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Abstract. This paper presents the results of finite element simulations made on a bent pipe 

subjected to an in-plane variable cyclic displacement combined with internal pressure. Special 
emphasis is put on the capacity of the model to illustrate different failure modes depending on 
the internal pressure applied on the pipe. The results of the numerical analyses will be 
compared to experimental ones. The constitutive model used for the simulation of Ultra Low 
Cycle Fatigue (ULCF) loading and the hardening–softening law used are only briefly touched 
upon. The monotonic behavior of a large diameter pipe, as obtained from the constitutive model 
proposed, is also shown and compared to experimental results under two different loading 
conditions. The total axial load at failure for this case resulted in less than 10% error as 
compared to the experiments.  Regarding the ULCF in-plane bending simulations conducted on 
a 16-inch 90° elbow, the results were in good agreement with the experimental test in terms of 
force-displacement hysteresis loops and total fatigue life of the specimen. An analysis of the 
dependence of the failure mode to the internal pressure applied has been conducted, showing 
that the formulation is capable of obtaining both habitual failure types. 
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1. Introduction 

ULCF can occur in the metallic materials of modern steel devices that are designed to 
absorb seismic energy by sustaining large inelastic deformations under cyclic loads. Pipelines 
installed in seismic or permafrost regions must have sufficient strength against buckling or 
fracture caused by large ground deformation of buried pipeline.  

ULCF can be defined as a failure that occurs at a relatively small number on the repeated 
stress or strain cycles. The upper limit in low-cycle life has generally been selected arbitrarily by 
different researchers to lie in the range of 104 to 105   cycles. On the other hand, the lower limit 
of life is the static test which has been represented by various investigators as 1/4, 1/2, 3/4 or 
even one cycle ([1], [2]). For ductile metals under periodic plastic loading, materials often fail 
within a reduced number of life cycles. Within this regime, the failure mechanism is governed by 
the plastic and damage (or sometimes called ductile damage), which is characterized by micro 
structure deterioration such as micro void nucleation, growth and coalescence and micro crack 
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initiation and propagation [3]. So, this process is governed by void growth and coalescence-type 
mechanisms, which are associated, typically, with ductile fracture phenomenon driven by 
Bauschinger plasticity non-linear mechanical processes, depending of the plastic strain [4].  

While previous studies (e.g., Kuwamura and K. Yamamoto [5]) have identified this issue, 
models and mechanisms to characterize ULCF are not well established. Prediction models for 
the cyclic life of materials are thus often based on the alternating plastic and damage strain 
amplitude. The most commonly used relationship between the alternating damage and plastic 
strain and the life cycles is the so-called uniaxial Manson–Coffin law ([2], [6]), based on small 
uniaxial strains formulation. This law is essentially a two parameter power law curve and can be 
plotted in a log–log scale as a straight line where the slope of the curve depicts the exponent of 
the power law relationship.  

The ULCF mechanical processes cannot be modelled using traditional fracture mechanics 
and fatigue models. Primarily, ULCF is often accompanied by large inelastic strain (damage 
and/or plasticity), which may invalidate stress intensity-based  K∆  or J∆   approaches [7]. 
Second, the induced loading histories are extremely random with very few cycles, making them 
difficult to adapt to conventional cycle counting techniques such as rain flow analysis ([8], [9]) or 
strain life approaches. Finally,  K∆  or  J∆  methods, require an initial sharp crack or flaw, 
which is absent in many structural details. These limitations, coupled with the large strain 
advanced finite-element formulation methods, create the need for an improved understanding of 
the underlying ULCF process and the development of models to predict it. 

Since 1950s, numerous experimental programs have been carried out to calibrate the 
material constants for different steels and a large amount of information is available . The 
experimental data is usually plotted on a log–log scale with the abscissa the number of life 

cycles and the coordinate the plastic strain amplitude, which is known as the p N∆ε − curve. 
From the experimental results, it is observed that the Manson–Coffin law does not fit well in the 
range of very low life cycles, i.e. about less than 100 cycles [3]. 

In this context, a new model for fatigue damage and plasticity assessment under ULCF is 
presented. ULCF damage is bounded by monotonic ductile failure and low-cycle fatigue (LCF). 
Typically, models for ULCF are extensions of LCF models. However, it is recognized in the 
literature that LCF models are not fully adequate without any kind of correction.  

Therefore, the proposal presented in Martinez et al. [10] and in the current paper presents a 
new focus for the ULCF modelling. The complete nonlinear constitutive model is an extension of 
a given plasticity model to incorporate the damage effects due to cyclic action. It is an energetic 
based approach that accounts for the energy dissipated during the plastic action and compares 
it with a fracture energy that has to be calibrated by experiments. This is a coupled approach 
where damage due to cyclic action impacts directly on the stress-strain response.  

The present work is centered on the large scale validation of the nonlinear constitutive 
model for cyclic and monotonic loading conditions. The model is the well-known Barcelona 
plastic damage model, proposed by Lubliner et al. [11]. An innovative application is given to this 
formulation by considering it for the cyclic loading case and incorporating a Friederick-
Armstrong kinematic hardening law that allows the description of phenomena like cyclic 
ratcheting (under stress control conditions) or cyclic stress relaxation (under strain control or 
elastically constrained conditions). A new isotropic hardening law is also developed especially 
for steel materials, designed to reproduce their hardening and softening performance under 
monotonic and cyclic loading conditions. The exact expression of the constitutive law and the 
thermodynamic formulation of the model are presented in Martinez et al. [10], [12] and Barbu et 
al. [13]. 

In Sections 2 and 3 a summary of the new isotropic hardening law is presented with 
emphasis on small improvements made with respect to the expressions presented in Martinez 
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et al. [10] . In Section 4 the complete calibration procedure on small scale samples is presented 
step by step. In Section 5 results are shown for straight pipes under monotonic combined 
loading: uniaxial displacement and internal pressure. Two different loading histories are taken 
into account that exhibit different failure modes. Section 6 illustrates the results made on a 16-
inch 90° elbow subjected to a variable in-plane displacement and internal pressure.  Finally, in 
Section 7 conclusions are drawn as to the large scale behavior obtained with the proposed 
nonlinear constitutive model.  

2. ULCF constitutive model 

This work will not describe the complete plastic damage model, as it can be obtained from 
[10] and [11]. 

The inelastic theory of plasticity can simulate the material behavior beyond the elastic 
range, taking into account the change in the strength of the material through the movement of 
the yield surface, isotropic and kinematic. It is assumed that each point of the solid follows a 
thermo-elasto-plastic constitutive law (stiffness hardening/softening) ([11], [14], [15] and [16]). 

The yield surface is defined by a function F that accounts for the residual strength of the 
material, which depends on the current stress state, the temperature and the plastic internal 
variables. This F function has the following form, taking into account isotropic and kinematic 
plastic hardening (Bauschinger effect - Lemaitre and Chaboche [17]),   

0),,()(),,( ≤−−= θκαθγ p
ijijij

p
ij SKSfSF

 (1) 

where )( ijijSf α−  is the uniaxial equivalent stress functions depending of the current 

value of the stress tensor ijS , ijα  is the kinematic hardening internal variable, ),,( θκ p
ijSK  is 

the plastic strength threshold, pκ  is the plastic isotropic hardening internal variable, and θ  is 
the temperature at current time t   ([10], [11], [14], [15] and [16]). 

2.1 Kinematic Hardening 

Kinematic hardening accounts for a translation of the yield function and allows the 
representation of the Bauschinger effect in the case of cyclic loading.  

This translation is driven by the kinematic hardening internal variable ijα  which, in a 

general case, varies proportionally to the plastic strain of the material point [17]. There are 
several laws that define the evolution of this parameter. Current work uses a non-linear 
kinematic hardening law, which can be written as: 

pdEc ijk
P
ijkij  αα −=  (2) 

where kc  and kd  are material constants, P
ijE is the plastic strain increment, and p  is the 

increment of accumulative plastic strain, which can be computed as: p
kl

p
ij EEp  :3/2 ⋅= .  

2.2 Isotropic Hardening 

Isotropic hardening provides an expansion or a contraction of the yield surface. The 
expansion corresponds to hardening and the contraction to a softening behavior.  
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The evolution of isotropic hardening is controlled by the evolution of the plastic hardening 

function K , which is often defined by an internal variable pκ . The rate equation for these two 
functions may be defined, respectively:  
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where k  denotes scalar and k  states for a tensor function. Depending on the functions 
defined to characterize these two parameters different solid performances can be obtained.  

3. New isotropic hardening law 

In the Barcelona model defined in Lubliner et al. [11], the laws defined are driven by the 
fracture energy of the material. This work presents a new law, especially developed for steel 
materials, that has been designed to reproduce their hardening and softening performance 
under monotonic and cyclic loading conditions. This law also depends on the fracture energy of 
the material and is derived from the hardening softening law presented in [11] and [12]. 

3.1. Fracture Energy 

Classical fracture mechanics defines the fracture energy of a material as the energy that 
has to be dissipated to open a fracture in a unitary area of the material. This energy is defined 
as: 

f

f
f A

W
G =

 
(4) 

where fW  is the energy dissipated by the fracture at the end of the process, and fA  is 

the area of the surface fractured. The total fracture energy dissipated, fW , in the fracture 

process can be used to define a fracture energy by unit volume, fg , required in a continuum 

mechanics formulation: 

∫≡⋅=
fV ffff dVgAGW

 
(5) 

This last equation allows establishing the relation between the fracture energy defined as a 
material property, fG , and the maximum energy per unit volume:  
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(6) 

Thus, the fracture energy per unit volume is obtained as the fracture energy of the material 
divided by the fracture length. This fracture length corresponds to the distance, perpendicular to 
the fracture area, in which this fracture propagates.  
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In a real section, this length tends to be infinitesimal. However, in a finite element 
simulation, in which continuum mechanics is applied to a discrete medium, this length 
corresponds to the smallest value in which the structure is discretized: the length represented 
by a gauss point.  

Therefore, in order to have a finite element formulation consistent and mesh independent, it 
is necessary to define the hardening law in function of the fracture energy per unit volume ([11], 
[15]). This value is obtained from the fracture energy of the material, fG , and the size of the 

finite element in which the structure is discretized. 

3.2. Hardening Function and Hardening Internal Variable 

The hardening function defines the stress of the material when it is in the non-linear range. 
There are many possible definitions that can be used to fulfil the rate equations for the plastic 
strength threshold (3).  

Here the use of a function that describes the evolution of an equivalent uniaxial stress state 
is proposed, like the one shown in Figure 1.  

 
Figure 1. Evolution of the equivalent plastic stress 

The equivalent stress state shown in Figure 1 has been defined to match the uniaxial stress 
evolution described by most metallic materials. This curve is different from the one presented in 
Martinez et al. [10] in the sense that the region obtained thru curve fitting is divided into two: a 
smaller region that is still dependent on curve fitting of experimental points and a linear region, 
with slope and extension defined by user. That helps ensure a fast integration of the stresses in 
the constitutive model by converging to the same numerical tolerance in less iterations. The first 
region is, therefore, defined by curve fitting from a given set of equivalent stress-equivalent 
strain points. The curve used to fit the points is a polynomial of any user given order, defined 
using the least squares method. The data given to define this region is expected to provide an 
increasing function, in order to obtain a good performance of the formulation when performing 
cyclic analysis.  

The second region, as mentioned above, is defined as a linear curve. This region is 
incorporated to facilitate the convergence of the problem. If region 1 and 2 were to be simulated 
with just one polynomial, the difference in slope between the beginning of the curve and the end 
of it would make it very difficult to ensure that the slope of the polynomial is always positive so 
that the solution doesn’t converge to a local minimum. Generally speaking, in the case of ULCF 
and LCF nearly 80% or more of the internal energy of the material is spent between regions 1 
and 2. 
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 The third region is defined with an exponential function to simulate softening. The function 
starts with a null slope that becomes negative as the equivalent plastic strains increase. The 
exact geometry of this last region depends on the fracture energy of the material.  

The hardening internal variable, pκ , accounts for the evolution of the plastic hardening 

function, K . In current formulation pκ  is defined as a normalized scalar parameter that takes 
into account the amount of volumetric fracture energy dissipated by the material in the actual 
strain-stress state. This is: 

dtES
g

t

t

p

f

p ∫
=

=
0

:1 κ
 

(7) 

Using the definition of the hardening internal variable defined in equation (7), it is possible to 
define the expression of the hardening function as: 

)( peqSK κ=  (8) 

It can be easily proven that the hardening function and internal variable defined in equations 

(7) and (8) fulfil the rate equations (3). And the kh  and kh  functions defined in this expression 

become:  
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3.3. Expressions of the hardening function 

In this section, the exact numerical expressions used to define the new hardening law are 
discussed. This law is an evolved version of the one presented in Martinez et al. [10]. The 
region described by curve fitting in the above reference has been divided into two different 
regions (Region 1 and Region 2 in Figure 1). This has been done in order to optimize the 
constitutive law for converging to the same tolerance in fewer iterations and making feasible the 
large scale simulations presented in this paper.  The length of the curve fitting region has been 
limited to a user defined value and past this value of the plastic strain a linear curve has been 
defined with a user defined slope. (see Figure 1).  

Region 1: Curve fitting with polynomial  

The first region is characterized with a polynomial defined by curved fitting from a given 
experimental data. The exact mathematical definition for this region can be found in Martinez et 
al. [10]. Among the different available methods that can be used to define this polynomial, the 
use of the least squares method is proposed due to its simplicity, computational cost, and good 
performance.  

Although the equivalent plastic stress should depend on the plastic internal variable pκ , in 
a cyclic simulation with isotropic hardening this approach will produce hysteresis loops with 
increasing stress amplitude (for a fixed strain amplitude). For this reason, current formulation 
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calculates the equivalent plastic stress using the value of the equivalent plastic strain, which is 
calculated as:  

)(
:

Sf
ESE

p
p

eq =  (10) 

with )(Sf  defined by the yield surface used to simulate the material. 
Finally, the derivative of the hardening function can be calculated with the following 

expression:  
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Expression (11) is valid for values of pκ  that are comprehended between 0  and 

tt
p gg 11 =κ .  

Region 2: Linear curve 

When the equivalent plastic strain, as calculated with equation (10), equals the value of 

equivalent plastic strain at which region 2 is to begin, pp
eq EE 2= , where pE2 is user defined, the 

threshold function is obtained taking into account the following considerations:  
• The initial equivalent stress value is defined by the equivalent stress reached at the 

end of the first region ( ( )ip
N

i
i

peq EaaES 1
1

011 )( ∑
=

⋅+= ).  

• The slope of the function is user defined: pp

eqeq

EE
SS

u
12

12

−

−
= . 

• The volumetric fracture energy dissipated in this region is
5.0)()( 12212 ⋅−⋅+= ppeqeq

t EESSg . 

With these considerations in mind, the resulting equation that relates the equivalent stress 
with the plastic strain is:  

)()( 11
ppeqpeq EEuSES −⋅+=  (12) 

The expression of the equivalent stress as a function of the hardening variable is obtained 
combining equation (12 and (7), obtaining:  

( ) )(2)( 1
2

1
pp

t
eqpeq guSS κκκ −⋅⋅⋅+=  (13) 
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Expression (13) is valid for values of pκ  that are comprehended between tt
p gg 11 =κ  and 

ttt
p ggg )( 212 +=κ . The value of the upper limit of the internal variable shows that it is 

necessary define a value for the volumetric fracture energy of the material larger than 21 tt gg + . 
If the value defined is lower, the material will not be able to reach its ultimate stress as this will 
imply having a fracture internal variable larger than 0.1 . 

Region 3: Exponential softening  

When the plastic internal variable reaches the volumetric plastic energy available in the first 

two regions: pp
2κκ = . At this point, isotropic hardening is defined by region three. Its function is 

obtained with the following parameters:  
• The initial equivalent stress value is defined by the equivalent stress reached at the 

end of the second region ( eqS2 ).  

• The initial slope of the function is zero.  
• The volumetric fracture energy dissipated in this region is the remaining energy in 

the material: 213 tttt gggg −−=  
With these considerations in mind, the governing equations are the same as in Martinez et 

al. [10]. The constitutive law described in Sections 2 and 3 has been implemented in the in-
house code PLCd [18].  The code was programmed to allow OpenMP parallelization, which 
greatly reduced the computational cost of the large scale FE simulations, and makes use of the 
load advancing strategy proposed in [19] and [20].  

4. Material calibration 

The material characteristics for the numerical simulations will be obtained by conducting a 
calibration analysis on small scale specimens. The hardening –softening law presented in 
section 3 requires of the following material parameters: 

• εp – σp points obtained from uniaxial monotonic tensile tests necessary for curve 
fitting. They are important for a correct representation of the tendency of the 
monotonic curve. 

• Kinematic coefficients in accordance with the type of hardening chosen. They are 
important for the exact adjustment of the monotonic curve and for an accurate 
description of the hysteresis loop.  

• Equivalent plastic deformation, εp1
eq , at which the linear region starts. This 

parameter is important both in the monotonic curve and in the overall cyclic 
behavior as it ensures a stable behavior throughout the fatigue life.  

• Equivalent plastic deformation, εp2
eq , at which softening starts. 

• Fracture energy Gf required in the monotonic curve for adjusting the slope of the 
softening behavior and in the cyclic behavior for correctly calibrating the fatigue life 
of the specimen. When the entire energy is spent the specimen is considered 
completely fractured.  

In this paper two different materials have been calibrated: X52 and X60, corresponding to 
the large scale simulations analyzed. The step by step calibration process is presented for the 
X60 material. The calibration process of X52 can be seen in [10]. 

In order to exemplify the calibration process, a smooth X60 specimen was chosen from the 
experimental program ran by Pereira et al. [21]. This experimental program includes monotonic 
tests and cyclic tests in the LCF and in the ULCF regime. LCF tests have been conducted both 
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with a -1 and a 0 reversion factor, while all the ULCF tests have a reversion factor equal to 0. 
The geometric characteristics of the specimen are shown in Figure 2. This material will be 
posteriorly used for the large scale simulation of the bent pipe under cyclic loading. 

The specimen was meshed into 3456 quadratic hexahedral elements with 20 nodes each 
and 27 integration points, adding to a total of 17165 mesh nodes.  

The procedure for the correct calibration of the material starts from the determination of the 
elastic modulus and of the elastic limit. These two parameters are determined statistically from 
the force – displacement recordings of both the monotonic and the cyclic tests by monitoring 
where the linear relation is lost between them. For this simulation an elastic modulus of 

211 /1095.1 mNE ×= and an elastic limit of 28 /1080.3 mNy ×=σ were chosen. 

 

Figure 2.  Geometry of the specimen used for calibration 

The εp – σ set of points chosen for this simulation are presented in Figure 3 as compared to 
the stress-strain curve of the small specimen chosen. At this point in the calibration procedure 
the series of chosen points have to follow the general tendency of the monotonic curve without 
reaching the same level of stress. The density of the points is recommended to be constant and 
quite high so that the polynomial interpolation can be effective. For this simulation the points 
were interpolated by a 5th order polynomial function. 

 
Figure 3. Comparison between the stress strain curve for the uniaxial monotonic tensile test and 

the points chosen for the numerical model 
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Figure 4. Monotonic stress- strain curve. Numerical vs. experimental. 

The Armstrong- Frederick kinematic hardening function was used for this simulation. The 

kinematic coefficients chosen were 10
1 106×=k and 4002 =k .  In Figure 4 the effect of the 

kinematic hardening on the monotonic curve can be observed. In order to obtain this behavior a 
value of 0.1 was used for the εp1

eq parameter.  

 
Figure 5. Stress-strain hysteresis loop for Δε=5%. Numerical vs. experimental. 

It can be seen that taking into account the kinematic hardening causes the resulting stress-
strain curve to elevate until it reaches the experimental monotonic ones. Also, the exact shape 
of the transition zone from linear to nonlinear is determined by the kinematic coefficients.  

In Figure 5 the numerical hysteresis loop is compared to the experimental one for the 
Δε=5% case. In choosing the kinematic coefficients a compromise must be made between the 
accuracy of the monotonic behavior and of the cyclical one. 

Once the kinematic coefficients have been established the next step in the calibration of the 
material is establishing the equivalent plastic deformation at which softening begins, εp2

eq, and 
the facture energy.  

An experimental result has been chosen for the calibration, the Δε=5% case, that had an 
experimental fatigue life of 100 cycles. With a value of 13 for the εp2

eq and a fracture energy of 
2.7 x 106 Nm/m2 a total fatigue life of 100.35 cycles has been obtained from the numerical 
simulation. With these values, softening started in the 86th cycle, close to the end of the 
experimental life and a very low amount of energy was left for the softening branch so that it 
could be spent in a reduced number of cycles.  
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Figure 6. Distribution of the normalized plastic dissipation at total fracture  

In Figure 6 the distribution of the plastic internal variable pκ can be seen on the deformed 
shape of the specimen in the last step of the analysis for the calibration case. The null value for 
the plastic internal variable represents an elastic state in the material, while 1=pκ means the 
entire fracture energy of the material has been dissipated at that material point. It can be seen 
that the lateral necking is in accordance to standard metal fracture under uniaxial cyclic loading.   

After the adjustment of the Δε=5% case, simulations were ran with the exact same material 
and with strain amplitudes of 2% and 8%. The results can be seen in Figure 7. 

 
Figure 7. Comparison between numerical and experimental fatigue life for different strain 

amplitudes when calibrating with Δε=5% 
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In Table 1 and Table 2 a summary of the material properties as resulting from the 
calibration can be seen.   A polynomial of the 5th degree was chosen for the curve fitting zone of 
the hardening function.  

Coefficient no.  1 380000000,00 
Coefficient no.  2 326947332,25 
Coefficient no.  3 -861244568,93 
Coefficient no.  4 1103673406,83 
Coefficient no.  5 -657861660,66 
Coefficient no.  6 147925577,48 

Table 1. Polynomial coefficients for the X60 material as obtained from curve fitting 
 

Young Modulus 1.95·105 MPa 
Poisson Modulus 0.30  

Elastic Stress ( eq
Yσ ) 380 MPa 

Plastic Strain Limit for region 1( pE1 ) 10 % 

Plastic Strain Softening ( pE2 ) 1300 % 

C1 kinematic hardening 6.0·104 MPa 
C2 kinematic hardening 400  
Fracture Energy 2.7 MN·m/m2 

Table 2.  Material parameters for the numerical model for an X60 steel 
 

5. Large diameter straight pipe loaded monotonically 

In order to analyze the capabilities of the constitutive model presented in previous sections, 
large scale numerical simulations of a straight pipe OD 168.3 x 4.78mm, X52 grade, will be 
conducted. The geometry of the model, boundary conditions and sequence of loading are 
established by the experiment made by Coppola et al. [22]. The specimen drawing can be seen 
in Figure 8. 
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Figure 8. Specimen drawing for X52 full scale testing 

5.1. Geometry of the model 

The specimen consists of a straight pipe, with three differentiated sections. The central one 
is mechanized with a reduced thickness, as seen in Figure 9 and Table 3. 

 
Figure 9.  Sections of interest in the mechanization of the straight pipe 

  Wall Thickness [mm]   Outer Diameter [mm] 
    OD 0° 164,2 163,88 164,04 

Ref. sec 1: A sec 2: B sec 3: C OD 45° 168,3 168,5 168,42 
0° 4,24 4,18 4,36 OD 90° 170,57 170,65 170,34 

45° 3,85 4,19 3,99 OD 135° 166,89 166,64 166,04 
90° 4,01 3,91 3,77 

    135° 4,24 4,05 4,10 WT Avg [mm] 4,14 4,14 4,08 
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180° 4,16 4,17 4,16 WT Min [mm] 3,85 3,91 3,77 
225° 4,15 4,19 4,13 OD Avg [mm] 167,49 167,42 167,21 
270° 4,02 4,06 4,00 ID Avg [mm] 159,22 159,14 159,04 

315° 4,41 4,37 4,16 Aw [mm2, WT 
Avg, OD Avg] 2122,06 2123,62 2092,82 

    

Ki (WT Avg, 
OD Avg) 19,765 19,732 19,985 

Table 3. Wall thickness and outer diameter at different points of each section of the pipe 
 
In the numerical model the variation in thickness throughout the central zone has been 

accounted for, as well as the thickness variation throughout the same cross-section. Following, 
in Figure 10 a view of the mesh is shown. For this simulation quadratic hexahedral elements 
were used, each with 20 nodes and 27 integration points. The mesh consisted of 8162 elements 
and 45865 nodes. 

 
Figure 10. Mesh of hexahedral quadratic elements. 

Regarding boundary conditions, one capped end of the pipe has its displacement restricted 
in all directions, while on the other capped end either force or displacement is applied as 
required by the loading history. When applying internal pressure, one end remains fixed while 
on the other one displacement in the longitudinal axis of the pipe is allowed (z-z axis in Figure 
10) and restrained in the other two directions. The material of the mechanized part is an X52 
steel. The outer parts have an elastic material, with the same Young modulus as X52. The pipe 
caps have been defined as a rigid material in agreement with the setup of the experiment (see 
Figure 8). 

5.2. Loading history 

For this simulation two load combinations were made. In the first case (SPEC1) a traction 
force was applied on one of the caps in the longitudinal pipe axis until a level of 400KN. 
Afterwards, an internal pressure was applied and gradually increased up to burst. Pipe failure 
occurred at 270bar with an associated total axial load of 940KN. 

In the second case, the test has been done with internal pressure followed by tension. The 
internal pressure in the first step is 200 bars. Afterwards, the load was increased up to failure 
which occurred at 884KN mechanical load (1284KN total axial load). Pressure in the second 
step was maintained constant at 200 bars.  

5.3. Material characteristics 

The material parameters for the X52 steel have been obtained by undergoing the calibration 
process described in section 0 of this document. A polynomial of the 5th degree was chosen for 
the curve fitting zone of the hardening function. The polynomial coefficients as given by the 
least squares method are shown in Table 4. 
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The remaining material parameters are shown in Table 5.These material parameters were 
obtained by conducting a calibration process on small scale smooth sample specimens. The 
geometry of the samples and some calibration results for the cyclic case are presented in [10].  

Coefficient no.  1 240000000,00 
Coefficient no.  2 596993435,99 
Coefficient no.  3 -1019807849,94 
Coefficient no.  4 776714259,60 
Coefficient no.  5 -265797084,38 
Coefficient no.  6 33562252,72 

Table 4. Polynomial coefficients for the X52 material as obtained from curve fitting 

Young Modulus 1.8·105 MPa 
Poisson Modulus 0.30  

Elastic Stress ( eq
Yσ ) 240 MPa 

Plastic Strain Limit for region 1( pE1 ) 15 % 

Plastic Strain Softening ( pE2 ) 50 % 

C1 kinematic hardening 6.0·104 MPa 
C2 kinematic hardening 280  
Fracture Energy 0.4 MN·m/m2 

Table 5.  Material parameters for the numerical model for an X52 steel 

In Figure 11, monotonic stress strain curve can be seen as obtained with the material 
parameters presented below. The comparison with the experimental monotonic curves for the 
X52 steel as obtained from Pereira et al. [21] can also be seen. 

Figure 11 also exhibits the comparison between the numerical hysteresis loop shape and 
the experimental one. Although the straight pipe is loaded monotonically, when conducting the 
calibration analysis for the material, the shape of the hysteresis was one of the factors taken 
into account as the model is prepared to conduct monotonic and cyclic tests. The calibration 
process for a monotonic analysis follows the same guidelines as that of a cyclic analysis. The 
main difference resides in the plastic strain chosen as threshold for the softening behavior and 
in the fracture energy assigned to the material.   
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Figure 11. Stress-strain hysteresis loop for  the monotonic case  and for Δε=4%. Numerical vs. 
experimental. 

5.4. Results and discussion  

Case no. 1 - Tension followed by pressure 

In Figure 12, the comparison between the experimental and the numerical force-pressure 
measurements can be seen. The total reaction recorded by the numerical simulation reached a 
level of 948KN in the last converged increment, corresponding to an applied internal pressure of 
278.1bars.  

For this increment, the deformed shape of the specimen is shown in Figure 13, where the 

distribution of the hardening internal variable pκ can also be seen. This variable is of relevance 
in showing the level of dissipated energy at material point level and, in this sense, gives a 
measure of the level of degradation suffered. Consequently, for 0=pκ the material is in an 

elastic state, while for 1=pκ the material has reached total failure at that material point.  
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Figure 12. Comparison between the numerical and experimental results for the SPEC 1 case 

 
Figure 13. View of the deformed shape at the end of the analysis with an indication of the most 

damaged material point in the geometry  

From the deformed shape it can be seen that the pipe failure is oriented following the 
direction of least resistance represented by the minimum thickness area. This is in agreement 
with the experimental localization of the failure as can be seen in Figure 14a. 

Also, there is good agreement of the failure mode between the experiment and the 
numerical simulation with a final burst opening oriented in the longitudinal direction. In the 
numerical model the burst area is represented by the localized plastic strain accumulation 
reflected in the distribution of the normalized dissipation parameter. 
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Figure 14. View of the pipe burst as recorded by the experiment for (a)  the SPEC1 test and (b) 
SPEC2 test 

Figure 15 shows the evolution of the hardening internal variable pκ at the most damaged 
integration point in the material. Its exact location is indicated in Figure 13.  As it can be seen 

from Figure 15, the simulation converged up until a maximum value of the pκ internal variable 
of 0.7. Given that the internal pressure has been applied in constant increments of 2.7 bars per 

analysis step, it can be seen that the evolution of the  pκ  parameter exhibits an exponential 
curve. Taking into account this tendency and extrapolating on the last converged increment that 
had a value of 0.7, loss of convergence seems to have occurred when the plastic internal 
variable reached a value very close to 1, corresponding to an open crack generated at the 
material points where the entire fracture energy of the material has been spent. However, this 
value is not visible in Figure 15 since convergence was not reached for this increment. 

 
Figure 15. Evolution of the pκ variable when applying internal pressure in constant steps of 2.7 

bars 

Case no. 2 – Internal pressure followed by tension 

In Figure 16 the comparison between the experimental and the numerical force-pressure 
measurements can be seen for this case.  

The total reaction recorded by the numerical simulation reached a level of 1167KN in the 
last converged step, corresponding to a total applied displacement of 1.375m. The experimental 
failure occurred at a total axial load level of 1284kN. 
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Figure 16. Comparison between the numerical and experimental results for the SPEC 2 case 

As specified before, during the applied displacement stage the internal pressure was 
maintained constant at a level of 200 bars. For the last step of the simulation the deformed 

shape is shown in Figure 17, where the distribution of the hardening internal variable pκ can 
also be seen.  

 
Figure 17. View of the deformed shape with an indication of the element where the maximum 

dissipation is recorded 

The localization of the failure zone corresponds to the behavior shown in the experiment, 
presented in Figure 14b. When considering the pipe cross section where the maximum 
dissipation is present, the most stressed area is directed towards the smallest thickness in that 
particular circumference, corresponding with the data recorded by the experimental campaign 
and taking into account the orientation of the numerical model with respect to that of the 
experimental setting. The failure mode is a tensile one, in agreement to the applied sequence of 
loading. 
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6. Bent pipe under variable cyclic loading  

6.1. Geometry of the model 

Following the validation of the constitutive model made in Martinez et al. [10] on small scale 
specimens, the model is to be applied to large scale numerical simulations of a bent pipe. The 
geometry of the model, boundary conditions and the sequence of loading are in accordance to 
the experiment made by Schaffrath et al. [23]. 

The specimen consists of a bended middle section (elbow pipe) and a straight pipe section 
at each end of the elbow. The fillet radius of the elbow pipe is three times the pipe diameter 
(R=3 x D). For the length of both straight pipe sections a value of five times the diameter (L=5 x 
D) was used, whereby the influence of the load introduction can be neglected. 

For the numerical model a specimen made of X60 steel has been chosen from the 
experimental program, with a diameter of 406.4 mm and a wall thickness of 9.5 mm. The pipe 
has an elbow angle of 90°. 

In Figure 18 a view of the mesh is shown. For this simulation quadratic hexahedral 
elements were used, each with 20 nodes and 27 integration points. The mesh consisted of 
42853 elements and 213415 nodes. Three elements were considered in the pipe thickness. 

 

Figure 18. Mesh of hexahedral quadratic elements 

6.2. Loading history  

The loading history is based on the actual load history of the experimental test done by 
Schaffrath et al. [23]. The loading scheme was decided by the authors in accordance with the 
ECCS procedure ECCS-Nr. 45-1986 Recommended Testing Procedure for Assessing the 
Behavior of Structural Steel Elements under Cyclic Loads [24]. For practical reasons it was 
decided to neglect the mostly small difference between the compressive and tensile yield strain 
by choosing an average value 2/)( −+ += yyy eee  as the reference amplitude. In Table 6 the 

experimental loading sequence is described as a function of ye .The value adopted for this 

parameter was set by [23] at ±82mm.  



Barbu, L.G., Martinez, X., Oller, S. and Barbat, A.H. Validation on large scale tests of a new 
hardening-softening law for the Barcelona plastic damage model, International Journal of 
Fatigue (2015);  81:213-226, doi:10.1016/j.ijfatigue.2015.07.031 

 

21 
 
 

Step Amplitude Number of cycles 

1 0.25 ye
 1 

2 
0.50 ye

 
1 

3 
0.75 ye

 
1 

4 
1.00 ye

 
1 

5 
1.50 ye

 
3 

6 
2.00 ye

 
3 

7 
2.50 ye

 
3 

8 
3.00  ye

 
3 

9 
3.50 ye

 
3 

10 
4.00 ye

 
3 

11 
4.40 ye

 27 

Table 6. Loading sequence for SP2 specimen 
 

The entire loading sequence is comprised of 49 cycles with increasing amplitude, 44 of 
which have amplitudes in the plastic range. The reversion factor of the applied displacement is -
1.  The pipe is also submitted to internal pressure. First, the pipe is loaded until a level of 
internal pressure equal to 20 bars. Afterwards, it is submitted to the varying cyclic displacement 
presented in Table 5. The experimental test has shown that the internal pressure also oscillates 
when the cyclic displacement is applied.  

The boundary conditions of the model were chosen in accordance with the setting of the 
experiment. One end of the model as presented in Figure 18 has its displacement blocked in the 
x, y and z direction while in the other end the cyclic displacement is applied in the z in-plane 
direction.  

In the numerical simulation the loads have been applied in two stages. First, the internal 
pressure was applied and, in this stage, one end of the pipe was clamped and on the other end 
the pipe was only allowed in-plane gliding. The variable displacement was applied in the second 
stage on the deformed geometry obtained from applying the internal pressure. The movement 
was restrained in the two directions perpendicular to the in-plane one.  

6.3. Material characteristics 

The exact calibration procedure for the X60 material can be seen in Section 4, as well as 
the properties defined, that are presented in Table 1 and Table 2.  

6.4. Results and discussion 

In Figure 19 the comparison between the experimental force- displacement curve and the 
numerical one can be seen. The numerical curve is in very good agreement with the 
experimental one taking into consideration that the material calibration was done on small scale 
specimens with different experimental results.  

It can be seen how in compression the constitutive equation tends to underestimate the 
maximum force level, while in traction the opposite tendency is present. Furthermore, this 
tendency is more obvious as the displacement increases. This is due to the existence of 
oscillations of the internal pressure applied in the experiment, caused by applying the cyclic 
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displacement. This oscillation of the internal pressure has not been taken into account in the 
numerical simulation.  

 
Figure 19. Force-displacement curve. Experimental vs. numerical 

Regarding the fatigue life, the simulation lasted a total of 41.75 plastic cycles as compared 
to the experimental life of 44 complete cycles. This result also shows a good agreement 
between the experiment and the numerical simulation.  

Figure 20 illustrates the deformed shape of the geometry in the last step of the analysis and 
presents the distribution of the plastic internal variable of the model. The deformed shape is 
represented with a scale factor of 2 in order to better reflect the general tendency. Only the 
central zone of the elbow is shown, as this is the zone where nonlinear effects appear. It can be 
seen that the failure mode resulting from the numerical simulation is by cross-sectional 
ovalization with a crack opening in the longitudinal direction of the elbow, at its flank.  In Figure 
21 the total strain distribution can be seen in the last step of the analysis in the three model 
axes. The distribution is also plotted on the deformed shape of the model, where the cross-
sectional ovalization is clearly visible. 

 It can be seen that strain accumulation occurs in all three directions in the critical area 
where the normalized dissipation parameter, pκ , accumulates.  

The comparison of the failure mode obtained with the numerical simulation with the failure 
mode obtained in the experimental test (Figure 22) shows that the model has been able to 
capture the number of cycles to failure but has not been able to capture the failure mode shown 
in the experiment.  
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Figure 20. Distribution of the plastic internal variable of the model on the deformed shape (x2) 

Under extreme loading conditions, such as the high repeated incursions in the nonlinear 
zone that the imposed displacement in this case causes, elbows exhibit two different failure 
modes. These are either significant cross-sectional ovalization or local buckling, as reported by 
the experimental work described in Sobel and Newman [25], [26], Dhalla [27] and Greenstreet 
[28], Tan et al. [29], Shalaby and Younan [30] and Suzuki and Nasu [31] for monotonic bending 
moments and Yahiaoui et al. [32], Slagis [33] and Fujiwaka et al. [34] for cyclic loading, and 
from the work of Karamanos et al. [35], [36], Pappa et al. [37], Varelis et al. [38], [39].   

An important conclusion can be drawn from the work above mentioned. The first failure 
mode can be generally found when the elbow internal pressure is relatively low compared to the 
yield pressure, as is the case in the numerical simulation presented above.  

The second failure mode, occurring due to local buckling is habitual in the cases where 
internal pressure is significantly higher. This is the failure mode yielded by the experiment made 
by Schaffrath et al. [23] as it can be seen in Figure 22. 

For the case considered, the internal pressure applied to the elbow is 20 bars, which leads 
to a stress value, according to Barlow’s formula: MpatpD 77.422 ==σ . This is less than 10% of 
the yield strength for an X60 steel and, consequently, the pressure applied is less than 10% of 
the internal yield pressure. This puts us in the first yield mode, according to previous results 
found in literature. The failure due to local buckling obtained for a low value of the internal 
pressure by Schaffrath et al. [23] can, however, be a consequence of residual stresses 
generated in the bending process of the pipe combined with local defects that favored the 
formation of the buckle in the area shown by the experiment.   

Summarizing, the number of cycles the simulation lasted and the force displacement curve 
are in good accordance between the numerical model and the experiment and the numerical 
failure mode is different from the experimental one but justifiable given the low internal pressure. 
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Figure 21. Distribution of the total strain in the three model axes on the deformed shape of the 

model (x2) 

 

Figure 22. Experimental failure (Schaffrath et al. [23]) 

In order to assess the capability of the constitutive model to represent both failure modes, a 
different numerical simulation was done where the internal pressure applied was increased to 
220 bars, in order to approximately reach the yield stress. Afterwards, the elbow was subjected 
to a monotonically increasing in-plane closing displacement. 

The model used for this simulation is shown in Figure 23. Given the fact that this problem is 
highly nonlinear and the failure mode expected is achieved thru a local instability (local buckle), 
in order to achieve convergence when applying the displacement, an initial buckle was imposed 
on the model. This ensures that, when the internal pressure is sufficiently high, the plastic strain 
accumulation is directed toward this zone thus enabling model convergence.  

 

 

Figure 23. Geometry of the model with the initially imposed buckle 
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Figure 24. Distribution of the plastic internal variable of the model on the deformed shape  

The final applied closing displacement up until which the problem converged was 2.69m, 
nearly 65% of the total in-plane geometry opening. In Figure 24 the distribution of the plastic 
internal variable is shown in the last converged analysis step on the deformed shape of the 
model with a scale factor of 1, and, as expected, it exhibits a concentration in the imposed 
buckle zone.  

The purpose of this second simulation was to assess the capability of the numerical 
formulation to illustrate both failure modes in accordance to the level of internal pressure 
applied.  

From the above numerical simulations it is clear that the failure mode obtained with the 
formulation is highly dependent on the level of internal pressure applied. A series of six 
monotonic simulations have been run varying the internal pressure applied initially and applying 
afterward an in-plane closing displacement. The maximum dissipation zone was assessed when 
the applied displacement reached the maximum one imposed in the cyclic large scale initial 
experiment (see Table 6). 

 
Figure 25. Evolution of the maximum dissipation in the two areas of interest  
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In Figure 25 the evolution of the maximum dissipation in the geometry is presented in the 
two areas that are specific to each failure mode: elbow flanks for the ovalization mode (zone A 
in Table 7 and Figure 25) and internal elbow curvature for the local buckling (zone B in Table 7 
and Figure 25).  
 

Py 
(%) Zone A Zone B 

0 

  

30 

  

35 

  

100 

 
 

Table 7. Distribution of the maximum dissipation normalized to the fracture energy on the 
deformed shape of the model (x5).  

From both Table 7 and Figure 25 it can be seen that the switch from the ovalization failure 
mode to the local buckling occurs between 30 and 35% of the yield internal pressure, since for 
the 30% case the maximum dissipation is recorded in the elbow flanks and for the 35% case it 
is present in the buckled area.  

 
7. Conclusions 

After validating the new constitutive law, especially formulated for the monotonic and cyclic 
behavior of steel, on small scale specimens, large scale simulations have been conducted to 
assess its capabilities. Even though the law has been designed for the particular case of cyclic 
loading, its behavior was also assessed on a straight pipe loaded monotonically. The results are 
very promising, with an error of 0.8% in the total axial load at failure for the first case where 
tension followed by internal pressure was applied. For the second case, internal pressure 
followed by tension until failure, the error was higher in terms of total axial load, of 9.11%, still 
below a 10% threshold.  

Regarding the ULCF in-plane bending simulations conducted on a 16-inch 90° elbow, the 
results were in good agreement with the experimental test in terms of force-displacement 
hysteresis loops and total fatigue life of the specimen, where the error in life prediction was of 
5.11% on the safety side for the numerical simulation.  
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The failure mode obtained by means of the numerical simulation was in agreement to the 
one found in literature for low internal pressure, but not in agreement with the particular 
experimental test used for comparison. An analysis of the dependence of the failure mode to 
the internal pressure applied has been conducted and the limit internal pressure between the 
two modes has been determined, showing that the formulation is capable of obtaining both 
failure types.  

Finally, it should be remarked that the material calibration for both experimental tests 
reproduced (straight pipe and elbow) has been performed using data from other experimental 
tests (small samples). This proves the excellent prediction capabilities of the formulation, as it 
has been able to reproduce accurately the force-displacement response, the maximum load 
applied and the failure mode in both loading patterns: monotonic and cyclic.   
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