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The Disaster Deficit Index (DDI) measures country risk from a macroeconomic and financial
perspective, according to possible catastrophic events. The DDI captures the relationship between
the demand for contingent resources to cover the maximum probable losses and the public sector’s
economic resilience; that is, the availability of internal and external funds for restoring affected
inventories. For calculating potential losses, the model follows the insurance industry in establish-
ing a probable loss, based on the critical impacts during a given period of exposure, and for the
economic resilience the model computes the country’s financial ability to cope with the situation
taking into account: the insurance and reinsurance payments; the reserve funds for disasters; the
funds that may be received as aid and donations; the possible value of new taxes; the margin for
budgetary reallocations; the feasible value of external credit; and the internal credit the country
may obtain. Access to these resources has limitations and costs that must be taken into account as
feasible values according to the macroeconomic and financial conditions of the country. This
article presents the model of DDI and proposes it as a simple way of measuring a country’s fiscal
exposure and potential deficit—or contingency liabilities—in case of extreme disasters to guide the
governmental decisionmaking from economic, financial, and disaster risk reduction perspectives.

Keywords Disaster Deficit; Contingent Liabilities; Fiscal Sustainability; Seismic Vulnerability

1. Introduction

Disaster risk management requires measuring risk to take into account not only the

expected physical damage, victims, and economic equivalent loss, but also social, organi-

zational, and institutional factors [Carreño et al., 2007a,b). The difficulty in achieving

effective disaster risk management has been, in part, the result of the lack of a compre-

hensive conceptual framework of disaster risk to facilitate a multidisciplinary evaluation

and intervention. Most existing indices and evaluation techniques do not adequately express

risk and are not based on a holistic approach that invites intervention. The various planning

agencies dealing with the economy, environment, housing, infrastructure, agriculture, or

health, to mention but a few relevant areas, must be made aware of the risks that each sector

Address correspondence to Omar D. Cardona, Instituto de Estudios Ambientales (IDEA), Universidad

Nacional de Colombia, Manizales, Colombia; E-mail: odcardonaa@unal.edu.co
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faces. In addition, the concerns of different levels of government should be addressed in a

meaningful way. For example, risk is very different at the local level (a community or small

town) than it is at the national level. If risk is not presented and explained in a way that

attracts stakeholders’ attention, it will not be possible to make progress in reducing the

impact of disasters. Risk is most detailed at a micro-social or territorial scale. As we

aggregate and work at more macro scales, details are lost. However, decision making and

information needs at each level are quite different, as are the social actors and stakeholders.

This means that appropriate evaluation tools are necessary to make it easy to understand the

problem and guide the decision-making process. It is fundamentally important to under-

stand how vulnerability is generated, how it increases, and how it builds up. Performance

benchmarks are also needed to facilitate decision makers’ access to relevant information as

well as the identification and proposal of effective policies and actions.

A system of indicators is proposed to meet this need and to enable the depiction of disaster

risk at the national level, allowing the identification of key issues by economic and social

category. It also makes possible the creation of national risk management performance

benchmarks in order to establish performance targets for improving management effective-

ness. Four components or composite indicators have been designed to represent the main

elements of vulnerability and show each country’s progress in managing risk. This article

presents one of them related to the macroeconomic potential impact: the Disaster Deficit Index

(DDI). The system of indicators was developed by the Institute of Environmental Studies

(IDEA in Spanish) of the National University of Colombia, in Manizales, for the Inter-

American Development Bank, in the framework of its Program of Indicators for Disaster

Risk and Risk Management in the Americas. Program reports, technical details, and the

application results for the countries in the Americas can be consulted at the following web

page: http://idea.unalmzl.edu.co [Cardona, 2005; Carreño et al., 2005; IDEA, 2005].

2. Disaster Deficit Index

The DDI measures country risk from a macroeconomic and financial perspective accord-

ing to possible catastrophic events. It requires the estimation of critical impacts during a

given period of exposure, as well as the country’s financial ability to cope with the

situation. This index measures the economic loss that a particular country could suffer

when a catastrophic event takes place, and the implications in terms of resources needed

to address the situation. Construction of the DDI requires undertaking a forecast based on

historical and scientific evidence, as well as measuring the value of infrastructure and

other goods and services that are likely to be affected. The DDI captures the relationship

between the demand for contingent resources to cover the losses, LP
R, caused by

the Maximum Considered Event (MCE),1 and the public sector’s economic resilience,

RP
E, that is, the availability of internal and external funds for restoring affected inven-

tories2. Thus, DDI is calculated using Eq. 1, as follows:

DDI ¼ LP
R

RP
E

(1)

1This model follows the insurance industry in establishing a reference point for calculating
potential losses [ASTM, 1999]; e.g. the Probable Maximum Loss, PML [Ordaz and Santa-Cruz,
2003].

2A similar approach estimating the resource gap has been proposed by Freeman et al. [2002].
In this report, they say that being able to quickly access sufficient funds for reconstruction after a
disaster is critical to a country’s ability to recover with minimal long-term consequences.

Estimation of Probabilistic Seismic Losses and the Public Economic Resilience 61
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where

LP
R ¼ ’LR: (2)

LP
R represents the maximum direct economic impact in probabilistic terms on

public and private stocks that are governments’ responsibility. The value of public

sector capital inventory losses is a fraction ’ of the loss of all affected goods, LR,

which is associated with an MCE of intensity IR, and whose annual exceedance rate

(or return period, R) is defined in the same way for all countries (i.e., return

periods of 50, 100 and 500 years, whose probability during any 10 years exposure

period is 18%, 10%, and 2%, respectively). This total loss LR, can be estimated as

follows:

LR ¼ EVðIRCSÞK; (3)

where E is the economic value of all the property exposed; V( ) is the vulnerability

function, which relates the intensity of the event with the fraction of the value that is

lost if an event of such intensity takes place; IR is the intensity associated to the

selected return period; CS is a coefficient that corrects intensities to account for local

site effects; and K is a factor that corrects for uncertainty in the vulnerability

function.
Economic resilience, RP

E (the denominator of the index), is defined in Eq. 4:

RP
E ¼

Xn

i¼1

FP
i ; (4)

where FP
i represents the possible internal and external resources, that were available to

the government, in its role as a promoter of recovery and as owner of affected goods,

when the evaluation was undertaken. Access to these resources has limitations and costs

that must be taken into account as feasible values according to the macroeconomic and

financial conditions of the country. In this evaluation the following aspects have been

taken into account: the insurance and reinsurance payments that the country would

approximately receive for goods and infrastructure insured by government; the reserve

funds for disasters that the country has available during the evaluation year; the funds that

may be received as aid and donations, public or private, national or international; the

possible value of new taxes that the country could collect in case of disasters; the margin

for budgetary reallocations of the country, which usually corresponds to the margin of

discretional expenses available to government; the feasible value of external credit that

the country could obtain from multilateral organisms and in the external capital market;

and the internal credit the country may obtain from commercial and, at times, the Central

Bank, when this is legal, signifying immediate liquidity. Figure 1 shows a diagram

illustrating the way to obtain the DDI.

A DDI greater than 1.0 reflects the country’s inability to cope with extreme disasters

even by going into as much debt as possible.The greater the DDI, the greater the gap

between losses and the country’s ability to face them. If constrictions for additional debt

exist, this situation implies the impossibility to recover.

To help place the DDI in context, we have developed a complementary indicator,

DDI’, to illustrate the portion of a country’s annual Capital Expenditure, EP
C, that

corresponds to the expected annual loss, LP
y , or the pure risk premium. That is, DDI’

62 O. D. Cardona et al.
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shows the percentage of the annual investment budget that would be needed to pay for

future disasters:

DDI ¼
LP

y

EP
c

: (5)

The pure premium value is equivalent to the annual average investment or saving that a

country would have to make in order to approximately cover losses associated with major

future disasters. Other DDI’ was also estimated with respect to the amount of sustainable

resources due to inter-temporal surplus, SP
i . That is to say, the percentage the technical

premium of potential savings at present values represents, as expressed in Eq. (6):

DDI ¼
LP

y

SP
l

: (6)

The sustainable amount of resources due to inter-temporal surplus, SP
i , is the saving

which the government can employ, calculated over a 10-year period, in order to best attend

the impacts of disasters (see IDEA, 2005). What we need to know is if the government,

from an orthodox perspective, complies with its inter-temporal budgetary restriction. That

is to say, if the flows of expenditures and incomes guarantee—in present value terms—

that current and future primary surpluses allow a canceling of the present stock of debt. In

other words, financial discipline requires that government action be limited and that the

financial capacity to deal with disasters must comply with the inter-temporal restriction of

Description

Insurance and reassurance payments F1
p

Reserve funds for disasters F2
p

Aid and donations F3
p

New taxes F4
p

Budgetary reallocations F5
p

External credit F6
p

Internal credit F7
p

Hazard

⊗ =

  Expected Intensity for the MCE

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Intensidad

oña
D

TIPO 1

TIPO 2

TIPO 3

TIPO 4

TIPO 5

Economic Resilience
MCE loss

DDI =

Vulnerability Risk

Damage functions for exposed goods Potential damages x Economic value 

Indicators

FIGURE 1 Diagram for DDI calculation.
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public finances. In the case that annual losses exceed the amount of resources available in

the surplus it is predicted that over time there will be a debt due to disasters that inevitably

increase the overall debt levels. That is to say, the country does not have sufficient

resources to attend future disasters. In the case that restrictions to additional indebtedness

should exist, this situation would signify that recovery is impossible. In general, if inter-

temporal surplus is negative, premium payment would increase the existent deficit.

In the following paragraphs, we will consider the theoretical framework of risk and

the variables involved in Eq. (3) from a specific hazard and vulnerability perspective.

3. Estimating Probable Losses

The computation of losses during future natural hazard events (index numerator) is

always a very complex problem. Due to the uncertainties of this process, losses must

be regarded as random variables, which can only be known in a probabilistic sense, i.e.,

through their probability distributions. Consequently, this approach has been adopted in

this model [Ordaz and Santa-Cruz, 2003]. Given existing knowledge, it is clearly

theoretically impossible to predict the times of occurrence and magnitudes of all future

natural hazard events. In view of the uncertain nature of the processes involved, our

second best choice is to estimate the probability distribution of the times of occurrence

and impacts of all future disasters. In general, however, this estimation is also a titanic

task. A convenient way of describing the required probability distributions (those of the

occurrence times and the sizes of the physical impact) is the use of the exceedance rate

curve of the physical losses (Loss Exceedence Curve). This curve relates the value of the

loss with the annual frequency with which this loss value is exceeded; the inverse of the

exceedance rate is the return period. The PML curve is an equivalent curve to the LEC.

An example of this risk metric is depicted in the Fig. 2.

There is a large body of work in the past decades on earthquake loss estimation and

more recently with GIS, e.g., the ATC-13 [ATC, 1985] and the HAZUS [FEMA, 1999]

that have been considered outstanding methods. See also Coburn and Spence [1992] and

the EERI Earthquake Spectra Loss Estimation Theme Issue [1997]. Details of modular

risk model are described in the article ‘‘Earthquake loss assessment for integrated disaster

risk management’’ of Cardona et al. [2005] of this JEE Special Issue.

3.8

6.8

9.5

12.6

14.8
16.4

0

5

10

15

20

0 250 500 750 1,000 1,250 1,500 1,750 2,000
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PM
L 

(%
)

FIGURE 2 Example of a PML curve with the results for several return periods.
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3.1 Hazard

In this context, intensity is defined as a local measure of the disturbance produced by a

natural event in those physical characteristics of the environment relevant to the phenom-

enon under study. For all types of hazards, it is almost impossible to describe the intensity

with a single parameter. For instance, when dealing with earthquake hazards, the peak

ground acceleration gives some general information about the size of the ground motion,

but does not give indications about its frequency content. This is crucial for an accurate

estimation of structural response. In view of this, it is understood that a single-parameter

description of intensity will always be incomplete. However, a multi-variable description

of intensity is far too complex for our goals (actually, very few, if any risk studies

undertaken in the past, have considered multi-variable descriptions of intensity). We

propose to use a single measure of intensity for each type of hazard that correlates well

with damage and for which hazard measures are relatively easy to obtain. It should be

noted that since we are mainly interested in disasters that have an economic impact at the

national level, we have restricted ourselves to those hazards that produce large, immedi-

ate economic losses, like earthquakes or hurricanes. Other hazards, like landslides, are

extremely important to local level, and historically have produced many victims.

However, their economic impact has been very limited. Slow on-set disasters, like

drought, are also very important, but their economic impacts are deferred over time. As

these do not have immediate effects, they are beyond the scope of the proposed estima-

tion model.

In many cases, hazard estimations are obtained from regional studies, or by assuming

average environmental conditions. For example, seismic hazard maps are usually pro-

duced assuming average firm soil conditions, i.e., assuming that there are no significant

amplifications of seismic intensity due to soft soils. Also, wind velocity maps are

generally produced assuming average exposure conditions, that is, velocities are not

obtained for sites on hills, but for reference sites. However, for each type of hazard,

particular environmental characteristics may exist in the cities under study that cause

intensities to be larger or smaller than the intensities in the neighborhood. In other words,

environmental characteristics may exist that differ from those corresponding to the

standard characteristics used in hazard evaluation. These characteristics are known as

local site conditions, and they give rise to local site effects. In the framework of the

present project, the local site effects in all cities and for all types of hazards are

impossible to take into account in any accurate manner. Our first rough approach

would be to simply ignore the site effects. This amounts to taking FS = 1 in Eq. (3).

However, there are cases in which the local site effects cannot be disregarded. Since by

definition these site effects are local, it would be impossible for us to give general rules as

to the adequate values of FS for all cities and types of hazard. In our view, appropriate

values would have to be assigned by the local experts who participate in the loss

estimations for different countries.

Once an appropriate intensity is chosen for each type of phenomenon, a probabilistic

hazard description must be given. Usually, the hazard is expressed in terms of the

exceedance rates of intensity values. It must be noted that, for our purposes, we require

local indications of hazard, that is, exceedance rates of intensity at the points or cities of

interest (one of our assumptions is that all property in a city is concentrated in a point or

in a geographical area of limited size). In principle, a hazard curve must be constructed

for every type of hazard and every city under study. However, recalling Eq. (3), it is

needed just a few points of this curve, namely those intensities associated to the selected

return periods.

Estimation of Probabilistic Seismic Losses and the Public Economic Resilience 65
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In the case of seismic hazard the intensity is calculated taking into consideration the

sum of effects of all seismic sources located in a certain influence area. The hazard,

expressed in terms of the exceedance rates of the peak accelerations for firm soil, a, is

calculated through the following expression [Esteva, 1970]:

vðaÞ ¼
Xi¼N

i¼1

ZMu

M0

� @�

@M
PrðA > ajM;RiÞdM; (7)

where the sum includes all the seismic sources, N, and Pr(A > ajM,Ri) is the probability of

the intensity exceeding a certain value, given the earthquake’s magnitude, M, and the

distance between the ith source and the site, Ri. The �(M) function represents the activity

rates of the seismic sources. The integration is done from M0 to Mu,, which indicates that

the contribution of all magnitudes is taken into account for each seismic source. It is

important to note that the previous equation would be exact if the seismic sources were

points. In reality, they are volumes, therefore the epicenters cannot only occur in the

centers of the sources, but can also occur, with equal probability, in any point inside the

corresponding volume. Supposing that the intensity variable has a lognormal distribution

given the magnitude and distance, the probability Pr(A > ajM, Ri) is calculated in the

following way:

PrðA > ajM;RÞ ¼ f
1

�ln a

ln
MEDðAjM;RÞ

a

� �
(8)

being F(�) the standard normal distribution, MED(AjM, Ri) the median value of the

intensity variable (given by the corresponding attenuation law), and sLna the standard

deviation of the natural logarithm of a. In Eqs. (7) and (8), both the attenuation law and

its uncertainty are included. The seismic hazard is expressed in terms of the exceedance

rates of given values of seismic intensity. The seismic intensity, a, refers to the pseu-

doacceleration response spectra ordinates for a 5% of critical camping for a given

structural period, T. Once the attenuation laws are calculated for different structural

periods, it is possible to determine uniform hazard spectra for a specific site, based on

the calculated intensity value (acceleration) for a fixed return period.

3.2 Vulnerability

As indicated in Eq. (3), V(I) is the vulnerability function, which relates the intensity of the

event, I, with the expected fraction of the value that is lost if an event of such intensity

takes place.

Vulnerability functions usually have shapes like that shown in Fig. 3. A building is

said to be more vulnerable than another if greater damage is expected in the former than

in the latter given similar hazard intensities. Vulnerability functions are highly hazard-

specific. In other words, in the same city, buildings and infrastructure might be very

vulnerable to a certain hazard and much less vulnerable to another. As defined, vulner-

ability functions might change depending on technological, educational, cultural, and

social factors. For instance, for the same seismic intensity, buildings in a city might be

more vulnerable than buildings in another city due to higher dissemination of construc-

tion technology or application of seismic-resistant design in the latter. In rigor, vulner-

ability functions should be expressed in the following way:

66 O. D. Cardona et al.
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VðIÞ ¼ VðI;�Þ; (9)

where F is a set of parameters that will be denoted as vulnerability factors. In fact, it is

through these factors that the effects of prevention can be appreciated, and their economic

impact can be assessed. Consider, for instance, that the vulnerability curves correspond to

earthquake hazard. Here, it is conceivable that the application of seismic-resistant design in

a city (a change in one of the vulnerability factors) could move the vulnerability function

from the ‘‘more vulnerable’’ to the ‘‘less vulnerable’’ case of Fig. 3. Usually, the costs of

development, implementation, and enforcement of seismic regulations would be much less

than the amount saved by reducing the vulnerability, so improving the design practices

would be a sound decision even from the economic point of view. A discussion about

probabilistic benefit-cost ratio is presented in the article ‘‘Earthquake loss assessment for

integrated disaster risk management’’ of Cardona et al. [2005] of this JEE Special Issue.

As it may be noted in the preceding paragraphs, we always refer to V (I; F) as being

related to the expected damage, that is, to the expected value (in the probabilistic sense)

of the damage. Due to the uncertainties involved, it is impossible to deterministically

predict the damage resulting from an event with a given intensity. Thus, we try to predict

its expected damage with V (I; F), keeping in mind that there are uncertainties that cannot

be neglected. There are, of course, rigorous probabilistic ways to account for this

uncertainty. One way of solving this problem is to find a factor, that we call K (see Eq.

(3), which relates the loss estimator that would be obtained accounting for the uncertainty

with the loss estimators obtained disregarding this uncertainty. Factor K depends on

several things: the uncertainty in the vulnerability relation, the shape of the intensity

exceedance rate curve, and the return period. We have found that, under reasonable

hypotheses, a factor of K = 1.2�1.3 is reasonable for our goals.3 The vulnerability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10
Intensity (arbitrary units)

V(
I)

Less vulnerable
More vulnerable

FIGURE 3 Representation of vulnerability functions.

3Note that if a constant factor K = 1.2 is used for all countries, cities, and types of hazard then
it becomes irrelevant for comparison purposes. However, we prefer to deal with K explicitly for two
reasons. The first is of symbolic nature: it helps to keep in mind that our estimation process is
uncertain and that we must account for uncertainty in a formal way. The second reason is that, as
defined, our loss estimators have a clear meaning: they are economic losses, measured in monetary
units. Thus, their scale is relevant.
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functions can be expressed analytically using Eq. (10):

VðIÞ ¼ 1� exp ln 0:5
1

�

� ��� �
; (10)

where � and �. are parameters that define the shape of the function. Table 1 shows some

values of � and g for some building constructions [Ordaz and Santa-Cruz, 2003].

So far, our analysis has been restricted to estimate losses in cities or regions of

limited geographical size. The key to the definition of ‘‘limited geographical size’’ is our

hypothesis that everything within the city is affected simultaneously by the event under

study. In reality, damage during disasters varies, sometimes widely, even within a city, so

our hypothesis hardly, if ever, holds. But, this assumption has to be made for the sake of

simplicity. However, for extensive regions, comprising several cities, perhaps hundreds

of kilometers apart, it would be extremely risky to assume that everything is affected

simultaneously. In view of this, we have to derive ways to combine the computed loss

estimators for each city in order to obtain a reasonable combined estimator for the whole

country. We shall call these rules the aggregation rules. IDEA [2005] presents details

about the mathematical relations between the exceedance rates and other interesting and

useful measures of risk; the rigorous probabilistic ways to account for the vulnerability

uncertainty and the derivation on the loss-aggregation rules proposed.

4. Resources Potentially Available

Economic resilience (the denominator of the index) represents internal and external

resources that were available to the government when the evaluation was undertaken.

Seven constraints are explicitly taken into consideration in this study: insurance and

reinsurance payments FP
1

� 	
for insured government-owned goods and infrastructure;

disaster reserve funds FP
2

� 	
; public, private, national, or international aid and donations

FP
3

� 	
; new taxes FP

4

� 	
; budgetary reallocations FP

5

� 	
which usually corresponds to the

margin of discretional expenses available to the government; external credit FP
6

� 	
that the

country could obtain from development banks and in the capital market; and Internal

credit FP
7

� 	
the country may obtain from commercial banks as well as the central bank.

IDEA [2005] presents a method for estimating taxes on financial transactions. In

addition, it presents a model for calculating the external financial situation of a country

and the access to internal credit taking into account the associated uncertainties. It is

important to indicate that this estimation is proposed considering restrictions or feasible

values and without considering possible associated costs of access to some of these funds

and opportunity costs which could be important. Figures 4 and 5 presents the application

results for some countries in the Americas [Cardona, 2005; IDEA, 2005].

TABLE 1 Parameters for Some Vulnerability Functions

Construction class � g

Non reinforced masonry 5.0 0.25

Confined masonry 5.5 0.50

Reinforced concrete frames 3.0 0.40
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5. Conclusions

These indicators provide a simple way of measuring a country’s fiscal exposure and the

implicit contingency liabilities for the governments in case of extreme disasters. They

allow national decision makers to measure the budgetary implications of a hazard

extreme event and highlight the importance of including this type of information in

financial and budgetary processes. These results substantiate the need to identify and

propose effective policies and actions such as, for example, using insurance and reinsur-

ance (transfer mechanisms) to protect government resources or establishing reserves

based on adequate loss estimation criteria. Other such actions include contracting con-

tingency credits and, in particular, the need to invest in structural retrofitting and

rehabilitation, and non structural prevention and mitigation, to reduce potential damage

and losses as well as the potential economic impact of disasters.
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The present approach was chosen given that serious theoretical controversies still

exist in terms of whether disasters cause a significant impact on economic development.

According to the results obtained by Albala-Bertrand [1993] disasters have little effect on

the macro economy of a country. Models formulated by IIASA and Freeman et al. (2002),

Benson et al. [2003], and ECLAC [2003] argue that in the long run such impacts may be

important. IDEA [2005] concludes that disasters may reduce the savings level in society

and thus the amount of capital and product per person in the stationary state, i.e.,

recurrent and random disasters affect per capita income and growth rates in the long term.
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