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Abstract  

The Discrete Element Method is a relatively new technique that has nowadays and intense 

research in the field of numerical methods. In its first conception, the method was designed 

for simulations of dynamic system of particles where each element is considered to be an 

independent and non-deformable entity that interacts with other particles by the laws of the 

contact mechanics and moves following the second Newton’s law. This first approach for the 

DEM has obtained excellent results for granular media simulations or another discontinuous-

like case. The existing challenge nowadays for the DEM is to be able to simulate the behaviour 

on a continuous media discretized by a mesh of particles ruled by the equations of the DEM. 

Although there exist more adequate methods to solve the continuous problem as they are the 

different variants of the Finite Element Method, the DEM is expected to have a better 

behaviour when the failure of the media occurs; in terms of tracking the evolution of the 

fracture locally between the elements of the discretization and also the post-fractural 

behaviour of the material. 

  

Nowadays, there are several DEM codes that try to solve this problem although there is no one 

which can assure an accurate solution applicable universally to any case. The objective of the 

present work is to develop calculation software for the Discrete Element Method included in 

the platform for numerical methods KRATOS, which is developed in CIMNE.  One of the goals 

of the so-called DEM-Application is to be able to reproduce a wide set of engineering problems; 

not only the discrete ones such as the excavation or agroalimentary applications but also to 

reproduce the continuous media, simulating compression test for concrete or asphalt samples 

for instance. In addition it is desired that the application permits the coupling with another 

methods, particularly the Finite Element Method.  

 

In order to do this, the present work includes the study of all the advances and ideas that, 

globally in the numerical method field and particularly in CIMNE, have been discussed to give 

other approaches and to keep improving and developing the to the Discrete Element Method.1 
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Resum  

El Mètode dels Elements Discrets és un mètode relativament nou el qual avui dia és objecte 

d’una intensa recerca en el món dels mètodes numèrics. Originalment el mètode fou concebut 

per a la simulació de sistemes dinàmics de partícules on cada element és considerat com a 

entitat independent i indeformable que interacciona amb les altres seguint les lleis del 

contacte mecànic i es mou segons la segona llei de Newton. Aquest primer plantejament sobre 

el M.E.D. a tingut molts bons resultats per a simulacions de medis granulars o qualsevol 

assimilable a un medi discontinu. El repte actual per al DEM és ésser capaç de simular també el 

comportament d’un medi continu discretitzat per una malla de partícules que interaccionin 

segons les lleis del M.E.D. Tot i existir mètodes molt més adequats a resoldre aquest problema 

com son les variants del Mètode dels Elements Finits, el M.E.D. promet tenir un millor 

comportament a l’hora de seguir l’evolució de la fractura a nivell local entre els elements de la 

discretització i el comportament post fracturat del material. 

 

 Actualment, existeixen molts programes de Elements Discrets que intenten resoldre aquest 

problema sense haver-n’hi cap que asseguri una solució acurada aplicable a nivell universal i 

amb versatilitat. L’objectiu de la tesina és desenvolupar un programa de càlcul d’Elements 

Discrets inclòs en la plataforma per mètodes numèrics KRATOS, desenvolupada al CIMNE. Un 

dels objectius de l’anomenada DEM-Application és poder reproduir un ampli conjunt de 

problemes d'enginyeria; no tan sols els que són merament “discrets” com el medis granulars, 

tal i com poden ser l’excavació o aplicacions agroalimentàries, sinó també la simulació del 

medi continu, com ara reproduir provetes de formigó, asfalt, etc. Paral·lelament es desitja que 

l’aplicació permeti el càlcul acoblat amb altres mètodes, en particular amb el Mètode dels 

Elements Finits.  

 

Per dur-ho a terme, en la tesina, s’ha estudiat tot el conjunt d’avenços i idees que, en el món 

dels mètodes numèrics a nivell global i a CIMNE en particular, es plantegen per donar altres 

punts de vista, millorar i continuar desenvolupant el Mètode dels Elements Discrets.2 
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Introduction and objectives 

This dissertation is the result of the implementation of a Discrete Element Method code in an 

open source object-oriented software platform called KRATOS developed in CIMNE (Barcelona). 

The result of this work is the so-called DEM-Application, which is the program that has been 

coded for the author forming part of team of engineers in CIMNE.  

  

This document presents all the discussions and the special topics that have been taken into 

account in order to develop the application. A basic introduction to the Discrete Element 

Method is presented in the first part of the document with the topics in discussion for the 

special features and characteristics of the DEM, including the features needed to introduce the 

simulation of the continuous media with the DEM.  

 

In the second part, the KRATOS framework is introduced and the basic structure of the DEM-

application is explained. The implementations of the utilities that differentiate this application 

from others are highlighted in the second part.  

 

The objective of the DEM-Application is to have a base program for the DEM coded in a very 

powerful and versatile platform, KRATOS. This permits different researchers extending and 

improving the code as well as using as a closed package for projects and simulation by 

advanced users and engineers.  

 

The objective of this document is to guide those users or developers in using the program and 

understanding the underlying numerical methods implemented as well as introducing them to 

the theoretical aspects and capacities of the Discrete Element Method when dealing with the 

continuum modelling problems. 
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Part I: The Discrete Element Method 

1. OVERVIEW OF THE METHOD 

1 . 1 .  B r i e f  h i s t or y  o f  t h e  D i s c r e t e  E l e m e n t  M e t h o d  

Peter A. Cundall [1] developed a general method to apply in rock mechanics and referenced it 

as Discrete Element Method for the first time to the scientific literature in 1971. The method, 

frequently called Distinct Element Method has its theoretical basis on the method that Sir 

Isaac Newton established in 1697. Its first applications in engineering problems were in 

geomechanics years later in 1990 described in the book Numerical Modelling in Rock 

Mechanics, by Pande, G., Beer, G. and Williams, J.R. [2]. 

Since that point the method has been rapidly spread; an important impulse for the method 

was the 1st, 2nd and 3rd International Conferences on Discrete Element Methods, which have 

been a common point for researchers to publish advances in the method and its applications. 

Journal articles reviewing the state of the art have been published by Williams, Bicanic, 

and Bobetet al. Regarding the DEM-FEM combined method, a comprehensive treatment is 

contained in the book The Combined Finite-Discrete Element Method by Munjiza [3].   

 

1 . 2 .  I n t r od u c t i o n  a n d  g e n e r a l  a s p e c t s  o f  t h e  D E M  f or m u l a t i o n   

The Discrete Element Method was firstly introduced by Cundall (1971) ) [1] for the analysis of 

the fracture mechanics problems and, afterwards, it had been applied to solids by Cundall and 

Strack (1979) [4]. From that time to now, the method has evolved so much and has acquired 

new perspectives that bring engineers the possibility to study a large type of problems. Some 

of these new insights will be commented in next sections but the objective of this first 

introduction is to set the bases of the original method.  

 

The crucial difference between a DEM models and the FEM is that the material is represented 

by a discontinuous particle structure without any need of a mesh in the strict sense. The 

infinite number of material points of the continuum is replaced by a finite number of particles 

of finite extent that interact through collisions with each other.  

http://en.wikipedia.org/w/index.php?title=Nenad_Bicanic&action=edit&redlink=1
http://en.wikipedia.org/wiki/Bobet
http://en.wikipedia.org/w/index.php?title=Ante_Munjiza&action=edit&redlink=1
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The DEM shows several apparent similarities compared to the “classical” mesh free methods. 

However, the key difference between the DEM, on the one side, comparing with traditional 

mesh-aligned methods (FEM, BEM, FDM) and  also comparing with meshless methods (SPH, 

MLS, PIC, etc.)1 on the other side, is that the first one describes a discontinuous media, while 

the last groups describe a continuous media. This means that the methods which describe a 

continuum are all based on a formal discretization, while methods like the DEM are based on a 

physical discretization; i.e. elements of the DEM represent physical objects. 

 

The method simulates the mechanical behaviour of a system formed by a set of particles 

arbitrarily disposed. This method, in its original conception, considers the particles to be 

discrete elements forming part of a higher more complex system. Each distinct element has an 

independent movement; they interact each other due to the contacts.  

Basically, the Discrete Element Method algorithm, from a computational point of view, is 

based on three basic steps: 

 

 

Figure I. 1 Basic computational scheme for the DEM.  

 

 

                                                           
1
 Mesh-Aligned Methods: FEM: Finite Element Method, BEM: Boundary Element Method, FDM: Finite 

Difference Method. 
Meshless Methods: DEM: Discrete Element Method, SPH: Smooth Particle Hydrodynamics, MLS: Moving 
Least Squares,  PIC: Particle In Cell 

0  

• Preliminary Steps
•    Geometry  discretized by particles + parameters (delta 

time) + conditions

1 
• Contact  Search 
•Global search + Local resolution 

2 

• Evaluation of Forces 
•    Contact forces characterization  + Consituitive model +                                        

Damping , etc.  

3 
• Integration of Motion equations 
•    Explicit schemes, Critical time step evaluation 

1 
• Contact Search 
•    Global search + Local resolution 

 One Step 
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 P r e l i m i n a r y  s t e p s :  1.2.1.

The geometry of the problem is formed by different subsets of discrete particles; normally a 

determined volume is discretized by hundreds, thousands, millions of discrete elements filling 

the space. This discretization would simulate the distribution of the physical objects that form 

the domain; the geometry in some classical applications represent bulk materials in silos or 

tanks, containers and transport of agro-industry good, chemistry and pharmaceutical 

applications, soil, rock, for landslide, excavation, transport, mining. 

Once the geometry is represented by discrete elements the characterization of the parameters 

takes part. Many relations have been established to set the values on the model and all of 

them require the information from the geometry and the macroscopic properties of the 

material such as the Young modulus and the Poisson ratio.  

 

The time step is here selected and it has to take in account several aspects: 

 Time of the simulation: for long simulations, longer time steps are needed. 

 For accurate detailed solutions with little indentations, a very small time step is 

required. 

 The range of time steps available is limited by the chosen integration scheme. In 

explicit methods, which are the most used ones, the critical time step is a limitation on 

the time step selection.  

The conditions applicable to the system of particles are simply constrains on some degrees of 

freedom for the movement of particles as well as forces applied or velocities imposed to them. 

Figure I. 2 Particles on a conveyor belt  Figure I. 3 Flow of particles in a hopper 
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 C o n t a c t  S e a r c h  1.2.2.

In contrast with the Finite Element Method-based methods, the DEM, has no connectivities 

between the nodes by means of the elements. So the transfer of properties such as forces, and 

in consequence, accelerations, velocities and displacement are possible for the contact criteria 

between the pair of elements involved. The contact is determined, in the most classical way, 

when one body belonging to a discrete element intersects with another body that defines 

another discrete element. The contact search is a very important part of the method in terms 

of computational cost (range 60%-90% of simulation time) and it is possibly the most difficult 

part to treat when dealing with particles that have no spherical/circular shape. 

 

 E v a l u a t i o n  o f  F o r c e s  1.2.3.

This method applies the solid-rigid mechanics in the particle level and, in principle, the discrete 

elements are considered to be rigid, non deformable elements. The constitutive model or 

behaviour of the material is established in the contact areas between particles.  

Rheologically it can be described with a set of springs, dashpots and frictional elements.  The 

characterization of the parameters defining these devices is a fundamental issue. There has 

been a lot of discussion and research trying to determine the correct values for these 

parameters and there is not a unique universal solution. Contrarily, there are good approaches 

that parameterize the contacts for specific cases that can differ from the simulations of 

discrete granular media, interaction between tool and rock in excavation or continuum 

simulating problems. 

 

 

 

 

 

 

 

 

 

There are more complicated schemes than the presented on Figure I. 4 and there are also 

simpler ones that would depend on what kind of problem is being analysed.  

𝐾𝑡 

𝑑𝑡 

𝑑𝑛 

𝜇 

𝐾𝑛 

Figure I. 4 Rheological model for the contact  
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 I n t e g r a t i o n  o f  M o t i o n  E q u a t i o n s  1.2.4.

The only differential equation that needs to be integrated is the second-order time derivative 

of the position due to the basic Newton’s-Law. The translational and rotational motion of rigid 

spherical or cylindrical particles is described by means of Newton-Euler equations of rigid body 

dynamics. For every element: 

   ̈    

   ̇    

Eq. 1 Equations of motion, translation and rotation  

Where   is the displacement of the particle centre in a fixed (inertial) coordinate frame  ,   

the angular velocity,   the element (particle) mass,    the moment of inertia,   the resultant 

force, and   the resultant moment about the central axes. 

 

Vectors   and   are sums of all the forces and moments applied to each element: 

 

  ∑             

  

   

 

  ∑                     

  

   

 

Eq. 2 Expression for the applied Force and Moments  

Where      and      are external applied forces and moments while       are the resultant 

forces from the interaction with the neighbouring spheres and other entities; finally        

and       are the forces and moments resulting from damping in the system.     is the 

vector connecting the centre of the particles of the target element with the contact point.    

is the number of particles being in contact and    are the torques due to rolling or torsion (not 

related with tangential forces).  

 

The presented equation for the rotational motion is only valid for spheres and cylinders (in 2D) 

and is simplified with respect to the general form for an arbitrary rigid body with the rotational 

inertial properties represented by the second order tensor.  
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2. DEM THEORY DISCUSSION 

Many aspects that have been introduced previously in the introduction section are now 

extended. In this section also, some specific features are exposed here as part of the “issues in 

discussion” that are interesting for this work. Furthermore, these issues are relevant of the 

interest of CIMNE researchers during the study of the method and for the implementation in 

D.E.M-Application. 

 

2 . 1 .  C o n t a c t  D e t e c t i o n  

This represents one of the key issues of the algorithm. Depending on the number of objects 

involved and the complexity of the shape, it can represent from 60 % up to 80-90 % of the 

total simulation time. This means basically that the approach must be very efficient and also 

the method must be adequate specifically to the case; it will not be interesting to execute a 

complex algorithm that could cover any shape contact detection if our problem contains only 

spherical particles. 

The contact detection basically consists in determining, for every target object, which other 

objects are in contact with it, and then, judge for the correspondent interaction. Normally, 

objects move freely and the contact is determined when an overlap occurs, and so, then they 

must interact. It is usually desired to have a very low overlapping 0.1% ~1% (this is discussed 

on 2.2.4 Indentation permitted ) to have realistic results, but of course, it depends on the time 

step selection and the dynamism (velocity) of the particle/objects. 

Well, it has already been said that the contact detection is a very expensive part of the 

algorithm, therefore it’s logical to limit the search of neighbours/contacts only when it is 

necessary1. Obviously there is no need to update the contacts at every time step of the 

calculation (if the time step is considerably small, the neighbours will be the same from several 

time step calculations) but, if delaying too much the search, it can happen to suddenly find 

large indentation on a new contacting pair; so the repulsion forces would be too big, therefore 

there would be a huge amount of “created” energy that would lead some problems as It will 

be explained in section 2.2.5 Gain of energy. This can be solved by using the so-called buffer 

zone, explained in this section. 

 

                                                           
1
 DEM-App: in the application we have introduced the possibility to choose the number of time steps 

between the every contact detection search. 
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The different contact detection can be divided in two basic stages: 

 

 Global Contact Search: It consists on locating the list of potential contact objects for 

each given target body. There are two different basic schemes: the Grid/Cell based 

algorithms or the Tree based ones. There are numerous different methods and 

variations for each type: 

 Grid based algorithm: A general rectangular grid 

is defined in the entire domain, a unified 

bounding box or sphere is adopted to represent 

the discrete elements; the potential contacts are 

determined by selecting the surrounding cells 

where each target body is centred on. 

 Tree based algorithm: each element is 

represented by a point. Starting from a centred 

one, it splits the domain in two sub domains 

obtaining points that have larger X coordinate in 

one sub domain and points with smaller values of 

the X in the other sub domain. The method 

proceeds for next points alternating every time 

the splitting dimension and obtaining a tree structure like the one shown 

in the Figure I. 6. Once the tree is constructed, for every particle, the 

nearest neighbours have to be determined following the tree in upwind 

direction. 

 

 Local Resolution Check: The objective is to establish the actual contact configuration. 

Starting from the potential contacts or areas found in the global contact search, now 

the contact is analysed in detail. This is the difficult and expensive part of the contact 

detection; even for simple polygonal shapes the detection criteria is not trivial. The 

complexity is much higher for 3D cases, which are the most frequent ones. 1 

 

                                                           
1 In the DEM-Application the local resolution check is not very expensive since it considers only 
spheres contacts. The team is currently developing basic regular shape contacts; this is 
introduced on 2.1.8 Local contact resolutions 

Figure I. 5 Grid/Cell structure 

Figure I. 6 Tree structure 
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 B u f f e r  Z o n e  2.1.1.

In order to solve the problem of permitting the neighbours 

updating every predefined set of time steps and, also assuring 

that there would not be large indentations, the concept of 

buffer zone has to be introduced. The buffer zone is a safety 

zone around the objects used to check whether there are other 

future neighbours or not. When a simple search is performed 

for contacting elements, the criteria is usually, as already said, 

the indentation (overlap) between the target particle and the 

possible neighbour. Using the concept of the buffer zone, the area around the target element 

will be enlarged and it will be checked if there are any other elements, which are not currently 

in contact with the target now, but are situated inside the buffer zone; therefore it can be 

considered as a potential future neighbour in a very near time step.   

These buffer zones can be used to change the frequency of neighbour search, i.e. if the search 

is defined every 10 calculation time but during one of these time steps a possible future 

neighbour is detected close, the search can be renewed earlier than this predefined 10 time 

steps in order to capture well the moment of contact. 

 

 

 

 

      

 

 

 

 

 

 

There are many criteria to determine the size of the buffer zone. It has to be a function of the 

time step, the number of time steps between each search and the velocity of the particles.  

 

                    

Found on global search 
(intersection with BB.) 

Not neighbour by local check.  

Possible future neighbor. 
(Intersection with Buffer Zone) 

Neighbour found in global search and 
checked by local resolution. 

TARGET ELEMENT 

BOUNDING BOX 

      Δ     BUFFER ZONE 

Figure I. 7 particles with 

Buffer Zone 

 

Figure I. 8 Buffer zone example for neighbouring search 
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As many aspects of the Discrete Element Method, there are almost no parameters that can be 

determined globally and be universal for all cases; contrarily, they depend on the 

characteristics of the problem. For a dynamic discrete system the following expression is 

proposed: 

                     

 

Where:               = Number of time steps between each search.  

            = Calculation time step. 

             = Velocity of the target particle (norm of the velocity). 

          = Max. velocity of the particles in the system (norm of the velocity).  

             = Extension of the bounding box, defining the buffer zone (space units). 

This is a very simple expression that assures that there will never be a neighbour able to pass 

through the buffer zone without being detected. When the neighbour is detected inside the 

bugger size, the time step can be reduced in order to capture the possible contact. 

Nevertheless, this proposed expression is too conservative and there are other more efficient 

expressions.   

 B o u n d i n g  B o x / S p h e r e  r e p r e s e n t a t i o n  2.1.2.

It consists on, as a first approach for the global potential neighbours, inscribing our discrete 

elements into a box/sphere in 2D or 3D. This coarser representation of the particle will 

determine the area where potential neighbours can be found.  

There are many different schemes to represent an arbitrarily shaped object by a simple 

bounding geometry entity (volume). In video games there are a lot more sophisticated ones 

but the OBB hierarchies are used frequently. 

 

 

 

 

 

 

 

This proceeding is used when applying a tree-based or a grid-based search method; the 

algorithm searches contacts between these simplified coarse representations of the particles 

which is much easier because the spheres or boxes substitute the complex geometries.  

Figure I. 9 Most common types of bounding box representations  
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Once the potential neighbour particles are determined by the selected method, a more 

sophisticated criterion is applied for the neighbouring detection of the actual geometry of the 

elements that were detected to be possibly in contact.  

The buffer zone is applied to enlarge the size of the bounding box or sphere around the 

elements.  

 

 

  

  

 

 

 

 

 

 

 

  

 

 

 

 

More detailed information of these issues can be found on a paper from Walizer, L.E. and J.F. 

Peters. [5]. 

 B r u t e  F o r c e  S e a r c h  M e t h o d  2.1.3.

The first method we are going to analyse is the simplest one, the brute search. It will be a 

reference to compare the reduction of computational cost versus the complexity of the other 

methods. The name is due to its simple and rudimentary approach. To find which ones are the 

contacting elements to a given target, the method calculates the minimum distance between 

each pair, and judges whether there is contact or not.  

For every element, the method does a loop for all other elements checking for the contact. 

Regardless of the complexity of the judgement, the order of the number of operations needed 

is quadratic:  (N2). 

Figure I. 10 Bounding Box/Sphere and buffer zone 
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 S t a t i c  C e l l  S e a r c h  ( g r i d - b a s e d  m e t h o d )  2.1.4.

The domain is discretized with rectangular cells (2D) or 

hexahedral (3D) of the same size. The elements are associated 

to the cells depending on the coordinates. The efficiency of 

the method depends on the balance between the size of the 

cells and the number of elements in each cell. This 

homogeneous the distribution of elements is, the more 

efficient the method is. There are some variants existing to 

this method with adaptive meshes for the case of non uniform 

element distribution.  

 

The summarized steps of the method are:  

 Mapping stage: 

 Find the maximum space occupied by the objects. 

 Determine the maximum size of the objects. 

 Divide the space into cells of the maximum size. 

 Map each object to a cell based on the position of its lower, upper corner 

or central point. 

 Search stage: 

 1. Check the overlap between the objects within each cell. 

 2. Check overlap of the objects in the cell with those in the neighbouring 

cells (8 in 2D). 

 Using the contact symmetry, the number of neighbouring cells to be 

checked can be halved. 

 Features (pros and cons): 

 It is a very simple method. 

 Effective for small, compact problems. 

 The computer costs are usually of the order   (N·log(N)). 

 Very expensive for large simulations where the spatial distribution of 

objects is sparse and irregular (i.e. large number of empty cells). 

 The cell size must be no smaller than the maximum size of objects.  

Figure I. 11 Static Cell construction 

example 
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 D y n a m i c  C e l l  S e a r c h  ( g r i d - b a s e d  m e t h o d ) 1 2.1.5.

This method is also a grid-based method but the 

approach is quite more sophisticated. The 2D 

domain case is explained next, it can be extended to 

3 dimensions easily. 

First of all the domain is divided in rows (or columns) 

and for each row several cells are created. Each cell 

is assigned the elements where its boundary box 

bottom-left corner is situated on.  

The proceeding starts now from the first bottom row, 

going cell after cell checking the contacts between 

the elements assigned to each cell.  

 

After a cell is completed, there is a check of element migration corresponding to the cells. The 

same way after a whole row is completed there is the correspondent check for elements that 

migrate to the next row.  

 

 Types of migration checks: 

 Row migration: Elements are migrated to the next row if their upper y-

coordinate is greater than the lower y-coordinate of the next row. This is 

done only if the next row is non-empty.  

 Cell migration: Elements are migrated to the next cell if their upper x-

coordinate is greater than the lower x-coordinate of the next cell. This is 

done only if the next cell is non-empty.  

 

 

 

                                                           
1 This is the method that currently we use in DEM-Application. It is implemented for the 

disc/spheres neighboring search. We have developed some extra features like the radius 

extension and the tolerance in the search that is explained in PART II section 8.5.7 Neighbour 

Search utility and Extended Radius Search. 

Figure I. 12 Dynamic Cell Search overview 
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 Types of elements in each cell: for a generic cell during the calculation, the situation is 

presented in the following figure, where 4 types of elements can be differentiated. 

 Type 0-0: Element 6; it’s an 

element original from this row and 

from this current cell. It will be 

migrated to the next cell and also 

to the next row.  

 Type 0-1: Element 8; this element 

is original from this row but is migrated from the previous cell.  

 Type 1-0: Element number 2; an element migrated from the previous row 

but new for the cells of this row.  

 Type 1-1: element number 1; it’s an element migrated from the previous 

row and also from previous cell. 

 

 Local Checks: the necessary checks for contact proceeding cell by cell are: 

 Determine contacts between the elements among the type 00. 

 Determine contacts of the elements of type 00 against type 01. 

 Elements type 00 against type 11. 

 Elements type 01 against type 10. 

 

 Main features of the method are: 

 Dynamic processing of the cells 

 Linear complexity. CPU cost can be optimized to  (N).  

 Very effective for large simulations.  

 Not sensitive to the spatial distribution of objects. 

 No performance degradation for objects with wide range of size 

distribution. 

 Arbitrarily choice of cell size.  

 Readily extendable to any dimension. 

 

 

 

Figure I. 13 Dynamic Cell Search example  



 

16 
 

Continuum modeling using the Discrete Element Method. 

Theory and implementation in an object-oriented software platform. 

 

 

Part I: Discrete Element Method 

  

The 4th and 5th listed features of the dynamic method represent a poweful advantage for the 

usage of this method against the static one. However, the choice of the cell size is crucial to 

obtain an optimal CPU cost. 

 

 

 

 

 

 

 

 

 

 

 

Again there is no unique selection of the parameters; the optimal cell size depends on several 

factors, such as object size distribution, packing density, and some other computer and 

hardware issues. 

Further information on this method can be found on the following reference: Perkins, E. and 

J.R. Williams [6]. 

 

 N o  b i n a r y  S e a r c h  M e t h o d  2.1.6.

The NBS (no binary search) algorithm was 

proposed by Munjiza in 1998 [7] and it is 

mostly convenient for problems involving large 

quantity of bodies with large movements. In 

optimal conditions, the total detection time is 

proportional can to the number of particles, 

 (N). This result is more or less independent 

from the packing density which affects 

insignificantly on the memory requirements. 

The only limitation of the algorithm is its 

applicability to systems comprising bodies of 

similar size. 

 

CELL MAINTENANCE 

TOTAL 

CONTACT CHECK 

CPU COST 

CELL SIZE 
OPTIMAL 

Figure I. 14 CPU cost vs. Cell size on D-Grid methods 

Figure I. 15 Domain and particles representation in NBS  



 

17 
 

Part II - 17 
Miquel Santasusana Isach 

Enginyeria de Camins, Canals i Ports 

 

The method starts determining the whole domain and dividing it in regular cells. First of all, 

every particle will be represented by an evolving sphere or disc which would be the larger 

contained in the space. The diameter of this representative volume will be the one that de cell 

size determines; the domain is divided in cells of the same maximum diameter size. 

Each particle is mapped to a cell and identified with and integer index for x and y. Then, for 

every row the linked lists containing all the indexed particles on each row are created. The 

correspondent loops are effectuated to determine optimally the neighbouring and are 

explained in the reference [7]. Basically the method proceeds row by row from bottom to top 

and for every particle labelled ( ix, iy ) the particles in the following cells have to be checked: 

( ix,iy ), ( ix-1, iy ), ( ix-1, iy-1 ), ( ix, iy-1 ), (ix +1, iy-1) and ( ix+1, iy ).   

 

 T r e e - b a s e d  a l g o r i t h m s  2.1.7.

These are alternative method to the cell-based algorithms. These methods have an average 

performance of  (N·logN) for the CPU time. The difference, in terms of efficiency, from the cell 

methods is the strong dependency on the construction of the tree and de order of insertion of 

the particles to the tree. 

 

K-D-Tree: It consists on inserting one after another the coordinates of the particles into an 

algorithm which divides the space alternatively in X, Y, Z, etc. It is extendible to any dimension. 

Every new particle that is inserted is compared in the first stage against the first dimension and 

it goes to the left if the value is smaller or to the right if its larger, then in the next stage the 2nd 

dimension is compared and the proceeding is the same; this is being done shifting at each level 

one dimension and inserting the new particles in new levels that can contain a maximum of 

two particles.  

 

 

 

 

 

 

 

 

 
Figure I. 16 K-2 Tree construction 
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Once the tree is constructed, it is easy to identify which particles are potential neighbours to 

others. This method is especially sensitive to the particle insertion order, and so the 

performance is very dependent on it.  

 

Quad-Tree: Working in 2D, the domain is divided in 

rectangular cells with a maximum number of particles 

of four. If any resulting cell has more than four 

particles it is divided again in four cells more. While 

doing this the domain discretization can be 

represented in a tree scheme with four branches. This 

structure allows indentifying easily the objects 

belonging to the different sub domains tracking 

downwards onto the. The cost of this search is of the 

order of  (N·log4 N). 

 

Oct-Tree: The extension of this concept to three 

dimensions in space it brings an eight element 

structure. Now, the domain will be divided in cells 

which will contain a maximum of eight elements. If 

there is any cell with more than eight elements it will 

be subdivided in eight inner cells. The search for 

elements belonging to any sub domain is performed 

by checking the tree from top to bottom following 

the branches like the previous cases, this time the 

cost of the search is about  (N·log8 N).  A 

recommended reference for the oct-tree implementation is Raschdorf [8]. 

 

The construction of a new tree structure for each time step would be so expensive. For fine 

time steps, most of the contacts will be more or less the same than the previous stage. The 

information of the previous contacting pairs can be very useful to improve the current search. 

These methods, like the cell-based ones, are used as a first global search stage to determine 

the potential neighbours and they would need a local resolution check after it.  

 

     Figure I. 17 Quad-Tree structure  

Figure I. 18 Oct-Tree structure 
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 L o c a l  c o n t a c t  r e s o l u t i o n s  2.1.8.

Given that two discrete objects are potentially in contact, local contact resolution establishes if 

they are indeed in contact based on their actual geometric shapes. 

It is not the objective of this work to enter much in detail for these methods, which can be 

much more complicated than the global search, especially for irregular shapes. This problem is 

well-known because it has been studied in many disciplines apart from D.E.M., including video-

game programming. Interesting information can be found on [9-10]  

 

 

 

 

 

 

 

If the pair is in contact, the normal and tangential contact directions, the contact point and the 

characteristics of the overlap, such as the penetration, contact width and contact area, may 

also need to be determined at this stage, depending on the interaction laws to be used. This 

will be discussed in next section 2.2 Constitutive Modelling of the Contact 

 

 Contact Directions 

 Contact Point/Centre 

 Overlap, Curvature, 

 Width, Area, etc 

 

 

This is the most time consuming part in contact detection. Every effort should be made to 

make it computationally as efficient as possible. 

 

 

 

Figure I. 19 Local contact resolution after global search  

Figure I. 20 Contact directions and area 
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The complexity of the detection depends only on the shape of the bodies that are analysed. 

The basic one is the contact between spheres, which is the easiest, but it can be interesting to 

use ellipsoids instead or, in a higher level of complexity, polyhedral or even irregular complex 

shapes can be used. 

 

Spheres/discs 

 

The local resolution check is obviously trivial for spheres 

where; for every possible pair (detected via global search), 

the only comparison needed is the distance between their 

centre coordinates against the sum of the radius. 

Remember that the particles are supposed to be in contact 

when an indentation positive or equal to zero is presented.  

In this case everything is well defined; not only the check is 

easy but also the normal direction of the contact is simply 

defined by joining the centres, and therefore the 

tangential plane is defined; the contact point also well 

defined the overlap is direct and the contacting are is geometrically easy to determine. 

 

Ellipses/Ellipsoids/superquadrics 

 

The general determination would involve solving a two 

nonlinear (quadratic) system of equations. It normally 

requires the use of an iterative procedure, such as the 

Newton-Raphson method which is computationally too 

expensive to apply in our case. Fortunately, there are 

some other well defined approximate methods to 

simplify the contact detection between two ellipses. 

In general these methods are applicable to other analytically represented non-circular objects.  

 

Unfortunately these methods are not extendible to ellipsoid 3D shapes. 

 

Figure I. 21 Local contact example  

between discs 

 

Figure I. 22 Contact between two ellipses 
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It is not the object of this work to enter much in detail about these methods but it is essential 

to give an insight of how difficult can be entering on these aspects, and moreover, making it 

efficiently.  

 

In the next figure, just as example, it is presented the ambiguity of determining the centre and 

the normal direction for the contact between to convex shapes. For a detailed description of 

the methods refer to Feng, Y. lecture notes [11] 

 

 

 

 

 

 

In a similar sense there are methods developed for ellipsoids and superquadric objects which 

may interest the reader; to learn about that see Owen, [12].  

 

 

 

 

 

 

 

 

Polygon/Polyhedron 

 

These cases are very complicated compared to the sphere contact. The basic questions that 

have to be solved now are: 

 1. Are the bodies in contact? 

 2. How to define the characteristic parameters?  

 What is the appropriate definition of the overlap? 

 How to determine the normal contact direction? 

 3. What interaction laws should be associated with? 

 

Figure I. 23 Overview of the method for the ellipses 

Figure I. 24 Superquadric 3D shapes 

 

Figure I. 25 Polygon/Polyhedra contact 
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Local check 

 

There are algorithms than can determine the overlap region between two polygons or 

between polyhedron, with a linear complexity    (N) (where N is the number of 

vertices/edges).  

These types of contacts are also a common operation in computer games/graphics. Significant 

research has been conducted and highly efficient public codes are available, e.g. V-Clip, I-

COLLIDE, in which the temporal coherence (see page 26) plays a key part.  

 

Characterization of the parameters 

 

In 2D there are only three types of contacts: plane to plane (which has no problem with the 

definition), plane to corner and corner to corner. In 3D this gets quite more involved. 

 

 

 

 

 

 

 

 

 

In corner to corner contact, it is also not clear how to properly define the overlap (penetration). 

The same problem also arises in FEM. 

Some methods have been developed to characterize the correct normal directions and the 

overlap. 

 

 Rounding the corners: By rounding the corners with circular arcs, the difficulties 

associated with the corner/corner contact may be (partially) overcome. However, 

different circular radius can lead to different results. No method is available to guide 

the selection of a proper radius. Thus, this treatment is also an artificial numerical 

procedure. 

 

Figure I. 26 Corner to plane and corner to corner contact in polygons  
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 Contact energy based algorithm: A functional of energy is defined in terms of the 

overlap area between the two bodies, the normal direction is the variation of the area 

with respect to the position and the resulting force is proportional to the derivative of 

the energy with respect to the position. Depending on how the energy is defined in 

terms of the area we have different models for quantifying the force. See reference 

Feng, lecture notes [11].These methods have been generalized to 3D polyhedra by the 

same author.  

 

Methods for irregular shapes 

 

The objective of many studies has been to determine a global algorithm for the contact 

detection between any shapes; in this section some of the advanced techniques that 

nowadays are being under research are commented. Particularly a couple of methods that are 

being studied by a collaborator in KRATOS DEM-Application1.  The two methods that the 

KRATOS team are currently working on for future features of the program are the Discretized 

finite elements contact and the Semi-Spring/Semi-Edge method  

 

The so-called discretized finite element contact method simply consists on a simple approach 

that would make the contact detection much easier when dealing with the DEM elements – 

FEM elements contacting problem (see section 4. DEM-FEM). The method is an idea proposed 

by C. Feng and M. Santasusana to solve the contact detection and characterization with a 

coupled DEM-FEM problem; the basic idea of the method relies on using the discretized mesh 

instead of the geometry to define the entities which are susceptible to the contact detection. 

The idea is that if the entire continuum where the elements apply is discretized with 

triangles/tetrahedra or quadrilaterals/hexahedra, these complex discrete bodies/particles 

could also be discretized with the same type of mesh (except the discs/spheres, which don’t 

need to be discretized).  

By doing so, the possible contacts would always be triangle against triangle or quadrilateral 

against quadrilateral, even in 3D. This is because, when analysing the local contact, only the 

surfaces of the neighbouring bodies have to be taken into account. 

 

                                                           
1
 PhD candidate C. Feng, which is a researcher on IMECH, CAS (CHINA), who during the spring 2012 has 

been a collaborator in KRATOS DEM-Application 
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As a first stage, a method that evaluates contacts only between triangles could be coded and 

then, for the tetrahedra discretization in 3D or triangular meshes in 2D, all the contacts could 

be checked easily. A next step would be doing the same with quadrilateral, also including the 

easy detection against spheres and finally mixing up these commonly used geometries in most 

of the FEM and DEM simulations respectively. 

 

For instance, the contact between hexahedra should involve the different six possible 

situations:  

 Face against Face:  

 Edge against Face: 

 Vertex against Face: 

 Edge against Edge: 

 Edge against Vertex:  

 Vertex against Vertex: 

 

 

 

The above mentioned Semi-Spring/Semi-Edge method is a work original from Feng Chun who 

defines an inner contact control points to simplify the contact detection to only 2 possibilities: 

contact between semi-springs and contact between semi edges. 

 

 

 

 

 

 

 

 

 

Some other conventional methods related with penetrating edges can be found here for 

tridimensional blocks, Yung-ming, C et altri [13]. 

 

Edge to edge Edge to face

Face to face

Without face vertex in face

Vertex to vertex Vertex to edge Vertex to face

Face to face

Face vertex in face

Edge to edge Edge to face

Face to face

Without face vertex in face

Semi-spring

Target face
Semi-spring

Interpolation Node

Target face

Case (a) Case (b)

Figure I. 27 Types of contact between hexahedra 

 

Figure I. 28 Semi-spring/Semi-edge method overview.  
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Clusters of spheres 

Another technique that has been used recurrently is the representation of complex shapes1 by 

the assemblage of large number of spheres. This method is permits easy implementation 

because the contacting zones can be considered independent spheres, whose the contact laws 

of those are well-known.  

 

Figure I. 29 Clusters of particles 

This is an alternative not only for irregular shapes but also for simple ellipsoids and polyhedra 

which, with a large number of little spheres surrounding their boundary, can be accurately well 

defined.  

 

 

 

 

 

 

 

 

 

 

For pharmaceutical application it may be of interest this reference that treats about the tablet 

shape contact, from Song, Y et altri [14] 

 

 

Figure I. 31 Tablet shape particles 

 

                                                           
1

 The UCLV CIMNE classroom (CUBA) is currently working on this type of irregular particle 
representations for bio-medical applications. See section 6.2 Current development and collaboration on 
Part II of this work. 

Figure I. 30 Cluster generated in GiD by ULCV CIMNE 
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Temporal coherence 

 

Figure I. 32 Contact between convex surfaces at different time steps 

 

Due to the use of explicit time integrations for dynamic analysis (see section 1.2.4 Integration 

of Motion Equations) where the time steps are generally very small (~10-6 sec.) the difference 

between the two contact configurations at two consecutive time instants are normally very 

small. Thus, some contact characteristics at the current time step can be used as a very good 

initial guess for the next time step to significantly increase the solution convergence of the 

contact resolution. This is called temporal coherence, and should be exploited wherever 

possible. 
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2 . 2 .  C o n s t i t u t i v e  M o d e l l i n g  o f  t h e  C o n t a c t  

This section will focus basically on the contact between spheres, which is the easiest and the 

most used particle in the D.E.M. The characterization of the parameters that rule the physics 

of the contact are a fundamental issue in this method. Depending on the type of simulation, 

continuum simulating or discrete dynamic systems, the parameters and the models itself have 

to take in account different nuances. 

In essence, the contact can be described rheologically by a set of simple devices like a spring, a 

dashpot and frictional or cohesive devices. However, complicated systems can be obtained 

combining these different devices.  

 

 

 

 

 

 

 

Figure I. 33 Rheological models for the contact between two spheres  

These parameters that rule the forces and stresses within a contact are often called Micro 

parameters of the model and have to be defined by the method: 

 

 The stiffness parameters:                      that relate the forces and moments 

with the displacements and rotations. 

 Strength parameters:                       that are related with the stress limits 

and determine the strength values for the normal compressive, tensile, shear and 

moment stresses. 

 Friction coefficient:   , normally Coulomb’s friction model. 

 Damping coefficients:           for the translational and rotational motion. 

There are two philosophies regarding the characterization of these parameters, a global 

approach for every contact and a locally description that depends on each contact. Next, the 

derivation of the values for these parameters is presented in a local way is presented; also 

extra considerations or simplifications are discussed.  
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 N o r m a l  i n t e r a c t i o n  f o r c e s  2.2.1.

The simplest D.E.M. methods must contain at least one device: the normal spring; with just 

this simple model a dynamic system of frictionless particles interacting can be simulated. 

Therefore, this is the starting point for any D.E.M simulation. Complementing this, the 

dashpots, frictional devices, shear springs, etc. can be introduced to represent more complex 

and realistic contact situations.  

 

In general, the normal interaction force can be described: 

                 Eq. 3 General contact force 

For the classical linear spring (Hook’s law):  

                              Eq. 4 Hook’s law 

 

From the Hertzian theory, for compressive contact 

between two spheres: 

         
 

      Eq. 5 Hertzian general contact 

         
 

 
  ̂  √  ,    ̂  

 

         Eq. 6 Parameters for two spheres contact  (Hertz)  

     ̂  (
 

 ̂ 
 

 

 ̂ 
)
  

       (
 

  
 

 

  
)
  

  Eq. 7 Parameters for different radius and materials (Hertz)  

 

Here, the generic case for the Hertzian contact between two spheres is presented. Note that 

the case with one sphere and a plane is also contemplated, i.e.      →   .  

 

There are many other expressions similar to this one to evaluate the behaviour in normal 

direction depending on the desired case. When dealing with continuum simulations some 

other expression can be used1. See section 3.3 The effective contacting volume method  for 

more details. 

 

 

                                                           
1
 In DEM-App. we can change easily from one law to other and we can apply an incremental method or 

absolute method. When dealing with continuum simulations we use the expression deduced in the 
section 3.3 The effective contacting volume method. 

Figure I. 34 Contact between two spheres.  
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 A b s o l u t e  p o s i t i o n  m e t h o d  a n d  i n c r e m e n t a l  m e t h o d  2.2.2.

There are two ways of calculating the contact force that each time one body applies to the 

other due their indentation: the absolute method or the incremental method.  

The first case is easier to implement; basically once the force-displacement relation is defined, 

for both tension and compression cases (may differ from each other), the force can be 

obtained in any time just by knowing the contact distance in such time. This method simply 

requires an evaluation of the force for a given indentation for each time, independently of the 

type of function and the dependency with the indentation. 

In the incremental case, the position of every particle at every time is not needed for the 

calculation. The new normal force is obtained just adding up to the previous force, the current 

force contribution due to the current incremental displacement at every time step.  

For the classical linear spring:  

                             Eq. 8 Algorithm for linear expression 

 

It is easy to see that it will only work if the relation between the force and the displacement is 

linear. Nonetheless, for non-linear expressions, a linearization of the function can be done in 

terms of a Taylor expansion: 

                     
   

  
        

   
 

  
         

   
 

  
      Eq. 9 Taylor expansion 

 

However, this would complicate things if the derivatives of the function have to be calculated; 

although numerics can be applied again, it is explained on next section that this operations are 

usually not worth it. 

 

In contrast with the normal contacts, where the absolute method it’s easier and completely 

accurate, the shear forces (if they are condisderated) have to be treated obligatory with an 

incremental method. See section 2.2.7 Tangential interaction forces. 
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 R e l a t i v e  i m p o r t a n c e  o f  t h e  a c c u r a c y  o n  t h e  s t i f f n e s s  v a l u e  2.2.3.

For anyone who has never coded or dealt with the D.E.M, or simply contact or impact 

problems, it might sound strange to state that the value for the normal stiffness needn’t to be 

accurate. In fact, good results can be obtained with very different values than the theoretical 

ones.  

Remembering that the normal contact is rheologically represented by a spring, when an 

impact/contact occurs, it converts the kinematic energy to potential elastic energy and it does 

the same operation back again. Therefore, regardless of the stiffness value for the spring, the 

energy would be perfectly conserved.  

The only difference of choosing large or small stiffness value is on the deformation observed 

when a ball gets inside the other (non realistic) and the contact time; rigid springs produce fast 

impacts instead of soft springs which lead to large indentations and so, larger contacting times.  

In the figure this is represented by a ball that falls from an initial height, contacts with the fixed 

one compressing the spring and it is repulsed back again by the elastic force, recovering the 

initial height. 

 

Figure I. 35 Impact between two spheres/discs.  

The selection for a normal stiffness value has some other important implications that would be 

determinant when choosing the correct value: the gaining of numerical energy, the damping, 

the time step selection, the indentation permitted, etc. Some of these topics are discussed 

next. 
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 I n d e n t a t i o n  p e r m i t t e d   2.2.4.

Usually when simulating contacts/impacts between discrete media, the spheres represent 

granular material or steel or concrete, which usually are highly non-deformable materials. A 

large stiffness value should be introduced in order not to observe  large unreal indentations 

between the spheres, sometimes it can be even bigger than the theoretical one. In realistic 

simulations, for the indentation between two rigid bodies, the indentation should be in the 

range of 0.1% to 1%, which implies large stiffness values. This would incur in some “gain of 

energy” in the system if no further considerations are taken into account.  

 

 G a i n  o f  e n e r g y   2.2.5.

The integration methods are discussed on section 2.3 Integration of the motion laws but it 

shall be advanced here that the most used methods are the explicit schemes for memory 

storage reasons. The problem of these schemes is that they “gain” energy during a contact. 

The reason is because a penalty method is chosen to impose the constrains of impenetrability 

of the particle. Many explicit methods that can be used like the Fordward-Euler have 

themselves the problem of energy gaining even in the simple system of a mass suspended on a 

spring while others can assure no gaining energy for this academic case. However, when we 

apply the penalty method the problem is different and all of these classical methods would win 

some energy (that can be more or less negligible).  

 

In a simple forward method example we can show the reasons of this effect: First of all, in 

general, it is not feasible to capture the exact moment when spheres get in superficial contact. 

The particles move until some indentation is found by the neighbour search; at that moment, 

the correspondent spring force is applied with some delay and we do the same for the next 

steps in a discrete way. So, as it can be seen in the next figure, we are not applying all the 

correct force and so the kinematic energy is not well dissipated and the particle is able to 

penetrate more than it should.   
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When returning back the delay is also present ant the over rated values of elastic force will act 

including the last step where the particle will be already outside the contacting entity. 

 

Another effect related with this happens for large (realistic) values of the stiffness. Happens 

when the selected time step is not sufficiently small .the first time a sphere “enters” inside the 

other, the first free indentation produces an enormous repulsion force that would have never 

happened in the analytical case where the sphere couldn’t indent so much because the force 

would have been acting for smaller values of indentation.  

 

For real stiffness in steel or concrete time steps of  (10-6) are needed to avoid this 

phenomenon, which is sometimes non practical because it makes the simulations too 

expensive and time consuming. The common way is to use smaller stiffness values letting the 

particles have a little indentation in order to be able to use larger time steps without gaining so 

much energy. 

 

 

 

 

Figure I. 36 Comparison between numerical and analytical force determination  
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 N u m e r i c a l  d a m p i n g  a n d  p h y s i c a l  d a m p i n g   2.2.6.

The needing of a “non physical” damping in the DEM is due 

to the numerical error accumulated in the explicit scheme as 

it has been presented before. An extra damping can be 

devises to kill this effect in a calibrated way; the 

determination of the amount of damping needed for 

balancing a determined choice of delta time and stiffness 

parameters is an issue interesting to discuss. 

 

Rheologically, the damping on the contacts, is represented by 

a system formed by a spring and a dashpot like the Figure I. 

37 Rheological representation of the contact. The 

characterization of the value for the representative dashpot can be achieved by several ways; 

basically the most used physical damping types are very frequently used in DEM simulations, 

the viscous damping and the so-called background damping1. The first one is more adequate 

for the dynamic simulations with impacts at a considerable speed while the second one is 

especially devised for the quasi-static problems, namely the compression tests in continuum 

simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 In the DEM-Application both viscous damping and background damping have been implemented.  

𝑑𝑛 𝐾𝑛 

Figure I. 37 Rheological 

representation of the contact.  
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Viscous damping 

 

The contact damping force is calculated contact by contact assuming that it is viscous type and 

given by 

                Eq.  10 Visco damping force 

 

Where the relative velocity of the centres of the two particles is defined by: 

 

     ( ̇        ̇ )          where   is the displacement     

Eq.  11 Relative velocity between two particles  

 

The damping coefficient    can be defined as a fraction   of the critical damping     for the 

system of two rigid bodies with masses    and     connected with a spring of stiffness     

with: 

          √       Eq.  12 Visco damping force 

 

with 0 ≤ α ≤ 1, and where     is the reduced mass of the contact: 

 

     
    

     
   Eq.  13 Reduced mass at a contact  

 

The fraction α it is related with the coefficient of restitution   , which is fractional value 

representing the ratio of speeds after and before of an impact, through 

    
     

√         
    Eq.  14 Expression for the fraction of the critical damping  

 

In the present work, when dealing with continuum simulations, the recommended value for 

the critical damping is α = 0.9, assuming a quasi-static state for the simulated processes. 
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Background damping 

 

The contact damping previously described is a function of the relative velocity of the 

contacting bodies. It is sometimes necessary to apply damping for non-contacting particles to 

dissipate their energy. However this dissipation will also be effective during a contact, which is 

interesting for the continuous simulations in order to kill all the dynamic effects. Two types of 

damping have been considered here, the viscous damping and the non-viscous damping 

referred here as background damping. In both cases damping terms   
    

 and   
    

 are 

added to the traditional equations of motion: 

   ̈    

   ̇    

 

For the non-viscous damping, the damping force is proportional to the magnitude to the 

resultant force and resultant moment in the direction of the velocity. 

  
    

            
 ̇ 

   ̇   
 

  
    

            
  

      
 

Eq.  15 Background dampings as a proportion of the magnitude  

 

Where   ,    are damping constants, and      ,     are defined as 

  
  ∑      

   

  

   

 

  
  ∑   

    
      

  

  

   

    
    

Eq.  16 Expression for the applied Force and Moments on a contact  

 

As it will be commented on PART II, both damping types are implemented in DEM-Application 

in a way that the user can activate or disable each one separately. 
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 T a n g e n t i a l  i n t e r a c t i o n  f o r c e s   2.2.7.

In this section the frictional model for original discrete elements (detached contacts) is 

explained. The tangential behaviour when the contact is cohesive (continuum simulating) can 

be found on section 3 CONTINUUM MODELLING WITH DEM. 

 

In the absence of cohesion (if the particles were not bonded at all or the initial cohesive bond 

has been broken) the tangential reaction    appears by friction opposing the relative motion at 

the contact point. The relative tangential velocity at the contact point     is calculated from 

the following relationship: 

 

               

With 

   ( ̇        )    ̇          

 

Eq.  17 Relative velocity of two particles in the tangential direction  

 

Where  ̇  ,  ̇  and     ,    are the translational and rotational velocities of the particles and     

and     are the vectors connecting particle centres with contact points. 

 

 

 

Figure I. 38 Classical Coulomb Law and Regularized Coulomb Law.  

 

 

𝜇 𝑓𝑛  

𝑓𝑡 

𝜇 𝑓𝑛  

𝑓𝑡 

𝑢𝑟𝑡 𝑢𝑟𝑡 
𝑘𝑡 

 𝑎  𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑙𝑎𝑤   𝑏  𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑙𝑎𝑤  
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The relationship between the friction force    and the relative tangential displacement     for 

the classical Coulomb model (for a constant normal force   ) is shown in Figure I. 38 (a). This 

relationship would produce non physical oscillations of the friction force in the numerical 

solution due to possible changes of the direction of sliding velocity. To prevent this, the 

Coulomb friction model must be regularized. The regularization procedure chosen involves 

decomposition of the tangential relative velocity into reversible and irreversible parts   
   and 

   
   , respectively as: 

       
       

    

Eq.  18 Tangential velocity decomposition 

 

This is equivalent to formulating the frictional contact as a problem analogous to that of 

elastoplasticity, which can be seen clearly from the friction force-tangential displacement in 

the relationship in Figure I. 38 (b). This analogy allows us to calculate the friction force 

employing the standard radial return algorithm. First a trial state is calculated. 

 

  
        

             

Eq.  19 Trial force expression for the tangential case  

 

And then the slip condition is checked 

 

            
                Eq.  20 Slip condition checking  

 

If           , a stick contact occurs and the friction force is assigned the trial value 

  
     

      

Otherwise (slip contact) a return mapping is performed giving 

  
        

  
     

     
       

   Eq.  21 Classical return mapping for the tangential force  
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 F i n a l  r e m a r k  o n  t h e  c o n s t i t u t i v e  m o d e l l i n g  o f  t h e  c o n t a c t .   2.2.8.

As a conclusion of this sub section it is important to remark the key factors that have to be 

taken into account when (also in users’ stage) simulating either a purely discrete DEM or a 

continuum simulating problem. There exist one remarkable triad of parameters that have to 

be combined in an equilibrated form to end with a convention for the solution: Normal Spring 

Stiffness – Delta Time – Indentation Permitted/Energy gained. The problem is obviously more 

critical when dealing with dynamic simulations. 

  

 

It would be desired to choose the correct stiffness derived theoretically from the contact 

mechanics and also a suitable time step coarse enough to have fast calculations. After the 

calculation a realistic solution with neither energy gaining nor large unrealistic indentations it 

would be also expected. Unfortunately this is not always achieved and a convection should be 

done assuming either some unreal indentation and avoiding energy gaining or, the other way 

round, performing an extremely accurate simulation with very little time steps and 

consequently long simulation times. 

 

A further analysis should be realised to calibrate the correct choice of these parameters and 

analyse the dependence and the sensitivity of these parameters with respect to the energy 

gaining. Introducing some numerical damping is often the solution that permits to use the 

desired realistic parameters and kill the energy gaining effect. 

 

 

 

 

 

 

Stiffness 

Indentation 

Energy 
DeltaTime 

𝐾 ↑     ⟹   𝑖𝑛𝑑𝑒𝑛𝑡 ↓ 𝐸 ↑    𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  

 𝑇 ↑     ⟹   𝑖𝑛𝑑𝑒𝑛𝑡 ~ ↑↑ 𝐸 ↑↑    𝑛𝑜𝑛 𝑙𝑖𝑛𝑒𝑎𝑟  
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2 . 3 .  I n t e g r a t i o n  o f  t h e  m o t i on  l a w s   

 

 E x p l i c i t  i n t e g r a t i o n  s c h e m e s .   2.3.1.

In the context of large simulation problems, the implicit schemes are not suitable because of 

massive memory requirements. The discontinuous-based simulation methods like DEM use 

explicit integration scheme. For this purpose a whole range of explicit schemes has been 

developed, namely the Central Difference Scheme, Leap Frog Scheme, Newmark-Beta Method 

or Runge-Kutta. Between these schemes, we can found second order, third order or even 

fourth order. Higher order schemes are possible, but involve repeated force evaluations. Since 

intensive CPU-time is required, higher-order schemes may not be as efficient in terms of 

computational cost, in comparison with lower-order schemes. In the literature, there are a lot 

of reports about comparisons between the different schemes where the stability, accuracy and 

computational cost are analysed. Some details of the comparisons can be found in [15]. 

 

As an illustrative case, the Central Difference Scheme is used for the integration on the 

equations of motion. It is a second-order time integration scheme originally developed in the 

context of structural dynamics while in some applications it is also referred to as the Velocity 

Verlet algorithm. This scheme presents a good ratio between accuracy and computational cost. 

Time integration operator for the translational motion at the      time step is as follow: 

 

 ̈ 
   

  
 

  
 

 ̇ 
     

   ̇ 
     

   ̈ 
    

  
       

   ̇ 
     

   

 

Eq.  22 Central Difference Integration Scheme  
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The first two steps in the integration scheme for rotational motion are identical to those given 

by the previous equations: 

 ̇  
  

 

  
 

  
     

    
     

   ̇ 
     

Eq.  23 Iterative algorithm for the rotational velocity  

 

For rotational plane (2D) motion the rotation angle    can be obtained similarly as the 

displacement vector   : 

  
       

     
     

   

Eq.  24 Calculation of the step rotation  

 

In three-dimensional motion, rotational position cannot be defined by just one vector. The 

rotational velocity   cannot be integrated. The vector of incremental rotation is obtained as 

      
     

   

 

It must be remarked that knowledge of the rotational configuration is not always necessary. If 

tangential forces are calculated incrementally, then knowledge of the vector of incremental 

rotation    is sufficient. This saves considerable computational cost of the time integration 

scheme. 

 

 N u m e r i c a l  s t a b i l i t y  o f  t h e  m e t h o d  a n d  c r i t i c a l  t i m e  s t e p  2.3.2.

Explicit integration in time yields high computational efficiency and it enables the solution of 

large models. The known disadvantage of the explicit integration scheme is its conditional 

numerical stability imposing the limitation on the time step Δt, i.e. 

        

Where     is a critical time step determined by the highest natural frequency of the system 

    . 

     
 

    
 

If damping exists, the critical time increment is given by 

    
 

    
(√       )   Eq.  25 Critical time increment (with damping) 
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Where   is the fraction of the critical damping corresponding to the highest frequency     . 

Exact calculation of the highest frequency      would require solution of the eigenvalue 

problem defined for the whole system of connected rigid particles. 

In the algorithm implemented an approximate solution procedure is employed. An eigenvalue 

problem can be defined separately for every rigid particle. The maximum frequency is 

estimated as the maximum of natural frequencies of mass-spring systems defined for all the 

particles with one translational and one rotational degree of freedom 

           

 

And the natural frequency for each mass-spring system (contact) is defined as 

    √
 

  
  Eq.  26 Natural frequency for the classical mass-spring system 

 

With   the spring stiffness and mi the mass of particle i. Now it is possible to rewrite the critical 

time step as 

         √
  

 
 

 

The effective time step is considered as a fraction of the critical time step 

        

 

With 

        

 

The value of   has been studied by different authors. A good review can be found in [16] 

where the author recommend values close to        for 3D simulation, and        in the 

2D case.  
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3. CONTINUUM MODELLING WITH DEM 

The Discrete Element Method has been presented in this work and in many books and papers 

as a good numerical method to simulate the discontinuous media as a system of independent 

particles in dynamic motion. However, when dealing with the continuum, nowadays, results 

are not completely satisfactory even though a lot of research has been done. There have been, 

indeed, a vast number of different approaches for this question: How shall the contact models 

be characterized (micro scale parameters) in order to get the macro scale continuum 

behaviour? 

 

The challenge in all DEM models is finding an objective and accurate relationship between the 

DEM parameters and the standard constitutive parameters of a continuum mechanics model 

(hereafter called “continuum macro parameters”), namely the Young modulus E, the Poisson 

ration   and the tension and shear stresses   
 

and   , respectively. 

 

Two different approaches can be followed for determining the DEM constitutive parameters 

namely the global approach and the local approach. In the global approach uniform global 

DEM properties are assumed in the whole discrete element assembly. The values of the global 

DEM parameters can be found using different procedures. Some authors have used numerical 

experiments for determining the relationships between DEM and continuum parameters 

expressed in dimensionless form [17]. This method has been used by the authors in previous 

works and is described in the next sections. Other procedures for defining the global DEM 

parameters are based on the definition of average particle size measures for the whole 

discrete particle assembly and then relating the global DEM and continuum parameters via 

laboratory tests. 

 

A second approach, followed in this work, is to assume that the DEM parameters depend on 

the local properties of the interaction particles, namely their radii and the continuum 

parameters at each interaction point. Many alternatives for defining the DEM parameters via a 

“local approach” have been reported by different authors  [18]. 
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 This relation should yield a characterization of the media such that the model behaves in 

terms of stress and strains like the continuum media does. Also the D.E.M is expected to be an 

effective and powerful numerical technique for reproducing multifracture and failure of 

geomaterials (soils, rocks, concrete), masonry and ceramic material, among others. There has 

been a lot of research done in this field and some codes presume of obtaining good 

approaches to this problem using the Discrete Element Method. Nevertheless, there is not an 

absolute universal method that assures generality to the continuum modelling problem.  

 

3 . 1 .  G l o b a l  d e r i v a t i o n  o f  D E M  m i c r o  p a r a m e t e r s  u s i n g  

d i m e n s i o n l e s s  r e l a t i o n s h i p s  

Global DEM mechanical parameters can be determined using the methodology developed by 

Huang [19], based on the combination of dimensional analysis with numerical simulation of 

standard laboratory test for rocks, namely the unconfined compression and the Brazilian tests.  

The challenge in global constitutive models is finding the relationship between the continuum 

material parameters: Young modulus E, Poisson’s ratio  , compressive strength    and tensile 

strength    in terms of global DEM parameters:                          
1. DEM material 

properties also depend on other parameters related with the particle assembly 

characterization, such as the average particle radius r, the material density    and the porosity 

of the particle assembly n. All these parameters are strongly related to the assembly 

generation algorithm. The set of global DEM parameters can be completed with geometrical 

parameters represented by the specimen size L (due to possible scale effect) and loading 

velocity   . Thus, the number of relevant parameters N is 12. We have three primary 

dimensions involved: mass, length, time (p=3). Typically it is assumed that there are 9 

independent parameters. 

The global DEM parameters are not unique and can be modified by taking into account some 

other parameters that can influence macroscopic properties. In the minimum and maximum 

element radii,      and     , respectively, were included to the relevant parameters in orden 

to better consider the influence of the element size distribution on macroscopic properties. 

This influence can be taken into account indirectly through the use of the porosity n which 

depends on the size distribution. The wider size distribution the lower porosity in the discrete 

element model can be achieved. 

                                                           
1
 The micro parameters of the model are considered to be the same for all the contacts and are derived 

in a general way from the macro parameters using adimensional relationships. 
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A general definition of the dimensionless DEM parameters includes the following set of nine 

independent parameters:  {
   

  
 
  

  
 
  

  
   

 

 
         

  

√
  
 

}. The set of parameters can be 

reduced by neglecting dynamic effects and removing 
  

√
  
 

,    and    . Further on, assuming 

that the element size r is small compared to macroscopic dimension          the influence 

of the parameter  
 

 
 can be negletec. The friction coefficient   has influence mainly on the 

post-failure material behaviour, so is generally omitted it in the relation-ships for elastic 

constants and strength parameters. After these simplifications set of relevant dimensionless 

parameters is reduced to the following four: {
   

  
 
  

  
 
  

  
  }. Assuming that the elastic 

stiffness parameters are determined in the range in which the failure is not initiated yet, only 

two dimensionless parameters should be considered:  {
  

  
  } . Thus, the folowing 

dimensionless functional relationships linking continuum and global DEM parameters can be 

postulated as: 

 

  

  
   (

  

  
  )               (

  

  
  )  

   

  
   (

  

  
 
  

  
  )  

   

  
   (

  

  
 
  

  
  ) 

Eq. 27 Dimensionless relationships global parameters  

 

  is a certain length parameter and   is a characteristic area related to the discrete element 

model. The characteristic length   and area   are defined in different way for 2D and 3D 

problems. For 2D problems, where cylindrical particles are used, it is convenient to take   as 

equal to the length (height) of the particles, with a unit value. For more information,  

important references in global-derived methods are Huang [20] [19] and also Oñate and Labra 

[21] and Rojek [22]. 
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3 . 2 .  L oc a l  d e f i n i t i o n  o f  D E M  e l a s t i c  c o n s t i t u t i v e  p a r a m e t e r s  

This alternative philosophy is to assume that the DEM parameters depend on the local 

properties of the interaction particles. Instead of defining a global set of parameters 

{                         } 1  each contact would have different characterization 

depending on the physics of the contact and the properties of the interacting particles, namely 

their radii and the continuum parameters. The method seeks the adequate parameterization 

of the contacts between particles in order to obtain a model that behaves in terms of stress 

and strains like the continuum media does.  

This is the path that CIMNE follows; indeed, it is the most paradigmatic example of the aspects 

in discussion about the continuum simulating. The next sections of this work  will be 

specifically related with this local definition philosophy. 

First of all, it is important to clarify that the problem is not the same as the discontinuous case 

in terms of dynamism and elastic deformation behaviour. In the discontinuous media 

simulations it has been seen that the normal stiffness value is not such important a parameter 

as it will be here, in the continuum simulating case, where we want to capture realistic strains 

and stresses. Then, would the high values for the stiffness yield now the same problems that 

occurred with the dynamic systems?  

On one hand, the problems induced by the large repulsive forces that occurred when a particle 

got inside the other in a time step won’t be present now; the particle now will move much 

slowly compared to a dynamic system and so, the indentations that can occur in a given time 

step are much smaller. On the other hand, most of the particles will be confined by a large 

number of contacting neighbours and, when a 

particle is excited by an external force, it 

would impact to others and then do the same 

in the opposite direction. This can easily lead 

to a system that has an energy feedback and it 

increases uncontrolled. That’s why here the 

global damping (see section 2.2.6 Numerical 

damping and physical damping) takes an 

important role taking the system to a quasi-

static state and killing the dynamic effects. 

                                                           
1
 The same micro parameters derived (from macro parameters) locally for each contact. 

Figure I. 39 Compression test simulation with DEM 
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3 . 3 .  T h e  e f f e c t i v e  c o n t a c t i n g  v o l u m e  m e t h o d  

This is an original idea from Professors E. Oñate J. Miquel and F. Zárate, from CIMNE, and it is 

currently in research. This proposal theory will be implemented in DEM-Application and will be 

tested once the program completely allows continuum based simulations.  

It has been already mentioned that now the coefficients for the normal and tangential spring 

stiffness are very important. The objective is to correctly characterise the continuum 

properties to expect the same results in a global behaviour.  

The method proposes to get the elastic characteristic values for linear springs in normal 

direction and for the transversal one from the equivalent axial stiffness and shear stiffness 

respectively that the correspondent truncated conical volume would yield. 

 

Figure I. 40 Equivalent volume corresponding to by the contact  

 

Axial stress: 

         ∫    
 

 

 ∫
  
  

   
 

 

  
 

∫
  

    

 

 

 

Eq. 28 Axial strain-stress approach 

Linear variation of the radius:       
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Yields:      

         
  
 

∫
  

        
 

  

  
 
     

     

 

 

 

                  
     

     
 

  

 
     

Eq. 19: Consistent formulation for the normal stiffness. 

Where       
     

     
    Eq. 2 Equivalent radius for two spheres in contact. 

 

Shear stress: 

         ∫    
 

 

 ∫
 

  
   

 

 

 

 
∫

  

    

 

 

 

Eq. 30: Shear strain-stress approach. 

 

Where                      Eq. 3: Reduced shear area. 

 

Linear variation of the radius:       

 

                         
     

     
 

                  
 

 
 
 

  
 
     

     
 

                  
     

     
 

   

      
     

Eq. 31: Consistent formulation for the shear stiffness.  

 

Relationship between    and   : 

 

      
 

      
 

Eq. 32: Resulting relation between normal and shear stiffness.  

 

 



 

48 
 

Continuum modeling using the Discrete Element Method. 

Theory and implementation in an object-oriented software platform. 

 

 

Part I: Discrete Element Method 

  

A formal relationship between the main parameters       and the elastic stiffness coefficients 

of the equivalent springs on the contact has been proposed to be used in continuum 

simulating problems. Obviously there exist many others in the literature but the DEM-

Application has chosen the family of locally derived micro parameters methods. The DEM-

Application team has clearly have in mind that these stiffness parameters for the springs have 

to be deduced contact by contact in order to obtain a method that could be used in generic 

cases without much particular calibration; in that sense, the algorithm implemented in our 

application takes the macro values of       for the contacting pair and easily applies the 

presented formula or any desired one1.  

 

 

 

 

 

 

 

 

Figure I. 41 Rheological model for the contact  

 

Until now two new concepts have been introduced regarding the characterization of the 

contact with respect to the original DEM for discrete systems: In first place,  the normal spring 

has also a tensile strength and so can resist tensile forces; in second place, there exist a 

classical tangential spring that resists the   tangential shear forces until a certain limit. When 

this tangential spring reaches the failure limit the contact becomes frictional. Afterwards, the 

regularized Coulomb law is recovered; it can be interpreted as another little spring system also 

with a slipping limit.    

 

In the new section a completely innovative devise special for the continuum simulating case is 

introduced: the rotational spring. 

 

                                                           
1
 The DEM-Application, and usually in many others, is quite easy to tune the values of these parameters 

in order to get better results; in this sense there is no loose of generality when proceeding with this 
approach since afterwards, the characterization can change if comes out not to be the proper one. 

𝑘𝑇 

𝑘𝑁 
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3 . 4 .  R o t a t i o n a l  Sp r i n g  

 J u s t i f i c a t i o n  o f  t h e  r o t a t i o n a l  s p r i n g  3.4.1.

Some authors recommend the use of an additional spring that acts opposing the relative 

rotation that a contacting pair suffers in continuum simulations. The necessity of it appears 

when the rotation is applied on the problem; the particles are given a rotational inertia and 

also we calculate the moments that come from the forces applied on the contacts with respect 

to the mass centre of these particles. When a moment applies to a certain particle that has a 

rotational inertial it begins to rotate due to the angular acceleration and in principle is not 

resisted by any mechanism. 

 

 

 

 

 

 

Figure I. 42 Relative rotation between two particles  

 

Note that this rotation is not resisted by the tangential spring because there is no relative 

tangential displacement between the contacting points. Therefore, the rotational spring shall 

be introduced to opposite the relative rotation.  

 

 P r o p o s e d  s t i f f n e s s  f o r  t h e  r o t a t i o n a l  s p r i n g  3.4.2.

The characterization of the stiffness value for the spring 

can be easily done relating the tangential displacement 

with the rotational one.  

 

Applying the hypothesis that for a little rotation the 

normal component of the movement is zero and all the 

movement is in the tangential direction and proposing an 

equation for the rotational spring we get that: 

Fixed particle 

Figure I. 43 Rheology for the rotational spring 
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Eq.  33  Expression for the resistant moment in the rotational spring  

Also we get the ordinary expression for the resistant shear in the tangential displacement and 

we calculate the equivalent moment that it would create: 

                

               

Eq.  34 Moment produced by the tangential force opposing the rotation  

Finally comparing the produced moment and the resistant one we can obtain a relationship for 

between the rotational spring stiffness and the shear spring stiffness. 

        
   

Eq.  35 Proposed expression for the rotational spring stiffness  

 

 R e m a r k s  o n  t h e  r o t a t i o n a l  s p r i n g  3.4.3.

While some authors insist in the necessity of a rotational spring others don’t use it. In fact 

when some entity is discretized by more than one row (in 2D) of particles (spherical or not) the 

combination of the normal and tangential springs act to oppose the global or local bending of 

the particles; this is due to the fact that this rotation implies displacement in the normal and 

tangential directions of the neighbouring particles with respect to the contacts and so, the 

tangential and normal forces act.  It is not clear if this spring which is indispensable in a “1 row” 

case shall contribute to resist the bending mechanism or not. 

 

The rotational spring, if it is enabled, has the same treatment than any other elastic devise; we 

will apply a damping on it and it will also have a limit strength which would lead to the fracture 

of the contact if its value is exceeded.  
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 E x a m p l e  o f  a p p l i c a t i o n  3.4.4.

In order to exemplify the functionality of this spring, a simple bending beam is presented in a 

very illustrative case. 

 

   

 

 

 

 

 

 

In the first figure a chain of balls is created without any rotational spring, the first ball is fixed 

and the problem is calculated under gravity; the behaviour is like a chain of balls which can 

have free relative rotation. On the other hand, in the second example, the rotational spring is 

applied forming then a beam that resist bending moments like the one illustrated in the figure 

due to an ascendant force applied on the extreme. It shall be commented that the results are 

very accurate comparing the solution with the theoretical ones. 

 

The previous examples have been done by researcher Feng Chun using the CDEM software 

(see section 6.2 Current development and collaboration ); The DEM-Application takes the 

implementation methodology of the rotational spring from that program.   

 

3 . 5 .  F a i l u r e  o f  t h e  c o n t a c t s ,  p l a s t i c i t y  a n d  d a m a g e  

The method permits applying easily any micromechanical constitutive model with cohesion. 

Given a contact defined by the properties of the contacting spheres and the forces in every 

direction: normal and tangential, the fracture criterion can be established following the 

classical laws of the mechanics of solids. The implemented method in the DEM-Application is 

the perfect brittle elasticity, which is the simplest one, but nowadays is being extended to 

other more sophisticated ones.   

 

Figure I. 44 Ball chain with rotational spring under an 

ascendant load 

Figure I. 45 Ball chain without rotational spring  
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The elastic perfectly brittle model is characterized by linear elastic behaviour when cohesive 

bonds are active. An instantaneous breakage of these bonds occurs when the interface 

strength is exceeded. When two particles are bonded the contact forces in both normal and 

tangential directions are calculated from the linear constitutive relationships: 

 

        

        

Eq. 11: Linear elastic force displacement relationship. 

 

Where   and   are the normal and tangential contact forces, respectively,    and     are n the 

interface stiffness in the normal and tangential directions    and   , the normal ad tangential 

relative displacements, respectively.  

 

Cohesive bonds are broken instantaneously when the interface strength is exceeded in the 

tangential direction by the tangential contact force or in the normal direction by the tensile 

contact force. The failure (decohesion) criterion is written (for 2D) as: 

 

     

     

 

Where    and    are the interface strengths in the normal and tangential directions, 

respectively. In the absence of cohesion the normal contact force can be only compressible, i.e. 

    

 

And the (positive) tangential contact force is given by the Coulomb friction law, with   

being the Coulomb friction coefficient:  

         Eq. 12: Coulomb’s friction law 

 

Contact laws for the normal and tangential directions for the elastic perfectly brittle 

model are shown in next figures: 

 

 

𝝉 
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Figure I. 46 Normal and tangential contact force in perfectly brittle model.  

Other more sophisticated models can be applied to the DEM for the failure of the 

contacts: elastoplastic contact with linear softening, hardening, exponential plasticity 

laws, contacts with elastic damage, etc.  

 

3 . 6 .  G e n e r a t i o n :  m o d e l l i n g  t h e  s t r u c t u r e  o f  t h e  c o n t i n u u m  

Given a geometric definition of the media, the discrete element mesh has to be generated. A 

fundamental aspect when simulating the continuum is to obtain a good packaging, i.e. the 

minimum voids inside the domain. Several techniques have been developed to perform a 

generation that fills a given volume with a good packaging; originally the way to obtain these 

meshes was to fill a volume by gravitational deposition of a pack of particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝝈 

𝑅𝑛 

𝑢𝑛 

𝑅𝑡 

𝑢𝑡 

Figure I. 47 Gravitational deposition test by Munjiza  
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 This method gives a good packaging but it is computationally inefficient since we have to do a 

DEM discontinuum simulation with a large number of particles. Find more information about 

this on [3] Munjiza. 

 

 Other methods for the generation of the DEM mesh are algorithms of generation of particles 

that try to fill the volume with a determined distribution of sizes or assuring a determined 

volume of voids in the domain. There exist a large number of generators of this type in the 

DEM software; GiD has its own generator and is the one used in the DEM-Application. It will be 

explained in further detail in Part II 8.5.7 Neighbour Search utility and Extended Radius Search 

that this generator, like many others, introduce some gaps between particles; in that section a 

special utility of the DEM-Application is presented that helps solving this. On the other hand 

there are also other generators that produce a more dense packing and don’t have these 

problems; however this kind of generators often present initial indentations between particles. 

Another utility has been devised for the DEM-Application to solve this problem and be able to 

use these dense packing generators. 

 

Finally, some new advanced geometry definition and sphere generator methods are being 

used nowadays for the DEM. By the use of tomography scans a detailed geometry of parts of 

the body such as bones, organs and vessels can be represented with thousands of particles. 

This is a topic in discussion that is especially interesting for the KRATOS research group in order 

to give the DEM new applications. 

 

Figure I. 48 Fine particle mesh generated on a skull by UCLV-CIMNE 
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4. DEM-FEM 

This is the current challenge of the Discrete 

Element Method.  From the experience taken 

from the study of the continuous and the 

discontinuous media with DEM It can be 

announced that nowadays there is no a unique 

effective methodology to describe the continuum 

media although there are several “well-posed” for 

the discrete particle physics. Further research has 

to be done in the continuum simulation via DEM 

but nowadays this method is proficient with the 

discrete media. What comes next is the idea of combining to methods that are efficient in their 

respective fields to simulate coupled problems where both phenomena can be presented. 

This has recently been properly studied but there is nowadays an increasing interest on this 

subject. One of the most important applications of the DEM-FEM applications is on the 

interaction between granular materials and excavation tools. A recommended reference on 

this issue is: [20] by Huang. 

There are different possible points of view of the DEM-DEM coupled problem: 

 

 Interaction between FEM-discretized bodies and DEM-discretized domain: For 

simulations of excavation problems generally to analyse the stresses on the tools used 

in the excavation. This is a useful method to test the strength and the wear or the 

mechanical devices.  

 

 

 

 

 

 

 

 

Figure I. 49 Interaction between a tool (FEM)  

and rocks (DEM) 

 

Figure I. 50 FEM wedge introduced in DEM domain 
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Figure I. 51 Fracture of finite element  

discretized media 

 Creation of DEM particles from fractured FEM elements: Transition from continuum to 

discontinuum in the combined finite-discrete element method occurs through fracture 

and fragmentation processes. A typical combined finite-discrete element method 

based simulation, such as rock blasting, may start with a few discrete elements and 

finish with a very large number of discrete elements. Fracture in general occurs 

through alteration, damage, yielding or failure of microstructural elements of the 

material. To describe this complex, material-dependent phenomenon, the alteration of 

stress and strain fields due to the presence of microstructural defects and stress 

concentrations must be taken into 

account. In order to simulate the friction 

and the interaction that is generated in 

the continuum when a crack appears on 

the FEM domain it is possible to analyse 

it generating DEM particles in that zone. 

A recommended reference is Munjiza, A: 

The Combined Finite Discrete Element 

Method [3]. 

 

 

 FEM discretization of the DEM particles:  This is a way to introduce the deformation of 

the particles and the detailed stress field on the DEM particles. Also it can be possible 

to track the fractures in the DEM particle. This method is not very much used because 

of the high cost that it leads.  

 

Figure I. 52 FEM discretization of a DEM particle  
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 DEM discretization of the FEM elements:  when a finite element reaches the limit 

stresses it is substituted by a set of discrete elements in order to capture the fracture 

and the frictional behaviour of the fractured parts of the continua.  

 

 

Figure I. 53 DEM discretization of a FEM element 

 

Without entering on these methods, a few ideas shall be kept in mind when coupling the two 

problems. First of all, and very important, the search becomes much more complicated. Even if 

all the media is discretized with spheres, there would be numerous contacts between spherical 

entities and non spherical entities; therefore it would be necessary to recover the methods 

presented on section 2.1 Contact Detection. Also, the treatment of the contacts between the 

FEM elements and DEM elements it is a complicated issue; how to characterize the force that a 

DEM element introduces to each node of the FEM element when these entities intersect, and 

afterwards determine the stresses, is not an easy problem. 

 

In CIMNE the DEM-FEM application has been developed in parallel with the DEM application 

and all the DEM discretized elements that appear in DEM-FEM are characterized in the same 

way as the original DEM particles from the DEM-Application. The basic concepts of the 

implementation of the DEM-Application are explained in the next part of this work. 
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Part II: KRATOS DEM-Application 

5.  KRATOS-MULTIPHYSICS PLATFORM 

 

 

Free Multi-physics F.E.M.-Based C++ Open Source Code 

 

5 . 1 .  W h a t  i s  K R A T O S ?   

 

KRATOS was born a framework for building multi-disciplinary finite element programs and has 

been extended more generally to other engineering application. It provides several tools for 

easy implementation of FEM-like engineering applications and a common platform for natural 

interaction of the same in different ways. 

KRATOS is an innovative variable base interface designed and implemented to be used at 

different levels of abstraction and to be very clear and extendible. A very efficient and flexible 

data structure can be used to store any type of data in a type-safe manner. An extendible IO is 

also present to overcome a bottleneck in dealing with multi-disciplinary problems and the 

major interpreting task is given to the Python interpreter. 

The kernel and application approach is used to reduce the possible conflicts arising between 

developers of different fields and layers are designed to reflect the working space of different 

people also considering their programming knowledge. It permits to create your new 

application starting from a template for every basic generic part of your program. The 

application connects to the main KRATOS general structure and it benefits of its data base 

common utilities for general FEM-like engineering programs ready to be used, the IO structure 

to interact with graphical interfaces and the powerful and optimized usage of the combined 

C++ and python languages. 

 

 

http://www.cimne.com/kratos/related.asp#python
http://www.cimne.com/kratos/intro.asp#layer
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Figure II. 1 KRATOS basic scheme 

 

5 . 2 .  W h o  m a y  u s e  K R A T O S ?  

Some potential users of KRATOS are: 

 Research engineers: These developers are considered to be more expert in numerical 

methods and engineering calculation methods, from the physical and mathematical 

points of view, than in C++ programming. For this reason, KRATOS provides their 

requirements without involving them in advanced programming concepts. 

 

 Application Developers: These users are less interested in finite element programming 

and their programming knowledge may vary from very expert to higher than basic. 

They may use not only KRATOS itself but also any other applications provided by finite 

element developers, or other application developers. Developers of optimization 

programs or design tools are the typical users of this kind. 

 

 Package Users Engineers: and designers are other users of KRATOS. They use the 

complete package of KRATOS and its applications to model and solve their problem 

without getting involved in internal programming of this package. For these users 

KRATOS has to provide a flexible external interface to enable them use different 

features of KRATOS without changing its implementation. 

 

 

 

 

 

 

Main KRATOS 

(Kernel) 
 

Application 1 

Application 2 

My application 
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5 . 3 .  W h o  i s  K R A T O S ?  

The KRATOS structure, due to its multi disciplinary nature, has to support the wide variety of 

algorithms involved in different areas. That's the principal reason that explains the variety of 

people, mostly engineers, composing the KRATOS Community.  

I encourage you to visit the website http://KRATOS-wiki.cimne.upc.edu/index.php/Main_Page 

to learn more about KRATOS. 

 

5 . 4 .  W h a t  m a k e s  K R A T O S  u s e f u l ?  

KRATOS is MULTI-PHYSICS. One of the main topics in engineering nowadays is the 

combination of different analysis (thermal, fluid dynamic, structural) with optimising methods 

in one global software package with just one user interface and, even more, the possibility to 

extend the implemented solution to new problems. 

KRATOS is FINITE ELEMENT METHOD (FEM) based. Many problems in engineering and applied 

science are governed by Partial Differential Equations (PDE), easily handled by computer 

thanks to numerical methods. The FEM is one of the most powerful, flexible and versatile 

existing methods. 

KRATOS is OBJECT ORIENTED. An integration of disciplines, 

in the physical as well as in the mathematical sense, 

suggests the use of the modern object oriented philosophy 

from the computational point of view. The modular design, 

hierarchy and abstraction of these approaches fits to the 

generality, flexibility and reusability required for the 

current and future challenges in numerical methods. 
  

  

KRATOS is OPEN SOURCE. The main code and 

program structure is available and aimed to grow with 

the need of any user willing to expand it. The GNU 

Lesser General Public License allows using and 

distributing the existing code without any restriction, 

but with the possibility to develop new parts of the 

code on an open or close basis depending on the 

developers. 

 

http://kratos.cimne.upc.es/kratoswiki/index.php/Who_are_we
http://kratos-wiki.cimne.upc.edu/index.php/Main_Page
http://kratos.cimne.upc.es/kratoswiki/index.php/File:Oop.jpg
http://kratos.cimne.upc.es/kratoswiki/index.php/File:Manos.jpg
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KRATOS is FREE because is devoted mainly to developers, researchers and students and, 

therefore, is the most fruitful way to share knowledge and built a robust numerical methods 

laboratory adapted to their users' needs. Free because you have the freedom to modify and 

distribute the software. The one thing you're not able to do with free software is take away 

other people's freedom. Read the license for more detailed information in KRATOS webpage.  

 

5 . 5 .  K R A T O S  s t r u c t u r e  

An object-oriented structure has been designed to maximize the reusability and extensibility of 

the code. This structure is based on finite element methodology and many objects are 

designed to represent the basic finite element concepts. In this way the structure becomes 

easily understandable for developers with a finite element method background. In this design, 

Vector, Matrix, and Quadrature represent the basic numerical concepts. Node, Element, 

Condition, and DoF are defined directly from finite element concepts. Model, Mesh, and 

Properties are from the practical methodology used in finite element modelling 

complemented by ModelPart, and 

SpatialContainer, for organizing 

better all data necessary for analysis. 

IO, LinearSolver, Process, and 

Strategy represent the different 

steps of a finite element program 

flow. Finally Kernel and Application 

are defined for library management 

and its interface definition. 

 

5 . 6 .  B a s i c  t o o l s  

Different reusable tools have been implemented to help developers in writing their 

applications in KRATOS. Several geometries and different quadrature methods are provided 

and their performances are optimized. Their flexible design and general interface make them 

suitable for use in different applications. Their optimized performance makes them 

appropriate not only for academic applications but also for real industrial simulations.  

 

 

Figure II. 2 KRATOS framework 
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An extensible structure for linear solvers has been designed and different common solvers 

have been implemented. In this design the solver encapsulates only the solving algorithms and 

all operations over vectors and matrices are encapsulated in space classes. In this way solvers 

become independent of the type of mathematical containers and can be used to solve 

completely different types of equations systems like symmetric, skyline, etc. This structure also 

allows highly optimized solvers (for just one type of matrices or vectors) to be implemented 

without any problem.  

 

5 . 7 .  V e r s i o n i n g  s y s t e m  ( SV N )  

Apache Subversion, SVN, is a software versioning and revision control system distributed 

under an open source license. KRATOS main developers are attached into a subversion sharing 

network in order to up-load their developments and up-date the current and historical 

versions of files from the basic code or from new application parts being developed by others. 

This way, a new integration method, for instance, can be developed by anyone and included in 

KRATOS database; after that, any other user or developer can update the modified parts of 

their code and they get instantaneously the integration method.  

In order to avoid conflicts between implementations from different people, there is also a 

benchmarking system checking for the correct functioning and compilation of any new 

implementation. 

 

5 . 8 .  B e n c h m a r k i n g  s y s t e m  

Every night, the cluster of CIMNE automatically updates KRATOS using the versioning system, 

after that, it compiles everything and runs different preset cases for each application.  

These cases are tests that have been specially designed for each application. They consist on a 

simple application usage to calculate a predefined problem that has a predetermined known 

solution.  

If the cluster doesn’t get the expected solutions when running the case or, moreover, if the 

cluster is not able to compile the code after a new contribution from a developer onto the 

versioning system, everyone gets a warning reporting the problem. If this is the case, the last 

uploads have to be revised for the good functioning of every application.  

 

 

http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Open_source_license
http://en.wikipedia.org/wiki/Source_code
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6. KRATOS DEM-APPLICATION 

6 . 1 .  B or n  o f  D E M - A p p l i c a t i on  

In year 2011 CIMNE’s director, Eugenio Oñate, considered interesting to start developing a 

Discrete Element Method in the KRATOS environment as many other Finite Element Methods 

had been implemented.  

The seed for the code was taken from the CIMNE’s current DEM program called DEM-PACK; 

this precedent program had been developed in Fortran language by some CIMNE doctoral 

researchers who had built their own code from scratch. DEM-PACK is nowadays the program 

that CIMNE uses for its projects as it is in fact a complete program that permits elaborating 

studies for numerous case simulations.  

However as the technique and research advances, new methods and approaches has been 

introduced in the Discrete Element Method and also in computer science:  

 Concerning to the DEM theory, it has been already explained some of these advances 

in the first part of this document; this refers to the new ideas about continuum-

simulating, clusters of particles and arbitrary shape contacting just to name a few.  

 The advances in computer science that shall be considered are, for instance, the power 

of the parallelization techniques.  

 KRATOS is prepared to connect different applications, in this sense it will be easier to 

create a DEM-FEM application. 

Also, a more versatile developing interface like KRATOS was needed in programs like DEM-

Pack. Being part of KRATOS helps in the code improvement and makes the cooperation 

between different developers easier. Many of the technical problems that could appear during 

the implementation can be solved by the help from the KRATOS community that may have 

faced similar problems performing similar solutions.   

 

The philosophy of CIMNE nowadays is to gradually transcribe or rewrite every code used in the 

centre onto the KRATOS framework due to its numerous advantages. The past years every 

developer or group had been creating their own code with their preferred programming 

language and structure. This way the final result was a good program from a user level but not 

a code ready to be improved, extended or revised for others in a developer stage.  
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KRATOS DEM-Application is the result of this concern, to rewrite and improve a more 

ambitious code for the Discrete Element Method to substitute in long-term the currently used 

DEM-Pack. 

 

6 . 2 .  C u r r e n t  d e v e l o p m e n t  a n d  c o l l a b or a t i o n  

As KRATOS is an open-source platform the collaboration between different institutions and 

particular developers it’s one of its benefits.  

Currently the DEM-Application is being developed by the author of this work, Miquel 

Santasusana Isach, and other doctoral and post-doctoral researchers in CIMNE: Miguel Ángel 

Celigueta Jordana, Nelson Lafontaine, etc.  

Fortunately, the power of KRATOS has awakened interest in many other research institutions 

and some others have joined the KRATOS discipline and so the DEM-Application team has 

been increased. This is the case of the Cuban CIMNE Classroom1 UCLV-CIMNE, and also The 

Institute of Mechanics, Chinese Academy of Sciences IMECH,CAS. 

 

                    

Figure II. 3 KRATOS DEM partnership 

 

 

 

 

                                                           
1
 The CIMNE Classrooms are physical spaces jointly created by CIMNE and a University for the 

development of training, research and technology transfer activities.  

CIMNE 
DEM-app. 

team 

(BCN) 

IMECH 

Beijing 

UCLV 

La 
Habana 

DEM-PACK  KRATOS-DEM  
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SEED: The first implementation was done by an ex-doctoral researcher on CIMNE who started, 

in 2011, building the code in KRATOS environment taking the idea from the existing CIMNE’s 

DEM code: DEM-PACK. The new team has started working in it since February 2012. 

 

CIMNE DEM-APP. TEAM (CATALUNYA): Several works are being done by the core team. First of 

all, a step-by-step development of the very basics of the method has been done; also the 

implementation of new different utilities and case possibilities. Secondly, the validation of 

each one, taking the ideas from the best current programs abroad while being validated with 

the most serious theoretical studies; in parallel, our own new formulations are being deduced. 

Also some research is being done in new ideas and usages of DEM, particularly in terms of 

continuum simulations. Finally the Barcelona team manages all the collaborations and tries to 

merge the incoming implementations and does the corresponding feedback.  

 

UCLV (CUBA): This CIMNE classroom has developed its own DEM code and they have 

sophisticated integration schemes, search contacts routines, particle type implementation, etc. 

They help the CIMNE team in improving the application’s abovementioned utilities. Currently 

the UCLV is developing bio-medical applications for the DEM with advanced cluster grouping 

techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 4 Discrete elements from tomographies, UCLV Cuba 

 

Micro-Scale 
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IMECH, CAS (CHINA): IMECH has a powerful DEM code called CDEM that performs the 

simulation of not only discrete problems but also DEM-FEM coupled problems. The research 

centre helps KRATOS-DEM implementing basic functions for contact force calculation and 

integration algorithms. The objective is to develop also a DEM-FEM method to KRATOS-DEM as 

it is explained on part I of this document. 

 

 

Figure II. 5 Extract from IMECH works 
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7. GRAPHIC INTERFACE 

7 . 1 .  G i D  P r e  a n d  P o s t  P r oc e s s o r  

 

KRATOS applications are highly compatible with graphical interfaces. The one that CIMNE has 

been using for KRATOS and many other ProblemTypes is GiD interface which has its origins on 

CIMNE itself. In parallel a new specific graphical interface is being developed for the KRATOS 

package in order to improve the problem definition of the different applications that KRATOS 

supports. In the present section the GiD interface will be introduced as it is the currently used 

one and in next sections the specific implementations and the usage of this software for the 

development and testing of DEM-Application is explained in detail.   

GiD is a versatile multipurpose software that provides a graphical support to the pre-process 

and the post-process stage. 

 

 P r e - P r o c e s s :   7.1.1.

This stage consists on setting the geometry and the data for the problem definition (forces, 

movements, properties...) as well as imposing boundary conditions and the calculation options. 

After the problem definition GiD also dispose of different mesh generators for the FEM (or 

others) problem calculation.  

 

Geometry: GiD Pre Process is a CAD system that 

features the widely used NURBS surfaces 

(trimmed or not) for the geometry definition. 

Typically geometrical operations can be used as 

transformations (translations, rotations, etc.), 

Boolean operations in surfaces and volumes. A 

complete set of tools are provided for quick 

geometry definition.  

 

 

Figure II. 6 GiD Geometry editing example 
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ProblemType: 

 

The user can load to GiD a specific ProblemType. When a ProblemType is loaded, some specific 

options from the particular case appear, such as conditions or calculation parameters. The 

geometry will be used by the ProblemType to effectuate the physical calculation.  

 

 

Figure II. 7 DEM_explicit_solver ProblemType Options 

 

 C a l c u l a t i o n  P r o c e s s :  7.1.2.

Once the geometry is drawn and the conditions, loads and parameters that each ProblemType 

requires are defined, the calculation shall be done. When the Calculate button of GiD is used, 

the ProblemType reads the geometry, applies the conditions and so one and calculates the 

problem. It has to be remarked that GiD doesn’t calculate, it triggers the ProblemType inner 

calculation. 
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 P o s t - P r o c e s s   7.1.3.

 GiD passes from the Pre to the Post with a simple button click. The options that the user has in 

each part of the program are different; In the Post there is numerous utilities aiming to plot 

and analyse the results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the View Results tab many types of visualization are available to represent the accessible 

output data. The View Results & Deformation window 

permits to choose the representation of the results 

either on the original mesh or on the deformed one, 

selecting a suitable scale. On the View results is 

possible to select first of all a type of representation; 

the available representations are Display Vectors, 

Contour Fills, Contour Lines, etc depending on which 

one the user considers that is the best for every 

different type of result. It’s frequent to represent the 

vector magnitudes such as a force, velocity or 

displacement in a vector display and the scalar 

magnitudes like von misses stress or strains, energy, 

etc in colour scales. 

 

Figure II. 8 Post process screenshot. Animation on results.  

Figure II. 9 Type of visualization selection 
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Once the type of visualization method is chosen, the analysis variable to display is selected. In 

the next figure there are three different magnitudes, let’s say displacement, force and velocity 

available for the visualization.  In general the analysis program is the one who stores and 

prepares the output values for the GiD PostProcessor to display. In the particular case of the 

KRATOS DEM-Application it’s easy to select which nodal variable (the ones which have 

information in every output time step) has to be loaded in the output.  

 

 

 

 

 

 

 

 

 

 

 

As the reader can see from the figure, vector magnitudes such as the displacement can be 

plotted in any component and also its scalar modulus.   

 

7 . 2 .  I m p l e m e n t a t i o n s  d on e  i n  t h e  P r e - P r oc e s s or  f o r  D E M - A p p .  

One of the first meetings that the author of this work, M. Santasusana, and its supervisor and 

partner of the DEM-Application, M.A. Celigueta , had when the project began, served to set 

the first priorities for the new implementations that had to be done in the DEM-Application.  

The resulting lists noted down was a pretty large list indeed, nevertheless the team realised 

that the first action to be done was getting a quick and user-friendly Pre-Processor in GiD. 

 

Why a improving the Pre-Processor first? A useful and comfortable Pre-Processor is necessary 

in order to test more quickly any implementation that is incorporated to the application. For 

every new damping, every new contact criteria, every material parameter, any new 

implementation, several test have to be created with a pre-processor to analyse the results 

Figure II. 10 Selection of the magnitude to be shown 
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 and check for errors or malfunctioning. So, the starting point was improving the Pre-Processor 

interface generated by the DEM-Application ProblemType in GiD. Next, the original state of the 

Pre-Processor is presented and the improvements done within the framework of this work.  

 

 I n h e r i t e d  P r e - P r o c e s s  7.2.1.

The Pre-Process interface that was available when the DEM-Application began was very simple. 

It had a very few options and what is more important; it was very slow and tedious to create a 

simple example. In the inherited Pre, points were used to represent the particles; All the 

assignations, included the radius, were needed to simulate the sphere or circle. In the Post, 

this had to be taken in account in order to represent the spheres instead of points. 

The properties assignment to the spheres or circles had to be done property by property and 

the material concept was not defined. This made easier to forget the assignment of some 

condition or properties and so yield problems or errors during the calculation. That is the main 

reason to create a new useful and user-friendly ProblemType, to ease and accelerate the 

problem definition.  

 

 N e w  D E M - A p p l i c a t i o n  P r e - P r o c e s s  7.2.2.

There have been changes done in the following aspects of the pre-process: 

 Geometry- Mesh definition. 

 Condition assignment –“Nodal Values” 

 Problem Parameters 

 Material assignment. 

 

First of all, the user has to dispose of the DEM_explicit_solver ProblemType (the current name 

for the DEM-Application), which can be loaded in GiD by the Data -> ProblemType tab. 

Once the problem is loaded, a new drop down tab appears in GiD with five different options. 

 

 

 

 

 
Figure II. 11 DEM_explicit_solver menu 
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Geometry and Mesh definition: 

The geometry edition has been improved in order to make the problem definition easier and 

versatile. In the new ProblemType spheres/circles can be generated on any geometry: points, 

lines, regular and irregular surfaces and volumes. Some processes in TCL language has been 

coded in order to create sphere or circle elements on these geometries. 

The development of the DEM-FEM application was in parallel with DEM application; in that 

sense the ProblemType was designed to be applicable to DEM-FEM also. That would require 

having geometries meshed with finite elements and geometries meshed with discrete 

elements, i.e. spheres and circles. What GiD really does, when meshing a geometry defined by 

the user, is meshing it with the chosen criteria: regular or irregular finite element meshes. 

Afterwards it automatically applies some operations on the mesh defined by the developer, 

following the instructions of a code written in TLC programming language. Here is where it has 

been specified to create spheres or circle on those finite element meshes where the user had 

applied a radius condition. The sphere or circle is created in the centre of the finite element 

created by the mesh. 

Example with a line (geometry) meshed with 4 regular linear elements. The second one has a 

radius condition applied on it. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure II. 12 Example geometry – mesh in line entities 
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Apart from the commented regular and irregular mesh criteria that permit choosing different 

type of elements: tetrahedron, quadrilateral, triangles, rectangles, etc. there is a sphere and 

circle mesher available that had been created especially for the DEM-Pack programme. This 

mesh criterion directly creates spheres on a volume or circles on a surface with some 

predefined options in the mesh options menu. In this case that geometry needn’t to have a 

radius condition applied on it; the mesher creates different sizes of spheres on the volume (or 

circles in the surface) depending on the options of the mesher. 

  

Figure II. 13 Cylinder meshed with GiD sphere mesh generator  

Figure II. 14 GiD Sphere mesher options 
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Next, an example is presented where different geometries in 2D and 3D are meshed, some of 

them have a radius condition applied while others not. Also here the three types of mesh 

criteria commented above are applied on the geometries to mesh.  

 

 

 

 

 

 

 

 

 

 

Id Geometry Radius condition Mesh 

1 Point ON Regular 

2 Volume ON Irregular 

3 Volume OFF Irregular 

4 Surface ON Irregular 

5 Surface ON Regular 

6 Surface OFF Irregular 

7 Line ON Regular 

 

 

  

1 

2 

3 

4 

5 

6 

7 

Figure II. 16 Miscellaneous geometry definition Figure II. 15 Mesh resulting from miscellaneous geometry  
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Condition assignment – Nodal data. 

Currently there are only two conditions that can be 

applied to the geometry elements: An imposed velocity 

and an assigned radius. The assignment can be done to 

any geometry, point, line surface or volume and the 

condition will be transferred to the discrete elements 

that will be created by the mesh on the selected entities. 

For example, applying the radius condition to a line and 

meshing it, several spheres of the selected radius will be 

created in the line. 

 

The velocity condition permits establishing an initial value for the velocity in the three 

components (X, Y, Z) on a discrete element. It also can be defined as a fixed value if the body 

has to have, on any of the three components of velocity, an unchangeable value.   

In newer versions of the ProblemType, there will be the applied force and applied moment 

condition implemented (it is currently being implemented). 

 

Problem Parameters:  

Here, general parameters of the problem are defined. 

 Number of Processors: In a multi-core computer it may be interesting to calculate the 

problem in parallel to save time. Many of the loops that are implemented in the DEM-

Application have been parallelized with OpenMP (see section 8.5.1 Parallelization). 

This option is equivalent to define the environment variable: OMP_NUM_THREADS = X. 

At a certain number of particles it is worth it to parallelize the code.   

 Solver selection: Here, the integration scheme is selected for obtaining the 

displacements of the particles from his accelerations, given a time step. There are 

currently the Forward Euler, the mid-point rule and the constant average acceleration 

(Newmark beta-method) schemes. Some more sophisticated like Runge-Kutta and so 

on are being developed. See Part I: Section  2.3 Integration of the motion laws. 

 

 

Figure II. 17 Conditions assignment – Nodal Values  
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 Solution Type: It has also been commented in 

the first part that the normal forces at a given 

time step can be calculated with an absolute 

way or in an incremental way. It might have 

more interest for the developers than the 

common users of the application.  

  Damping Ratio Type: There are two possible 

damping types that can be applied. The 

viscodamping that acts when a contact force 

acts upon a sphere; the damping magnitude is 

proportional to the velocity up to a constant 

defined here. The local damping is a damping 

that acts lowering the unbalanced forces 

proportionally to their magnitude. It is 

especially interesting to apply this damping in 

quasi-static problems, i.e. continuum 

simulating problems. 

 Continuum Option: These specific options 

like the Delta Option and Rotation Option 

have a switch that activates or deactivates the set of functions needed to take in 

account these problems. When simulating the continuum with the DEM-Application 

the program becomes more expensive because the problem is more complex; that is 

the reason why is recommendable to disable these options if is not being used. 

Delta Option: Following the same idea than for the Continuum Option, disabling this 

option will save some time of the calculation; otherwise enabling it will permits to 

define a geometry with a mesh of spheres where the initial indentations given 

between the sphere are considered as passive indentations, producing no repulsive 

contact force. The opposite also holds; for a little separation between particles, they 

will be considered neighbours and can represent an unfractured continuum if the 

previous option is activated. When the Delta Option is activated, a new option appears 

for the radius extension. In This extension of the radius for the neighbouring search is 

defined as a percentage of the particle’s radius.  

Figure II. 18 Problem Parameters menu 



 

78 
 

Continuum modeling using the Discrete Element Method. 

Theory and implementation in an object-oriented software platform. 

 

 

Part II: KRATOS DEM-Application 

  

 Rotation Option: This works similar to the previous options, activating or disabling the 

rotation to our problem and also requiring more time in the calculation. Once this 

option is activated the user can define whether the rotational spring is activated. 

 Search step: Here the user selects how many steps are desired to wait until a new 

neighbour search is computed. Remember that the neighbouring search is usually the 

most expensive operation in terms of computational cost. For quasi-static problems 

this value can be considerably higher than in dynamic problems.  

 Time parameters: Here the following can be defined: the total time of the calculation, 

the safety factor to apply on the critical time step calculation, the maximum desired 

time step (the program will take the maximum one if it is lower than the critical one) 

and the output time step that defines the time between the exportation of results that 

will be printed in GiD for instance.  

 Dimensions: GiD automatically detects if the problem is 2D or 3D depending on the 

definition of the geometry. The option to choose manually between 2D and 3D 

calculation has been implemented in order to have the possibility to choose if the 

calculation is performed with a 2d cylinder or 3d sphere in a 2D domain. 

 

Material Assignment:  

This is completely new for any DEM ProblemType in CIMNE. The inherited ProblemType and 

the DEM-Pack ProblemType needed to assign each property, one by one to the different 

entities or group of entities.  

Now, the user can define its own materials that include all the necessary physical properties 

and assign with only one action all these properties at once.  

 

 Continuum Group: This is one of the innovations of this application. A group identifier 

(0, 1, 2, 3...) can be assigned to any entity as a label. Entities with the same material 

properties can belong to different group in order to have a “non-cohesive” interface or 

otherwise two different materials can compose the same continuum “cohesive” body.  

The group zero is reserved for the materials or particles that won’t resist any tension 

between particles. See 8.5.6 Continuum Simulating Option. 
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 Particle density: This will determine the 

mass of the discrete element. 

 Young modulus: This is the parameter that 

has more influence in the stiffness of the 

contact springs. In an ideal case it would 

take the value of the representing material 

but in order to save calculation time, a 

smaller value can be adopted as it is 

explained on Part I: Section 0  

 Relative importance of the accuracy on the 

stiffness value   

 Poisson ratio: This also affects the 

determination of the stiffness for the 

springs. The correct value shall be used. 

 Cohesion: This value determines the 

ultimate admissible shear stress (in terms of 

force). If this value is exceeded, the contact 

becomes frictional. 

 Friction: This value corresponds to the angle of internal friction of the material; the 

calculation of the friction forces is obtained by means of its tangent.  

 Tension: Determines the ultimate tensile strength that the contact can hold in terms of 

forces (Newtons).  

 LocalDampRatio: Affects on the persistent damping that acts whenever an unbalanced 

force is present onto a body.  

 Static friction coefficient: To calculate the static friction force opposing the movement. 

 Dynamic friction coefficient: For the friction forces when slipping exists.   

 Visco Damp Coeff: This applies to the coefficient for the viscous damping. 

 

 

 

 

Figure II. 19 DEM Materials selection 
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7 . 3 .  I m p l e m e n t a t i o n s  d on e  i n  t h e  P o s t - P r oc e s s o r  f or  D E M - A p p .  

As it has been commented in previous sections, GiD Post-Process performs the visualization of 

the results that KRATOS obtains during the calculation.  

There have been only a few modifications done in the Post-Process but there is still some work 

to do in improving this aspect as it will be commented later on. 

 

 I n h e r i t e d  P o s t - P r o c e s s  7.3.1.

First of all, as it has been exposed in the previous section, the point entity has been used to 

define the particles’ geometry. This was a problem for the representation in the Post where 

just points are represented instead of the real spheres with the corresponding radius. One 

feature that GiD offers to the user in order to simulate the sphere is to enlarge point by point 

the representation size until it has the required radius. This has to be done manually and can 

incur in some problems in the animation.  

 

As it has been already commented, the Post permits visualizing determined output variables 

that KRATOS stores during the calculation. In the inherited code the three components of the 

displacement, the velocity and the unbalanced force were exported for the viusalitzation; GiD 

is able to represent with different techniques, as it has been said, any component of these 

variables and also the resultant vector norm.  

 

 N e w  D E M - A p p l i c a t i o n  P o s t - P r o c e s s  7.3.2.

Due to the introduction of the spheres and circles entities to the mesh of the Pre-Process, one 

of the implementations needed was already satisfied; now, the visualization does not depend 

anymore on the enlarged size of the represented point; it captures the sphere or circle real 

assigned size. 

 

Advanced representation features: 

 Fracture type output: It has been commented in Part I (see 3.5 Failure of the contacts, 

plasticity and damage) that it can be interesting to store the dominating fracture type 

when a particle is detached from the continuum. KRATOS permits representing any 
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variable that can be stored on the nodes; as it is explained on section 7.1.3 Post-

Process, GiD can represents in many ways, for example setting a range of colours.  

 

 Utility for the rotation visualization: When the rotation option is applied the results 

may vary for the groups of particles that now will be affected by the moments; also 

the single particles will rotate due to the moments and the results will vary indeed, 

though, from the original visualization it is not possible to determine whether it is a 

rotating or a not rotating particle. This has been solved in a very illustrative way in the 

CDEM program where we visualize a radial stroke in the particle that rotates 

accordingly to the rotation of the particle. This is an original solution for representing 

the 2D effect. For the 3D effect, the DEM team is developing an X, Y, Z local initial axis 

that will rotate following the motion of the particle.   

 

  

 

 

 

 

 

 

 

 

 

  

With rotation 

Without rotation 

Figure II. 20 Example of rotation visualization option in 2D (CDEM) 
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8. IMPLEMENTATION IN KRATOS  

The objective of this section is to introduce the interested lector to the basic structure of the 

DEM-Application that has been implemented in the KRATOS platform during the course of this 

work. Also a briefly explanation of the different files can be found for any developer interested 

in the functioning of KRATOS and the approach for the DEM-Application 

 

8 . 1 .  B a s i c  c om p u t a t i o n a l  s e q u e n c e  f or  a  d i s c r e t e  e l e m e n t  c o d e  

The first algorithm was proposed by Cundall  [4] and it doesn’t differ so much from the DEM-

Applciation one  . The code developed as most of the commercial codes that use the Discrete 

Element Methods, has a basic sequence calculation that is roughly based in the same steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loop Particles 

Search contacts 

Forces, Moments  evaluation 

Force and Moments recalculation 

Loop time Steps 

Integration:  Acceleration  Velocity  Displacement /Rotation 

Check critical time step 

Failure criteria Plasticity Damage 
Continuum  

Simulation  

Next particle 

Next Time Step 

Check for slipping 
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8 . 2 .  B a s i c  s t r u c t u r e  o f  t h e  D E M - A p p l i c a t i o n  

It has been commented in the section 5. KRATOS-multiphysics platform that the platform is 

oriented to implement FEM-based applications; some of the applications that are already 

implemented are: Incompressible fluid App., Structural App., PFEM App., Meshing App., 

ThermoMechanical App, kElectrostatic App., etc. However, a Discrete Element-based method 

has been also implemented, without problems, in the KRATOS platform. The differences are 

minor comparing structure of our application and the one from other applications because one 

of the principal recommendations when implementing in KRATOS is trying to keep the same 

format in order to be more accessible to the other developers. The other fundamental reason 

is to be able then to couple easily two different applications.  In that sense, a complete 

restructuration of the DEM-Application was made when the DEM-Application project started; 

there have been an intense work done on it to match the application to the dictated structure 

that would make it much more versatile 
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8 . 3 .   F o l d e r s  a n d  f i l e s  i n  t h e  a p p l i c a t i o n :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elements available 

Spheric_DEM-FEM_particle derives from 

Spheric_particle and has the extra features 

for the DEM_FEM problem. 

ProblemType 

A folder ready to copy to GiD and a 

problemtype generator that creates these 

packages with the new implementations 

CustomPython 

These files translate the strategies and the 

utilities defined in C++ language to be able 

to call them from python scripts. 

Schemes 

Two explicit integration schemes available, 

this clases derive from a base class 

integration_scheme.h 

Strategy 

The main script that calls subsequencially 

the shcemes and the functions on the 

elements during the loop. 

Utilities 

Geometric functions predefined, the 

neighbouring search function, the 

configuration of the particle, etc. 

Python Solver  

Python interface where the main function 

of the strategy such as Initialize or Solve 

are called. Adding the nodal variables. 

DEM_application 

Here the variables that will be used are 

created and registered to python and 

KRATOS. 
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8 . 4 .  E x p l a n a t i on  of  t h e  m a i n  f i l e s :  

Here, a brief explanation of the files and the main functions of the DEM-Application are 

presented with the objective to give a general overview of the capacities and functioning of 

the program. For the reader interested in the details of the code, developers and advanced 

users, in the annex the code for the DEM-application is attached. 

 A d v a n c e d  u s e r s :  8.4.1.

The advanced users of the KRATOS applications won’t enter inside the C++ encoding of the 

application but they would use the python files to code, with this basic language, some 

instructions that permit a rapid interaction and modifications with no needing to compile.  

When an engineer is running a case, frequently would have the necessity to apply an extra 

force to some particles of the domain, to change the material of several bodies, to extend the 

simulation time to eliminate, create or modify some existent discrete elements, etc. Most of 

these useful operations can be done in the following python scripts avoiding the needing to 

modify the created example with the graphical interface.  

Very often the user needs to modify punctually the coordinates of an element, its properties, 

eliminate one or create a new one. This can be done quickly modifying another file with the 

extension “mdpa”; this file is auto-generated by the graphical interface.  

*.mdpa: mdpa is the extension of the file that contains all the information of the ModelPart 

that GiD creates from the geometry, properties and conditions definition. This file is translated 

automatically by means of the GiD I/O module which will create the different elements and 

assign the corresponding properties and values of the elemental and nodal variables 

interpreting the information on this file. 

 

Nodes List: listing of every node with its three coordinates. 

 

Figure II. 21 MDPA example, nodes list.  
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Elements List: listing of every element with its connectivities (nodes assigned). 

 

Figure II. 22 MDPA example, list of elements.  

 

Nodal Data: for every variable predefined in GiD, the list of the nodes, the condition of fixity on 

the variable and the value is presented. 

 

Figure II. 23 MDPA example, example of nodal data.  

 

The advanced users of the application can find it useful to edit this file to change some options 

and determine special conditions manually without needing to modify the geometry or the 

properties using a graphical interface, such as GiD.  

 

PythonScript: This file, usually named as Script.py written in Python language is the main script 

that the users launch to trigger the calculation of the problem. This file is included in the 

ProblemType folder of the application that any user of the application (basic or advanced) 

would have linked with the Pre/Postprocessor software, for example GiD.  
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COMMENTS 

The first part defines the “includes” 

necessaries to link the KRATOS folders and 

the DEM-App. The model part is created 

and the input file name is captured. 

 

Here the solver strategy is chosen, the 

variables are added to the solver. 

 

Setting the buffer size: This determines the 

historical database of the problem. By 

setting the value of 0,1,2,3, etc. there will 

be access to the current value of the nodal 

variables, to the current and the previous 

time step value, to the current and the two 

preceding values, and so on.  

 

The values for the different options and 

variables that KRATOS would use in the 

application can be imported here in a very 

intuitive way. These values have been 

exported by GiD to the _var file: the 

integration scheme, the type of solution, 

type of damping, the time step, the output 

time step for the results, etc. 
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COMMENTS 

After the definition of several options and 

parameters the function Initialize() of the 

solver is called. 

Here also the time step is determined and 

the main loop is devised by a while 

structure. For every time step the function 

Solve() of the solver is executed. 

At some time steps the different results are 

exported to GiD, this way, they are 

available for the visualizaton them in the 

Postprocessor. 
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This code is totally manageable and easy to tune the different parameters.  The changes on 

this file don’t require recompilation. The reason of the usage of these two languages is that 

until a certain level of usage is interesting to interact with the application with easiness and, 

very important, without recompiling.  After this level, C++ is a more powerful language with 

much more possibilities with a more efficient use of the memory and better in terms of 

computing time.  

 

There are two ways to run this file:  

From Terminal: From the folder where the GiD case has been created, the so-called script.py 

can be triggered with the preceding instruction python (in Linux).  

 

 

 

 

Figure II.  1: Snapshot of the terminal in Linux.  

From GiD : (or other graphical interface) with the calculate button: 

 

 

 

 

 

Figure II.  2: Snapshot of the GiD interface when running a case.  

Solver: This file, named as Sphere_strategy.py in our DEM-App., is written also in Python 

language and it’s the last door to the core of the program written in C++ language.  

AddVariables (model_part): In this file the first definition is about which variables will be 

stored in the nodes for every time step and also the value of these variables would be available 

for different times depending on the buffer size selected.  

 

 

 

 

 

 

 

 

         Sphere_strategy.py

  



 

90 
 

Continuum modeling using the Discrete Element Method. 

Theory and implementation in an object-oriented software platform. 

 

 

Part II: KRATOS DEM-Application 

  

AddDofs (model_part): Also here the degrees of freedom are set here. These variables would 

accept initial conditions defined on GiD. 

 

 

 

 

 

 

 

The constructor of the class of the solver is defined then and some variables and options are 

defined here with the default values that the user sets. 

 

 

 

 

 

 

 

 

 

 

 

      

              

  

The Initialize (self): function is called by the script.py script as it has been seen. In that script 

the parameters for the calculation should be imported from GiD or set automatically. Now 

when initializing these values are stored into variables that are accessible in the different files 

of the application by means of the ProcessInfo (a data container in KRATOS). Also the Initialize 

function calls the Initialize function of the solver.  

After that the script stores the variables, usually related with options, defined here or in the 

Script.py to the ProcessInfo container. This container is accessible in the C++ files where value 

set by the user for these variables may be used in the calculation.  

 

 

 

 

 

 

 

 

 

 

 

         Sphere_strategy.py

  

 

 

 

 

 

 

         Sphere_strategy.py
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 D e v e l o p e r s  s t a g e  8.4.2.

In a higher level, the developers that want to implement or modify some functions of the 

application are required to have a certain level of knowledge in C++ programming language. In 

addition, some introduction or practice in KRATOS framework is necessary.  

Strategy: This file is called explicit_solver_strategy.h in our application; it is the principal 

framework of the application, it calls the different functions and utilities. 

Basically the Initialize() function realizes the first neighbouring search and initializes the 

elements. In addition, if the case has the indentation option activated (delta_option) or it is 

trying to simulate the continuum (continuum_simulation_option) the program will call the 

function that stores the results of this first neighbouring search to each particle. See section 

8.5.5 Initial Delta Option and 8.5.6 Continuum Simulating Option. 

 

 

 

Afterwards, the function Solve() is called from the Script.py, through the sphere_strategy.h. 

 

 

 

 

 

 

 

 

 

 

 

                            

explicit_solver_strategy.h 

 

 

 

 

 

 

 

                             

 

 explicit_solver_strategy.h  
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Each one of these functions is a sub function defined in the same Strategy file that they 

subsequently call the corresponding script that handles each operation. For example, in the 

strategy, the function SearchNeighbours ( ) is simply a recalling to the Neighbour_Calculator ( ) 

search function that is stored on the Utilities folder.  

 

 

 

After doing the operation we would have found all the neighbours for every particle and we 

can proceed with the Get Forces module. The Get Forces function initializes the parallelization 

for every particle defined in the model part. Then inside the loop over the particle, the 

function ComputeForces ( ), which is included in the element, is called.  

 

Parallelization: (see 8.5.1 Parallelization) 

Also the parallelization has to be defined here when a loop over the particles is performed. The 

parallelization implemented here is the OpenMP1. To parallelize or not is a decision on the user 

and it is reflected as an option that can be activated or disabled from GiD interface, also there 

is a variable to set the number of threads desired for the parallelization. 

As an example the function ApplyLocalDampings ( ), is presented here to see what the aspect 

of a loop is over all the particles parallelized by means of OpenMP. 

 

 

 

 

 

 

                                                           
1  OpenMP (Open Multiprocessing) is a application programming interface that supports multi-
platform shared memory multiprocessing programming in C, C++, and Fortran. 
OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface for 
developing parallel applications for platforms ranging from the standard desktop computer to the 
supercomputer.  

 

 

 

                          

 

    explicit_solver_strategy.h  

 

 

 

 

                          

   explicit_solver_strategy.h  

http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Desktop_computer
http://en.wikipedia.org/wiki/Supercomputer
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All these lines of code what are simply doing is to divide the number of elements in the model 

part where we have to apply some Damping in different sets that will be send separately to the 

selected number of threads. For every particle the specified function is calculated normally. 

Without loose of generality, in this script different elements can be used. When the model part 

is read, every particle is assigned to one of the elements defined in the Elements folder. The 

strategy will call the Calculate ( ), and other functions that are public and bridge to the private 

functions of the elements no matter which one it is. In this sense we can define several types 

of elements that should have the same entry functions but they can be specially defined in a 

different way in each element.  

 

Utilities folder: In our applications there are not a lot of utilities defined yet but they can be 

introduced separately to complete new features for the DEM application. Currently there is 

the neighbour_calculator.h utility which is a fundamental function for the DEM and will be 

detailed next. The GeometryFunctions.h is a file that would make easier the operations like 

transformation of coordinates, the vector and scalar product of vectors, the calculation of the 

norms in different spaces, etc. Also the particle_configure.h is present, which defines a set of 

inline functions necessaries in other parts of the code, such as distances between points, 

intersection of the particles, etc. Finally the create_and_destroy.h utility is basically used 

currently for the destruction of the particles that get out from a determined bounding box.  

These functions are utilities in the literal sense and will be explained in the section 8.5 Utilities 

for the DEM application. 

 

 

 

 

 

 

                          

 

 

 

    explicit_solver_strategy.h  
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Schemes folder: From the strategy, the ComputeIntermedialVelocityAndNewDisplacement ( ) 

function is called. An object of the class scheme is created; it would solve the integration in 

time of the movement. The created different schemes, which can be called from the strategies, 

solve the differential equations in time using an explicit method. Currently the Mid Point Rule 

and the Forward Euler are implemented and some high order schemes are being developed by 

collaborators in UCLV CIMNE classroom (CUBA), see section 6.2 Current development and 

collaboration. 

 

Elements folder:  Currently the application disposes of three elements, the Discrete_Element, 

the Spheric_particle and the Sheric_DEM-FEM_particle. The Discrete_Element.cpp/.h is directly 

derived from the KRATOS base class Element.cpp/.h, the main element for this application 

were the different elements of the applications derive from.  

 

 

 

 

 

 

 

 

 

 

 

 

Discrete_Element.cpp/.h: It has been derived to differentiate from the basic class. As a derived 

class it inherits all the functions and members defined in the base class. Here nothing new has 

been implemented yet but it is devised to have the characteristic definitions that define 

differently this element with respect to the basic one. Also this is the base of all the elements 

that the application would include.  

The functions that this element has are the same as the ones that base Element.h has. These 

functions are needed to be generic and very basic; in the strategy these are the only functions 

available to call for a generic element; once we are inside these functions in our derived 

element we can implement differently the functions to redirect to the new private functions 

that will be implemented new in our elements.  

Figure II.  3. Base element class and derivate classes  
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General functions (used in DEM App.) to access the elements: 

 

Initialize(), CalculateRightHandSide(), GetDofList(), 

InitializeSolutionStep(), Calculate(). 

 

Currently there are only two derived elements that are commented next: the 

Spheric_particle.cpp/.h and the Spheric_DEM-FEM_particle.cpp/.h which are elements 

designed to represent obviously spheres as a discrete body of analysis. In the future possibly 

the application will have other elements like Ellipsoid_particle or Tetrahedron_particle, etc. 

which will derive from the Discrete_Element.h but they probably would need a different 

definition of the functions to take in account the differences in geometry.  

 

Spheric_Particle.cpp/.h: This is the file of the DEM Application that has had more work done 

on it. The functions contained on it were completely written new with the help and the 

experience of other researchers and one of the collaborators, Feng Chun. (See section 

6.2.Current development and collaboration and section 9.Future of dem-application). Next, a 

list of the more important functions is presented. A brief explanation of them is also included:   

 

Entry functions: 

 void SphericParticle::Initialize():This function is an “entry” function, in the 

sense that is a function inherited from the base class; these functions are used to call 

subsequently private functions that are specific for the derived element. 

  void SphericParticle::InitializeSolutionStep(): This function will be called 

once, during the first iteration and will recall the SetInitialContacts() function.  

 void SphericParticle::CalculateRightHandSide(): This function calls different 

force and moment calculation functions. 

 void SphericParticle::Calculate(): The calculate function permits passing the 

name of a variable and depending on the value of this name we can implement 

different calculations or callings to other functions. It represents a useful way to enter 

to more complex functions of the elements by means of a simple generic one. In the 

DEM-Application, the function calculates either the critical time step or recalls the 

damping functions. 
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 Private functions: 

 void SphericParticle::SetInitialContacts():This function is called from 

InitializeSolutionStep()if the delta_option or continuum_simulation_option  are 

activated. It stores for the first search the neighbour that every particle has. This is 

needed for the continuum simulation and the indentation permitted in the generation 

as it will be explained in detail in section: 8.5  Utilities for the DEM application. 

 void SphericParticle::ComputeParticleContactForce()
1
:This function is 

possibly the most complex function in the application. It will be called from the 

strategy by means of the GetForce(); this one constructs a loop over the particles 

(parallelized) and for each one, it gets into this private function by means of  

CalculateRightHandSide(). It has the following parts: 

 

Initial operations: 

 Reading of the conditions and options activated. 

 Getting particle properties (including force and moment vectors) 

Loop over the neighbours: 

 Getting the neighbour properties 

 Evaluation of the equivalent parameters. 

 Calculating the relative distance and displacements with respect to the 

previous step. 

 Add the contributions of the rotational motion. 

 Evaluate the forces in local coordinates 

 Check for the failures 

 Apply viscous damping contact by contact 

 Transforming to global coordinates and adding up forces and moments. 

 Returning back the rotational moments 

 

 

 

 

 

                                                           
1
 The detailed implementation of the function can be found on the annex. 
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 void SphericParticle::ApplyLocalForcesDamping():This function is called from 

ApplyLocalDampings() in the strategy just after the GetForce() function. It opens a 

parallelized loop over the particle and enters, via the entry function 

Calculate(PARTICLE_LOCAL_DAMP_RATIO,...), which calls this function in the 

Spheric_Particle.cpp element class. The function applies a global damping to the 

forces. 

 void SphericParticle::ApplyLocalMomentsDamping():This function is called in 

the same way than the previous one; after applying the damping to the forces, if the 

rotation option is activated, the damping is applied to the moments. 

 void SphericParticle::ComputeParticleRotationSpring(): A similar 

proceeding to ComputeParticleContactForce() function is performed here. Given a 

relative rotation between two particles upon a contact, the rotational spring acts 

opposing this effect. The function is called by the same way than 

ComputeParticleContactForce(); if the rotation option is activated the function is 

calculated after the force calculations. 

 

Spheric_DEM_FEM_Particle.cpp/.h: As it has been commented repeatedly, in parallel with the 

implementation of the DEM Application, a DEM-FEM Application has been developed 

combining elements from the Structural Application and the elements from the DEM 

Application. The application combines these two elements in the same program but 

unfortunately when these elements have to interact between them they need some extra 

functions that the Spheric_Particle.cpp/.h doesn’t need to include. That is why in this case is 

useful to derive a class that would inherit all the basic functions of his base class and also the 

new ones exclusively for the interaction with the elements from the structural application. The 

functions are not detailed here as it is part of another application development and it has no 

further interest for our application by now.   
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8 . 5 .  U t i l i t i e s  f or  t h e  D E M  a p p l i c a t i o n  

In this section, the topics discussed are basically the troubleshooting of the problems and the 

approaches that have been done during the implementation of the DEM-Application. Since the 

main structure has already been explained roughly and it doesn’t differ so much from the 

classical DEM algorithms, the next points deal with special features that have been devised in 

order to have a versatile and efficient code with a strong robust core.  

 

 Efficiency: Parallelization of the code, Critical time and Virtual Mass method. 

 Visualization: Bounding Box, Create & Destroy utility, Fracture and Rotation Plotting. 

 Versatility: Initial Delta option, Continuum option, Extended Radius Search. 

The utilities implemented for efficiency and visualization can be considered as simple utilities 

introduced to the code while the three utilities for versatility implied a global restructuration 

of the code. After the explanation of these utilities a framework is attached where the logical 

process of the algorithm is exposed.  

 

 P a r a l l e l i z a t i o n  8.5.1.

A Discrete Element Method code without parallelization has a very limited use in practice; the 

reality is that for considerably large amount of particles (common simulations) the code needs 

to be parallelized to be competitive against other methods. The good thing of DEM is that the 

parallelization is quite easy to achieve; the method in its original concept is based on 

calculating each particle independently, i.e. from the forces that we obtain on a target particle, 

it evolves in an explicit time step scheme, independently from the other particles. In this sense 

the main processes in the computational scheme: force calculation, evolve motion, search 

neighbours can be parallelized. 

 

There exist two types of remarkable architectures for computers, the Shared Memory 

Machines and the Distributed Memory Machines. In computer science, Distributed 

Memory refers to a multiple-processor computer system in which each processor has its own 

private memory. Computational tasks can only operate on local data, and if remote data is 

required, the computational task must communicate with one or more remote processors. In 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Computer_memory
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contrast, a Shared Memory multi processor offers a single memory space used by all 

processors.   

 

There are two widespread techniques of parallelization suitable for C++ language, OpenMP 

and MPI, which can be implemented in KRATOS and are currently being introduced to DEM-

Application. The suitable technique for SMM is Open MP (Open Multiprocessing); it permits 

parallelizing the loops of the process by using compilation directives so the code runs in serial 

until the loop, runs the loop on parallel and then reverts back to serial. This can be done by 

splitting the loop and calculating each part by the different CPU of the same computer; 

OpenMP runs on a shared memory system so most part of the personal computers would 

permit parallelizing the calculation and saving time. OpenMP works fine if every unit step of 

the loop is independent from the others so can be split without problems; the DEM permits 

doing so. Next, an example of parallelization by OpenMP for the DEM-Application is presented. 

It is a partitioning of the loop over the particles for the different threads of the computer. 

 

 

 

 

 

 

 

 

 

 

                          

 

 

 

 

 

 

 

 

explicit_solver_strategy.h  

http://en.wikipedia.org/wiki/Shared_memory
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For DMM architecture the suitable 

technology is the MPI (Message Passing 

Interface); this would permit running a 

case, usually with large number of 

particles in a computer cluster where 

hundreds, thousands or more CPUs 

intervene in the calculation. With MPI the 

entire code is launched on each node 

which would store the data in its own 

memory. The passing of information and 

the synchronization of the calculation can 

be controlled. It is also possible to 

combine MPI with OpenMP to get the best of every technology. 

 

 C o m p u t e  C r i t i c a l  T i m e  +  V i r t u a l  M a s s  8.5.2.

 

Critical time 

This operation is done at the first time step, a loop over all the particles is done and for each 

one, we calculate it critical time step depending on the normal spring stiffness value. This 

function is very simple and it neither considers the tangential spring nor the rotational one. 

However there is an “experimentally determined” factor for reducing the critical time step 

when we introduce the rotation to the particles.  

 

This simple formula for the normal spring is always on the safety side because the K taken for 

the critical times step will be the maximum one, corresponding to the biggest particle. This K 

will appear only if the biggest sphere contacts another one with the same radius. The 

implemented expressions for the values of    can be found on the code on the annex. 

 

                                 With        

                              

 

Next, the simple calculation performed on the DEM-Application is presented: 

Figure II. 24 Cluster of Distributed Memory Machines  
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Calculate (DEM_DELTA_TIME, .... ) 

 

 

 

 

 

 

 

Please refer to section 2.3.2 Numerical stability of the method and critical time step in PART I, 

where the critical time step calculation is discussed. 

 

Virtual mass method 

The virtual mass method is a method implemented by Feng Chun (see section 6.2 Current 

development and collaboration) especially for the DEM-FEM_Application. It will be adapted 

also to the DEM-Application. It is a method appropriated for the quasi-static problems such as 

compression test, where the dynamic effects are no longer important. 

 

In DEM_FEM_Application, explicit method is adopted, so the stable time step of numerical 

system depends on the smallest time step among the critical time steps of FEM elements and 

DEM contacts. In an optimized case, the calculation of the critical time step should be done at 

several time steps as the contacts renew; In heterogeneous meshes the critical time step may 

vary seriously from one time step to the other and therefore it will increase the computation 

time dramatically. To solve the problem above mentioned the virtual mass method is adopted. 

By adjusting the mass of FEM elements and DEM particles, the critical time step of each 

contact entity, becomes the same (equal 1, for example). In that sense the critical time step is 

determined for all the simulation and won’t be a limitation of the problem calculation.  

 

During evolvement calculation, accelerations of particles are obtained according to virtual 

mass (real unbalanced forces divide virtual mass); in that sense the dynamic motion wouldn’t 

be correctly calculated and that’s why this method should only be used in static or quasi-static 

problems. 

 

 

 

                          

 

 

 

spheric_particle.cpp  



 

102 
 

Continuum modeling using the Discrete Element Method. 

Theory and implementation in an object-oriented software platform. 

 

 

Part II: KRATOS DEM-Application 

  

 B o u n d i n g  B o x  +  C r e a t e  a n d  D e s t r o y  8.5.3.

This utility is devised for dynamic system simulation where the movement of the particles in 

the domain it is dominant. The bounding box concept (differing from the one view on Part I 

section 2.1.2 Bounding Box/Sphere representation) it’s a surrounding box that includes all the 

particles present in the domain at the initial state. Whenever a particle gets out of that domain 

it is destroyed. In a dynamic problem is easy to happen that a particle goes far of the initial 

domain or moreover fades away indefinitely by the effect of the gravity; that would lead to an 

enlargement of the visualization domain and consequently problems in the display of the 

results. If this option is activated the domain will remain more or less fixed on the initial place 

and the particles that go far away are no longer of our interest.  

 

 P l o t t i n g  t h e  d i f f e r e n t  f r a c t u r e s 1 8.5.4.

In the DEM-Application it is possible to simulate the continuum as it has been explained and in 

the previous section where the details for the delta option, the continuum simulation and the 

extended search are exposed. These utilities configure the instrumentation that the code need 

for the simulation of continuous medium problems.  In these simulations the particles will pass 

from a “cohesive” state to a detached configuration when some failure criterion is reached. 

The objective of this utility for visualization is to identify particle by particle the cause of the 

detachment.  

 

In general, it may be difficult (or simply impracticable) to plot the fracture type (shear, tensile, 

etc)  for every contact pair; however, in a test with a large number of particles we may find 

useful to plot the dominant type of fracture that the detached particle suffered in its change 

from continuous to discontinuous state. The idea consists in determining an integer for the 

different failure types that could occur in a contact (can be defined by the user), namely the 

shear failure, tensile, Von misses criterion, etc. 

 

 

 

                                                           
1
 This utility is still in development and it’s not present on the DEM-Application yet. In the DEM-

Application the Contact Failure Id is active and used to distinguish whether a contact is “cohesive” or 
detached during the calculation but the exportation to the global failure mode of the particle depending 
on its contacts and the visualization is not implemented yet. 
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First of all clarify that depending on the fracture criterion chosen for the there would be 

different classifications of the fracture type. For example, we need only two categories if we 

simply consider independently  the tensile stress limit and shear stress limit. On the other hand 

if we set models like Von Misses or Rankine, which evaluate the global stress state or simply 

the principal one, we may not have distinction for type of failure.  

 

This is the proposed criteria for the DEM-App. (Falure of the contacts): 

Contact Failure Id = 0     Still attached, tensile and shear strength. 

Contact  Failure Id = 1  Generally detached:  Not initial neighbours, not same continuum group 

Contact Failure Id =  3      Tension failure, neither tensile strength applicable nor shear. 

Contact  Failure Id = 4      Shear failure, neither tensile strength applicable nor shear. 

Contact  Failure Id = 5     Von Misses failure criteria, etc. (can be defined by the user) 

 

Note that the Contact Failure Id =  2 is not defined. The idea is to reserve this identifier for the 

partially detached particles, the ones that neither the shear nor the tensile are dominant (for 

example). We will distinguish now between Contact Failure Id. and Particle Failure Id.        

 

Particle Failure Id = 0    All contacts are still attached. 

Contact  Failure Id = 1 Generally detached:  From a discontinuous group or surrounded by 
particles from other groups 

Contact Failure Id =  2      Partially detached. Some contacts detached. Not a dominant case. 

Contact Failure Id =  3      Tension failure dominant in the contacts. 

Contact  Failure Id = 4      Shear failure dominant in the contacts. 

Contact  Failure Id = 5     Other used-defined criteria. 

 

Some criterion has to be defined to determine when, in a target particle, it will be considered 

that the dominating fracture type is one of the occurring contact failures.  

 

 

 

  

Figure II. 25 Example of application for different failure types  

a) PARTIALLY DETACHED 

4 attached contacts 

1 tensile failure 

1 shear failure 

 

b) TENSILE FAILURE 

2 attached contacts 

3 tensile failure 

1 shear failure 

  𝑎  𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑡𝑎𝑐 𝑒𝑑   𝑏  𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡  
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 I n i t i a l  D e l t a  O p t i o n  8.5.5.

The geometry - mesh options have been exposed in section 7.2.2 New DEM-Application Pre-

Process where the GiD Sphere mesher has been explained. It is very common to mesh real 

case problems with meshers like this in order to fill a determined volume with some set of 

spheres with different radius (or not) depending on the meshing options. The GiD Sphere 

mesher is the one that is available in GiD but there are others developed for other groups that 

should be used for DEM-Application; in particular, UCLV (CUBA) CIMNE classroom is 

developing a sophisticated generator that will probably be linkable to GiD.  

Some of these generators, including the one from UCLV, may produce some indentation 

between particles created to fill a determined geometry. In the original DEM conception this 

would lead to considerable problems because these indentations would result into large forces 

and “explosions” due to the repulsive tendency of the particles. In our application, this issue 

has been taken into account and (if the option is activated) we let the particles have an initial 

passive indentation that doesn’t produce any force.  

 

The complexity of the implemented algorithm that allows doing so is due to the fact that we 

want this indentation to be remembered for the next eventual collisions with these two 

particles. This avoids gaining volume and energy from nowhere but involves pretty much the 

algorithm. A framework of this implementation is on 8.5.8 Framework for the Versatility 

utilities. 

. 

 

 

 

 

 

 

 

 

 

 

 

  
Figure II. 26 Initial Delta remembered in a contact  

t=0 
No contact! Contact now! 
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 C o n t i n u u m  S i m u l a t i n g  O p t i o n  8.5.6.

It has been commented in the part one that the tendency nowadays in DEM research is to find 

suitable ways to reproduce the behaviour of the continuum by outfitting the discrete particles 

with some resistant mechanisms. There have been many theories and approaches to this 

problem and there is not a unique accurate solution for the characterization of the properties 

that would differentiate the discrete element as a continuum simulating one. Regardless of the 

characterization we do, when we deal in a program with: non-cohesive discrete particles, 

continuum simulating particles (cohesive) and the possibility to change from one state to the 

other by means of the fracture, the algorithm that has to be devised become involved in a 

similar way that the Delta option does. This is also present in 8.5.8 Framework for the 

Versatility utilities. 

 

 N e i g h b o u r  S e a r c h  u t i l i t y  a n d  E x t e n d e d  R a d i u s  S e a r c h  8.5.7.

Neighbour Search.h: this is a basic function of our application and the implementation of it has 

been complex. The original function was much more basic; it consisted simply in a calling to 

other functions that are in the KRATOS libraries that can be used for any application. In 

KRATOS, many neighbouring search functions like: static bins, dynamic bins, Oct-tree, etc. are 

already implemented ready to be used in different applications. What was implemented new 

in this file is the generalization to a neighbouring search that permits including the options of 

some initial indentation between the particles and the continuum simulating option. 

Summarizing, the utility included in a C++ header file is the coupling of a basic search function 

with a set of loops and operations that permit the treatment of the Continuum Simulating 

problem and the Initial Delta utility.  

 

Apart from these utilities, it was interesting to give an extra feature to the basic search that is 

the possibility to consider a particle to be a neighbour of a target one even if there is a little 

separation between them. This is very frequent to happen with the sphere mesh generators; 

including the GiD mesher whose example is shown in Figure II. 27 Gap left by the mesher. 
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Developers from KRATOS have implemented a modification to the bins function that searches 

for the contacts introducing a new parameter that is the radius of search.  The original function 

took the radius of the target particle as the radius of search for neighbours and it used to find 

only the particles that where at a distance           (tangent or indented). Now, with this 

utility, the         becomes enlarged by some percentage.                          

Normally the extension is     . If the value needed is larger, it should be considered to 

revise the generation. This initial separation is stored and treated in the same way like the 

indentation in the Initial Delta option. 

  

  

Figure II. 27 Gap left by the mesher.  
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 F r a m e w o r k  f o r  t h e  V e r s a t i l i t y  u t i l i t i e s  8.5.8.

Initialize function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

This function is called only in the first iteration of the process. Here the neighbouring search is 

done with the extension over the radius. After the neighbours are set, this search is stored as 

the Initial Neighbours for every particle. After doing this, the values of the failure and the initial 

delta will be characterized.  

 

If two contacting particles belong to the same continuum group they are attached and they 

will have tensile strength so, the failure is set to 0. The particles that have different group or 

the ones that belong to the zero group are considered to have a failure type=1 (generally 

detached). The distance between the centres of these particles is compared against the sum of 

their radius and also the Initial Delta is stored for every Initial Neighbour for every target 

particle. 

 

 

 

 

 

 

 

Figure II. 28 Framework of the Initialize algorithm implemented 
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Main Solve function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These are the basic steps of the DEM:  Calculate Forces – Evolve Motion – Search Neighbours. 

When calculating the forces we have to check the Failure Id in order to apply tensile forces or 

not, shear forces or friction, etc... The Contact Failure Id is the flag (see section 8.5.4 Plotting 

the different fractures) used in order to distinguish between a continuum simulating treatment 

of the contact or an original DEM treatment. 

 

The forces that result from the calculation can overpass the limits established for the elastic 

regime; depending on the failure criterion defined, some contact can be considered detached. 

The fracture criteria implemented can be various and also more sophisticated codes can be 

implemented like damage or plasticity; most of these models have not been implemented yet. 

Regardless of the criterion, when we overpass the fracture limit (being tensile, shear or 

whatever stress) the contact has to change from a continuum simulating to a detached one. 

For every contact calculation we also need to recover the Initial Delta for the contacting pairs if 

it is applicable.  

 

The evolve motion process consists only in integrating the accelerations to get the 

displacements, it has been explained in Part I: 1.2.4 Integration of Motion Equations. 

Figure II. 29 Framework of the Solve algorithm implemented 
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The neighbouring search without any tolerance or extension is simply the search for the 

particles that are in a distance          . The extended radius shall be used only during the 

first step. The next framework explains the functioning of the neighbour_calculator.h file.  

 

Neighbour search algorithm: 

This utility file has been developed in a very robust and general way to permit the 

neighbouring search for different type of element; as an example, the DEM-FEM strategy calls 

the same function with another type of element without any modification. It is a C++ template 

class that permits the calling with several type definitions and different elements and 

dimensions (2D or 3D) for the dynamic bins search. As it has been commented it also permits a 

parameter to determine an extension for the radius of search. 

In order to deal with the Continuum option and Initial Delta utility the algorithm complicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 30 Framework of the neighbour calculator  utility implemented.  

 

     1 

     2 

     3 

     4 
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Old Neighbours storing: Before the New search is done, all the necessary information is 

stored on the Old_neighbours, Old_forces, Old_Failure_Id, and Old_Delta arrays.    

 

Initializations for the new search: The New search is performed and the New array 

parameters are initialized as zero for the forces and the deltas and equal to one for the 

failure id. 

 

Recovering data from Old and Initial Neighbours: For the New_Neighbours we want to 

recover the information that we already got if they were previous neighbours 

(Old_Neighbours), namely the forces and the failure id. From the Initial_Neighbours we 

will copy the Initial Delta data those New_Neighbours that coincide with an Initial 

Neighbour.  

 

Missing Old Neighbours: Finally we have to check for those Old_Neighbours that 

couldn’t be found by the ordinary search because they formed part from a continuum 

simulating contact and they were separated from the target particle due to a tensile 

strain. (Remember that the neighbour search for the main loop is without any radius 

extension). We need to do a push-back on the New_ Neighbours including these not 

detected neighbours with the corresponding Old information. This is explained is an 

illustrative figure after the framework.  

 

Example for the search algorithm: 
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Characteristics of the particles at time T=0: 

Id Continuum group Neighbour? Observations 

T 1 (blue) - The target particle has 4 neighbours: 2,3,4,5 

1 1 (blue) NO Not in extended radius. 

2 1 (blue) YES Same group – Cohesive. 

3 1 (blue) YES In extended radius. Same group – Cohesive. 

4 2 (red) YES Not same group – non cohesive. 

5 2 (red) YES Delta will be stored. Not same group – non cohesive. 

6 3 (green) NO - 

 

Characteristics of the particles at time T=T1: 

Id Continuum group Neighbour? Observations 

T 1 (blue) - The target particle has 4 neighbours: 2,3,5,6 

1 1 (blue) NO In extended radius. But search without extension on T>0 

2 1 (blue) YES Separated but remembered from previous neighbours. 

3 1 (blue) YES Remembered still attached by tensile strength. 

4 2 (red) NO Lost neighbour. 

5 2 (red) YES - 

6 3 (green) NO New neighbour. 

 

Take special attention to the particle number 2: The new search performed in T1 does not find 

particle 2 as a neighbour because these searches are without any extension of the radius. 

However, recalling                we recover the neighbours 2 and also 3 which was previously in the 

same condition. Particle number 1 for example is now closer than particle number 3 but it is 

not a new neighbour because it will only be if the contact is on the surface; although it is from 

the same continuum group it won’t be a cohesive neighbour because it is not an initial 

neighbour.  

 

 

 

 

 

 

 

     4 
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T 
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Time T2 >T1 
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Characteristics of the particles at time T=T2: 

Id Continuum group Neighbour? Observations 

T 1 (blue) - The target particle has 6 neighbours: 1, 2, 3*, 4, 5, 6** 

1 1 (blue) YES New contact. But non cohesive despite same group. 

2 1 (blue) YES Separated but remembered from previous neighbours. 

3 1 (blue) YES Tensile failure. *Not neighbour for the next step.  

4 2 (red) NO Neighbour again, contact on the surface 

5 2 (red) YES Fake neighbour**. Not contact force applicable. 

6 3 (green) NO Nothing new with respect to the previous step. 

 

The particle 1 is now a new neighbour but not with continuum properties (tensile or shear 

strength) because it doesn’t belong to the initial neighbour list. 

The particle number three was found as a recovered neighbour but during the check for the 

forces the tensile strength was exceeded and at this time the Failure Id changes for this 

contact being detached for the next steps. Although it belongs to the initial neighbour list, 

whenever this particle contacts again the target, the contact won’t be cohesive anymore due 

to the fracture Id stored.  

The particle number 5 is found in the common search because the particles intersect; however, 

when the force is calculated the program will read the value of the delta stored and would 

determine that there is no contact force. This particle will transmit a compressive force only 

when it comes back and hits the Target particle in a distance closer or equal the value of the 

delta. Contrarily the neighbour 4 collides normally when the surfaces intersect. 

 

Remark on versatility utilities: 

As a final remark on the versatility utilities it shall be commented that the use of these utilities 

should be restricted to the quasi-static problems where the contacts doesn’t change so much 

and the continuum simulating problem is present. However the application is designed in a 

general way so we can combine discrete elements with continuum simulating particles in 

dynamic or static conditions. Obviously if we make use of all these utilities the calculation 

increases the cost in CPU time and memory.  

 

Disabling the utilities with a simple switch ON/OFF is crucial in order to skip complex 

calculations in the cases that they are not necessary. 
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9. FUTURE OF DEM-APPLICATION 

9 . 1 .  F u r t h e r  d e v e l o p m e n t  of  t h e  D E M - A p p l i c a t i on  

Fortunately the Discrete Element Method has a remarkable interest nowadays in CIMNE as 

well as in many research institutions. A lot of research is being done in the different fields 

where the DEM is applicable. One of the fields which the DEM has to tend now and is of our 

interest in CIMNE is to simulate correctly the continuum behaviour in elasticity using a local 

rigorous characterization of the contacts and get good results for the tracking of the fracture 

and the post-fracture behaviour.  

 

Regarding the DEM-Application, the team have a considerable list of new features and 

modifications to introduce to the application which is in fact just the foundation of an 

ambitious project. To name some examples:  

 

 Pre/Post: Applied forces condition should be introduced to the ProblemType, also 

some tracking method for the rotations in 3D. 

 Constitutive modelling:  models of plasticity and elastic damage should be introduced. 

 Elements: New elements, ellipsoids, tablet type, polyhedral shapes such as cubes, 

prisms, tetrahedron, clusters of spheres and DEM blocks concept. 

 Non-DEM bodies: rigid boundaries and objects 

 Integration: high order scheme for the integration of the motion laws. 

 Neighbouring search: Advanced search schemes with linear complexity. Neighbouring 

search feasible for difficult shapes. 

 Parallelization: MPI and OpenMP optimized for the principle functions as the force 

calculation, the neighbour search and the evolving motion. 

 Generation: a high-quality generator is needed to mesh complex geometries with high 

order of compacity. Also links for the mesh to the advanced technology such as 

tomography.  

 Revision: Checking of the implemented functionalities, cleaning the code, improving 

the efficiency of the programming.  
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Part II: KRATOS DEM-Application 

  

9 . 2 .  P a r a l l e l  r e s e a r c h  w i t  D E M / D E M - A p p l i c a t i o n  i n  C I M N E  

In this section I am pleased to introduce the work that other researchers in CIMNE are doing in 

the field of the Discrete Element Methods. Some of them will use the DEM-Application as a 

base; they also collaborate on the development of the DEM itself or customize some utilities 

for their particular application.  

 

PhD candidates Javiera Valdivia, Nerea  Mangado 

Biomedical application for DEM: bone regeneration in prosthesis interface 

 
The main specific goal is the development of new computational models using Discrete 

Element Methods for the analysis of the bone-implant-living-interfaces and prostheses 

mechanics. This modelling is of high concern in order to get a realistic response of the bone 

integration with the prostheses stems. The objective of these simulations is to help medical 

doctors to predict the long-term evolution of bones and to detect eventual pathologies. 

 

DEM-Application will develop a module that would Include some biological reaction 

functions depending on time and some spurs to represent the behaviours of the bone 

regeneration cells on an interface bone-prosthesis that would be also simulated with 

discrete elements as a porous media. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Keywords:  Bone, Prostheses,  Biomedics. 

 

 

 

Figure II. 31 Bone regeneration in the bone-prosthesis interface 
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PhD candidate Chun Feng 

DEM  &  FEM coupling: landslide simulation 

 
Landslide is one of the most serious geological disasters in the world. To simulate the 

evolvement of landslide well, the DEM & FEM coupled method should be introduced into 

KRATOS. For the sliding body, the DEM should be used, while for the bedding rock, the FEM 

should be adopted. My work in CIMNE is to create the DEM & FEM Application, program the 

coupling strategy, and make it possible to simulate the DEM & FEM coupled problems. So 

collaborating with DEM KRATOS team is crucial. 

  

 

 
 
 
 
 
 

Keywords:  Landslide, DEM-FEM coupling, bedding rock.  

 

CIMNE researcher Ferran Arrufat 

DEM, drilling simulations 

 
As global demand for energy pushes oil 

operators into increasingly challenging 

environments, the need of a high level 

assurance to drill at minimum risk is a 

must. Discrete element models had been 

rarely used to simulate drill bits, but with 

a good definition of the considered 

material properties, it is possible to 

simulate the rotation of the bottom hole 

assembly through the fractured ground. 

Keywords:  Drilling, Tool-Rock Interaction, DEM applications.  

 

 

Figure II. 32 Rockfall simulation. DEM particles on a FEM domain  

Figure II. 33 Interaction of drilling tool with  

DEM-discretized rocky media. 
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PhD Candidate Victor Eduardo 

DEM Explosion 

 
To estimate the structural damage caused by the detonation, multiple numerical simulations 

have been performed varying the quantity of explosive load and the distance between the 

structure and the detonation for each scenario. Afterwards, compression tests were 

performed in the resulting structure, getting its maximum load capacity and stiffness after 

the detonation in order to quantify the damage. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Keywords:  Explosion, Structural damage,  DEM applications.  

 

Apart from these parallel works, the DEM-Application team has the collaboration of many 

researchers and institutions that have been commented. In addition, some students from the 

Civil Engineering school of Barcelona have recently joined us, expanding the DEM-Application 

team of KRATOS. 

 

 

Figure II. 34 Simulation of an explosion on a wall  
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Conclusions 

Regarding to the Discrete Element Method it has to be mentioned that it is an excellent 

method when facing the simulation of the discontinuous media problems. Not only for its 

theory conception which is so adequate for the dynamic problems but also from a numerical 

and computational point of view; the use of explicit methods combined with essence of the 

DEM that permits considering each particle independent from the others, allows implementing 

a powerful code that is almost completely parallelizable and makes the method have no 

competitor in this field. 

Contrarily its usage when dealing with simulations of the continuum is still doubtful. The great 

expectations that this method has in this field is the great capacity to track the fracture and 

simulate the frictional behaviour of the post fractured areas where the discrete particles 

generated would be well described with the DEM. However the characterization of the 

parameters for the correct behaviour of the discrete particles when simulate the continuum is 

neither unique nor universally known; simply there are good approaches for both the elastic 

behaviour and for the plastic or failure stage in particular cases.  

 

Concerning to KRATOS, say that it is a magnificent platform for any numerical method 

application. It has been conceived as a framework for FEM-base codes but it has represented 

an unsurpassable platform for the DEM-Application. A part from the utilities and the libraries 

that KRATOS provide, the possibility of coupling different applications is one of its greatest 

pros. The DEM-FEM application is an example of this versatility; the application combines the 

DEM-Application with the Structural Application (also from KRATOS) without any compatibility 

problem and with high facility. Another excellent feature of KRATOS is that it is an open source 

free platform that can be used by anyone and anywhere; this will definitely lead this complete 

platform to a great success. 

 DEM-Application is still on development; what is now available is a basic program that can be 

incorporated to a graphic interface such as GiD that permits doing basic simulations of DEM 

with spherical and circular elements for continuous and discontinuous media problems. This 

work has represented the beginning of the development for this ambitious program that have 

been founded on a very wide and versatile structure to permit a large set of possibilities that 

can be implemented for anyone interested in joining the DEM-Application team.  
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Final Personal Comments 

Justification of the document presented 

 

This work has claims to be a guide for engineers and developers interested in the 

implementation of a code for the Discrete Element Method, specially the DEM-Application 

developed in CIMNE. The code is explained only to a certain detail to understand the basic 

structure and the capabilities and reasons to be of the utilities and parts of the program; 

however, a detailed description of the code is not given for two basically reason. This first one 

is because the objective of the work is not to be a manual of usage of the code (which is not 

closed yet) but a guide as it is already said. Secondly, mention that the code is in a constant 

development stage; from the first week of the redaction of this work and also in the very last 

day, changes have been done daily in the program. This has introduced also difficulties to the 

redaction of the document since a lot of figures and information has had to be updated.  

 

What’s next? 

 

Although the application presents a good base for new implementations in a developer’s stage 

and also a basic program for the DEM continuous and discontinuous simulations, it is not a 

“long term release” version. This means that now the program needs to enter a stage where it 

has to be done loads of validations of accuracy of the program, tests for the robustness of the 

code, solving of bugs that would appear improvement of the efficiency and the use of 

programming languages, etc. There is still a hard work to do to consolidate what it has been 

implemented in this first stage. 

 

Not only a final undergraduate thesis 

 

This work has represented the final thesis for the author’s undergraduate course in the 

E.T.S.E.C.C.P.B, school of civil engineering. Fortunately the DEM-Application and the present 

document itself are of the interest of many other students and researchers.  
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The DEM is a method that is trendy nowadays and there are a lot of research institutions 

interested on it and also students and PhD candidates. During the implementation of the 

program the KRATOS team received the collaboration from many other researchers, not only 

from CIMNE but also, as it has been commented, from Cuba and China. This work has been 

used for all of them for their respective thesis or works, combining different methods with the 

DEM from KRATOS or sharing technology to improve the applications. Also, recently new 

undergraduate students have joined the DEM-Application team and they have started helping 

in the development and validation of this program; they would probably extend the contents 

of this work and code new features to the program as a part of the respective final thesis of 

their courses. 

   

Personal challenges 

 

The Implementation of a DEM program requires a lot of knowledge that has been completely 

new for me.  First of all, regarding the theory of DEM I had just a rough idea of the method so 

it has been a learning process while reviewing the state of art of the method and studying the 

different approaches and the last advances in the field.  

Apart from the theory of DEM, it has been a challenge for me to learn from scratch the 

programming languages that have permitted me implementing the method: C++ and Python. 

Moreover, the KRATOS framework itself is a work tool that requires some training and practise, 

especially if the user background is not computer science. Finally, although I knew how to 

manage the GiD Pre-Processor in a user stage, the development of a new Problem Type gave 

me the possibility to use GiD as an advanced user.  

I consider that this learning process has been so satisfactory for me at the same time that I’ve 

realised that the C++ or an equivalent programming language are useful tools that any 

engineer should know. 

 

Personal satisfaction 

It only remains to the author to express his personal satisfaction for the work completed 

during this period being part of the KRATOS team in CIMNE. The DEM-Application is just the 

beginning of an ambitious project that the current developers will be pleased to keep forming 

part of it, completing and improving the current program. 
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Annex: Code Implemented 

As an annex part of the code implemented for the DEM-Application is attached. The files 

needed to compile and run the code are organized in folders and subfolders in the general 

KRATOS directory that can be found online in the following repository:  

https://svn.cimne.upc.edu/p/kratos/kratos 

 

The KRATOS files are updated daily whenever a developer uploads any modification. The code 

is completely free and open-source; therefore you can feel free to download it, use the 

available ProblemTypes and customize your own application. Please visit http://kratos-

wiki.cimne.upc.edu for further information. 

 

Since the DEM-Application itself has a lot of files and they depend also on many others from 

the KRATOS Kernel (main common files), in this annex just a few of the most important files 

from the DEM-Application are presented; they have been specially coded for the DEM-

Application and can include all the utilities, the strategies and the important functionalities 

that have been commented during this work. It can serve as an auxiliary material for the 

lecture of the Part II for the readers interested in the implementation and the possible 

developers or advanced users.  

 

The attached files are: 

 

FOLDER FILES 

Custom Elements shperic_particle.cpp 

Custom ProblemType script.py 

Custom Strategies explicit_solver_strategy.h, constant_average_acc_scheme.h 

Custom Utilities neighbours_calculator.h, particle_configure.h 
Python Scrips sphere_strattegy.py 

 

  

https://svn.cimne.upc.edu/p/kratos/kratos
http://kratos-wiki.cimne.upc.edu/
http://kratos-wiki.cimne.upc.edu/
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// System includes
#include <string>
#include <iostream> 

// External includes 

// Project includes
#include "includes/define.h"
#include "spheric_particle.h"
#include "custom_utilities/GeometryFunctions.h"
#include "DEM_application.h"

namespace Kratos
{
     
      SphericParticle::SphericParticle( IndexType NewId, GeometryType::Pointer pGeometry) : 

DiscreteElement(NewId, pGeometry) {}
      
      SphericParticle::SphericParticle( IndexType NewId, GeometryType::Pointer pGeometry,  

PropertiesType::Pointer pProperties)
      : DiscreteElement(NewId, pGeometry, pProperties)  
      {}
       
      SphericParticle::SphericParticle(IndexType NewId, NodesArrayType const& ThisNodes)
      : DiscreteElement(NewId, ThisNodes) 
      {}
           
      Element::Pointer SphericParticle::Create(IndexType NewId, NodesArrayType const& ThisNodes, 

PropertiesType::Pointer pProperties) const
      {
         return DiscreteElement::Pointer(new SphericParticle(NewId, GetGeometry().Create( ThisNodes ), 

pProperties) );
      } 
      
      /// Destructor.
      SphericParticle::~SphericParticle(){}
      
      void SphericParticle::Initialize(){

        KRATOS_TRY

        mDimension = this->GetGeometry().WorkingSpaceDimension();

        double density      = GetGeometry()(0)->FastGetSolutionStepValue(PARTICLE_DENSITY);
        double radius       = GetGeometry()(0)->FastGetSolutionStepValue(RADIUS);
        double& mass        = GetGeometry()(0)->FastGetSolutionStepValue(NODAL_MASS);

        double & Inertia         = GetGeometry()(0)->FastGetSolutionStepValue(PARTICLE_INERTIA);
        double & MomentOfInertia = GetGeometry()(0)-

>FastGetSolutionStepValue(PARTICLE_MOMENT_OF_INERTIA);

        mContinuumGroup     = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_CONTINUUM);
        mFailureId          = !(mContinuumGroup);

        if(mDimension ==2)
        {
            mass     = M_PI * radius * radius * density;
            
            mRealMass = mass;

            Inertia = 0.25 * M_PI * radius * radius * radius  * radius ;

            MomentOfInertia = 0.5 * radius * radius;

CUSTOM ELEMENTS - spheric_particle.cpp
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        }
        else
        {
            mass     = 4.0 / 3.0 * M_PI * radius * radius * radius * density;

            mRealMass = mass;

            Inertia = 0.25 * M_PI * radius * radius * radius  * radius ;

            MomentOfInertia = 0.4 * radius * radius;
        }

    
        KRATOS_CATCH( "" )

      }

  
      void SphericParticle::CalculateRightHandSide(VectorType& rRightHandSideVector,ProcessInfo& 

rCurrentProcessInfo){

        ComputeParticleContactForce(rCurrentProcessInfo);

        if( (rCurrentProcessInfo[ROTATION_OPTION] != 0) && (rCurrentProcessInfo[ROTATION_SPRING_OPTION] 
!= 0) )

        {
              ComputeParticleRotationSpring(rCurrentProcessInfo);
        }
  
      }
      void SphericParticle::EquationIdVector(EquationIdVectorType& rResult, ProcessInfo& 

rCurrentProcessInfo){}
      void SphericParticle::MassMatrix(MatrixType& rMassMatrix, ProcessInfo& rCurrentProcessInfo)
      {
          
          double radius = GetGeometry()(0)->GetSolutionStepValue(RADIUS);
          double volume =   1.333333333333333*M_PI*radius*radius*radius;
          double density = GetGeometry()(0)->GetSolutionStepValue(PARTICLE_DENSITY);
          rMassMatrix.resize(1,1);
          rMassMatrix(0,0) = volume*density;
        
      }

      void SphericParticle::SetInitialContacts(int case_opt) //vull ficar que sigui zero si no son veins 
cohesius.

      {

          // DEFINING THE REFERENCES TO THE MAIN PARAMETERS

          
           ParticleWeakVectorType& r_neighbours             = this->GetValue(NEIGHBOUR_ELEMENTS);
  
           this->GetValue(PARTICLE_INITIAL_DELTA).resize(r_neighbours.size());

           ParticleWeakVectorType& r_initial_neighbours     = this-
>GetValue(INITIAL_NEIGHBOUR_ELEMENTS);

           unsigned int i=0;
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           //SAVING THE INITIAL NEIGHBOURS, THE DELTAS AND THE FAILURE ID

           for(ParticleWeakIteratorType_ptr ineighbour = r_neighbours.ptr_begin();  
   //loop over the neighbours and store into a initial_neighbours vector.

            ineighbour != r_neighbours.ptr_end(); ineighbour++){

              if (this->Id() != ((*ineighbour).lock())->Id() ){

                   array_1d<double,3> other_to_me_vect = this->GetGeometry()(0)->Coordinates() - 
((*ineighbour).lock())->GetGeometry()(0)->Coordinates();

                   double distance                     = sqrt(other_to_me_vect[0] * other_to_me_vect[0] 
+

                                                         other_to_me_vect[1] * other_to_me_vect[1] +
                                                         other_to_me_vect[2] * other_to_me_vect[2]);

                    double radius_sum                   = this->GetGeometry()(0)-
>GetSolutionStepValue(RADIUS) + ((*ineighbour).lock())->GetGeometry()(0)-
>GetSolutionStepValue(RADIUS);

                    double initial_delta                = radius_sum - distance;

                    int r_other_continuum_group = ((*ineighbour).lock())->GetGeometry()(0)-
>GetSolutionStepValue(PARTICLE_CONTINUUM);

                        /* this loop will set only the 0 (contunuum simulating case) to the initial 
neighbours. The force calculator will change this

                         * values depending of the type of failure as it is describre here:
                         *
                         *   mContactFailureId values:
                         *      0 := Still a continuum simulating contact
                         *      1 := General detachment (no initial continuum case: non continuum 

simulating particles or particles from diferent continuum group.)
                         *      2 := Partially detached
                         *      3 := tensile case
                         *      4 := shear case
                         *      5 :=von Misses.....M: define new cases...
                         */

                        if( (r_other_continuum_group == mContinuumGroup) || ( fabs(initial_delta)>1.0e-6 
) ) 

                        //THESE ARE THE CASES THAT NEED TO STORE THE INITIAL NEIGHBOURS
                        {

                            r_initial_neighbours.push_back(*ineighbour);

                            this->GetValue(PARTICLE_INITIAL_DELTA)[i]  =   initial_delta; 
                            this->GetValue(PARTICLE_CONTACT_DELTA)[i]  =   initial_delta;

                            if (r_other_continuum_group == mContinuumGroup && (mContinuumGroup != 0) ) 
{this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[i]=0; }

                            else                                             this-
>GetValue(PARTICLE_CONTACT_FAILURE_ID)[i]=1; 

                                                                                                                             

                        } // FOR THE CASES THAT NEED STORING INITIAL NEIGHBOURS

                        else mFailureId=1;      

                        i++;
                    
               }//if I found myself.

            } //end for: ParticleWeakIteratorType ineighbour
      }//SET INITIAL CONTACTS.
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        void SphericParticle::ComputeParticleContactForce(const ProcessInfo& rCurrentProcessInfo )

        {

            KRATOS_TRY
      
            ParticleWeakVectorType& r_neighbours             = this->GetValue(NEIGHBOUR_ELEMENTS);

    vector<double>& r_VectorContactInitialDelta         = this-
>GetValue(PARTICLE_CONTACT_DELTA);

            // PROCESS INFO

            const array_1d<double,3>& gravity   = rCurrentProcessInfo[GRAVITY];

            double dt                           = rCurrentProcessInfo[DEM_DELTA_TIME];
            int damp_id                         = rCurrentProcessInfo[DAMP_TYPE];
            int type_id                         = rCurrentProcessInfo[FORCE_CALCULATION_TYPE];
            int rotation_OPTION                 = rCurrentProcessInfo[ROTATION_OPTION]; 

            int case_OPTION                     = rCurrentProcessInfo[CASE_OPTION];
            bool delta_OPTION;
            bool continuum_simulation_OPTION;

                switch (case_OPTION) {
                    case 0:
                        delta_OPTION = false;
                        continuum_simulation_OPTION = false;
                        break;
                    case 1:
                        delta_OPTION = true;
                        continuum_simulation_OPTION = false;
                        break;
                    case 2:
                        delta_OPTION = true;
                        continuum_simulation_OPTION = true;
                        break;
                    case 3:
                        delta_OPTION = false;
                        continuum_simulation_OPTION = true;
                        break;
                    default:
                        delta_OPTION = false;
                        continuum_simulation_OPTION = false;
                }
  
            // GETTING PARTICLE PROPERTIES

            int continuum_group     = mContinuumGroup;

            double Tension          = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_TENSION);
            double Cohesion         = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_COHESION);
            double FriAngle         = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_FRICTION); 
            double Friction         = tan( FriAngle / 180.0 * M_PI);

            double radius               = this->GetGeometry()[0].GetSolutionStepValue(RADIUS);
            double critic_damp_fraction = this->GetGeometry()[0].GetSolutionStepValue(VISCO_DAMP_COEFF);
            double mass                 = mRealMass;

            double young                = this->GetGeometry()[0].GetSolutionStepValue(YOUNG_MODULUS);
            double poisson              = this->GetGeometry()[0].GetSolutionStepValue(POISSON_RATIO);

            array_1d<double,3>& force           = this->GetGeometry()[0].GetSolutionStepValue(RHS);.
   

            array_1d<double,3> applied_force    = this->GetGeometry()
[0].GetSolutionStepValue(APPLIED_FORCE); 

            force  = mass*gravity + applied_force;
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            array_1d<double, 3 > & mRota_Moment = this->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_MOMENT);

            
            size_t iContactForce = 0;
            

            for(ParticleWeakIteratorType neighbour_iterator = r_neighbours.begin();
            neighbour_iterator != r_neighbours.end(); neighbour_iterator++)
            {
             // GETTING NEIGHBOUR PROPERTIES

                double other_radius                 = neighbour_iterator->GetGeometry()(0)-
>GetSolutionStepValue(RADIUS);

                double other_critic_damp_fraction   = neighbour_iterator->GetGeometry()(0)-
>GetSolutionStepValue(VISCO_DAMP_COEFF);

                double equiv_visc_damp_ratio        = (critic_damp_fraction + 
other_critic_damp_fraction) / 2.0;   

                double other_young                  = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(YOUNG_MODULUS);

                double other_poisson                = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(POISSON_RATIO);

                double other_tension                = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_TENSION);

                double other_cohesion               = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_COHESION);

                double other_FriAngle               = neighbour_iterator->GetGeometry()
[0].GetSolutionStepValue(PARTICLE_FRICTION);

                // CONTINUUM SIMULATING PARAMETERS:

                double initial_delta = 0.0;
                double CTension = 0.0;
                double CCohesion = 0.0;

              
                array_1d<double,3>& mContactForces  = this->GetValue(PARTICLE_CONTACT_FORCES)

[iContactForce];

     
                if (continuum_simulation_OPTION && (continuum_group!=0) && (this-

>GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce]==0))
                {
                   
                    CTension  = (Tension + other_tension)   * 0.5;
                    CCohesion = (Cohesion + other_cohesion) * 0.5;              
                }

                if( delta_OPTION && (iContactForce < r_VectorContactInitialDelta.size()) )
                {
                    initial_delta = r_VectorContactInitialDelta[iContactForce];
                }

                // BASIC CALCULATIONS

                array_1d<double,3> other_to_me_vect = this->GetGeometry()(0)->Coordinates() - 
neighbour_iterator->GetGeometry()(0)->Coordinates();

                double distance                     = sqrt(other_to_me_vect[0] * other_to_me_vect[0] +
                                                      other_to_me_vect[1] * other_to_me_vect[1] +
                                                      other_to_me_vect[2] * other_to_me_vect[2]);

                double radius_sum                   = radius + other_radius;

                double indentation                  = radius_sum - distance - initial_delta; 
                double equiv_radius     = 2* radius * other_radius / (radius + other_radius);
                double equiv_area       = M_PI * equiv_radius * equiv_radius;
                double equiv_poisson    = 2* poisson * other_poisson / (poisson + other_poisson);
                double equiv_young      = 2 * young * other_young / (young + other_young);
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                Friction                = tan( (FriAngle + other_FriAngle) * 0.5  / 180.0 * M_PI);
            
                double kn               = M_PI * 0.5 * equiv_young * equiv_radius; 
                double ks               = kn / (2.0 * (1.0 + equiv_poisson));

                // FORMING LOCAL CORDINATES

                double NormalDir[3]           = {0.0};
                double LocalCoordSystem[3][3] = {{0.0}, {0.0}, {0.0}};
                NormalDir[0] = other_to_me_vect[0];   
                NormalDir[1] = other_to_me_vect[1];
                NormalDir[2] = other_to_me_vect[2];
                GeometryFunctions::ComputeContactLocalCoordSystem(NormalDir, LocalCoordSystem);

                // VELOCITIES AND DISPLACEMENTS

                array_1d<double, 3 > vel            = this->GetGeometry()(0)-
>GetSolutionStepValue(VELOCITY);

                array_1d<double, 3 > other_vel      = neighbour_iterator->GetGeometry()(0)-
>GetSolutionStepValue(VELOCITY);

                double DeltDisp[3] = {0.0};
                double DeltVel [3] = {0.0};

                DeltVel[0] = (vel[0] - other_vel[0]);
                DeltVel[1] = (vel[1] - other_vel[1]);
                DeltVel[2] = (vel[2] - other_vel[2]);

                //DeltDisp in global cordinates

                DeltDisp[0] = DeltVel[0] * dt;
                DeltDisp[1] = DeltVel[1] * dt;
                DeltDisp[2] = DeltVel[2] * dt;

                    if ( rotation_OPTION == 1 )
                    {
                       
                        double velA[3]   = {0.0};
                        double velB[3]   = {0.0};
                        double dRotaDisp[3] = {0.0};

                        array_1d<double, 3 > AngularVel       = this->GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

                        array_1d<double, 3 > Other_AngularVel = neighbour_iterator->GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

 
                        double Vel_Temp[3]       = {      AngularVel[0],       AngularVel[1],       

AngularVel[2]};
                        double Other_Vel_Temp[3] = {Other_AngularVel[0], Other_AngularVel[1], 

Other_AngularVel[2]};
                        GeometryFunctions::CrossProduct(Vel_Temp,             LocalCoordSystem[2], 

velA);
                        GeometryFunctions::CrossProduct(Other_Vel_Temp, LocalCoordSystem[2], velB);

                        dRotaDisp[0] = -velA[0] * radius - velB[0] * other_radius;
                        dRotaDisp[1] = -velA[1] * radius - velB[1] * other_radius;
                        dRotaDisp[2] = -velA[2] * radius - velB[2] * other_radius;
                        //////contribution of the rotation vel
                        DeltDisp[0] += dRotaDisp[0] * dt;
                        DeltDisp[1] += dRotaDisp[1] * dt;
                        DeltDisp[2] += dRotaDisp[2] * dt;

                    }//if rotation_OPTION

                    double LocalDeltDisp[3] = {0.0};
                    double LocalContactForce[3]  = {0.0};
                    double GlobalContactForce[3] = {0.0};
                    //double GlobalContactForceOld[3] = {0.0};
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                    GlobalContactForce[0] = mContactForces[0];   
                    GlobalContactForce[1] = mContactForces[1];
                    GlobalContactForce[2] = mContactForces[2];

                    GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, DeltDisp, LocalDeltDisp);
                    GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, GlobalContactForce, 

LocalContactForce);

             // FORCES
                 
                 if ( (indentation > 0.0) || (this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce] 

== 0) )  
// This conditions take in acount the fact that the particles must remember their 
initial delta's between initial neighbours.

                   
                    {
                        LocalContactForce[0] += - ks * LocalDeltDisp[0];  // 0: first tangential
                        LocalContactForce[1] += - ks * LocalDeltDisp[1];  // 1: second tangential
                        LocalContactForce[2] += - kn * LocalDeltDisp[2];  // 2: normal force
                    }

                    //ABSOLUTE METHOD FOR NORMAL FORCE (Allows non-linearity)

                    if(type_id == 2)  
                        //  1--- incremental; 2 --- absolut i amb el cas hertzià
                    {
                        if(indentation > 0.0)
                        {
                            LocalContactForce[2] = kn * pow(indentation, 1.5);
                       }
                        else
                        {
                            LocalContactForce[2] = kn * indentation;
                        }
                    }
                
              // TENSION FAILURE
                   
                        if (-LocalContactForce[2] > (CTension * equiv_area))  
                        {
                            LocalContactForce[0]  = 0.0;
                            LocalContactForce[1]  = 0.0;
                            LocalContactForce[2]  = 0.0;

    
                            this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce] = 3.0;  //tensile 

failure case.                        
                        }

                        // SHEAR FAILURE

                        else
                        {
                            double ShearForceMax = LocalContactForce[2] * Friction + CCohesion * 

equiv_area;  // MOHR COULOMB MODEL.
                            double ShearForceNow = sqrt(LocalContactForce[0] * LocalContactForce[0]
                                                 +      LocalContactForce[1] * LocalContactForce[1]);  

                            //Not normal contribution for the tensile case

                            if(LocalContactForce[2] < 0.0)
                            {
                                ShearForceMax = CCohesion * equiv_area;
                            }

                            //No cohesion or friction, no shear resistance

                            if(ShearForceMax == 0.0)
                            {
                                LocalContactForce[0] = 0.0;
                                LocalContactForce[1] = 0.0;
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                            }
                            
                            else if(ShearForceNow > ShearForceMax)    
                            {
                                LocalContactForce[0] = ShearForceMax / ShearForceNow * 

LocalContactForce[0];
                                LocalContactForce[1] = ShearForceMax / ShearForceNow * 

LocalContactForce[1];

                               this->GetValue(PARTICLE_CONTACT_FAILURE_ID)[iContactForce] = 4.0;                               
                            }
                        }

                // VISCODAMPING (applyied locally)

                        if (damp_id == 2 || damp_id == 3 )
                        {
                            double visco_damping[3] = {0,0,0};
                          
                            if( abs(equiv_visc_damp_ratio * DeltVel[2]) > abs(LocalContactForce[2]) )   

{visco_damping[2]= LocalContactForce[2]; }
                            else { visco_damping[2]= equiv_visc_damp_ratio * DeltVel[2]; }

                            LocalContactForce[0] = LocalContactForce[0] - visco_damping[0];
                            LocalContactForce[1] = LocalContactForce[1] - visco_damping[1];
                            LocalContactForce[2] = LocalContactForce[2] - visco_damping[2];
                        }

                // TRANSFORMING TO GLOBAL FORCES AND ADDING UP

                    GeometryFunctions::VectorLocal2Global(LocalCoordSystem, LocalContactForce, 
GlobalContactForce);

                    force[0] += GlobalContactForce[0];
                    force[1] += GlobalContactForce[1];
                    force[2] += GlobalContactForce[2];

                // SAVING INTO THE LOCAL SYSTEM ARRAYS FOR NEXT STEPS

                    mContactForces[0] = GlobalContactForce[0];
                    mContactForces[1] = GlobalContactForce[1];
                    mContactForces[2] = GlobalContactForce[2];

                    if ( rotation_OPTION == 1 )
                    {

                    double MA[3] = {0.0};
                    GeometryFunctions::CrossProduct(LocalCoordSystem[2], GlobalContactForce, MA);
                    mRota_Moment[0] -= MA[0] * radius;
                    mRota_Moment[1] -= MA[1] * radius;
                    mRota_Moment[2] -= MA[2] * radius;
               
                    }
              
                    iContactForce++;

            }//for each neaighbour

            KRATOS_CATCH("")

        }//ComputeParticleContactForce

      void SphericParticle::ApplyLocalForcesDamping(const ProcessInfo& rCurrentProcessInfo )

      {
          array_1d<double,3>& force           = this->GetGeometry()[0].GetSolutionStepValue(RHS);
          double LocalDampRatio   = this->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_LOCAL_DAMP_RATIO);
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              // LOCAL DAMPING OPTION FOR THE UNBALANCED FORCES (IN GLOBAL CORDINATES).

                for (int iDof = 0; iDof < 3; iDof++)
                {
                    if (this->GetGeometry()(0)->GetSolutionStepValue(VELOCITY)[iDof] > 0.0)
                    {
                        force[iDof] = force[iDof] - LocalDampRatio * fabs(force[iDof]);
                    }
                    else
                    {
                        force[iDof] = force[iDof] + LocalDampRatio * fabs(force[iDof]);
                    }
                }

      } //ApplyLocalForcesDamping

    void SphericParticle::ApplyLocalMomentsDamping(const ProcessInfo& rCurrentProcessInfo )

    {
        array_1d<double, 3 > & RotaMoment       = this->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_MOMENT);
        double LocalDampRatio                   = this->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_LOCAL_DAMP_RATIO);

        // LOCAL DAMPING OPTION FOR THE UNBALANCED FORCES (IN GLOBAL CORDINATES).
       
        for (int iDof = 0; iDof < 3; iDof++)
        {
            if (this->GetGeometry()(0)->GetSolutionStepValue(ANGULAR_VELOCITY)[iDof] > 0.0)
            {
                 RotaMoment[iDof] = RotaMoment[iDof] - LocalDampRatio * fabs(RotaMoment[iDof]);
   
            }
            else
            {  
                 RotaMoment[iDof] = RotaMoment[iDof] + LocalDampRatio * fabs(RotaMoment[iDof]);
            }
        }
     
    } //ApplyLocalMomentsDamping

        void SphericParticle::ComputeParticleRotationSpring(const ProcessInfo& rCurrentProcessInfo)
        {

        double dt                           = rCurrentProcessInfo[DEM_DELTA_TIME]; 
        

        double Tension        = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_TENSION);
        double Cohesion       = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_COHESION);
        double young          = this->GetGeometry()[0].GetSolutionStepValue(YOUNG_MODULUS);
        double poisson        = this->GetGeometry()[0].GetSolutionStepValue(POISSON_RATIO);
        double radius         = this->GetGeometry()[0].GetSolutionStepValue(RADIUS);
        double inertia        = this->GetGeometry()[0].GetSolutionStepValue(PARTICLE_INERTIA);

        array_1d<double, 3 > & mRota_Moment = GetGeometry()(0)-
>FastGetSolutionStepValue(PARTICLE_MOMENT);

        ParticleWeakVectorType& rE             = this->GetValue(NEIGHBOUR_ELEMENTS);

        Vector & mRotaSpringFailureType  = this->GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE);

        size_t iContactForce = 0;

        for(ParticleWeakIteratorType ineighbour = rE.begin(); ineighbour != rE.end(); ineighbour++)
        {

            {

       array_1d<double, 3 > & mRotaSpringMoment  = this->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)[ 
iContactForce ];

CUSTOM ELEMENTS - spheric_particle.cpp

Annex - 131



                double other_radius    = ineighbour->GetGeometry()(0)->FastGetSolutionStepValue(RADIUS);
                double other_young     = ineighbour->GetGeometry()

[0].GetSolutionStepValue(YOUNG_MODULUS);
                double other_poisson   = ineighbour->GetGeometry()

[0].GetSolutionStepValue(POISSON_RATIO);
                double other_tension   = ineighbour->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_TENSION);
                double other_cohesion  = ineighbour->GetGeometry()

[0].GetSolutionStepValue(PARTICLE_COHESION);
                double other_inertia   = ineighbour->GetGeometry()(0)-

>FastGetSolutionStepValue(PARTICLE_INERTIA);

                Tension  = (Tension  + other_tension ) * 0.5;
                Cohesion = (Cohesion + other_cohesion) * 0.5;

                double equiv_radius     = (radius + other_radius) * 0.5 ;
                double equiv_area       = M_PI * equiv_radius * equiv_radius;
                double equiv_poisson    = (poisson + other_poisson) * 0.5 ;
                double equiv_young      = (young  + other_young)  * 0.5;
              
                double kn               = equiv_young * equiv_area / (2.0 * equiv_radius);
                double ks               = kn / (2.0 * (1.0 + equiv_poisson));

                array_1d<double,3>& mContactForces = this->GetValue(PARTICLE_CONTACT_FORCES)[ 
iContactForce ];

        
                array_1d<double,3> other_to_me_vect = GetGeometry()(0)->Coordinates() - ineighbour-

>GetGeometry()(0)->Coordinates();

               /////Cfeng: Forming the Local Contact Coordinate system
                double NormalDir[3]           = {0.0};
                double LocalCoordSystem[3][3] = {{0.0}, {0.0}, {0.0}};
                NormalDir[0] = other_to_me_vect[0];
                NormalDir[1] = other_to_me_vect[1];
                NormalDir[2] = other_to_me_vect[2];
                GeometryFunctions::ComputeContactLocalCoordSystem(NormalDir, LocalCoordSystem);

                double LocalRotaSpringMoment[3]     = {0.0};
                double GlobalRotaSpringMoment[3]    = {0.0};
                double GlobalRotaSpringMomentOld[3] = {0.0};

array_1d<double, 3 > AngularVel       = GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

                array_1d<double, 3 > Other_AngularVel = ineighbour->GetGeometry()(0)-
>FastGetSolutionStepValue(ANGULAR_VELOCITY);

                double DeltRotaDisp[3] = {0.0};
                DeltRotaDisp[0] = -(AngularVel[0] - Other_AngularVel[0]) * dt;  
                DeltRotaDisp[1] = -(AngularVel[1] - Other_AngularVel[1]) * dt;
                DeltRotaDisp[2] = -(AngularVel[2] - Other_AngularVel[2]) * dt;

                double LocalDeltRotaDisp[3] = {0.0};
                GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, DeltRotaDisp, 

LocalDeltRotaDisp);

                GlobalRotaSpringMomentOld[0] = mRotaSpringMoment[ 0 ];
GlobalRotaSpringMomentOld[1] = mRotaSpringMoment[ 1 ];
GlobalRotaSpringMomentOld[2] = mRotaSpringMoment[ 2 ];

    
                GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, GlobalRotaSpringMomentOld, 

LocalRotaSpringMoment);

                double Inertia_I = (inertia + other_inertia) * 0.5;
                double Inertia_J = Inertia_I * 2.0;

                LocalRotaSpringMoment[0] +=  - Inertia_I * LocalDeltRotaDisp[0] * kn / equiv_area;
LocalRotaSpringMoment[1] +=  - Inertia_I * LocalDeltRotaDisp[1] * kn / equiv_area;
LocalRotaSpringMoment[2] +=  - Inertia_J * LocalDeltRotaDisp[2] * ks / equiv_area;
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                ////Judge if the rotate spring is broken or not
                double GlobalContactForce[3]  = {0.0};
                double LocalContactForce [3]  = {0.0};

                GlobalContactForce[0] = mContactForces[ 0 ];
                GlobalContactForce[1] = mContactForces[ 1 ];
                GlobalContactForce[2] = mContactForces[ 2 ]; 
                GeometryFunctions::VectorGlobal2Local(LocalCoordSystem, GlobalContactForce, 

LocalContactForce);

                double ForceN  = LocalContactForce[2];
                double ForceS  = sqrt( LocalContactForce[0] * LocalContactForce[0] + 

LocalContactForce[1] * LocalContactForce[1]);
                double MomentS = sqrt(LocalRotaSpringMoment[0] * LocalRotaSpringMoment[0] + 

LocalRotaSpringMoment[1] * LocalRotaSpringMoment[1]);
                double MomentN = LocalRotaSpringMoment[2];

                //////bending stress and axial stress add together, use edge of the bar will failure 
first

                double TensiMax = -ForceN / equiv_area + MomentS        / Inertia_I * equiv_radius;
                double ShearMax = ForceS  / equiv_area + fabs(MomentN)  / Inertia_J * equiv_radius;

                if(TensiMax > Tension || ShearMax > Cohesion)
                {
                    mRotaSpringFailureType[iContactForce] = 1;
                   
                    LocalRotaSpringMoment[0] = 0.0;
                    LocalRotaSpringMoment[1] = 0.0;
                    LocalRotaSpringMoment[2] = 0.0;
                }

                GeometryFunctions::VectorLocal2Global(LocalCoordSystem, LocalRotaSpringMoment, 
GlobalRotaSpringMoment);

                mRotaSpringMoment[ 0 ] = GlobalRotaSpringMoment[0];
                mRotaSpringMoment[ 1 ] = GlobalRotaSpringMoment[1];
                mRotaSpringMoment[ 2 ] = GlobalRotaSpringMoment[2];

                ////feedback, contact moment----induce by rotation spring
                mRota_Moment[0] -= GlobalRotaSpringMoment[0];
                mRota_Moment[1] -= GlobalRotaSpringMoment[1];
                mRota_Moment[2] -= GlobalRotaSpringMoment[2];
            }

            iContactForce++;
            }

        }//ComputeParticleRotationSpring

        void SphericParticle::DampMatrix(MatrixType& rDampMatrix, ProcessInfo& rCurrentProcessInfo){}

        void SphericParticle::GetDofList(DofsVectorType& ElementalDofList, ProcessInfo& 
CurrentProcessInfo){

            ElementalDofList.resize( 0 );

            for ( unsigned int i = 0; i < GetGeometry().size(); i++ )
            {
                ElementalDofList.push_back( GetGeometry()[i].pGetDof( DISPLACEMENT_X ) );
                ElementalDofList.push_back( GetGeometry()[i].pGetDof( DISPLACEMENT_Y ) );

                if ( GetGeometry().WorkingSpaceDimension() == 3 )
                {
                    ElementalDofList.push_back( GetGeometry()[i].pGetDof( DISPLACEMENT_Z ) );
                }
            }
        }
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        void SphericParticle::InitializeSolutionStep(ProcessInfo& rCurrentProcessInfo)
        {

          int case_opt         = rCurrentProcessInfo[CASE_OPTION];     
          int mSwitch          = rCurrentProcessInfo[DUMMY_SWITCH];
         
          if( (mSwitch==0) && (case_opt!=0) )
          {
                SetInitialContacts(case_opt); 
          }

          array_1d<double,3>& force           = this->GetGeometry()[0].GetSolutionStepValue(RHS);
          noalias(force)                      = ZeroVector(3);
      
        }
        void SphericParticle::FinalizeSolutionStep(ProcessInfo& CurrentProcessInfo){}

        void SphericParticle::Calculate(const Variable<double>& rVariable, double& Output, const 
ProcessInfo& rCurrentProcessInfo)

        {

            if (rVariable == DEM_DELTA_TIME)
            {
                double E = this->GetGeometry()(0)->FastGetSolutionStepValue(YOUNG_MODULUS);
                double K = E * M_PI * this->GetGeometry()(0)->FastGetSolutionStepValue(RADIUS);
                Output = sqrt( mRealMass / K);

                if(rCurrentProcessInfo[ROTATION_OPTION] == 1)
                {
                    Output = Output * 0.5; /
                }
            } //CRITICAL DELTA CALCULATION

            if (rVariable == PARTICLE_LOCAL_DAMP_RATIO)
            {
                int damp_id             = rCurrentProcessInfo[DAMP_TYPE];
                int rotation_OPTION     = rCurrentProcessInfo[ROTATION_OPTION];

                if (damp_id == 1 || damp_id == 3 )
                {
                   ApplyLocalForcesDamping( rCurrentProcessInfo );

                   if ( rotation_OPTION != 0 )
                   {
                       ApplyLocalMomentsDamping( rCurrentProcessInfo );
                   }
                }
            } //DAMPING
        }

        void SphericParticle::Calculate(const Variable<array_1d<double, 3 > >& rVariable, 
array_1d<double, 3 > & Output, const ProcessInfo& rCurrentProcessInfo){}

        void SphericParticle::Calculate(const Variable<Vector >& rVariable, Vector& Output, const 
ProcessInfo& rCurrentProcessInfo){}

        void SphericParticle::Calculate(const Variable<Matrix >& rVariable, Matrix& Output, const 
ProcessInfo& rCurrentProcessInfo){}

  
}  // namespace Kratos.
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import DEM_explicit_solver_var
import time as timer

from KratosMultiphysics import *
from KratosMultiphysics.DEMApplication import *

#defining a model part for the solid part
my_timer=Timer();
solid_model_part = ModelPart("SolidPart");  
#############################################

#introducing input file name
input_file_name = DEM_explicit_solver_var.problem_name

import sphere_strategy as SolverStrategy
SolverStrategy.AddVariables(solid_model_part)

#reading the solid part
gid_mode = GiDPostMode.GiD_PostBinary
multifile = MultiFileFlag.MultipleFiles
deformed_mesh_flag = WriteDeformedMeshFlag.WriteDeformed
write_conditions = WriteConditionsFlag.WriteConditions

gid_io = GidIO(input_file_name, gid_mode, multifile, deformed_mesh_flag, write_conditions)
model_part_io_solid = ModelPartIO(input_file_name)
model_part_io_solid.ReadModelPart(solid_model_part)

#setting up the buffer size: SHOULD BE DONE AFTER READING!!!
solid_model_part.SetBufferSize(2)

##adding dofs
SolverStrategy.AddDofs(solid_model_part)

#creating a solver object
dimension=DEM_explicit_solver_var.domain_size;
solver = SolverStrategy.ExplicitStrategy(solid_model_part, dimension);

##Obtaning options and values
integration_scheme = DEM_explicit_solver_var.Integration_Scheme
if (integration_scheme == 'forward_euler'):
    time_scheme = FowardEulerScheme()
elif (integration_scheme == 'mid_point_rule'):
    time_scheme = MidPointScheme()
elif (integration_scheme == 'const_average_acc'):
    time_scheme = ConstAverageAccelerationScheme()
else:
    print('scheme not defined')

solution_type = DEM_explicit_solver_var.SolutionType

if(solution_type == "Absolutal"):
    type_id = 2
else:
    type_id = 1

damp_ratio_type = DEM_explicit_solver_var.DampRatioType
if(damp_ratio_type == "ViscDamp"):
    damp_id = 2
elif(damp_ratio_type == "LocalDamp"):
    damp_id = 1
else:
    damp_id = 3
    
gravity = Vector(3)
gravity[0] = DEM_explicit_solver_var.gravity_x
gravity[1] = DEM_explicit_solver_var.gravity_y
gravity[2] = DEM_explicit_solver_var.gravity_z
solver.gravity=gravity
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#options for the solver

continuum_option = DEM_explicit_solver_var.ContinuumOption
delta_option = DEM_explicit_solver_var.DeltaOption
search_radius_extension=DEM_explicit_solver_var.search_radius_extension

rotation_option =DEM_explicit_solver_var.RotationOption
rotation_spring_option=DEM_explicit_solver_var.RotationalSpringOption

if(delta_option=="OFF"):
  search_radius_extension=0.0;

solver.time_scheme=time_scheme
solver.type_id=type_id

if(continuum_option =="ON"):
  solver.continuum_simulating_OPTION=True

solver.search_radius_extension=search_radius_extension

if(delta_option =="ON"):
  solver.delta_OPTION=True
  
solver.search_radius_extension=search_radius_extension

if(rotation_option =="ON"):
  solver.rotation_OPTION=1 
if(rotation_spring_option =="ON"):
  solver.rotation_spring_OPTION=1 
  
#for critical time step calculation
solver.safety_factor = DEM_explicit_solver_var.dt_safety_factor 

# time settings

final_time = DEM_explicit_solver_var.max_time
output_dt  = DEM_explicit_solver_var.output_dt
dt = DEM_explicit_solver_var.max_time_step

# bounding box

n_step_destroy_distant = DEM_explicit_solver_var.search_step  
n_step_search = DEM_explicit_solver_var.search_step
solver.n_step_search = n_step_search
bounding_box_enlargement_factor = 2.0    

extra_radius = 0.0
max_radius = 0.0
min_radius = 0.0
first_it = True

#calculation of search radius
for node in solid_model_part.Nodes:
      
  rad = node.GetSolutionStepValue(RADIUS)
  if rad > max_radius:  
      max_radius = rad
  if first_it == True:
      min_radius = rad
      first_it = False
  if rad < min_radius:  
      min_radius = rad

extra_radius = 2.5 * max_radius
prox_tol = 0.000001 * min_radius  #currently not in use.
bounding_box_enlargement_factor = max(1.0 + extra_radius, bounding_box_enlargement_factor)

solver.enlargement_factor = bounding_box_enlargement_factor
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#Initialize the problem.

solver.Initialize()

#initializations
time = 0.0
step = 0
time_old_print = 0.0

current_pr_time = timer.clock()
current_real_time = timer.time()

print 'Calculation starts at instant: ' + str(current_pr_time)
while(time < final_time):

  
    print "TIME STEP = ", step
    
    time = time + dt
   
    #if ((step + 1) % n_step_destroy_distant == 0): 

        #solver.Destroy_Particles(list_of_particles_pointers, solid_model_part)
   
   
    solid_model_part.CloneTimeStep(time)
    solid_model_part.ProcessInfo[TIME_STEPS] = step
    
    solver.Solve()
       
##############     GiD IO        ###############

    time_to_print = time - time_old_print
    print str(time)
    
    if(time_to_print >= DEM_explicit_solver_var.output_dt):
        gid_io.InitializeMesh(time);
        gid_io.WriteSphereMesh(solid_model_part.GetMesh());
        gid_io.FinalizeMesh();

gid_io.InitializeResults(time, solid_model_part.GetMesh());   
        gid_io.WriteNodalResults(VELOCITY, solid_model_part.Nodes, time, 0)
        gid_io.WriteNodalResults(DISPLACEMENT, solid_model_part.Nodes, time, 0)
        gid_io.WriteNodalResults(RHS, solid_model_part.Nodes, time, 0)
        gid_io.WriteNodalResults(RADIUS, solid_model_part.Nodes, time, 0)
        gid_io.WriteNodalResults(PARTICLE_COHESION, solid_model_part.Nodes, time, 0)
        gid_io.WriteNodalResults(PARTICLE_TENSION, solid_model_part.Nodes, time, 0)
        gid_io.WriteNodalResults(PARTICLE_FAILURE_ID, solid_model_part.Nodes, time, 0)

        if (rotation_option == 1):
            gid_io.WriteNodalResults(ANGULAR_VELOCITY, solid_model_part.Nodes, time, 0)
            gid_io.WriteNodalResults(MOMENT, solid_model_part.Nodes, time, 0)
        #gid_io.Flush()      
        gid_io.FinalizeResults()    

time_old_print = time
    
    step += 1

print 'Calculation ends at instant: ' + str(timer.time())
elapsed_pr_time = timer.clock() - current_pr_time
elapsed_real_time = timer.time() - current_real_time
print 'Calculation ends at processing time instant: ' + str(timer.clock())
print 'Elapsed processing time: ' + str(elapsed_pr_time)
print 'Elapsed real time: ' + str(elapsed_real_time)
print (my_timer)    
print "COMPLETED ANALYSIS" 
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#if !defined(KRATOS_EXPLICIT_SOLVER_STRATEGY)
#define  KRATOS_EXPLICIT_SOLVER_STRATEGY

#include "utilities/timer.h"

/* System includes */
#include <limits>
#include<iostream>
#include<iomanip>
#include <iostream>

/* External includes */
#ifdef _OPENMP
#include <omp.h>
#endif

#include "boost/smart_ptr.hpp"

/* Project includes */
#include "includes/define.h"
#include "utilities/openmp_utils.h"
#include "includes/model_part.h"
#include "solving_strategies/strategies/solving_strategy.h"
#include "solving_strategies/schemes/scheme.h"
#include "custom_elements/spheric_particle.h"
#include "includes/variables.h"

#include "custom_utilities/neighbours_calculator.h"
#include "custom_strategies/schemes/integration_scheme.h"

namespace Kratos
{
  template<
  class TSparseSpace,
  class TDenseSpace, 
  class TLinearSolver> 
  class ExplicitSolverStrategy : public  SolvingStrategy<TSparseSpace,TDenseSpace,TLinearSolver>
     {
      public:
 

  typedef SolvingStrategy<TSparseSpace,TDenseSpace,TLinearSolver> BaseType;
  typedef typename BaseType::TDataType TDataType;
  typedef typename BaseType::TBuilderAndSolverType TBuilderAndSolverType;
  typedef typename BaseType::TSchemeType TSchemeType;
  typedef typename BaseType::DofsArrayType DofsArrayType;
  typedef typename Element::DofsVectorType DofsVectorType;   
  typedef ModelPart::NodesContainerType NodesArrayType;
  typedef ModelPart::ElementsContainerType ElementsArrayType;
  typedef ModelPart::ConditionsContainerType ConditionsArrayType;     
  typedef ModelPart::NodesContainerType::ContainerType      NodesContainerType;
  typedef ModelPart::ElementsContainerType::ContainerType   ElementsContainerType;
  typedef ModelPart::ConditionsContainerType::ContainerType ConditionsContainerType;
  

      /// Pointer definition of ExplicitSolverStrategy
      KRATOS_CLASS_POINTER_DEFINITION(ExplicitSolverStrategy);
 
      /// Default constructor.
       ExplicitSolverStrategy(){}
      
       ExplicitSolverStrategy(ModelPart& model_part,   

      const int        dimension,
      const double     damping_ratio,       masa

                              const double     fraction_delta_time,
                              const double     max_delta_time,
                              const double     n_step_search,
                              const double     safety_factor,

              const bool       MoveMeshFlag,
                              const bool       delta_option,
                              const bool       continuum_simulating_option,
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              typename         IntegrationScheme::Pointer pScheme
)
: SolvingStrategy<TSparseSpace,TDenseSpace,TLinearSolver>(model_part, 
MoveMeshFlag),

                        
                            mdimension(dimension) 
                        {

                           mdelta_option                = delta_option;
                           mcontinuum_simulating_option = continuum_simulating_option;
                           mvirtual_mass                = false; 
                           mElementsAreInitialized      = false;

   mConditionsAreInitialized    = false;
   mCalculateOldTime            = false;

                           mSolutionStepIsInitialized   = false;
   mInitializeWasPerformed      = false;

                           mComputeTime                 = false;
   mInitialConditions           = false;

                           mdamping_ratio               = damping_ratio;
                           mfraction_delta_time         = fraction_delta_time;
                           mmax_delta_time              = max_delta_time;
                           molddelta_time               = 0.00;
                           mtimestep                    = 0.00;
                           mpScheme                     = pScheme;
                           
                           mtimestep                    = max_delta_time;
                           mnstepsearch                 = n_step_search;
                           msafety_factor               = safety_factor;

}
      /// Destructor.
      virtual ~ExplicitSolverStrategy(){}
       
      double Solve()
      {

KRATOS_TRY

        std::cout<<std::fixed<<std::setw(15)<<std::scientific<<std::setprecision(5);
        ModelPart& r_model_part              = BaseType::GetModelPart();

ProcessInfo& rCurrentProcessInfo      = r_model_part.GetProcessInfo();

        int time_step = rCurrentProcessInfo[TIME_STEPS];

        std::cout<<"------------------------------------------------------------------------"<<std::endl
;

        std::cout<<"                 KRATOS DEM APPLICATION. TIME STEPS = "           <<  time_step    
<<std::endl;

std::cout<<"------------------------------------------------------------------------"<<std::endl
;

        //STRATEGY:

        //0.PREVIOUS OPERATIONS

        if(mComputeTime==false){
    ComputeCriticalTime();
    mComputeTime = true;
}

        //1.0
        InitializeSolutionStep();

        //1. Get and Calculate the forces
        GetForce();

            //1.1. Calculate Local Dampings
            ApplyLocalDampings();
               
        //2. Motion Integration
        ComputeIntermedialVelocityAndNewDisplacement(); 
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       //3. Neighbouring search. Every N times.
        
        if ( (time_step + 1)%mnstepsearch == 0 )
        {
            SearchNeighbours(r_model_part,false); //extension option false;
        }

        std::cout <<"FINISHED SOLVE"<<std::endl;
return 0.00;   
KRATOS_CATCH("")

      }

         void CalculateVirtualMass()
        {
            KRATOS_TRY

            if(mvirtual_mass == true)
            {
              ModelPart& r_model_part          = BaseType::GetModelPart();
              ElementsArrayType& pElements     = r_model_part.Elements();

              ProcessInfo& rCurrentProcessInfo  = r_model_part.GetProcessInfo();
;
              typename NodesArrayType::iterator inode;
              for(inode = r_model_part.NodesBegin(); inode != r_model_part.NodesEnd(); inode++)
              {
                  inode->FastGetSolutionStepValue(NODAL_MASS) = 0.0;
              }

                typename ElementsArrayType::iterator it_begin=pElements.ptr_begin();
                typename ElementsArrayType::iterator it_end=pElements.ptr_end();
                for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
                {
                   double Young  = it->GetProperties()[YOUNG_MODULUS];
                   double Length = it->GetGeometry().Length();
                   double Volume = 0.0;
                   double VirtualMass = 0.0;

                   Element::GeometryType& geom = it->GetGeometry();

                   if (geom.size() == 1)
                   {
                      VirtualMass = Young * M_PI * it->GetGeometry()(0)-

>FastGetSolutionStepValue(RADIUS);
                      if(rCurrentProcessInfo[PARTICLE_IF_CAL_ROTATE] == 1)
                      {
                          VirtualMass = VirtualMass * 2.5;
                      }
                   }
                   else if (it->GetGeometry().Dimension() == 2 && geom.size() > 2)
                   {
                       Volume = it->GetGeometry().Area();

                       VirtualMass = Young / (Length * Length) * Volume;
                   }
                   else if (it->GetGeometry().Dimension() == 3 && geom.size() > 3 )
                   {
                       Volume = it->GetGeometry().Volume();

                       VirtualMass = Young / (Length * Length) * Volume;
                   }

                    for (unsigned int i = 0; i <geom.size(); i++)
                     {
                        double& mass = geom(i)->FastGetSolutionStepValue(NODAL_MASS);
                        mass  = mass + VirtualMass / (double)geom.size();
                     }
                }
            }
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            mIfHaveCalVirtualMass = true;

            KRATOS_CATCH("")
        }
  

void Initialize()
        {
            KRATOS_TRY

        ModelPart& r_model_part           = BaseType::GetModelPart();

        //1. Search Neighbours with tolerance

        bool extension_option = true;
        SearchNeighbours(r_model_part,extension_option);

        //2. Initializing elements
  if(mElementsAreInitialized == false)
     InitializeElements();
  mInitializeWasPerformed   = true;

        // 3. Set Initial Contacts
          if(mdelta_option || mcontinuum_simulating_option){
              Set_Initial_Contacts(mdelta_option, mcontinuum_simulating_option);  
          }

          KRATOS_CATCH("")
        }

void GetForce()
{

          KRATOS_TRY
      
          Vector rhs_cond;
   
          ModelPart& r_model_part           = BaseType::GetModelPart();
          ProcessInfo& rCurrentProcessInfo  = r_model_part.GetProcessInfo();  
          ElementsArrayType& pElements      = r_model_part.Elements();

          #ifdef _OPENMP
          int number_of_threads = omp_get_max_threads();
          #else
          int number_of_threads = 1;
           #endif

          vector<unsigned int> element_partition;
          OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

          unsigned int index = 0;

          #pragma omp parallel for private(index)
          for(int k=0; k<number_of_threads; k++)

          {

            typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
            typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
            for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
              {
                  
                    (it)->CalculateRightHandSide(rhs_cond, rCurrentProcessInfo);

    
             } //loop over particles

          }// loop threads OpenMP

        KRATOS_CATCH("")

}
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void ComputeIntermedialVelocityAndNewDisplacement()
{

            ModelPart& r_model_part = BaseType::GetModelPart();
            mpScheme->Calculate(r_model_part);

        }
        
        void ComputeCriticalTime()

{
            KRATOS_TRY

            ModelPart& r_model_part             = BaseType::GetModelPart();
            ProcessInfo& rCurrentProcessInfo    = r_model_part.GetProcessInfo();

            if(mvirtual_mass == true)
            {
                if(mtimestep > 0.9)
                {
                    mtimestep = 0.9;
                }

                std::cout<<"******************Virtual Mass TimeStep is Used******************" 
<<std::endl;

            }
            else
            {
                  double TimeStepTemp = 0.0;
                  ElementsArrayType& pElements     = r_model_part.Elements();

                  typename ElementsArrayType::iterator it_begin = pElements.ptr_begin();
                  typename ElementsArrayType::iterator it_end   = pElements.ptr_end();

                  for(ElementsArrayType::iterator it = it_begin; it!= it_end; it++)
                  {
                      it->Calculate(DEM_DELTA_TIME, TimeStepTemp, rCurrentProcessInfo);
                      KRATOS_WATCH(TimeStepTemp)
                      if(mtimestep > TimeStepTemp)
                      {
                          mtimestep = TimeStepTemp;
                      }
                  }
               
                  mtimestep = msafety_factor * mtimestep;

                  std::cout<<"******************Real Mass TimeStep is Used******************" 
<<std::endl;

            }

            rCurrentProcessInfo[DEM_DELTA_TIME] = mtimestep;

            std::cout<<"******************Calculating TimeStep Is "<<mtimestep<<  "******************" 
<<std::endl;

                      
            KRATOS_CATCH("")

}

        void ApplyLocalDampings()
        {

            KRATOS_TRY

            ModelPart& r_model_part           = BaseType::GetModelPart();
            ProcessInfo& rCurrentProcessInfo  = r_model_part.GetProcessInfo();
            ElementsArrayType& pElements      = r_model_part.Elements();

            #ifdef _OPENMP
            int number_of_threads = omp_get_max_threads();
            #else
            int number_of_threads = 1;
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            #endif

            vector<unsigned int> element_partition;
            OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

            unsigned int index = 0;

            #pragma omp parallel for private(index)
            for(int k=0; k<number_of_threads; k++)

            {

                typename ElementsArrayType::iterator 
it_begin=pElements.ptr_begin()+element_partition[k];

                typename ElementsArrayType::iterator 
it_end=pElements.ptr_begin()+element_partition[k+1];

                double dummy = 0.0;

                for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
                {

                   it->Calculate(PARTICLE_LOCAL_DAMP_RATIO, dummy, rCurrentProcessInfo);
   

                } //loop over particles
            }// loop threads OpenMP

            KRATOS_CATCH("")

        }//Apply local damps

void InitializeSolutionStep()
{

          KRATOS_TRY

          ModelPart& r_model_part          = BaseType::GetModelPart();
          ProcessInfo& rCurrentProcessInfo  = r_model_part.GetProcessInfo();  
          ElementsArrayType& pElements     = r_model_part.Elements();

          #ifdef _OPENMP
          int number_of_threads = omp_get_max_threads();
          #else
          int number_of_threads = 1;
           #endif

          vector<unsigned int> element_partition;
          OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

          unsigned int index = 0;

          #pragma omp parallel for private(index)
          for(int k=0; k<number_of_threads; k++)

          {

            typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
            typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
            for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
              {

                (it)->InitializeSolutionStep(rCurrentProcessInfo); //we use this function to call the 
set initial contacts and the add continuum contacts.

             } //loop over particles

          }// loop threads OpenMP

        KRATOS_CATCH("")
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}

       void BoundingBoxUtility(double enlargement_factor)
{

        
        KRATOS_TRY

        ModelPart& r_model_part              = BaseType::GetModelPart();
ProcessInfo& rCurrentProcessInfo      = r_model_part.GetProcessInfo();

          
        Calculate_Surrounding_Bounding_Box(r_model_part,enlargement_factor);
               
        KRATOS_CATCH("")

} //BoundingBoxUtility()
  
void MoveMesh()
{
}

void FinalizeSolutionStep()
{
}
  
void CalculateEnergies()
{
}
   

    protected:

    private:

    const unsigned int    mdimension;
    unsigned int    minitial_conditions_size;  
    unsigned int    mcontact_conditions_size;  
    bool   mInitialCalculations;
    bool   mElementsAreInitialized;
    bool   mConditionsAreInitialized;
    bool   mCalculateOldTime;
    bool   mSolutionStepIsInitialized;
    bool   mComputeTime;
    bool   mInitializeWasPerformed;
    bool   mInitialConditions;
    bool   mdelta_option;
    bool   mcontinuum_simulating_option;

    bool   mvirtual_mass;
    
    double mdamping_ratio;
    double malpha_damp;
    double mbeta_damp; 
    double mfraction_delta_time;
    double mmax_delta_time;
    double molddelta_time;
    double mtimestep;
    int    mnstepsearch;
    double msafety_factor;
 
    typename IntegrationScheme::Pointer mpScheme;
          
      void InitializeElements()
      {
          KRATOS_TRY
          ModelPart& r_model_part          = BaseType::GetModelPart();
          ElementsArrayType& pElements     = r_model_part.Elements();

          //Matrix MassMatrix;
          #ifdef _OPENMP
          int number_of_threads = omp_get_max_threads();
          #else
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          int number_of_threads = 1;
           #endif

          vector<unsigned int> element_partition;
          OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

          #pragma omp parallel for 
          for(int k=0; k<number_of_threads; k++)
          {
            typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
            typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
            for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
              {
    
                (it)->Initialize();     
             }
          }

         mElementsAreInitialized   = true;
         KRATOS_CATCH("")
        }
      
       
      void Set_Initial_Contacts(const bool& delta_OPTION, const bool& continuum_simulating_OPTION)
      {
            
          KRATOS_TRY

ModelPart& r_model_part          = BaseType::GetModelPart();
          ProcessInfo& rCurrentProcessInfo  = r_model_part.GetProcessInfo(); 
          ElementsArrayType& pElements     = r_model_part.Elements();

          #ifdef _OPENMP
          int number_of_threads = omp_get_max_threads();
          #else
          int number_of_threads = 1;
           #endif

          vector<unsigned int> element_partition;
          OpenMPUtils::CreatePartition(number_of_threads, pElements.size(), element_partition);

          unsigned int index = 0;

          #pragma omp parallel for private(index)
          for(int k=0; k<number_of_threads; k++)

          {
            typename ElementsArrayType::iterator it_begin=pElements.ptr_begin()+element_partition[k];
            typename ElementsArrayType::iterator it_end=pElements.ptr_begin()+element_partition[k+1];
            for (ElementsArrayType::iterator it= it_begin; it!=it_end; ++it)
              {
     
                (it)->InitializeSolutionStep(rCurrentProcessInfo); //we use this function to call the 

set initial contacts and the add continuum contacts.
                                           
             } //loop over particles

          }// loop threads OpenMP

        KRATOS_CATCH("")
      }  //Set_Initial_Contacts

      void SearchNeighbours(ModelPart r_model_part,bool extension_option)
      {
      
        typedef DiscreteElement                                                 ParticleType;
        typedef ParticleType::Pointer                                           ParticlePointerType;
        typedef ElementsContainerType                                           ParticleContainerType;
        typedef WeakPointerVector<Element>                                      ParticleWeakVectorType; 
        typedef typename std::vector<ParticlePointerType>                       

ParticlePointerVectorType;

CUSTOM STRATEGIES - explicit_solver_strategy.h

Annex - 146



        typedef typename std::vector<ParticlePointerType>                       
ParticlePointerVectorType;

        typedef WeakPointerVector<Element>::iterator                            
ParticleWeakIteratorType;

        typedef typename std::vector<ParticleType>::iterator                    ParticleIteratorType;
        typedef typename std::vector<ParticlePointerType>::iterator             

ParticlePointerIteratorType;
        typedef std::vector<double>                                             DistanceVectorType;
        typedef std::vector<double>::iterator                                   DistanceIteratorType;

        ProcessInfo& rCurrentProcessInfo = r_model_part.GetProcessInfo();
        ParticleContainerType& pElements = r_model_part.ElementsArray();

        if (mdimension == 2)

             Neighbours_Calculator<2, ParticleType>::Search_Neighbours(pElements, rCurrentProcessInfo, 
extension_option);

        else if (mdimension == 3)

             Neighbours_Calculator<3, ParticleType>::Search_Neighbours(pElements,  rCurrentProcessInfo, 
extension_option);

      }//SearchNeighbours
    
  }; // Class ExplicitSolverStrategy 

}  // namespace Kratos.

#endif // KRATOS_FILENAME_H_INCLUDED  defined 
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#if !defined(KRATOS_CONSTANT_ACERAGE_ACCELERATION_SCHEME_H_INCLUDED )
#define  KRATOS_CONSTANT_ACERAGE_ACCELERATION_SCHEME_H_INCLUDED

// System includes
#include <string>
#include <iostream> 

// External includes 

// Project includes
#include "integration_scheme.h"
#include "includes/define.h"
#include "utilities/openmp_utils.h"
#include "includes/model_part.h"
#include "utilities/openmp_utils.h"

namespace Kratos
{
   
  class ConstAverageAccelerationScheme :  public IntegrationScheme
    {
    public:
      
      typedef ModelPart::NodesContainerType NodesArrayType;

      /// Pointer definition of ConstAverageAccelerationScheme
      KRATOS_CLASS_POINTER_DEFINITION(ConstAverageAccelerationScheme);
 
      /// Default constructor.
      ConstAverageAccelerationScheme(){}

      /// Destructor.
      virtual ~ConstAverageAccelerationScheme(){}
      
     void Calculate(ModelPart& model_part)
     {
        KRATOS_TRY
        KRATOS_WATCH("hola wwi")

ProcessInfo& CurrentProcessInfo  = model_part.GetProcessInfo();
NodesArrayType& pNodes           = model_part.Nodes(); 

        
double aux          = 0;

        array_1d<double, 3 >  new_accel;
        array_1d<double, 3 >  prev_accel;

double delta_t      =  CurrentProcessInfo[DELTA_TIME];

        vector<unsigned int> node_partition;
NodesArrayType::iterator it_begin = pNodes.ptr_begin();
NodesArrayType::iterator it_end   = pNodes.ptr_end();
int number_of_threads             = 1; //OpenMPUtils::GetNumThreads();
OpenMPUtils::CreatePartition(number_of_threads, pNodes.size(), node_partition);

#pragma omp parallel for firstprivate(aux) shared(delta_t) 
for(int k=0; k<number_of_threads; k++)
{
  NodesArrayType::iterator i_begin=pNodes.ptr_begin()+node_partition[k];
  NodesArrayType::iterator i_end=pNodes.ptr_begin()+node_partition[k+1];
  for(ModelPart::NodeIterator i=i_begin; i!= i_end; ++i)      
  {

               
     array_1d<double, 3 > & vel             = i->FastGetSolutionStepValue(VELOCITY);
     array_1d<double, 3 > & displ           = i->FastGetSolutionStepValue(DISPLACEMENT);
     array_1d<double, 3 > & coor            = i->Coordinates();

       array_1d<double, 3 > & initial_coor    = i->GetInitialPosition();
       array_1d<double, 3 > & force           = i->FastGetSolutionStepValue(RHS);

     array_1d<double, 3 > & prev_force      = i->FastGetSolutionStepValue(RHS,1);
     const double mass                      = i->FastGetSolutionStepValue(NODAL_MASS);
           
     

CUSTOM_STRATEGIES - constant_average_acceleration_scheme.h

Annex - 149



     
     aux = delta_t / mass;

     new_accel = force / mass;
             prev_accel = prev_force / mass;

     if( ( i->pGetDof(DISPLACEMENT_X)->IsFixed() == false) && ( (i->IsFixed(VELOCITY_X))== false 
) )

             {
         displ[0]  += delta_t * vel[0] + 0.5 * delta_t * delta_t * (prev_accel[0] + 

new_accel[0]);
         vel[0]    = vel[0] + 0.5 * delta_t * (prev_accel[0] + new_accel[0]);

                 
         coor[0]   = initial_coor[0] + displ[0];

 prev_accel[0] = new_accel[0];
                 
             }

     
     if( ( i->pGetDof(DISPLACEMENT_Y)->IsFixed() == false) && ( (i->IsFixed(VELOCITY_Y))== false 

) )
             {

         displ[1]  += delta_t * vel[1] + 0.5 * delta_t * delta_t * (prev_accel[1] + 
new_accel[1]);

         vel[1]    = vel[1] + 0.5 * delta_t * (prev_accel[1] + new_accel[1]);
           

         coor[1]   = initial_coor[1] + displ[1];
 prev_accel[1] = new_accel[1];

         
     }
     

             if( (i->pGetDof(DISPLACEMENT_Z)->IsFixed() == false) && ( (i->IsFixed(VELOCITY_Z))== false 
) )

     {
         displ[2]  += delta_t * vel[2] + 0.5 * delta_t * delta_t * (prev_accel[2] + 

new_accel[2]);
         vel[2]    = vel[2] + 0.5 * delta_t * (prev_accel[2] + new_accel[2]);

                
         coor[2]   = initial_coor[2] + displ[2];

 prev_accel[2] = new_accel[2];          
     }
   }
}
KRATOS_CATCH(" ")

     }  
   
      /// Turn back information as a string.
      virtual std::string Info() const
      {

std::stringstream buffer;
        buffer << "ConstAverageAccelerationScheme" ;
        return buffer.str();
      }
      
      /// Print information about this object.
      virtual void PrintInfo(std::ostream& rOStream) const {rOStream << 

"ConstAverageAccelerationScheme";}

      /// Print object's data.
      virtual void PrintData(std::ostream& rOStream) const {}

    protected:
     
    private:
           
      /// Assignment operator.
     ConstAverageAccelerationScheme& operator=(ConstAverageAccelerationScheme const& rOther)
     {
       return *this;
     }
     

CUSTOM_STRATEGIES - constant_average_acceleration_scheme.h

Annex - 150



     /// Copy constructor.
      ConstAverageAccelerationScheme(ConstAverageAccelerationScheme const& rOther)
      {

*this = rOther;
      }

    }; // Class ConstAverageAccelerationScheme

  /// input stream function
  inline std::istream& operator >> (std::istream& rIStream, 

    ConstAverageAccelerationScheme& rThis){return rIStream;}
  /// output stream function
  inline std::ostream& operator << (std::ostream& rOStream, 

    const ConstAverageAccelerationScheme& rThis)
    {
      rThis.PrintInfo(rOStream);
      rOStream << std::endl;
      rThis.PrintData(rOStream);

      return rOStream;
    }
  ///@}

  ///@} addtogroup block
  
}  // namespace Kratos.

#endif // KRATOS_CONSTANT_ACERAGE_ACCELERATION_SCHEME_H_INCLUDED  defined 
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#if !defined(KRATOS_NEIGHBOURS_CALCULATOR )
#define  KRATOS_NEIGHBOURS_CALCULATOR

#include "includes/define.h"
#include "includes/model_part.h"
#include "spatial_containers/spatial_containers.h"
#include "containers/weak_pointer_vector.h"
#include "containers/pointer_vector.h"
#include "containers/pointer_vector_set.h"

#include "custom_utilities/discrete_particle_configure.h"

namespace Kratos {

    template< 
    std::size_t TDim,
    class TParticle
    >

    class Neighbours_Calculator {
    public:
        typedef DiscreteParticleConfigure < 3 > ConfigureType;
        typedef TParticle Particle; 
        typedef typename Particle::Pointer ParticlePointer; 
        typedef ModelPart::ElementsContainerType::ContainerType ParticleVector; 
        typedef ParticleVector::iterator ParticleIterator; 
        typedef ModelPart::ElementsContainerType ParticlePointerVector; 
        typedef ParticlePointerVector::iterator ParticlePointerIterator; 
        typedef ConfigureType::PointType PointType;
        typedef ConfigureType::DistanceIteratorType DistanceIteratorType;
        typedef ConfigureType::ContainerType ContainerType;
        typedef ConfigureType::PointerType PointerType;
        typedef ConfigureType::IteratorType IteratorType; 
        typedef ConfigureType::ResultContainerType ResultContainerType;
        typedef ConfigureType::ResultPointerType ResultPointerType;
        typedef ConfigureType::ResultIteratorType ResultIteratorType;
        typedef ConfigureType::ContactPairType ContactPairType;
        typedef ConfigureType::ContainerContactType ContainerContactType;
        typedef ConfigureType::IteratorContactType IteratorContactType;
        typedef ConfigureType::PointerContactType PointerContactType;
        typedef ConfigureType::PointerTypeIterator PointerTypeIterator;
        typedef WeakPointerVector<Element> ParticleWeakVector;
        typedef typename ParticleWeakVector::iterator ParticleWeakIterator;
        typedef ParticleWeakVector::ptr_iterator ParticleWeakIteratorType_ptr;
        typedef std::vector<double> DistanceVector;
        typename DistanceVector::iterator DistanceIterator;
        typedef std::vector<array_1d<double, 3 > > TangDisplacementsVectorType;
        typedef TangDisplacementsVectorType::iterator TangDisplacementsIteratorType;

        //*****************************************************************************

        typedef Bucket < TDim, Particle, ParticlePointerVector> BucketType;

        typedef BinsObjectDynamic <ConfigureType> bins; 

        /// Pointer definition of Neighbour_calculator

        virtual ~Neighbours_Calculator() {
        };

        static void Search_Neighbours(ContainerType& pElements, ProcessInfo& rCurrentProcessInfo, bool 
extension_option) {

            KRATOS_TRY
            
            double radius_extend = 0.0;
            if (extension_option) radius_extend = rCurrentProcessInfo[SEARCH_RADIUS_EXTENSION];
            const int case_OPTION = rCurrentProcessInfo[CASE_OPTION];
            bool delta_OPTION = false;
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            bool continuum_simulation_OPTION = false;

            switch (case_OPTION) {
                case 0:
                    delta_OPTION = false;
                    continuum_simulation_OPTION = false;
                    break;
                case 1:
                    delta_OPTION = true;
                    continuum_simulation_OPTION = false;
                    break;
                case 2:
                    delta_OPTION = true;
                    continuum_simulation_OPTION = true;
                    break;
                case 3:
                    delta_OPTION = false;
                    continuum_simulation_OPTION = true;
                    break;
                default:
                    delta_OPTION = false;
                    continuum_simulation_OPTION = false;
            }

            boost::timer kdtree_construction;
            unsigned int MaximumNumberOfResults = 100;
            ResultContainerType Results(MaximumNumberOfResults);
            DistanceVector ResultsDistances(MaximumNumberOfResults);
            bins particle_bin(pElements.begin(), pElements.end());
            boost::timer search_time;
            //******************************************************************************************

********************************************************************

            ResultIteratorType results_begin; 
            DistanceIteratorType result_distances_begin; 
            //loop over all of the particles in the list to perform search
            for (IteratorType particle_pointer_it = pElements.begin();
                    particle_pointer_it != pElements.end(); ++particle_pointer_it)
 {           
                Element::GeometryType& geom = (*particle_pointer_it)->GetGeometry();
                double search_radius = (1.0 + radius_extend) * geom(0)->GetSolutionStepValue(RADIUS);

                //find all of the new particles within the radius
                //looks which of the new particles is inside the radius around the working particle

                results_begin = Results.begin();
                result_distances_begin = ResultsDistances.begin();

                (*particle_pointer_it)->GetValue(NUMBER_OF_NEIGHBOURS) = 
particle_bin.SearchObjectsInRadius(*(particle_pointer_it),

                search_radius, results_begin, result_distances_begin, MaximumNumberOfResults) - 1;
        
                // SAVING THE OLD NEIGHBOURS, FORCES, FAILURE TYPES AND NUMBER OF NEIGHBOURS.

                ParticleWeakVector TempNeighbours;
                TempNeighbours.swap((*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS));

                vector< array_1d<double, 3 > > TempContactForce;
                TempContactForce.swap((*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES));

                vector< double > TempContactFailureId; 
                TempContactFailureId.swap((*particle_pointer_it)-

>GetValue(PARTICLE_CONTACT_FAILURE_ID));
                
                vector< double > TempContactDelta;
                TempContactDelta.swap((*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA));   

                vector< double > TempRotateSpringFailType;
TempRotateSpringFailType.swap((*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE));
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                vector< array_1d<double, 3 > > TempRotateSpringMoment;
                TempRotateSpringMoment.swap((*particle_pointer_it)-

>GetValue(PARTICLE_ROTATE_SPRING_MOMENT));
                         
                int n_neighbours = (*particle_pointer_it)->GetValue(NUMBER_OF_NEIGHBOURS); 

                // CLEARING AND INITIALITZING.

                (*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS).clear();
                (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES).clear();
                (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID).clear();
                (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA).clear();

                (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE).clear();
                (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT).clear();

                (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES).resize(n_neighbours);
                (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID).resize(n_neighbours);
                (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA).resize(n_neighbours);

                (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE).resize(n_neighbours);

                (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT).resize(n_neighbours);

                // GETTING NEW NEIGHBOURS

                int neighbour_counter = 0;

                for (ResultIteratorType neighbour_it = Results.begin(); neighbour_counter != 
n_neighbours + 1; ++neighbour_it)

 {
                    if ((*particle_pointer_it)->Id() != (*neighbour_it)->Id()) { //the bins search finds 

the particle itself

                        (*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS).push_back(*neighbour_it);
                   
                        // LOOP TO EXTEND THE VECTORS AND SET A 0.0 VALUE EACH TIME

                        size_t Notemp = ((*particle_pointer_it)->GetValue(NEIGHBOUR_ELEMENTS)).size(); 

                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp - 1] = 
ZeroVector(3);

                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)[Notemp - 1] = 1;
                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA)[Notemp - 1] = 0.0;
                        (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE)[Notemp - 

1] = 0.0;
                        (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)[Notemp - 1] = 

ZeroVector(3);

                        // LOOP OVER THE OLD NEIGHBOURS FOR EVERY NEIGHBOUR TO CHECK IF IT'S AN EXISTING 
ONE AND COPYING THE OLD DATA

                        int OldNeighbourCounter = 0;
                        for (ParticleWeakIterator old_neighbour = TempNeighbours.begin(); old_neighbour 

!= TempNeighbours.end(); old_neighbour++)
                        {
                            {

                                if ((old_neighbour.base())->expired() == false) {
                                    if ((*neighbour_it)->Id() == old_neighbour->Id()) 
                                    {                            
                                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)

[Notemp-1][0] = TempContactForce[OldNeighbourCounter][0];
                                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)

[Notemp-1][1] = TempContactForce[OldNeighbourCounter][1];
                                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)

[Notemp-1][2] = TempContactForce[OldNeighbourCounter][2];

                                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)
[Notemp-1] = TempContactFailureId[OldNeighbourCounter];
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                                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)
[Notemp-1] = TempContactFailureId[OldNeighbourCounter];

                                        (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp-1][0] = TempRotateSpringMoment[OldNeighbourCounter][0];

                                        (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp-1][1] = TempRotateSpringMoment[OldNeighbourCounter][1];

                                        (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp-1][2] = TempRotateSpringMoment[OldNeighbourCounter][2];

                                        (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE)[Notemp-1] = 
TempRotateSpringFailType[OldNeighbourCounter];

                                        break;
                                    } //end of its an old one??
                                } //end of expired?
                            } // end of its myself
                            OldNeighbourCounter++;
                        } //loop old neighbours

                        if (delta_OPTION) {

                            // LOOP OVER THE INITIAL NEIGHBOURS FOR EVERY NEIGHBOUR TO CHECK IF IT'S AN 
INITIAL ONE AND THEN COPYING THE DELTA DATA

                            int InitialNeighboursCounter = 0;
     
                            if (((*particle_pointer_it)->GetValue(INITIAL_NEIGHBOUR_ELEMENTS)).size() != 

0) {
                                for (ParticleWeakIterator ini_neighbour = ((*particle_pointer_it)-

>GetValue(INITIAL_NEIGHBOUR_ELEMENTS)).begin(); ini_neighbour != 
((*particle_pointer_it)->GetValue(INITIAL_NEIGHBOUR_ELEMENTS)).end(); 
ini_neighbour++)

                                {                                 
                                       if ((ini_neighbour.base())->expired() == false) {
                                   
                                            if ((*neighbour_it)->Id() == ini_neighbour->Id()) 
                                            {
                                                 (*particle_pointer_it)-

>GetValue(PARTICLE_CONTACT_DELTA)[Notemp-1] = 
(*particle_pointer_it)-
>GetValue(PARTICLE_INITIAL_DELTA)
[InitialNeighboursCounter];

                                                 break;
                                            }
                                       }
                               
                                    InitialNeighboursCounter++;
                                } // for initial neighbours
                            } //if u have some intial neigh
                        }//deltaOPTION
                    }//end of the: if((*particle_pointer_it)->Id() != (*neighbour_it)->Id()

                    ++neighbour_counter;

                } // for each neighbour, neighbour_it.

                //ADDING NOT FOUND NEIGHBOURS (the ones with negative identation still in tensile 
contact are not detected, but they are on the old neighbours list).

                int TempNeighbourCounter = 0;

                for (ParticleWeakIterator temp_neighbour = TempNeighbours.begin(); temp_neighbour != 
TempNeighbours.end(); temp_neighbour++)

 {
                    if (TempContactFailureId[TempNeighbourCounter] == 0) // if they are not detached.
                    {
                        if ((temp_neighbour.base())->expired() == false)
                        {
                            if ((*particle_pointer_it)->Id() != temp_neighbour->Id()) {
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                                bool AlreadyAdded = false; //identifying if they are already found ot 
not.

                                for (ParticleWeakIterator new_neighbour = (*particle_pointer_it)-
>GetValue(NEIGHBOUR_ELEMENTS).begin();

                                        new_neighbour != (*particle_pointer_it)-
>GetValue(NEIGHBOUR_ELEMENTS).end(); new_neighbour++) {

                                    if (new_neighbour->Id() == (temp_neighbour)->Id()) {

                                        AlreadyAdded = true; //for the ones already found in the new 
search.

                                        break;
                                    }
                                }

                                if (AlreadyAdded == false) //for the ones not included!
                                {
                                          
                                    (*particle_pointer_it)-

>GetValue(NEIGHBOUR_ELEMENTS).push_back(TempNeighbours(TempNeighbour
Counter)); //adding the not found neighbours.

                                    size_t Notemp = (*particle_pointer_it)-
>GetValue(PARTICLE_CONTACT_FORCES).size();

                                    (*particle_pointer_it)-
>GetValue(PARTICLE_CONTACT_FORCES).resize(Notemp + 1); // adding one 
more space for every missing neighbour.

                                    (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp][0] 
= TempContactForce[TempNeighbourCounter][0]; //copying properties.

                                    (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp][1] 
= TempContactForce[TempNeighbourCounter][1];

                                    (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FORCES)[Notemp][2] 
= TempContactForce[TempNeighbourCounter][2];

                                    (*particle_pointer_it)-
>GetValue(PARTICLE_CONTACT_FAILURE_ID).resize(Notemp + 1);

                                    (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_FAILURE_ID)
[Notemp] = TempContactFailureId[TempNeighbourCounter];

                                    (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_MOMENT).resize(Notemp + 1); // 
adding one more space for every missing neighbour.

                                    (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp][0] = TempRotateSpringMoment[TempNeighbourCounter][0]; 
//copying properties.

                                    (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp][1] = TempRotateSpringMoment[TempNeighbourCounter][1];

                                    (*particle_pointer_it)->GetValue(PARTICLE_ROTATE_SPRING_MOMENT)
[Notemp][2] = TempRotateSpringMoment[TempNeighbourCounter][2];

                                    (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE).resize(Notemp + 1);

                                    (*particle_pointer_it)-
>GetValue(PARTICLE_ROTATE_SPRING_FAILURE_TYPE)[Notemp] = 
TempRotateSpringFailType[TempNeighbourCounter];

                                    if (delta_OPTION) {
                                        (*particle_pointer_it)-

>GetValue(PARTICLE_CONTACT_DELTA).resize(Notemp + 1);
                                        (*particle_pointer_it)->GetValue(PARTICLE_CONTACT_DELTA)[Notemp] 

= TempContactDelta[TempNeighbourCounter];
                                    }

                                    (*particle_pointer_it)->GetValue(NUMBER_OF_NEIGHBOURS)++;
                                }
                            }// end its myself???
                        }//if not expired
                    } //if not detached                    
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                    TempNeighbourCounter++;
                }//loop over tempneigh
            }//Loop for evey particle as a base.

            KRATOS_CATCH("")
        }// Search_Neighbours

        virtual std::string Info() const {
            return "neighbour_calculator";
        }

        virtual void PrintInfo(std::ostream& rOStream) const {
        }

        virtual void PrintData(std::ostream& rOStream) const {
        }

    protected:

    private:

        inline void Clear(ModelPart::NodesContainerType::iterator node_it, int step_data_size) {
            unsigned int buffer_size = node_it->GetBufferSize();
            for (unsigned int step = 0; step < buffer_size; step++) {
                //getting the data of the solution step
                double* step_data = (node_it)->SolutionStepData().Data(step);
                //copying this data in the position of the vector we are interested in
                for (int j = 0; j < step_data_size; j++) {
                    step_data[j] = 0.0;
                }
            }
        }

        Neighbours_Calculator & operator=(Neighbours_Calculator const& rOther);

    }; // Class Neighbours_calculator

} // namespace Kratos.

#endif // KRATOS_NEIGHBOURS_CALCULATOR  defined 
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#ifndef PARTICLE_CONFIGURE_H
#define PARTICLE_CONFIGURE_H

// System includes

// System includes
#include <string>
#include <iostream>
#include <cmath>
#include "utilities/spatial_containers_configure.h"

namespace Kratos
{
  
template <class TParticle>
class ParticleConfigure
{

public:

    enum {Dimension = 3};
    typedef TParticle                                                   ParticleType;
    typedef Point< 3, double>                                           PointType;
    typedef typename ParticleType::DistanceIteratorType                 DistanceIteratorType;
    typedef typename ParticleType::Pointer                              PointerType;
    typedef typename std::vector<typename ParticleType::Pointer>        ContainerType;
    typedef typename std::vector<PointerType>::iterator                 IteratorType;
    typedef ContainerType                                               ResultContainerType;
    typedef IteratorType                                                ResultIteratorType;

    /// Contact Pairs
    typedef ContactPair<PointerType>                                    ContactPairType;
    typedef  std::vector<ContactPairType>                               ContainerContactType;
    typedef  typename ContainerContactType::iterator                    IteratorContactType;
    typedef  typename ContainerContactType::value_type                  PointerContactType;

    /// Pointer definition of SpatialContainersConfigure
    KRATOS_CLASS_POINTER_DEFINITION(ParticleConfigure);

    ParticleConfigure() {};
    virtual ~ParticleConfigure() {}

    //******************************************************************************************
    static inline void CalculateBoundingBox(const PointerType& rObject, PointType& rLowPoint, PointType& 

rHighPoint)
    {
        rLowPoint = *(rObject->GetPointerToCenterNode());
        rHighPoint = *(rObject->GetPointerToCenterNode());
        double radius = rObject->GetRadius();
        for(std::size_t i = 0; i < 3; i++)
        {
            rLowPoint[i]  += -radius;
            rHighPoint[i] += radius;
        }
    }

    static inline void CalculateBoundingBox(const PointerType& rObject, PointType& rLowPoint, PointType& 
rHighPoint, const double& Radius)

    {
        rLowPoint = *(rObject->GetPointerToCenterNode());
        rHighPoint = *(rObject->GetPointerToCenterNode());
        for(std::size_t i = 0; i < 3; i++)
        {
            rLowPoint[i]  += -Radius;
            rHighPoint[i] += Radius;
        }
    }
    //**********************************************************************************************
    static inline bool Intersection(const PointerType& rObj_1, const PointerType& rObj_2)
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    {
        array_1d<double, 3> rObj_2_to_rObj_1 = rObj_1->GetPosition() - rObj_2->GetPosition();
        double distance_2 = rObj_2_to_rObj_1[0] * rObj_2_to_rObj_1[0] + rObj_2_to_rObj_1[1] * 

rObj_2_to_rObj_1[1] + rObj_2_to_rObj_1[2] * rObj_2_to_rObj_1[2];
        //distance_2 is the inter-center distance squared (from the definition of distance in search-

structure.h, with operator (,))
        double radius_1 = rObj_1->GetRadius();
        double radius_2 = rObj_2->GetRadius();
        double radius_sum = radius_1 + radius_2;
        bool intersect = (distance_2 - radius_sum * radius_sum) <= 0;
        return intersect;
    }

    static inline bool Intersection(const PointerType& rObj_1, const PointerType& rObj_2, double Radius)
    {
        array_1d<double, 3> rObj_2_to_rObj_1 = rObj_1->GetPosition() - rObj_2->GetPosition();
        double distance_2 = rObj_2_to_rObj_1[0] * rObj_2_to_rObj_1[0] + rObj_2_to_rObj_1[1] * 

rObj_2_to_rObj_1[1] + rObj_2_to_rObj_1[2] * rObj_2_to_rObj_1[2];
        //distance_2 is the inter-center distance squared (from the definition of distance in search-

structure.h, with operator (,))
        double radius_1 = Radius;es
        double radius_2 = rObj_2->GetRadius();
        double radius_sum = radius_1 + radius_2;
        bool intersect = (distance_2 - radius_sum * radius_sum) <= 0;
        return intersect;
    }
    //*********************************************************************************************

    static inline bool  IntersectionBox(const PointerType& rObject,  const PointType& rLowPoint, const 
PointType& rHighPoint)

    {
//        double separation_from_particle_radius_ratio = 0.1;
        array_1d<double, 3> center_of_particle = rObject->GetPosition();
        double radius = rObject->GetRadius();
        bool intersect = (rLowPoint[0] - radius <= center_of_particle[0] && rLowPoint[1] - radius <= 

center_of_particle[1] && rLowPoint[2] - radius <= center_of_particle[2] &&
                          rHighPoint[0] + radius >= center_of_particle[0] && rHighPoint[1] + radius >= 

center_of_particle[1] && rHighPoint[2] + radius >= center_of_particle[2]);
        return  intersect;
    }

    static inline bool  IntersectionBox(const PointerType& rObject,  const PointType& rLowPoint, const 
PointType& rHighPoint, const double& Radius)

    {
//        double separation_from_particle_radius_ratio = 0.1;
        array_1d<double, 3> center_of_particle = rObject->GetPosition();
        double radius = Radius;
        bool intersect = (rLowPoint[0] - radius <= center_of_particle[0] && rLowPoint[1] - radius <= 

center_of_particle[1] && rLowPoint[2] - radius <= center_of_particle[2] &&
                          rHighPoint[0] + radius >= center_of_particle[0] && rHighPoint[1] + radius >= 

center_of_particle[1] && rHighPoint[2] + radius >= center_of_particle[2]);
        return  intersect;
    }

    //**********************************************************************************************

    static inline void Distance(const PointerType& rObj_1, const PointerType& rObj_2, double& distance)
    {
        array_1d<double, 3> center_of_particle1 = rObj_1->GetPosition();
        array_1d<double, 3> center_of_particle2 = rObj_2->GetPosition();

        distance = sqrt((center_of_particle1[0] - center_of_particle2[0]) * (center_of_particle1[0] - 
center_of_particle2[0]) +

                        (center_of_particle1[1] - center_of_particle2[1]) * (center_of_particle1[1] - 
center_of_particle2[1]) +

                        (center_of_particle1[2] - center_of_particle2[2]) * (center_of_particle1[2] - 
center_of_particle2[2]) );

    }
    //**********************************************************************************************
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    /// Turn back information as a string.
    virtual std::string Info() const
    {
        return " Spatial Containers Configure for Particles";
    }

    /// Print information about this object.
    virtual void PrintInfo(std::ostream& rOStream) const {}

    /// Print object's data.
    virtual void PrintData(std::ostream& rOStream) const {}

protected:

private:

    /// Assignment operator.
    ParticleConfigure& operator=(ParticleConfigure const& rOther);

    /// Copy constructor.
    ParticleConfigure(ParticleConfigure const& rOther);

}; // Class ParticleConfigure

/// input stream function
template <class TParticle>
inline std::istream& operator >> (std::istream& rIStream, ParticleConfigure<TParticle> & rThis)
{
    return rIStream;
}

/// output stream function
template <class TParticle>
inline std::ostream& operator << (std::ostream& rOStream, const ParticleConfigure<TParticle>& rThis)
{
    rThis.PrintInfo(rOStream);
    rOStream << std::endl;
    rThis.PrintData(rOStream);

    return rOStream;
}
///@}

}   // namespace Kratos.
#endif /* PARTICLE_CONFIGURE_H */
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from KratosMultiphysics import *
from KratosMultiphysics.DEMApplication import *
# Check that KratosMultiphysics was imported in the main script
#CheckForPreviousImport(

def AddVariables(model_part):

    model_part.AddNodalSolutionStepVariable(DISPLACEMENT)
    model_part.AddNodalSolutionStepVariable(VELOCITY)
    model_part.AddNodalSolutionStepVariable(RHS)
    model_part.AddNodalSolutionStepVariable(APPLIED_FORCE)
    model_part.AddNodalSolutionStepVariable(RADIUS)
    model_part.AddNodalSolutionStepVariable(PARTICLE_DENSITY)
    model_part.AddNodalSolutionStepVariable(PARTICLE_STIFFNESS)
    model_part.AddNodalSolutionStepVariable(YOUNG_MODULUS)
    model_part.AddNodalSolutionStepVariable(POISSON_RATIO)
    model_part.AddNodalSolutionStepVariable(NODAL_MASS)
    model_part.AddNodalSolutionStepVariable(PARTICLE_COEF_RESTITUTION)
    model_part.AddNodalSolutionStepVariable(PARTICLE_ZETA)
    model_part.AddNodalSolutionStepVariable(IS_STRUCTURE)
    model_part.AddNodalSolutionStepVariable(PARTICLE_MATERIAL)
    model_part.AddNodalSolutionStepVariable(PARTICLE_CONTINUUM)
    model_part.AddNodalSolutionStepVariable(PARTICLE_COHESION)
    model_part.AddNodalSolutionStepVariable(PARTICLE_FRICTION)
    model_part.AddNodalSolutionStepVariable(PARTICLE_TENSION)
    model_part.AddNodalSolutionStepVariable(PARTICLE_LOCAL_DAMP_RATIO)
    model_part.AddNodalSolutionStepVariable(PARTICLE_FAILURE_ID)
    model_part.AddNodalSolutionStepVariable(PARTICLE_INERTIA)
    model_part.AddNodalSolutionStepVariable(ANGULAR_VELOCITY)
    model_part.AddNodalSolutionStepVariable(PARTICLE_MOMENT)
    model_part.AddNodalSolutionStepVariable(PARTICLE_MOMENT_OF_INERTIA)
    model_part.AddNodalSolutionStepVariable(PARTICLE_ROTATION_ANGLE)

    print "variables for the explicit solver added correctly"

def AddDofs(model_part):
    
    for node in model_part.Nodes:
    #adding dofs
        node.AddDof(DISPLACEMENT_X,REACTION_X);
        node.AddDof(DISPLACEMENT_Y,REACTION_Y);
        node.AddDof(DISPLACEMENT_Z,REACTION_Z);
        node.AddDof(VELOCITY_X,REACTION_X);
        node.AddDof(VELOCITY_Y,REACTION_Y);
        node.AddDof(VELOCITY_Z,REACTION_Z);

    print "dofs for the DEM solution added correctly"
 
class ExplicitStrategy:
    
    def __init__(self,model_part,domain_size):

        self.model_part                     = model_part
        self.domain_size                    = domain_size
        self.damping_ratio                  = 0.00;
        self.penalty_factor                 = 10.00
        self.max_delta_time                 = 0.05;
        self.fraction_delta_time            = 0.90;
        self.MoveMeshFlag                   = True;
        self.time_scheme                    = FowardEulerScheme();
        self.gravity                        = Vector(3)
        self.gravity[0] = 0.0
        self.gravity[1] = -9.81
        self.gravity[2] = 0.0
        self.delta_time                     = 0.00001;
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        #type of problem:

        self.delta_OPTION                   = False
        self.continuum_simulating_OPTION    = False
        self.case_OPTION                    = 0 
        self.rotation_OPTION                = 0  
        self.rotation_spring_OPTION         = 0  
    
        #problem specific parameters

        self.force_calculation_type_id      =1
        self.damp_id                        =1
        self.search_radius_extension        = 0.0
        self.dummy_switch                   =0

        #problem utilities
        self.enlargement_factor             = 1;
        self.n_step_search                  = 1;
        self.safety_factor                  = 1; #for critical time step

    ######################################################################

    def Initialize(self):
            
        self.model_part.ProcessInfo.SetValue(GRAVITY, self.gravity)
        self.model_part.ProcessInfo.SetValue(DELTA_TIME, self.delta_time)
        
        if(self.delta_OPTION==True):
            if(self.continuum_simulating_OPTION==True): self.case_OPTION = 2
            else: self.case_OPTION = 1
        elif(self.delta_OPTION==False):
            if(self.continuum_simulating_OPTION==False): self.case_OPTION = 0
            else: self.case_OPTION = 3

        self.model_part.ProcessInfo.SetValue(CASE_OPTION, self.case_OPTION)
        self.model_part.ProcessInfo.SetValue(ROTATION_OPTION, self.rotation_OPTION)
        self.model_part.ProcessInfo.SetValue(ROTATION_SPRING_OPTION, self.rotation_spring_OPTION)
        self.model_part.ProcessInfo.SetValue(FORCE_CALCULATION_TYPE, self.force_calculation_type_id)   
        self.model_part.ProcessInfo.SetValue(DAMP_TYPE, self.damp_id)                                   
        self.model_part.ProcessInfo.SetValue(SEARCH_RADIUS_EXTENSION, self.search_radius_extension)
        self.model_part.ProcessInfo.SetValue(DUMMY_SWITCH, self.dummy_switch)
       
        #creating the solution strategy
        self.solver = ExplicitSolverStrategy(self.model_part, self.domain_size,  self.damping_ratio, 

self.fraction_delta_time, self.delta_time, self.n_step_search, self.safety_factor,
                                            self.MoveMeshFlag, self.delta_OPTION, 

self.continuum_simulating_OPTION, self.time_scheme)
       
        self.solver.Initialize()       
        self.model_part.ProcessInfo.SetValue(DUMMY_SWITCH, 1)  

    #######################################################################   
    def Solve(self):
        (self.solver).Solve()
    
     #######################################################################

    def Calculate_Model_Surrounding_Bounding_Box(self, enlargement_factor):
        self.solver.BoundingBoxUtility()
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