0.0 VALUE EACH TIME

 size_t Notemp = ((*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS)).size();

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp - 1] =
ZeroVector(3);

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)[Notemp - 1] = 1;
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA)[Notemp - 1] = 0.0;
 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE)[Notemp -

1] = 0.0;
 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)[Notemp - 1] =

ZeroVector(3);

 // LOOP OVER THE OLD NEIGHBOURS FOR EVERY NEIGHBOUR TO CHECK IF IT'S AN EXISTING
ONE AND COPYING THE OLD DATA

 int OldNeighbourCounter = 0;
 for (ParticleWeakIterator old_neighbour = TempNeighbours.begin(); old_neighbour

!= TempNeighbours.end(); old_neighbour++)
 {
 {

 if ((old_neighbour.base())->expired() == false) {
 if ((*neighbour_it)->Id() == old_neighbour->Id())
 {
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)

[Notemp-1][0] = TempContactForce[OldNeighbourCounter][0];
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)

[Notemp-1][1] = TempContactForce[OldNeighbourCounter][1];
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)

[Notemp-1][2] = TempContactForce[OldNeighbourCounter][2];

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)
[Notemp-1] = TempContactFailureId[OldNeighbourCounter];

CUSTOM UTILITIES - neighbour_calculator.h

Annex - 155

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)
[Notemp-1] = TempContactFailureId[OldNeighbourCounter];

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp-1][0] = TempRotateSpringMoment[OldNeighbourCounter][0];

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp-1][1] = TempRotateSpringMoment[OldNeighbourCounter][1];

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp-1][2] = TempRotateSpringMoment[OldNeighbourCounter][2];

 (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE)[Notemp-1] =
TempRotateSpringFailType[OldNeighbourCounter];

 break;
 } //end of its an old one??
 } //end of expired?
 } // end of its myself
 OldNeighbourCounter++;
 } //loop old neighbours

 if (delta_OPTION) {

 // LOOP OVER THE INITIAL NEIGHBOURS FOR EVERY NEIGHBOUR TO CHECK IF IT'S AN
INITIAL ONE AND THEN COPYING THE DELTA DATA

 int InitialNeighboursCounter = 0;

 if (((*particle_pointer_it)->GetValue(INITIAL_NEIGHBOUR_ELEMENTS)).size() !=

0) {
 for (ParticleWeakIterator ini_neighbour = ((*particle_pointer_it)-

>GetValue(INITIAL_NEIGHBOUR_ELEMENTS)).begin(); ini_neighbour !=
((*particle_pointer_it)->GetValue(INITIAL_NEIGHBOUR_ELEMENTS)).end();
ini_neighbour++)

 {
 if ((ini_neighbour.base())->expired() == false) {

 if ((*neighbour_it)->Id() == ini_neighbour->Id())
 {
 (*particle_pointer_it)-

>GetValue(PARTICLE_CONTACT_DELTA)[Notemp-1] =
(*particle_pointer_it)-
>GetValue(PARTICLE_INITIAL_DELTA)
[InitialNeighboursCounter];

 break;
 }
 }

 InitialNeighboursCounter++;
 } // for initial neighbours
 } //if u have some intial neigh
 }//deltaOPTION
 }//end of the: if((*particle_pointer_it)->Id() != (*neighbour_it)->Id()

 ++neighbour_counter;

 } // for each neighbour, neighbour_it.

 //ADDING NOT FOUND NEIGHBOURS (the ones with negative identation still in tensile
contact are not detected, but they are on the old neighbours list).

 int TempNeighbourCounter = 0;

 for (ParticleWeakIterator temp_neighbour = TempNeighbours.begin(); temp_neighbour !=
TempNeighbours.end(); temp_neighbour++)

 {
 if (TempContactFailureId[TempNeighbourCounter] == 0) // if they are not detached.
 {
 if ((temp_neighbour.base())->expired() == false)
 {
 if ((*particle_pointer_it)->Id() != temp_neighbour->Id()) {

CUSTOM UTILITIES - neighbour_calculator.h

Annex - 156

 bool AlreadyAdded = false; //identifying if they are already found ot
not.

 for (ParticleWeakIterator new_neighbour = (*particle_pointer_it)-
>GetValue(NEIGHBOUR_ELEMENTS).begin();

 new_neighbour != (*particle_pointer_it)-
>GetValue(NEIGHBOUR_ELEMENTS).end(); new_neighbour++) {

 if (new_neighbour->Id() == (temp_neighbour)->Id()) {

 AlreadyAdded = true; //for the ones already found in the new
search.

 break;
 }
 }

 if (AlreadyAdded == false) //for the ones not included!
 {

 (*particle_pointer_it)-

>GetValue(NEIGHBOUR_ELEMENTS).push_back(TempNeighbours(TempNeighbour
Counter)); //adding the not found neighbours.

 size_t Notemp = (*particle_pointer_it)-
>GetValue(PARTICLE_CONTACT_FORCES).size();

 (*particle_pointer_it)-
>GetValue(PARTICLE_CONTACT_FORCES).resize(Notemp + 1); // adding one
more space for every missing neighbour.

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp][0]
= TempContactForce[TempNeighbourCounter][0]; //copying properties.

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp][1]
= TempContactForce[TempNeighbourCounter][1];

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp][2]
= TempContactForce[TempNeighbourCounter][2];

 (*particle_pointer_it)-
>GetValue(PARTICLE_CONTACT_FAILURE_ID).resize(Notemp + 1);

 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)
[Notemp] = TempContactFailureId[TempNeighbourCounter];

 (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_MOMENT).resize(Notemp + 1); //
adding one more space for every missing neighbour.

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp][0] = TempRotateSpringMoment[TempNeighbourCounter][0];
//copying properties.

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp][1] = TempRotateSpringMoment[TempNeighbourCounter][1];

 (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp][2] = TempRotateSpringMoment[TempNeighbourCounter][2];

 (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE).resize(Notemp + 1);

 (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE)[Notemp] =
TempRotateSpringFailType[TempNeighbourCounter];

 if (delta_OPTION) {
 (*particle_pointer_it)-

>GetValue(PARTICLE_CONTACT_DELTA).resize(Notemp + 1);
 (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA)[Notemp]

= TempContactDelta[TempNeighbourCounter];
 }

 (*particle_pointer_it)->GetValue(NUMBER_OF_NEIGHBOURS)++;
 }
 }// end its myself???
 }//if not expired
 } //if not detached

CUSTOM UTILITIES - neighbour_calculator.h

Annex - 157

 TempNeighbourCounter++;
 }//loop over tempneigh
 }//Loop for evey particle as a base.

 KRATOS_CATCH("")
 }// Search_Neighbours

 virtual std::string Info() const {
 return "neighbour_calculator";
 }

 virtual void PrintInfo(std::ostream& rOStream) const {
 }

 virtual void PrintData(std::ostream& rOStream) const {
 }

 protected:

 private:

 inline void Clear(ModelPart::NodesContainerType::iterator node_it, int step_data_size) {
 unsigned int buffer_size = node_it->GetBufferSize();
 for (unsigned int step = 0; step < buffer_size; step++) {
 //getting the data of the solution step
 double* step_data = (node_it)->SolutionStepData().Data(step);
 //copying this data in the position of the vector we are interested in
 for (int j = 0; j < step_data_size; j++) {
 step_data[j] = 0.0;
 }
 }
 }

 Neighbours_Calculator & operator=(Neighbours_Calculator const& rOther);

 }; // Class Neighbours_calculator

} // namespace Kratos.

#endif // KRATOS_NEIGHBOURS_CALCULATOR defined

CUSTOM UTILITIES - neighbour_calculator.h

Annex - 158

#ifndef PARTICLE_CONFIGURE_H
#define PARTICLE_CONFIGURE_H

// System includes

// System includes
#include <string>
#include <iostream>
#include <cmath>
#include "utilities/spatial_containers_configure.h"

namespace Kratos
{

template <class TParticle>
class ParticleConfigure
{

public:

 enum {Dimension = 3};
 typedef TParticle ParticleType;
 typedef Point< 3, double> PointType;
 typedef typename ParticleType::DistanceIteratorType DistanceIteratorType;
 typedef typename ParticleType::Pointer PointerType;
 typedef typename std::vector<typename ParticleType::Pointer> ContainerType;
 typedef typename std::vector<PointerType>::iterator IteratorType;
 typedef ContainerType ResultContainerType;
 typedef IteratorType ResultIteratorType;

 /// Contact Pairs
 typedef ContactPair<PointerType> ContactPairType;
 typedef std::vector<ContactPairType> ContainerContactType;
 typedef typename ContainerContactType::iterator IteratorContactType;
 typedef typename ContainerContactType::value_type PointerContactType;

 /// Pointer definition of SpatialContainersConfigure
 KRATOS_CLASS_POINTER_DEFINITION(ParticleConfigure);

 ParticleConfigure() {};
 virtual ~ParticleConfigure() {}

 //**
 static inline void CalculateBoundingBox(const PointerType& rObject, PointType& rLowPoint, PointType&

rHighPoint)
 {
 rLowPoint = *(rObject->GetPointerToCenterNode());
 rHighPoint = *(rObject->GetPointerToCenterNode());
 double radius = rObject->GetRadius();
 for(std::size_t i = 0; i < 3; i++)
 {
 rLowPoint[i] += -radius;
 rHighPoint[i] += radius;
 }
 }

 static inline void CalculateBoundingBox(const PointerType& rObject, PointType& rLowPoint, PointType&
rHighPoint, const double& Radius)

 {
 rLowPoint = *(rObject->GetPointerToCenterNode());
 rHighPoint = *(rObject->GetPointerToCenterNode());
 for(std::size_t i = 0; i < 3; i++)
 {
 rLowPoint[i] += -Radius;
 rHighPoint[i] += Radius;
 }
 }
 //**
 static inline bool Intersection(const PointerType& rObj_1, const PointerType& rObj_2)

CUSTOM UTILITIES - particle configure.h

Annex - 159

 {
 array_1d<double, 3> rObj_2_to_rObj_1 = rObj_1->GetPosition() - rObj_2->GetPosition();
 double distance_2 = rObj_2_to_rObj_1[0] * rObj_2_to_rObj_1[0] + rObj_2_to_rObj_1[1] *

rObj_2_to_rObj_1[1] + rObj_2_to_rObj_1[2] * rObj_2_to_rObj_1[2];
 //distance_2 is the inter-center distance squared (from the definition of distance in search-

structure.h, with operator (,))
 double radius_1 = rObj_1->GetRadius();
 double radius_2 = rObj_2->GetRadius();
 double radius_sum = radius_1 + radius_2;
 bool intersect = (distance_2 - radius_sum * radius_sum) <= 0;
 return intersect;
 }

 static inline bool Intersection(const PointerType& rObj_1, const PointerType& rObj_2, double Radius)
 {
 array_1d<double, 3> rObj_2_to_rObj_1 = rObj_1->GetPosition() - rObj_2->GetPosition();
 double distance_2 = rObj_2_to_rObj_1[0] * rObj_2_to_rObj_1[0] + rObj_2_to_rObj_1[1] *

rObj_2_to_rObj_1[1] + rObj_2_to_rObj_1[2] * rObj_2_to_rObj_1[2];
 //distance_2 is the inter-center distance squared (from the definition of distance in search-

structure.h, with operator (,))
 double radius_1 = Radius;es
 double radius_2 = rObj_2->GetRadius();
 double radius_sum = radius_1 + radius_2;
 bool intersect = (distance_2 - radius_sum * radius_sum) <= 0;
 return intersect;
 }
 //***

 static inline bool IntersectionBox(const PointerType& rObject, const PointType& rLowPoint, const
PointType& rHighPoint)

 {
// double separation_from_particle_radius_ratio = 0.1;
 array_1d<double, 3> center_of_particle = rObject->GetPosition();
 double radius = rObject->GetRadius();
 bool intersect = (rLowPoint[0] - radius <= center_of_particle[0] && rLowPoint[1] - radius <=

center_of_particle[1] && rLowPoint[2] - radius <= center_of_particle[2] &&
 rHighPoint[0] + radius >= center_of_particle[0] && rHighPoint[1] + radius >=

center_of_particle[1] && rHighPoint[2] + radius >= center_of_particle[2]);
 return intersect;
 }

 static inline bool IntersectionBox(const PointerType& rObject, const PointType& rLowPoint, const
PointType& rHighPoint, const double& Radius)

 {
// double separation_from_particle_radius_ratio = 0.1;
 array_1d<double, 3> center_of_particle = rObject->GetPosition();
 double radius = Radius;
 bool intersect = (rLowPoint[0] - radius <= center_of_particle[0] && rLowPoint[1] - radius <=

center_of_particle[1] && rLowPoint[2] - radius <= center_of_particle[2] &&
 rHighPoint[0] + radius >= center_of_particle[0] && rHighPoint[1] + radius >=

center_of_particle[1] && rHighPoint[2] + radius >= center_of_particle[2]);
 return intersect;
 }

 //**

 static inline void Distance(const PointerType& rObj_1, const PointerType& rObj_2, double& distance)
 {
 array_1d<double, 3> center_of_particle1 = rObj_1->GetPosition();
 array_1d<double, 3> center_of_particle2 = rObj_2->GetPosition();

 distance = sqrt((center_of_particle1[0] - center_of_particle2[0]) * (center_of_particle1[0] -
center_of_particle2[0]) +

 (center_of_particle1[1] - center_of_particle2[1]) * (center_of_particle1[1] -
center_of_particle2[1]) +

 (center_of_particle1[2] - center_of_particle2[2]) * (center_of_particle1[2] -
center_of_particle2[2]));

 }
 //**

CUSTOM UTILITIES - particle configure.h

Annex - 160

 /// Turn back information as a string.
 virtual std::string Info() const
 {
 return " Spatial Containers Configure for Particles";
 }

 /// Print information about this object.
 virtual void PrintInfo(std::ostream& rOStream) const {}

 /// Print object's data.
 virtual void PrintData(std::ostream& rOStream) const {}

protected:

private:

 /// Assignment operator.
 ParticleConfigure& operator=(ParticleConfigure const& rOther);

 /// Copy constructor.
 ParticleConfigure(ParticleConfigure const& rOther);

}; // Class ParticleConfigure

/// input stream function
template <class TParticle>
inline std::istream& operator >> (std::istream& rIStream, ParticleConfigure<TParticle> & rThis)
{
 return rIStream;
}

/// output stream function
template <class TParticle>
inline std::ostream& operator << (std::ostream& rOStream, const ParticleConfigure<TParticle>& rThis)
{
 rThis.PrintInfo(rOStream);
 rOStream << std::endl;
 rThis.PrintData(rOStream);

 return rOStream;
}
///@}

} // namespace Kratos.
#endif /* PARTICLE_CONFIGURE_H */

CUSTOM UTILITIES - particle configure.h

Annex - 161

CUSTOM UTILITIES - particle configure.h

Annex - 162

from KratosMultiphysics import *
from KratosMultiphysics.DEMApplication import *
Check that KratosMultiphysics was imported in the main script
#CheckForPreviousImport(

def AddVariables(model_part):

 model_part.AddNodalSolutionStepVariable(DISPLACEMENT)
 model_part.AddNodalSolutionStepVariable(VELOCITY)
 model_part.AddNodalSolutionStepVariable(RHS)
 model_part.AddNodalSolutionStepVariable(APPLIED_FORCE)
 model_part.AddNodalSolutionStepVariable(RADIUS)
 model_part.AddNodalSolutionStepVariable(PARTICLE_DENSITY)
 model_part.AddNodalSolutionStepVariable(PARTICLE_STIFFNESS)
 model_part.AddNodalSolutionStepVariable(YOUNG_MODULUS)
 model_part.AddNodalSolutionStepVariable(POISSON_RATIO)
 model_part.AddNodalSolutionStepVariable(NODAL_MASS)
 model_part.AddNodalSolutionStepVariable(PARTICLE_COEF_RESTITUTION)
 model_part.AddNodalSolutionStepVariable(PARTICLE_ZETA)
 model_part.AddNodalSolutionStepVariable(IS_STRUCTURE)
 model_part.AddNodalSolutionStepVariable(PARTICLE_MATERIAL)
 model_part.AddNodalSolutionStepVariable(PARTICLE_CONTINUUM)
 model_part.AddNodalSolutionStepVariable(PARTICLE_COHESION)
 model_part.AddNodalSolutionStepVariable(PARTICLE_FRICTION)
 model_part.AddNodalSolutionStepVariable(PARTICLE_TENSION)
 model_part.AddNodalSolutionStepVariable(PARTICLE_LOCAL_DAMP_RATIO)
 model_part.AddNodalSolutionStepVariable(PARTICLE_FAILURE_ID)
 model_part.AddNodalSolutionStepVariable(PARTICLE_INERTIA)
 model_part.AddNodalSolutionStepVariable(ANGULAR_VELOCITY)
 model_part.AddNodalSolutionStepVariable(PARTICLE_MOMENT)
 model_part.AddNodalSolutionStepVariable(PARTICLE_MOMENT_OF_INERTIA)
 model_part.AddNodalSolutionStepVariable(PARTICLE_ROTATION_ANGLE)

 print "variables for the explicit solver added correctly"

def AddDofs(model_part):

 for node in model_part.Nodes:
 #adding dofs
 node.AddDof(DISPLACEMENT_X,REACTION_X);
 node.AddDof(DISPLACEMENT_Y,REACTION_Y);
 node.AddDof(DISPLACEMENT_Z,REACTION_Z);
 node.AddDof(VELOCITY_X,REACTION_X);
 node.AddDof(VELOCITY_Y,REACTION_Y);
 node.AddDof(VELOCITY_Z,REACTION_Z);

 print "dofs for the DEM solution added correctly"

class ExplicitStrategy:

 def __init__(self,model_part,domain_size):

 self.model_part = model_part
 self.domain_size = domain_size
 self.damping_ratio = 0.00;
 self.penalty_factor = 10.00
 self.max_delta_time = 0.05;
 self.fraction_delta_time = 0.90;
 self.MoveMeshFlag = True;
 self.time_scheme = FowardEulerScheme();
 self.gravity = Vector(3)
 self.gravity[0] = 0.0
 self.gravity[1] = -9.81
 self.gravity[2] = 0.0
 self.delta_time = 0.00001;

PYTHON SCRIPTS - sphere_strategy.py

Annex - 163

 #type of problem:

 self.delta_OPTION = False
 self.continuum_simulating_OPTION = False
 self.case_OPTION = 0
 self.rotation_OPTION = 0
 self.rotation_spring_OPTION = 0

 #problem specific parameters

 self.force_calculation_type_id =1
 self.damp_id =1
 self.search_radius_extension = 0.0
 self.dummy_switch =0

 #problem utilities
 self.enlargement_factor = 1;
 self.n_step_search = 1;
 self.safety_factor = 1; #for critical time step

 ##

 def Initialize(self):

 self.model_part.ProcessInfo.SetValue(GRAVITY, self.gravity)
 self.model_part.ProcessInfo.SetValue(DELTA_TIME, self.delta_time)

 if(self.delta_OPTION==True):
 if(self.continuum_simulating_OPTION==True): self.case_OPTION = 2
 else: self.case_OPTION = 1
 elif(self.delta_OPTION==False):
 if(self.continuum_simulating_OPTION==False): self.case_OPTION = 0
 else: self.case_OPTION = 3

 self.model_part.ProcessInfo.SetValue(CASE_OPTION, self.case_OPTION)
 self.model_part.ProcessInfo.SetValue(ROTATION_OPTION, self.rotation_OPTION)
 self.model_part.ProcessInfo.SetValue(ROTATION_SPRING_OPTION, self.rotation_spring_OPTION)
 self.model_part.ProcessInfo.SetValue(FORCE_CALCULATION_TYPE, self.force_calculation_type_id)
 self.model_part.ProcessInfo.SetValue(DAMP_TYPE, self.damp_id)
 self.model_part.ProcessInfo.SetValue(SEARCH_RADIUS_EXTENSION, self.search_radius_extension)
 self.model_part.ProcessInfo.SetValue(DUMMY_SWITCH, self.dummy_switch)

 #creating the solution strategy
 self.solver = ExplicitSolverStrategy(self.model_part, self.domain_size, self.damping_ratio,

self.fraction_delta_time, self.delta_time, self.n_step_search, self.safety_factor,
 self.MoveMeshFlag, self.delta_OPTION,

self.continuum_simulating_OPTION, self.time_scheme)

 self.solver.Initialize()
 self.model_part.ProcessInfo.SetValue(DUMMY_SWITCH, 1)

 ###
 def Solve(self):
 (self.solver).Solve()

 ###

 def Calculate_Model_Surrounding_Bounding_Box(self, enlargement_factor):
 self.solver.BoundingBoxUtility()

PYTHON SCRIPTS - sphere_strategy.py

Annex - 164

165

References

1. Cundall, P.A., A computer model for simulating progressive, large-scale movements in
blockly rock systems., in Symposium Soc. Internat Mécanique des Roches 1971: Nancy.
p. 2-8.

2. Pande, G., Beer, G. and Williams, J.R., Numerical Modeling in Rock Mechanics. John
Wiley and Sons, 1990.

3. Munjiza, A., The combined Finite-Discrete Element Method. 2004: John Wiley & Sons.
4. Cundall, P.A. and O.D. L–Strack, A discrete numerical model for granular assemblies.

Geotechnique, 1979. 29(1): p. 47-65.
5. Walizer, L.E. and J.F. Peters, A bounding box search algorithm for DEM simulation.

Computer Physics Communications, 2011. 182(2): p. 281-288.
6. Perkins, E. and J.R. Williams, CGrid: neighbor searching for many body simulation, in

4th Int. Conf. on Analysis of Discontinuous Deformation. 2001: Glasgow, UK.
7. Munjiza, A. and K.R.F. Andrews, NBS contact detection algorithm for bodies of similar

size. International Journal for Numerical Methods in Engineering, 1998. 43: p. 131-49.
8. Raschdorf, S. and M. Kolonko, Loose octree: a datastructure for the simulation of

polydisperse particle packings. 2009, Clausthal University of Technology.
9. G. Nezami, E., et al., Shortest link method for contact detection in discrete element

method. International Journal for Numerical and Analytical Methods in Geomechanics,
2006. 30(8): p. 783-801.

10. Nezami, E.G., et al., A fast contact detection algorithm for 3-D discrete element method.
Computers and Geotechnics, 2004. 31(7): p. 575-587.

11. Feng, Y., Discrete Element Methods – Theory & Practice. International Symposium /
UK-China Summer School on Discrete Element Methods and Numerical Modelling of
Discontinuum Mechanics (Beijing DEM’08), 2008.

12. Han, K., Y.T. Feng, and D.R.J. Owen, Polygon-based contact resolution for superquadrics.
International Journal for Numerical Methods in Engineering, 2006. 66: p. 485-501.

13. Yung-ming, C., C. Wensheng, and G. Xiurun. Procedure to detect the contact of three-
dimensional blocks using penetration edges method. in Discrete Element Methods.
Numerical Modeling of Discontinua. 2002. Santa Fe, New Mexico, USA: American
Society of Civil Engineers.

14. Song, Y., R. Turton, and F. Kayihan, Contact detection algorithms for DEM simulations
of tablet-shaped particles. Powder Technology, 2006. 161 p. 32 - 40.

15. H. Kruggel-Emden, M.S., S. Wirtza, and V. Scherera., Selection of an appropriate time
integration scheme for the discrete element method (dem). Computers & Chemical
Engineering, 2008: p. 32(10):2263{2279, .

16. Bray., C.O.S.a.J.D., Selecting a suitable time step for discrete element simulations that
use the central difference time integration scheme. Engineering Computations, 2004: p.
21(2/3/4):278-303.

17. Hsieh, Y.L., H. Huang, T. and Jeng, F., Interpretations on how the macroscopic
mechanical behavior of sandstone affected by microscopic properties. Engineering
Geology, 2008. 110.

18. Tavarez, F.A. and M.E. Plesha, Discrete element method for modelling solid and
particulate materials. International Journal for Numerical Methods in Engineering,
2006. 70 (4): p. 379 - 404.

19. Huang, H.a.E.D., Intrinsic length scales in tool-rock interaction. International Journal of
Geomechanics, 2008. 8(1):3944.

20. Huang, H., Discrete element modeling of tool-rock interaction. . 1999.

166

21. Labra, C. and E. Oñate, High-density sphere packing for discrete element method
simulations. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008.

22. Rojek, J., et al., Discrete Element Modelling of Rock Cutting
Particle-Based Methods, E. Oñate and R. Owen, Editors. 2011, Springer Netherlands. p.
247-267.

	1.pdf
	Annex - Continuum modelling using the Discrete Element Method. Theory and implementation in an object-oriented software platform..pdf
	1spheric_particle
	2script BUENO
	2script
	full blanc

	3 explicit_solver_strategy BUENO
	3 explicit_solver_strategy
	full blanc

	4 constant_average_acceleration_scheme BUENO
	4 constant_average_acceleration_scheme
	full blanc

	5 neighbours_calculator
	6particle_configure BUENO
	6particle_configure.pdf
	full blanc

	7sphere_strategy

	3.pdf

