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Abstract The Urban Seismic Risk index (USRi) published in a previous article (Carreño

et al., Nat Hazards 40:137–172, 2007) is a composite indicator that measures risk from an

integrated perspective and guides decision-making for identifying the main interdisci-

plinary factors of vulnerability to be reduced or intervened. The first step of the method

is the evaluation of the potential physical damage (hard approach) as a result of the

convolution of the seismic hazard with the physical vulnerability of buildings and infra-

structure. Subsequently, a set of social context conditions that aggravate the physical

effects is also considered (soft approach). According to this procedure, the physical risk

index is evaluated for each unit of analysis from existing loss scenarios, whereas the total

risk index is obtained by multiplying the former index by an impact factor using an

aggravating coefficient, based on variables associated with the socio-economic conditions

of each unit of analysis. The USRi has been developed using the underlying holistic and

multi-hazard approach of the Urban Risk Index framework proposed for the evaluation of

disaster risk in different megacities worldwide. This article presents the sensitivity analysis

of the index to different parameters such as input data, weights and transformation func-

tions used for the scaling or normalization of variables. This analysis has been performed

using the Monte Carlo simulation to validate the robustness of this composite indicator,

understanding as robustness how the cities maintain the ranking as well as predefined risk

level ranges, when compared with the deterministic results of risk. Results are shown for

different cities of the world.
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1 Introduction

In the past, the concept of disaster risk has been defined in many cases in a fragmentary

way, according to each scientific discipline involved in its appraisal. However, disaster risk

requires an interdisciplinary evaluation (Cardona 2004) that takes into account not only the

expected physical damage, the number and type of casualties or economic losses (direct

impact), but also the conditions related to social fragility and coping capacity of the

society, which favor the second-order effects (indirect impact) when a hazard event strikes

an urban centre. Cardona (2001) developed a holistic approach and method for disaster risk

evaluation at urban level based on a multi-criteria technique.

Using a multi-criteria approach, it was possible to evaluate the disaster risk of exposed

areas using indices and indicators (Cardona 2006). This type of approach is based on a

constructive rationality and it allows taking into account uncertain, incommensurable,

multidimensional aspects and effects. It is a promising estimation framework for making

integrated evaluations and for decision-making in multiple variable environments (Munda

2000). This process commences with the identification of imaginable variables that may

‘‘reflect’’ the state of a socio-technical system (as a country, region or megacity). These

variables may not have a strong comparability or commensurability. The next step is the

hierarchical or structural analysis of the variables (indicators). It consists of determining

the influence of each variable on all of the rest with the purpose of determining its

‘‘weight’’ or importance using matrices of relationships. This activity may be done by

using the Delphi Method (consensus and feedback process with anonymity of the partic-

ipants) and taking into account the opinion of different experts or stakeholders (Garret

1999). This multi-criteria evaluation is a decision-making technique that allows the

involvement of different perspectives, for example, the seismic risk estimation from a

physical, economic, social, political or institutional point of view.

Carreño (2006) developed an alternative method for the Urban Risk Index based on

Cardona’s model (Cardona 2001; Cardona and Barbat 2000). In this method, the urban risk

is evaluated using composite indicators, and the expected building damage and losses in

the infrastructure obtained from simulated loss scenarios are the basic information is

needed for evaluating a physical risk index in each unit of analysis. This article presents the

uncertainty and sensitivity analizes of the USRi performed in order to illustrate its

robustness and shows results of its application to different cities. These analyzes have been

made to illustrate that for disaster risk management the deterministic approach for risk

evaluation using the USRi is reliable, because the ranking of the cities and their classifi-

cation by risk level ranges are similar to those obtained by Monte Carlo simulation, in

which the values of the input data, the non-linear transformation functions and the weights

used in the method are considered to be stochastic.

2 The Urban Seismic Risk index, USRi

The USRi proposed by Carreño et al. (2007) uses an integrated and comprehensive

approach and describes seismic risk by means of composite indicators. The model was
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developed to guide the decision-making in risk management, helping to identify the

critical zones of a city and their vulnerability from different perspectives of professional

disciplines. This approach contributes to the effectiveness of risk management, inviting

to the implementation or action by identifying the hard and soft weakness of the urban

centre. The total urban disaster risk is measured not only in terms of the direct impact

of expected physical damage but also considers indirect impact factors that account for

the socio-economic fragility and coping capabilities of the city’s population and its

institutions. In this model, the total risk RT or USRi depends on the potential direct

impact of earthquakes denoted as physical risk RF, and on the indirect effects given by

and impact factor (1 ? F) based on the aggravating coefficient, F. Thus, it is expressed

by the equation known in the field of disaster risk indicators as Moncho’s Equation as

follows:

USRi ¼ RT ¼ RF 1þ Fð Þ ð1Þ

where

RF ¼
Xp

i¼1

FRFi � wRFi ð2Þ

and

F ¼
Xm

i¼1

FFSi � wFSi þ
Xm

i¼1

FFRj � wFRj ð3Þ

In the Eq. 2, p is the total number of descriptors of physical risk index, FRFi are the

component factors and wRFi are their weights, respectively. The factors of the physical

risk, FRFi, are based on the gross values of the physical risk descriptors, such as the

number of deaths, injured or the destroyed area, among others. They are calculated

using transformation functions that standardize the gross values of the descriptors,

transforming them in commensurable factors which take values between 0 and 1. The

aggravating coefficient given by Eq. 3 depends on the weighted sum of a set of factors

related to the socio-economic fragility, FFSi, and the lack of resilience of the exposed

context, FFRj. In the same equation, wFSi and wFRj are the weights or influences of each

i and j factor, and m and n are the total number of descriptors for social fragility and

lack of resilience, respectively. These aggravating factors are also calculated using

transformation functions. The weights or influences of each factor represent the relative

importance of each factor and are calculated by means of the Analytic Hierarchy

Process (AHP) (Saaty 1980). Figure 1 shows a schematic depiction of the Urban Risk

Index (URi) for the units of analysis which could be districts, municipalities, communes

or localities.

The Urban Seismic Risk index (URSi) was proposed and applied to Barcelona

(Spain) and Bogota (Colombia) by Carreño et al. (2005, 2007) and to Manizales

(Colombia) by Suarez (2007). Recently, the USRi has been applied to Metro Manila,

The Philippines, by Earthquake Megacities Initiative (EMI 2006). In the case of Bogota,

the scenarios of losses, calculated building by building, were developed by Universidad

de Los Andes (2005). For the city of Barcelona probabilistic and deterministic scenarios

were developed by ICC/CIMNE (2004). In Manizales the damage scenarios were

obtained by ERN (2005). Details of the current approach and technique are available in

Carreño et al. (2007).

Nat Hazards (2009) 49:501–516 503

123



3 Uncertainty and sensitivity analyzes

The use of uncertainty and sensitivity analyzes may increase the objectivity and reliability

of a composite indicator, and make policy inference more defensible among the stake-

holders. The former focuses on how uncertainty in the input data propagates through the

structure of the composite indicator and affects the final values of the underlying model of

the indicator. The latter examines how much each individual source of uncertainty con-

tributes to the output variance. These analyzes are usually made in tandem, and

customarily lead to an iterative revision of the structure of the model.

All known sources of uncertainty are properly acknowledged, and the analysis acts to

ensure that the space of the input uncertainties is thoroughly explored and that possible

interactions are captured by the analysis. Some of the uncertainties might be the result of a

parametric estimation, but others may be linked to alternative formulations of the problem,

or different framing assumptions which might reflect different views of reality, as well as

different value judgments posed on it.

Sensitivity analysis complements uncertainty analysis because it studies how the vari-

ation of the values of a composite indicator can be apportioned quantitatively to different

sources of variation (e.g., weights and transformation functions) (JRC-EC 2002). A sen-

sitivity analysis is the process of varying the parameters of the inputs to a model over a

reasonable range and observing the relative change in model response. The input is what is

allowed to vary in order to study its effect on the output. In turn, a sensitivity analysis will

then provide information to the modelers on the relative importance of the values of these

parameter values in determining the output. These are used to assess how robust the results

are to uncertain decisions or assumptions about the data and the methods that are used; it

also helps to build confidence in the model by studying the uncertainties that are often

associated with the parameters in models. Many parameters describing dynamic models are

quantities that are very difficult or even impossible to measure accurately in the real world.

Sensitivity analysis allows determining what level of accuracy is necessary for a parameter

to make the model sufficiently useful and valid (JRC-EC 2003).

Models cannot be validated, in the sense of ‘‘be proven true’’. Indeed, it is only possible

to make an extensive corroboration, meaning by this, that the model has survived a series

Fig. 1 Urban Risk Index (URi) formulation based on Physical Risk and Impact Factor composite
indicators. Source: Megacities Indicator System (MIS) of Metro Manila, EMI (2006)
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of tests of internal consistency or relative to its capacity to explain or predict ‘‘world’’ in a

convincing and parsimonious way. Like scientific theories, models may be given pedigrees

which help us to judge upon their quality. Pedigrees look at past usage of the model, status

of the proponents, degree of acceptance by peers and so on. Within pedigrees, model

quality is more associated to ‘‘fitness for purpose’’, that is, to a specific purpose than to the

model’s intrinsic fabric (Saltelli 2006; Gall 2007).

One of the methods for analyzing uncertainty propagation is the Monte Carlo simula-

tion, where the goal is to determine how random variation affects the sensitivity,

performance or reliability of the model. This is a technique that uses sets of random

numbers as input parameters and probability distributions for iteratively evaluating a

deterministic model, that is, the responses of a system depend on a set of random variables,

whose marginal probabilistic description is known. By means of well-tested algorithms, a

large population of samples of each of these variables can be generated, in such a way that

the closer the histograms of density and cumulative distributions, the larger the population.

An equally large population of output responses can be obtained by making use of the

deterministic code of analysis of the system each time with a different set of random

deviates of the input variables (Hurtado and Barbat 1998).

This method is often used when the model is complex, non-linear or involves more than a

couple of uncertain parameters. Depending on the sample size of the simulation chosen, the

variation will be different, that is, the larger the sample size, the smaller the difference will

be. The accuracy of the result depends upon the number of simulated observations, how

realistic the model is and how well the input distributions represent the true uncertainty of

variation.

4 Robustness analysis for the Urban Seismic Risk index

In the case of the holistic evaluation of seismic risk, sensitivity and uncertainty analyzes of

the model have been performed to know its robustness through estimating how the vari-

ation in the values of the USRi (or total risk, RT) can be apportioned, qualitatively or

quantitatively, to different sources of variation, and how this given index or composite

indicator depends upon the information fed into it. In other words, once the proposed

model (composite indicator) is determined, it is important to analyse how much the results

are influenced by uncertainty in the source data or uncertainty in the model itself

(e.g., weights and transformation functions), because of the stakeholders’ subjectivity or

plurality of perspectives. For this purpose, a Monte Carlo-based simulation was performed.

The random inputs, for each set previously mentioned, were obtained individually by

using uniform distributions in each interval. It would be possible to consider other dis-

tribution function allowing to identify some particular features of the problem but, in this

case, in which the main objective of the article is to provide results relevant for decision-

making according to ranges of risk, a uniform distribution proves to be sufficient. In

the same way, random values for simultaneous variation of all the sets were obtained. The

minimum and maximum values were chosen according to experts’ opinions to indicate the

interval or reasonable range of uncertainty for each input parameters; i.e., according to

possible values in reality and relevant for decision-making in disaster risk management.

Intervals of uncertainty of the transformation functions of descriptors and weights of the

factors were determined by choosing the maximum and minimum values within a per-

centage of variation of 20% above and 20% below of original data, due to the original
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limits of each transformation function being deterministic using existing information about

previous disasters and experts opinions.

By this way, thousands of stochastic results were created with random inputs of each

parameter (input data, transformation functions, weights and all simultaneously) for each

territorial urban unit of analysis (see Table 1). Clearly, the more variables we promote to

the rank of input, allowing them to vary, the more the model prediction can be expected to

vary. This could lead to a situation where having incorporated all uncertainties, the model

prediction varies so wildly as to be of no practical use. In order to provide a concise

summary of the results, the mean, median, standard deviation, maximum and minimum

values and a few other summarized statistics to describe the resulting distribution are given

(see Table 2). Likewise, a histogram was created for visualizing the uncertainty of results,

which illustrates the profile of results, the uncertainty degree and the existing distribution.

In addition, the cumulative distribution function was included in each graph to illustrate the

percentage of data points that are below a value or point of interest.

Figure 2 shows an example of a histogram, and Table 1 illustrates an example of a

statistic summary of the Monte Carlo simulation.

Once the results were calculated through Monte Carlo simulation, the variability or

volatility graphics were built to compare the stochastic results of the USRi with the

deterministic results obtained from the methodology. Figures 3 and 4 illustrate minimum

(x), maximum (9) and mean (r) values and the bars correspond to the deterministic

results obtained for each territorial unit. It can be seen that for the variability of each

parameter, the variability of results is not significant to change the ranking of the

Table 1 Denomination of
territorial units for each city
evaluated

City Territorial unit

Metro Manila City

Barcelona District

Manizales Commune

Bogota Locality

Table 2 Example of statistic summary of the results for Mandaluyong City in Metro Manila with stochastic
weights

Statistics summary

Sample size (N): 5000

Central tendency (Location) Quantiles, percentiles, intervals

Mean: 0.4 Median: 0.4 90% Interval 95% Interval

StErr: 0.00 Q(0.05): 0.343 Q(0.025): 0.34

Spread Q(0.95): 0.459 Q(0.975): 0.47

StDev: 0.04 Alpha (a): 0.05 Q(a/2): 0.34

Max: 0.49 Q(0.75): 0.43 % Interval: 95% Q(1 - a/2): 0.47

Min: 0.32 Q(0.25): 0.37 Probabilities

Range: 0.17 IQ range: 0.06 Pr(y \ 0.33) = 0.44%

Shape Pr(y [ 0.4) = 49.93%

Skewness: 0.0435 Pr(0.33 \ y \ 0.4) = 49.63%

Kurtosis: -1.0225 Alpha (a): 0.5037
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territorial units. The uncertainty is bigger in the case of the simultaneous variation of all

parameters. Figure 5 shows the results of different cities in order to illustrate that in

extreme or marginal cases it is possible that the ranking and the risk level range change

but, in the same way, and that in the most cases they do not change. For example, the

probability that the USRi of Kalookan be less than 0.15, i.e., to belong to the low range, is

of 93% or, for Makati, to be greater than 0.30 is of 99%, i.e., 77% to be in medium-high

Fig. 2 Example of a histogram of the results of USRi for Pateros City in Metro Manila with stochastic
weights

Fig. 3 Variation of the simulation results for stochastic weights and stochastic data. Bars represent the
deterministic or crisp values
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range and 22% to be in the high range. In the case of Pasay, the probability to be in the

very high range is of 65% and in the high range is of 34%. This proves, in general, the

robustness of the method and, by contrary, that for the worse cases the mis-ranking has a

low level of probability.

Table 3 shows that the results obtained through simulation are similar to the results

obtained using deterministic or crisp values of input data, weights and transformation

functions of the USRi method applied to Metro Manila. The overall results show that,

the territorial units of this megacity vary slightly in their rankings. Some units fluctuate

at one position. In other urban centres, such as Barcelona (Table 4) and Manizales

(Table 5), where the method has been applied and where a similar sensitivity analysis

has been made, the results are similar. Only in the case of Bogota (Table 6) some

localities have been more volatile, showing changes of three positions; however, this fact

is not relevant for decision-making measures, because these measures are defined

according to the risk levels shown in Table 7 and the territorial units does not change of

level drastically.

In Metro Manila, according to the classification of the total risk by levels, all cities

maintain the same level excepting San Juan which changes the range from medium-high to

medium-low because the total risk result for crisp values is equal to 0.29 and for stochastic

values the result is above 0.30.

In the case of Barcelona, according to the classification of the total risk by levels, all the

districts maintain the same level excepting San Marti district which shows changes of

range from low to medium-low because the total risk result for deterministic values is

equal to 0.13 and for stochastic values the result is above 0.16; for the simultaneous

variation of all the parameters, the result is over 0.15. Likewise, the Example district shows

a change of range from low to medium-low in the case of stochastic transformation

Fig. 4 Variation of the simulation results for stochastic transformation functions and for stochastic data,
weights and transformation functions. Bars represent the deterministic or crisp values
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functions because the total risk result for crisp values is the same and for stochastic values

the result is above 0.15.

The communes of the city of Manizales, Colombia, maintain the same level with

exception of La Fuente and Palogrande, for the variation of all parameters, cases in which

there was a change of range from low to medium-low, and from medium-low to medium-

high, respectively.

In the case of the city of Bogota, Colombia, according to the classification of the total

risk by levels, the localities maintain a very similar position in all parameters variation.

Some localities such as Engativa and Puente Aranda present changes of their rank in the

case of stochastic weights and functions, because the values of the total risk are very

similar and thus this result can be produced by a slight variation of the values. Other

rank changes can be observed for the same reason. In addition, it is possible to observe

the change of the risk level for Santa Fe from very high to high, because the total risk

result for deterministic values is equal to 0.70 and for stochastic values the result was

0.68. Nevertheless, this fact is not relevant because the change of the value for this

locality is in the limit of the two levels, so that very small variation can produce the

change; what is important is to interpret that this locality is located in the upper limit of

a high-risk level.

Fig. 5 Results of stochastic (mean) and deterministic USRi for Kalookan, Makati and Pasay
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ió

n
0

.2
2

L
a

E
st

ac
ió
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Classification of risk by ranges has a special interest because, for risk management

implications, it is more relevant to take into account the level of risk of territorial units of a

megacity than its final numerical value.

5 Conclusions

Robustness is a basic attribute of the quality of a risk evaluation method, and the purpose

of this article has been to prove the robustness of the USRi method.

Public policy, despite what many believe, is well linked to the evaluation technique

that is used to guide that policy. The quality, or fitness for purpose, of an evaluation

technique, called by some ‘‘its scientific pedigree,’’ has an unsuspecting influence on the

development of a policy. If the evaluation, for instance, invites to the policy imple-

mentation, it is much more effective than if its results are restricted to identifying the

mere existence of weaknesses. The holistic evaluation of seismic risk using the USRi

facilitates the integrated risk management by the different stakeholders involved in risk-

reduction decision-making. Once the results have been obtained for each locality or

district, it is easy to identify the most relevant aspects of the total risk index. The results

can be verified and the mitigation priorities can be established as regards the prevention

and planning actions to modify those conditions (sub-indicators) having a greater

influence on risk. This technique allows comparing risks among different cities or me-

gacities, therefore the USRi allows using a common ‘‘rule’’ of measurement to compare

and benchmark the results.

According to the comparison of the results of sensitivity analysis based on Monte Carlo

simulations and the results obtained by the holistic seismic risk evaluation here described,

it is possible to conclude that the USRi method is robust. It is not excessively sensitive to

slight variations in the input data and to small changes in the modeling parameters, such as

weights and transformation functions. The results do not show important or extreme

changes. If the range of variation of data and parameters is reasonable, as it is in the case of

seismic risk, the results of the model will be stable and reliable. Classification by ranges of

risk has special interest, because it is more relevant to take into account the level of risk

where a territorial unit is located than its final numerical value for risk management

implications.

The quality of the evaluation technique is understood as its ability to assure a certain

set of requirements or desirable attributes. These attributes are its applicability, trans-

parency, presentation, legitimacy and robustness. Thus, its scientific pedigree will depend

on the fulfillment or compliance with these properties. Applicability is linked to the

fitness of the model to the problem, to its goals and completeness, and to the accessi-

bility, aptitude and trustworthiness of the required information. Transparency is related to

the structuring of the problem, its ease of use, flexibility and adaptability, and the

intelligibility of the model or algorithm. Presentation is related to the transformation of

information, the visualization and comprehensibility of the results. Legitimacy is linked

Table 7 Risk levels ranges for USRi

Very high High Medium-high Medium-low Low

0.70–1.20 0.45–0.69 0.30–0.44 0.15–0.29 0.00–0.14
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or associated with the role of the analyst, the control and contrasting, the possibility of

verification, and the acceptance and consensus of decision evaluators and makers.

Finally, the robustness is related to the stability and reliability of the method to deal with

the uncertainty of input data and the modeling parameters. The design of the USRi,

based on the holistic approach for seismic risk evaluation, covers all the attributes of

quality that have been previously mentioned.
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