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SUMMARY

The poor performance of some reinforced concrete (RC) structures during strong earthquakes has alerted
about the need of improving their seismic behavior, especially when they are designed according to obsolete
codes and show low structural damping, important second-order effects and low ductility, among other
defects. These characteristics allow proposing the use of energy-dissipating devices for improving their
seismic behavior. In this work, the non-linear dynamic response of RC buildings with energy dissipators
is studied using advanced computational techniques. A fully geometric and constitutive non-linear model
for the description of the dynamic behavior of framed structures is developed. The model is based on the
geometrically exact formulation for beams in finite deformation. Points on the cross section are composed
of several simple materials. The mixing theory is used to treat the resulting composite. A specific type of
element is proposed for modeling the dissipators including the corresponding constitutive relations. Special
attention is paid to the development of local and global damage indices for describing the performance of
the buildings. Finally, numerical tests are presented for validating the ability of the model for reproducing
the non-linear seismic response of buildings with dissipators. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Conventional seismic design practice permits designing reinforced concrete (RC) structures for
forces lower than those expected from the elastic response, on the premise that the structural design
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assures significant structural ductility [1]. Frequently, the dissipative zones are located near the
beam–column joints and, due to cyclic inelastic incursions during earthquakes, structural elements
can suffer a great amount of damage [2]. This situation is generally considered economically
acceptable if life safety and collapse prevention are achieved.

In the last decades, new techniques based on adding devices to the buildings with the main
objective of dissipating the energy exerted by the earthquake and alleviating the ductility demand
on primary structural elements have contributed to improve the seismic behavior of the structures
[3, 4]. Their purpose is to control the seismic response of the buildings by means of a set of
dissipating devices that constitutes the control system, adequately located in the structure. In the
case of passive energy-dissipating devices (EDD), an important part of the energy input is absorbed
and dissipated, therefore, concentrating the non-linear phenomenon in the devices without the need
of an external energy supply.

Several works showing the ability of EDDs in controlling the seismic response of structures
are available; for example, in Reference [5] the responses of framed structures equipped with
viscoelastic and viscous devices are compared; in Reference [6] a comparative study considering
metallic and viscous devices is carried out. Aiken [7] presents the contribution of extra energy
dissipation due to EDDs as an equivalent damping added to the linear bare structure (the term bare
is used to indicate the structure without EDDs or any type of stiffeners) and gives displacement
reduction factors as a function of the added damping ratio. A critical review of reduction factors
and design force levels can be consulted in Reference [8]. A method for the preliminary design
of passively controlled buildings is developed in Reference [9]. Lin and Copra [10] study the
accuracy of estimating the dynamic response of asymmetric buildings equipped with EDDs when
they are replaced by their energetic equivalent viscous dampers. Other procedures for the analysis
and design of structures with EDDs can be consulted in Reference [11].

Today, only a few countries have codes for designing RC buildings with EDDs. Particularly, in
United States the US Federal Emergency Management Agency gives code provisions and standards
for the design of EDDs devices to be used in buildings [12, 13]. In Europe, the efforts have been
focused on developing codes for base isolation but not for the use of EDDs.

The design methods proposed for RC structures are mainly based on the assumption that the
behavior of the bare structure remains elastic, while the energy dissipation relies on the control
system. However, experimental and theoretical evidence shows that inelastic behavior can also
occur in the structural elements of controlled building during severe earthquakes [14]. In order
to perform a precise dynamic non-linear analysis of passively controlled buildings, sophisticated
numerical tools become necessary for both academics and practitioners [15].

There is agreement that fully three-dimensional numerical technique constitute the most precise
tools for the simulation of the seismic behavior of RC buildings. However, the computing time
usually required for real structures makes many applications unpractical. Considering that most
of the elements in RC buildings are columns and beams, one-dimensional formulations for structural
elements appear as a solution combining both numerical precision and reasonable computational
costs [16]. Experimental evidence shows that inelasticity in beam elements can be formulated
in terms of cross-sectional quantities [17]. Some formulations of this type have been extended
for considering geometric non-linearities [18, 19]. An additional refinement is obtained consid-
ering inhomogeneous distributions of materials on arbitrarily shaped beam cross sections [20].
In this case, the constitutive relationship at the cross-sectional level is deduced by integration
and, therefore, the mechanical behavior of beams with complex combinations of materials can be
simulated.
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On the one hand, formulations for beams considering both constitutive and geometric non-
linearity are rather scarce; most of the geometrically non-linear models are limited to the elastic
case [21, 22] and the inelastic behavior has been mainly restricted to plasticity [18]. Recently,
Mata et al. [16, 23] have extended the geometrically exact formulation for beams due to Reissner
and Simo [22, 24, 25] to an arbitrary distribution of composite materials on the cross sections for
the static and dynamic cases.

On the other hand, from the numerical point of view, EDDs usually have been described in
a global sense by means of force–displacement or moment–curvature relationships [4], which
attempt to capture appropriately the energy-dissipating capacity of the devices [26]. The inclusion
of EDDs in software packages for the seismic analysis of RC structures is frequently done by
linking elements equipped with the mentioned non-linear relationships. The relative displacement
and/or rotation between the anchorage points activates the dissipative mechanisms of the devices.

In summary, a modern numerical approach to the structural seismic analysis of RC buildings
should take into account the following aspects:

(i) Geometric non-linearity due to the changes in the configuration experienced by flexible
structures during earthquakes. Finite deformation models for beam structures, particularly
the geometrically exact ones, in most of the cases have been restricted to the elastic case
or, when they consider inelasticity, it corresponds to plasticity in the static range.

(ii) Constitutive non-linearity. Inhomogeneous distributions of inelastic materials can appear
in many structures. The obtention of the resultant forces and moments as well as the
estimation of the dissipated energy should be considered in a manner consistent with the
thermodynamical basis of the constitutive theory. Most of the formulations considering
inelasticity in beam models have been developed under the small strain assumption; consti-
tutive laws are valid for specific geometries of the cross sections or the thermodynamical
basis of the constitutive theories are violated (e.g. treating the shear components of the
stress elastically while the normal component presents inelastic behavior or providing an
unlimited energy-dissipating capacity in plastic models).

(iii) Control techniques, which allow to improve the dynamic response of structures by means of
the strategic incorporation of dissipating devices. Several research and commercial numer-
ical codes have included special elements for EDDs; however, the obtained implementations
inherit the drawbacks of points (i) and (ii).

According to the authors’s knowledge the state of the art in seismic analysis provides a set of
partial solutions to the above-mentioned requirements; however, there is not a unified approach
covering all these aspects in a manner consistent with the principles of the continuum mechanics
(see (ii)).

In this work, a fully geometric and constitutive non-linear formulation for rod elements is
extended to the case of flexible RC structures equipped with EDDs. A fiber-like approach is used
to represent arbitrary distributions of composite materials on the beam cross sections. EDDs are
considered as bar elements linking two points in the structure. Thermodynamically consistent
constitutive laws are used for concrete and longitudinal and transversal steel reinforcements. In
particular, a damage model able to treat the degradation associated with the tensile and compressive
components of stress in an independent manner is presented. The extension to the rate-dependent
case is obtained by means of a regularization of the evolution rules of the damage thresholds.
The mixing rule is employed for the treatment of the resulting composite. A specific non-linear
hysteretic force–displacement relationship is provided for describing the mechanical behavior of
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several types of EDDs. A description of the damage indices capable of estimating the remaining
load-carrying capacity of the buildings is also given. Finally, numerical results from simulations
showing the ability of the proposed formulation in simulating the static and dynamic inelastic
response of RC buildings equipped with EDDs are provided. Examples cover several complex
phenomena such as the inelastic P–� effect and inelastic dynamic structural torsion.

2. FINITE DEFORMATION FORMULATION FOR STRUCTURAL ELEMENTS

2.1. Beam model

The original geometrically exact formulation for beams due to Reissner [24], Simo [22] and Simo
and Vu Quoc [25, 27] is expanded for considering an intermediate curved reference configuration
according to Ibrahimbegović [21]. The main difficulty arises from the fact that the geometry and
the kinematics of the beams are developed in the non-linear differential manifold‡ R3×SO(3)
and, therefore, a number of standard procedures, such as the computation of strain measures or
the linearization of the weak form of the balance equations become more complicated. In this
section a brief summary of results relevant for the development of constitutive laws able to be
incorporated in the beam theory and the construction of a model for EDDs are presented.

2.1.1. Kinematics. Let {Êi } and {êi } be the spatially fixed material and spatial frames,§ respec-
tively. The straight reference beam is defined by the curve �̂00= SÊ1, with S∈[0, L] its arch-length
coordinate. The beam cross sections are described by means of the coordinates �� directed along

{Ê�} and the position vector of any material point is X̂ = SÊ1+�� Ê�.
The case of a beam with initial curvature (and twist) is considered by means of a curved

reference beam defined by means of the spatially fixed curve �̂0=�0i (S)êi ∈R3. Each point on
this curve has rigidly attached an orthogonal local frame t̂0i (S)=K0 Êi ∈R3, where K0∈SO(3) is
the orientation tensor. The beam cross section A(S) is defined considering the local coordinate
system �� but directed along {t̂0�}. The planes of the cross sections are normal to the vector
tangent to the reference curve, i.e. �̂0,S = t̂01(S). The position vector of a material point on the

curved reference beam is x̂0= �̂0+K0�� Ê�. In this case, the straight beam is used as an auxiliary
reference frame for the construction of strain measures as it will be explained in following.

The motion displaces points on the curved reference beam from �̂0(S) to �̂(S, t) (at time t)
adding a translational displacement û(S, t) and the local orientation frame is simultaneously rotated,
together with the beam cross section, from K0(S) to K(S, t) by means of the incremental rotation
tensor K=KnK0≡ t̂i ⊗ Êi ∈SO(3) (see Figure 1).

In general, the normal vector t̂1 �= �̂,S because of the shearing [22]. The position vector of a
material point on the current beam is

x̂(S,��, t)= �̂(S, t)+�� t̂�(S, t)= �̂+K�� Ê� (1)

‡The symbol SO(3) is used to denote the finite rotation manifold [22, 27].
§The indices i and � range over {1,2,3} and {2,3}, respectively, and summation convention hold. The symbol (·),x
is used to denote partial differentiation of (·) with respect to x .
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Figure 1. Configurational description of the beam.

Equation (1) implies that the current beam configuration is completely determined by the pairs
(�̂,K)∈R3×SO(3).

2.1.2. Strain measures. The deformation gradient is defined as the gradient of the deformation
mapping of Equation (1) and determines the strain measures at any material point of the beam
cross section [27]. The deformation gradients of the curved reference beam and of the current
beam referred to the straight reference configuration are denoted by F0 and F, respectively. The
deformation gradient (relative to the curved reference beam) Fn :=FF−1

0 is responsible for the
development of strains and can be expressed as [28]

Fn =FF−1
0 =g−1

0 [�̂,S− t̂1+x̃n�� t̂�]⊗ t̂01+Kn (2)

where g0=Det[F0] and x̃n ≡Kn,SKTn is the spatial curvature tensor relative to the curved reference
beam. In Equation (2), the term defined as �̂n = �̂,S− t̂1 corresponds to the reduced spatial strain

measure of shearing and elongation [22, 28] with material description given by �̂=KT�̂. The
material representation of Fn is obtained as Fm

n =KTFnK0.
Removing the rigid body component from Fn , it is possible to construct the spatial strain tensor

en =Fn−Kn . The corresponding spatial strain vector acting on the current beam cross section is
obtained as

�̂n =en t̂01=g−1
0 [�̂n+x̃n�� t̂�] (3)

with material form given by Ên =KT�̂n .

2.1.3. Stress measures. en is (energetically) conjugated to the asymmetric First Piola Kirchhoff
(FPK) stress tensor P= P̂i ⊗ t̂0i [22] with P̂i being the FPK stress vector acting on the deformed
face in the current beam corresponding to the normal t̂0i in the curved reference configuration.
Equivalently, �̂n is the energetically conjugated pair to P̂1. The corresponding material forms are
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given by and P̂m
1 =KT P̂1, respectively. Additionally, the spatial form of the stress resultant n̂ and

the stress couple m̂ vectors can be computed according to

n̂(S)=
∫
A

P̂1 dA, m̂(S)=
∫
A

(x̂−�̂)× P̂1 dA (4)

The material forms of P, n̂ and m̂ are obtained by means of the pullback operation as Pm=KTPK0,
n̂m=KTn̂ and m̂m=KTm̂, respectively.

Remark 1
It is worth noting that due to the assumption made in Equation (1), the following restrictions
appear on the components of the strain and stress tensors: (i) En =KTenK= Ên⊗ Ê1, (en t̂� =0)

and, therefore, (ii) Pm= P̂m
1 ⊗ Ê1.

2.1.4. Strain rate measures. An objective measure of the strain rate vector ŝn acting on any
material point on the current beam cross section can be deduced using the results presented in

[23] and using the definition of the Lie derivative operator [�· ] given in [16], as follows:

ŝn =
�

[˙̂�n]=
�

[˙̂�n]+
�

[ ˙̃xn]�� t̂� = ˙̂�,S− ṽn�̂,S+ ṽn,S�� t̂� (5)

where ṽn ≡ K̇nKTn is the current spin or spatial angular velocity of the beam cross section with
respect to the curved reference beam. The material form of Equation (5) is Ŝn =KTŝn .

2.1.5. Equilibrium equations and virtual work principle. According to the developments given in
Reference [29], the classical form of the equilibrium equations for rods are

n̂,S+ n̂ p =A�0
¨̂�+ ãnŜ�0+ ṽn ṽnŜ�0︸ ︷︷ ︸

D1

(6a)

m̂,S+�̂,S× n̂+m̂ p = I�0�̂n+ ṽnI�0v̂n+Ŝ�0× ¨̂�︸ ︷︷ ︸
D2

(6b)

where n̂ p and m̂ p are the external body force and body moment per unit of reference length at
time t , A�0, Ŝ�0 and I�0 are the cross-sectional mass density, the first mass moment density and
the second mass moment density per unit of length of the curved reference beam, respectively;
their explicit expressions can be consulted in References [27, 28]. ãn ≡ K̈nKTn − ṽn ṽn is the angular
acceleration of the beam cross section and v̂n and �̂n are the axial vectors of ṽn and ãn , respectively.
For most of the practical cases, the terms D1 and D2 can be neglected or added to the external
forces and moments.

Considering a kinematically admissible variation¶ ĥ≡(	�̂,	
̂) of the pair (�̂,K) [27], taking the
dot product with Equations (6a) and (6b), integrating over the length of the curved reference beam
and integrating by parts, we obtain the following non-linear functional Gw(�̂,K, ĥ) corresponding

¶Supposing that K is parameterized in terms of the spatial rotation vector and following the results of References
[21, 22] it is possible to show that 	K=	h̃K with 	
̂=axial[	h̃]∈R3 an admissible infinitesimal rotation.
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to the weak form of the balance equations [21, 27], which is another way of writing the virtual
work principle:

Gw(�̂,K, ĥ) =
∫ L

0
[(	�̂,S−	
̂×�̂,S) · n̂+	
̂,S ·m̂]dS

+
∫ L

0
[	�̂·A�0

¨̂�+	
̂·(I�0 �̂n+ v̂nI�0 v̂n)]dS

−
(∫ L

0
[	�̂· n̂ p+	
̂·m̂ p]dS+[	�̂· n̂+	
̂ ·m̂]|L0

)
= G int

w (�̂,K, ĥ)+G ine
w (�̂,K, ĥ)−Gext

w (�̂,K, �̂, ĥ)=0 (7)

where �̂=[n̂Tp, m̂T
p] is the external loading vector,G int

w , andG ine
w andGext

w correspond to the internal,

inertial and external contributions of the virtual work principle. The terms (	�̂,S−	
̂×�̂,S) and

	
̂,S appearing in Equation (7) correspond to the co-rotated variations of the reduced strain measures
�̂n and �̂n in spatial description.

2.2. Energy-dissipating devices

The finite deformation model for EDDs is obtained from the previously described beam model,
releasing the rotational degrees of freedom and supposing that the complete mechanical behavior
of the device is described in terms of the evolution of a unique material point located in the
middle of the resulting bar. This point is referred as the dissipative nucleus (see Figure 2). The
current position of a point in the EDD bar is obtained from Equation (1), but considering that no
cross-sectional description is required; thus, one can neglect �� and assume x̂= �̂(S, t).

The current orientation of the (straight) EDD bar of initial length L∗ is given by the tensor
K∗(t). Assuming that the rotational degree of freedom are released one has: (i) K∗

,S =0 and (ii)

K̇
∗ �=0. Therefore, the spatial position of the dissipative nuclei is obtained as �̂(L∗/2, t) where

L∗/2 is the arch-length coordinate of the middle point in the bar element.
The only non-zero component of the strain vector is the axial one, denoted by Ed1 and computed

with the help of Equation (3) as

Ed1(t)= �̂n|(L∗/2) · Ê1=[(K∗T�̂,S) · Ê1]|(L∗/2)−1=[�̂,S · t̂1]|(L∗/2)−1 (8)

Figure 2. Energy-dissipating device.
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and the corresponding strain rate, Ėd1 , is obtained as

Ėd1(t)=
d

dt
Ed1(t)

∣∣∣∣
(L∗/2,t)

=[(K∗T( ˙̂�,S− ṽn�̂,S)) · Ê1]|(L∗/2,t) (9)

Note that the same expression can be deduced from Equation (5). Let Pm
d be the value of the

stress measure in the EDD, which is energetically conjugated to Ed1 . The formulation of specific
constitutive relations Pm

d (Ed1, Ėd1) is provided in Section 3.5.
In spite of the fact that t̂1 can be calculated as t̂1=(�̂(L∗)−�̂(0))/‖�̂(L∗)−�̂(0)‖=KÊ1

one has that 	t̂1=	KÊ1= 	̃hK �=0 although 	�̂ can be zero for rigid body motions (however,
(	
̂),S =0). Then, taking (	�̂,	
̂) superposed onto (�̂,K) and considering that the linear part
of Equation (8) is 	Ed1 =[	�̂,S+ũ,S	
̂]· t̂1, one has that the contribution of the EDDs to the
functional of Equation (7) written in the material description is

GEDD =
∫ L∗

0
Pm
d 	Ed1 dS+(	�̂ ·Md

¨̂�)|(L∗/2,t)

=
∫ L∗

0
Pm
d K

T[	�̂,S+ũ,S	
̂]· Ê1 dS+(	�̂·Md
¨̂�)|(L∗/2,t) (10)

where it was assumed that I�0 ≈0, i.e. the contribution of the EDDs to the rotational mass of the
system is neglected and Md =Diag[Md ,Md ,Md ] is the EDD’s translational inertia matrix, i.e.
the mass of the control system; Md , is supposed to be concentrated in the middle point of the bar.

3. CONSTITUTIVE MODELS

In this work, material points on the cross sections are considered as formed by a composite material
corresponding to a homogeneous mixture of different simple‖ components, each of them with its
own constitutive law (see Figure 3). The resulting behavior is obtained by means of the mixing
theory (see e.g. [30] or more recently [31, 32] and references therein).

In the formulation of constitutive models, the kinematic assumptions of the present theory has
to be considered, which limit the number of known components of the strain and stress tensors
to those existing on the cross-sectional planes. Therefore, following the same reasonings as in
previous works of the authors [16, 23], the models are formulated in terms of the material form
of the FPK stress, strain and strain rate vectors, P̂m

1 , Ên and Ŝn , respectively.
Although the present constitutive models constitute a dimensionally reduced form of the general

three-dimensional formulations, they allow to simulate the coupled non-linear behavior among the
components of the stress vector, respecting the thermodynamical basis of irreversible processes.
In this sense, the present approach avoids the use of one-dimensional constitutive laws for the
axial component of the stress maintaining the behavior of shear components uncoupled, which is
one of the most common assumptions in fiber-like models for rods (see e.g. [33, 34]). Two kinds
of non-linear constitutive models for simple materials are used: the tension–compression damage
and the plasticity models.

‖The term simple is used for referring to materials that are described by means of a single constitutive law.
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Figure 3. Cross section showing the composite associated with a material point.

3.1. Degrading materials: tension–compression damage model

Continuum damage mechanics provides a general framework for the derivation of thermodynami-
cally consistent models for degrading materials. Most of the modern works are based on the ideas
firstly introduced by Kachanov [35] for creep-related problems. The list of works is extensive;
however, representative examples are those of Chaboche [36, 37]; see also Krajcinovic and Fonseka
[38] or, more recently, [39]; Pijaudier-Cabot and Mazars [40] have introduced a two damage
variable model that couples the compressive and tensile components of the damage by means of
empirical relations (see also references therein). An application of the damage model to concrete
is provided by same authors in [41]; in [42] a fully three-dimensional finite strain visco-damage
model is presented by Simo; in References [43, 44] different versions of a coupled elastic–plastic-
damage behavior can be reviewed; a complete survey about damage models in infinitesimal and
finite deformation can be consulted in [45, 46], respectively.

In this work the tension–compression damage model presented by Faria et al. [47] is modified in
order to allow its inclusion in the Reissner–Simo formulation for inelastic rods. These modifications
permit to consider two important features of the mechanical behavior of concrete:

(i) Independent degradation of the mechanical properties for tensile or compressive loading
paths that allows to simulate the crack-closure observed during cyclical loading (stiffness
recovery).

(ii) Large differences in the tensile and compressive thresholds (see Figure 4).

The model is based on an adequate form of the free energy density depending on two (independent)
scalar damage variables∗∗ d± ∈[0,1], related to the degradation mechanisms occurring under
tensile (+) or compressive (−) stress concentrations.

In summary, the formulation of the model is based on splitting the material form of the FPK stress
tensor, written only in terms of its cross-sectional components, into its tensile and compressive
parts. A suitable form of the Helmholtz-free energy density [48], along with the Clausius–Duheim

∗∗In the following, the superscript ± is used to denote a quantity defined for both, the tensile case, related to (+)
and the compressive case, related to (−).
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Figure 4. Tension–compression damage model.

inequality and the Coleman’s method, is used for obtaining the constitutive relation and dissipation
[49]. Then, the evolution equations for the internal variables, the loading–unloading conditions
and tangent relation are established. Finally, a numerical algorithm is provided.

3.1.1. Stress split. Let P̄m= ˆ̄Pm
1 ⊗ Ê1=[CmeÊn]⊗ Ê1 be the material form of the elastic FPK

stress tensor (see Section 2.1), which is consistent with the kinematics of the present rod theory.
A direct calculation permits to see that the only non-zero eigenvalue of P̄m is �1= P̄11 (�� =0);
the corresponding eigenvector is ê�1=[1 P̄m

21/P̄
m
11 P̄m

31/P̄
m
11] and ê�� = ê�. The following split of

the stress tensor is proposed:

P̄m+ = 〈�1〉ê�1⊗ ê�1= ˆ̄Pm+
i ⊗ Êi (11a)

P̄m− = P̄m−P̄m+ = ˆ̄Pm−
i ⊗ Êi (11b)

Then, the Helmholtz-free energy potential of the degrading model [48] is given by

�±(Ên,d
±)=(1−d±)�±

0 = 1
2 [(1−d+)P̄m+ :C−1

0 : P̄m+(1−d−)P̄m− :C−1
0 : P̄m] (12)

where C−1
0i jkl =�1(	ik	 jl +	il	 jk)+�2	i j	kl is the fourth-order elastic compliance tensor with

�1=(1+)/2E and �2=−/E . Note that if d± =0, �± corresponds to the elastic stored energy.
The kinematic assumptions of Section 2.1 imply that C−1

0 : P̄m=En =g−1Ên⊗ Ê1 and, after some
algebraic manipulations, Equation (12) can be rewritten as

�± = 1
2 (1−d±)[(2�1+�2)P̄

m
11 P̄

m±
11 +�1 P̄

m
�1 P̄

m±
�1 ] (13)
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In this manner, the free energy density is expressed only in terms of the cross-sectional stress
vector and two situations can occur:

(i) Tensile axial behavior, �1= P̄m
11>0, then P̄m+ �=0 (see Equation (11a)) and

ˆ̄Pm+
i = P̄m

i1

P̄m
11

ˆ̄Pm
1 , ˆ̄Pm−

1 =0 (14a)

�+ = 1

2
(1−d+)

[
1−

2E
�21+ 1+

2E
‖P̂m

1 ‖2
]
= 1

2
(1−d+)�+

0 (14b)

Considering 0�d±�1, it is possible to see that �+>0. This case applies for zones in the
cross section that are subjected to tension due to flexion or only tensile axial force.

(ii) Compressive axial behavior, �1= P̄m
11<0, then P̄m+ =0, P̄m− = ˆ̄Pm

1 ⊗ Ê1 (see Equation (11b))
and �− = 1

2 (1−d−)�−
0 >0. This case considers compressed zones in flexion or compressive

axial force. The case �1≈0 reduces to �− = 1
2 (1−d−)�1‖P̂m

1 ‖2>0.

It is worth to note that −��/�d± =�±
0 are the thermodynamical forces associated with d±.

Remark 2
Owing to the kinematic assumptions, the evolution of shear stresses depends on the sign of �1 and
not on the their own sign. An additional sophistication can be obtained considering, for example,
the stress tensor P̄m∗ = 1

2 [P̄m+P̄mT ]; however, in this case {��} �=0 and, therefore, more complicated
expressions are obtained for Equations (11a)–(13).

3.1.2. Damage criteria. Two (scalar) equivalent stresses, which constitute norms for different
stress states [50], are defined as

�̄+ :=
√
P̄m+ :C−1

0 : P̄m+ =
⎧⎨⎩

√
�+

0 if �1>0

0 if �1�0
(15a)

�̄− :=
√√

3(K �̄−
oct+ �̄−

oct)=
{
0 if �1>0

≈K P̄m
11 if �1�0

(15b)

where �̄−
oct= 1

3 P̄
m
11, �̄−

oct=
√
2
3 P̄m

11 are the octahedral normal and shear stresses obtained from P̄m−
and K ∈ [1.16–1.2] is a materials property, described in detail in Reference [47]. It is worth noting
that Equation (15a) is a measure of elastic stored energy in contrast with Equation (15b) where
equivalent stress is a measure involving information about specific components of the stress in the
space.

In the same way, two separated damage criteria [51, 52] are defined

g±(�̄±,r±)= �̄±−r±�0 (16)

where r± are the current damage thresholds that control the size of the damage surface. In the
present damage theory, the linear-elastic domain depends on ‖P̂m

1 ‖2 and, due to the kinematic
assumptions, multi-dimensional representations in the �i planes are not possible.
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The initial values for r± are

r+
0 = f +

0√
E

, r−
0 =K f −

0 (17)

where f ±
0 are the elastic thresholds in one-dimensional tensile and compressive tests, respectively.

Then, from Equation (15b) it is possible to see that the boundary of the compressive elastic domain
is defined for a value of r̄− K -times greater than the one-dimensional compressive elastic limit f −

0 .

3.1.3. Evolution equations. The following evolution laws are used for d± and r±

ḋ± = 
̇
± �G±(r±)

�r± , ṙ± = 
̇
±

(18)

where G± are monotonically increasing functions determined according with experimental data
and 
̇

±
are the damage consistency parameters. The above rules have to be complemented with

the loading and unloading relations defined with the help of the standard Kuhn–Tucker relations:

(i) 
̇
±�0, (ii) G±�0, (iii) 
̇

±
G± =0 (19)

The corresponding interpretation of these relations is standard and can be consulted, e.g. in
References [47, 53].

In a generic instant t one has that r±
t =max[r±

0 ,r±∗ ] with r±∗ =maxs∈[0,t]r±
s . Finally, from

Equations (18) one obtains that ḋ± = Ġ±(r±)�0.

3.1.4. Constitutive relation and dissipation. Considering Equation (12) for the free energy density
and the fact that C−1

0 :En = Ê1⊗ Ê1 one has that Clausius–Duheim inequality [48]: �̇=−�̇+ P̂m
1 ·

˙̂
En�0 can be expressed as

�̇=
(
P̂m
1 − ��

�Ên

)
· ˙̂
En+�±

0 ḋ
± (20)

which establish that entropy always grows leading to an irreversible process. Considering that both
P̄± are first degree homogeneous functions of En (see [47] for details) and applying Coleman’s
principle, the following constitutive relation is obtained:

P̂m
1 =(1−d±)

��±
0

�Ên
=(1−d+) ˆ̄Pm+

1 +(1−d−) ˆ̄Pm−
1 (21)

where ˆ̄Pm±
1 = P̄m± Ê1. Taking into account Equation (20) it is straightforward to see that dissipation

is given by �̇=�±
0 ḋ

±�0.
The material form of the tangent stiffness tensor, Cmt, is obtained taking the material time

derivative of Equation (21) as

˙̂Pm

1 =(1−d±)
˙̂̄
Pm±
1 − ḋ± ˆ̄Pm±

1 =Cmt Ŝn (22)

where Ŝn is the material form of the strain rate vector as explained in Section 2.1.
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On the one hand, the time derivatives of ˆ̄Pm±
1 are obtained considering the kinematic restrictions

and results presented in [54] as
˙̂̄
Pm±
1 =U±Cme Ŝn, U+ =H(�1)ê�1 ⊗ ê�1, U− =I−U+ (23)

where H(x)= x+|x |/2|x | is the Heaviside function. Note that due to the fact that the present
form of the tension–compression damage theory is restricted to the information existing in the
material points belonging to the cross-sectional planes, one has that U± = P̄±/�1.

On the other hand, the time derivatives of d± are computed considering Equations (15a), (15b),
(18) and the consistency condition ṙ± = ˙̄�±

as

ḋ± = �G±

�r± ˙̄�± =G±′ ˙̄�±
(24a)

ṙ+ = 1√
�+

0

�̇
+
0 = [(1−)J ˆ̄Pm

1 +(1+) ˆ̄Pm
1 ]√

�+
0 E

·Ŝn = L̂
+ ·Ŝn (24b)

ṙ− = K ˙̄Pm
11=KCme Ê1 ·Ŝn = L̂

− ·Ŝn (24c)

where Ji j =1 only if i= j =1 and 0 otherwise. Finally, replacing Equations (23)–(24c) into (23),
using the fact that (v̂1 · v̂2)v̂3=(v̂3⊗ v̂1)v̂2 and after rearranging terms, one obtains

Cmt=[(1−d±)U±Cme−G±′ ˆ̄Pm
1 ⊗ L̂

±] if ṙ±>0 (25)

If unloading has place Cmt=[(1−d±)U±Cme]. Note that, in general, Cmt is a un-symmetric
stress-dependent tensor.

3.1.5. Integration algorithm. The numerical integration of the constitutive model is carried out in
a strain driven fashion as it is usual in displacement-based finite element approaches.

The integration of the damage variables is obtained providing suitable expressions for d± =
G±(r±) subjected to the conditions

0�G±(r±)�1, Ġ±(r±)�0, G±(r±
0 )=0 (26)

where the first condition enforces the values of the internal variables d± to remain in [0,1]; the
second one ensures that G± are monotonically increasing functions as defined in Equation (18)
and the third one provides an initial zero damage for the intact material.

In this work, the following expression is used:

d±(r±)=G±(r±)=1− eA
±(1−r±)

r± , A± =
[
EG±

f

lc f
±
0

− 1

2

]−1

(27)

which corresponds to materials presenting softening†† immediately after the yielding threshold has
been overcome [56]. In Equation (27), the parameter A± is calibrated according to the specific

††More refined models following an analogous structure for G± can be consulted in [55].
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Table I. Flow chart for the damage model.

1. INPUT: material form of Ên at times tn , tn+1 and iteration i , existing on a given
integration point on the beam cross section, then

�[Ên]in =[Ên]in+1−[Ên]n
2. Compute the material form of the trial (iterative) elastic FPK stress vector as

[ ˆ̄Pm
1 ]trial(i)n+1 =[ ˆ̄Pm

1 ]n+Cme�[Ên]in

3. From [ ˆ̄Pm
1 ]trial(i)n+1 determine �1 and ê�1 . Then construct the split of P̄ in P̄± as in

Equations (11a) and (11b).
4. Compute �±

0 according to Equation (14b) and evaluate �̄±i
n+1 as in Equations (15a)

and (15b)
5. Backward Euler scheme

IF (�̄+i
n+1−r+

n �0) → Elastic case

ṙ+ =0, r+i
n+1=r+

n , d+i
n+1=d+

n
ELSE → Tensile damage

ṙ+ =0, r+i
n+1=max[r+

n , �̄+i
n+1], ḋ+i

n+1=G+(r+i
n+1)

IF (�̄−i
n+1−r−

n �0) → Elastic case

ṙ− =0, r−i
n+1=r−

n , d−i
n+1=d−

n
ELSE → Compressive damage

ṙ− =0, r+i
n+1=max[r+

n , �̄+i
n+1], ḋ−i

n+1=G+(r−i
n )

6. OUTPUT: Updated values of the FPK stress vector and tangent constitutive tensor

[P̂m
1 ]in+1 = (1−d+i

n+1)[ ˆ̄Pm
1 ]+i

n+1+(1−d−i
n+1)[ ˆ̄Pm

1 ]−i
n+1

Cmt = [(1−d±)U±Cme−G±′ ˆ̄Pm
1 ⊗L̂

±]
STOP.

fracture energy G±
f of the material (obtained from one-dimensional tension or compression tests)

and the characteristic length of the fracture zone lc. This calibration ensures mesh-size objective
results in numerical simulations [16, 57, 58], as it will be shown in Section 6.

From the numerical stand point, a backward Euler scheme is used for the numerical integration
of the constitutive damage model. The flow chart with the step-by-step algorithm used in numerical
simulations is shown in Table I.

3.2. Rate-dependent behavior

Strain rate sensitivity is a widely recognized property of concrete subjected to earthquakes where
straining rates as high as 10−6/s can appear (see e.g. [59]). In this work, a viscous regularization
of the rate-dependent evolution law for the damage threshold given in Equation (182) is used;
however, no regularization is performed on the rate form of damage variables ḋ±.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1037–1075
DOI: 10.1002/nme



NON-LINEAR SEISMIC ANALYSIS OF RC STRUCTURES 1051

3.2.1. Viscous regularization. The procedure here adopted is inspired in the Perzina regularization
for viscoplasticity [60] and the same approach has been previously developed, in the context of
the three-dimensional continuum, in the works of References [42, 47, 55, 56], among others. In the
present case, Equations (24b) and (24c) have to be replaced by

ṙ± = �±�±(�̄±,r±) (28a)

�±(�̄±,r±) = r±
0

[ 〈�̄±−r±〉
r±

]a±

(28b)

where �± are the viscous damage threshold flow functions. The parameter �± is termed the fluidity
and a± ∈R+ are material parameters evaluated from one-dimensional tests. It is worth noting that
in this case Equations (24a) are rewritten as

ḋ± =G±′�±�±(�̄±,r±) (29)

In this manner, the expression previously given in Equation (20) for the dissipation remains
unchanged. It has to be also noted that: (i) �± →0 imply ḋ± →0 thus a linear-elastic response
is obtained; (ii) if �± →∞ imply �± = ṙ±/�± →0 or equivalently �̄± →r± and ˙̄�± → ṙ± i.e. the
rate-independent behavior is recovered. Therefore, the elastic and rate-independent cases constitute
limit cases of the proposed regularization.

According to Faria et al. [47], to obtain a mesh-size-independent response for the dynamic
loading of mechanical problems involving rate-dependent materials with softening, the parameter
�± must be defined as a function of the characteristic length of the fractured domain, lc. This
mesh-size regularization can be achieved using (see Cervera et al. [56] for details)

�± = �̄±
[
1

lc
− ( f ±

0 )2

2EG±
f

]
�0 (30)

where �̄± are material properties.

3.2.2. Numerical determination of r±. The algorithmic updating of the FPK stress vector P̂m
1 (see

Table I) requires to determine the thresholds r± of Equation (28a), preferably in the most closed
form as possible. Following standard methods, one can use the generalized mid-point rule as

r±
n+1=r±

n +�t�±�±(�̄±
� ,r±

� ) (31)

with

�̄±
� =(1−�)�̄±

n +��̄±
n+1, r±

� =(1−�)r±
n +�r±

n+1 (32)

and �∈[ 12 ,1]. Rearranging Equation (31) one can construct the following residue to be eliminated:

f (r±
n+1)=(rn−rn+1)

±+�t�±r±
0 (〈�̄�,r�〉±)a

±
(33)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1037–1075
DOI: 10.1002/nme



1052 P. MATA ET AL.

In general, one has: (i) if a± �=1 the problem defined in Equation (33) is non-linear; (ii) if
a± ∈{1,2,3,4} it admits an explicit solution; (iii) in the general case, a Newton–Raphson type of
iterative scheme is required to determine r±

n+1. In this work, an additional simplification has been
assumed: a± =1 by convenience.

In what regards to the algorithm presented in Table I, Point (5) has to be modified in the
following manner:

(i) having obtained �̄±(i)
n+1 , compute �̄±(i)

� according to Equation (321).

(ii) Verify (�̄±(i)
� −r±

n )<0; if YES then set: (ii.1) r±
n+1=r±

n and go to (6) of Table I; (ii.2)

on the contrary, compute r±(i)
n+1 using to (33). Evaluate r±

� according to (322). If (�̄±
� <r±

� )

set r±
n+1=r±

n ; update the damage d± =G±; on the contrary, d± =G± and go to (6) of
Table I.

3.2.3. Viscous tangent tensor. An advantage of the present viscous regularization is given by the
fact that the expression for the tangent relation given in Equation (25) is maintained in the viscous
case. It should be noted that, in this case, there are not explicit expressions for ṙ± as a linear
function of Ŝn .

Remark 3
Comparing the present formulation with that of [23], some comments can be made: (1) Owing
to the fact that there is not a component of viscous stress, viscous secant constitutive tensors are
avoided. (2) The linearized increment of the material and co-rotated forms of the FPK stress vector

are simply �P̂m
1 =Cmv�Ên and �

�
[P̂1]=Csv�

�
[�̂n]. Therefore, when linearizing the virtual work

principle, the viscous contribution of the tangential stiffness vanishes.

3.3. Plastic materials

For the case of materials that can undergo non-reversible deformations, the plasticity model
formulated in the material configuration is used for predicting their mechanical response. Assuming
small elastic, finite plastic deformations, an adequate form of the free energy density, �, and
analogous procedures as those for the damage model, we have

P̂m
1 =�0

��(Ê
e
n,kp)

�Ê
e
n

=Cms(Ên−Ê
P
n )=CmeÊ

e
n (34)

where the Ê
e
n is the elastic strain calculated subtracting the plastic strain Ê

P
n from the total strain

Ên , �0 is the density in the material configuration, kp is the plastic damage internal variable and
the material form of the secant constitutive tensor is such that Cms=Cme.

Both, the yield function, Fp, and plastic potential function, Gp, are formulated in terms of the
FPK stress vector P̂m

1 and the plastic damage internal variable kp as

Fp(P̂
m
1 ,kp) =Pp(P̂

m
1 )− f p(P̂

m
1 ,kp)=0 (35a)

Gp(P̂
m
1 ,kp) =K (35b)
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wherePp(P̂m
1 ) is the equivalent stress, which is compared with the hardening function f p(P̂m

1 ,kp)
and K is a constant value [61]. In this work, kp is a measure of the energy dissipated during
the plastic process and, therefore, it is well suited for materials with softening and is defined
[32] as

gP
f = GP

f

lc
=

∫ ∞

t=0
P̂m
1 ·ĖP

n dt (36a)

0�
[
kp = 1

gP
f

∫ t

t=0
P̂m
1 ·ĖP

n dt

]
�1 (36b)

where GP
f is the specific plastic fracture energy density of the material in tension and lc is the

length of the fractured domain defined in analogous manner as for the damage model. The integral
term in Equation (36b) corresponds to the energy dissipated by means of plastic work.

The flow rules for the internal variables Ê
P
n and kp are defined as

˙̂
E
P

n = �̇
�Gp

�P̂m
1

(37a)

k̇ p = �̇�̂(P̂m
1 ,kp,G

P
f ) · �Gp

�P̂m
1

= �̂(P̂m
1 ,kp,G

P
f ) · ˙̂

E
P

n (37b)

where �̇ is the plastic consistency parameter and �̂ is the hardening vector as described in References
[16, 61]. In what regards the hardening function of Equation (35a), the following evolution equation
has been proposed:

f p(P̂
m
1 ,kp)=r�t (kp)+(1−r)�c(kp) (38)

where r ∈R considers the relation existing between components of the stress tensor in compression
and tension, and it can be consulted in [16]. The scalar functions �t (kp) and �c(kp) describe the
evolution of the yielding threshold in uniaxial tension and compression tests, respectively [61].

As it is a standard practice in plasticity, the loading/unloading conditions are derived in the
standard form from the Kuhn--Tucker relations formulated for problems with unilateral restrictions,
i.e. (a) �̇�0, (b) Fp�0 and (c) �̇Fp =0. Starting from the plastic consistency condition Ḟp =0
and considering the flow rules it is possible to deduce the explicit form of �̇ as [16, 61]

�̇=−

�Fp

�P̂m
1

·(Cme ˙̂
En){

�Fp

�P̂m
1

·
(

Cme �Gp

�P̂m
1

)
− � f p

�kp
�̂ · �Gp

�P̂m
1

} (39)

The material form of the tangent constitutive tensor is calculated taking the time derivative of
Equation (34), considering the flow rule of Equation (37b) and the plastic consistency parameter
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of Equation (39) as

	P̂m
1 =Cmt	Ên =

⎡⎢⎢⎢⎢⎣Cme−

(
Cme �Gp

�P̂m
1

)
⊗

(
Cme �Fp

�P̂m
1

)
�Fp

�P̂m
1

·
(

Cme �Gp

�P̂m
1

)
− �Fp

�kp
�̂·

(
�Gp

�P̂m
1

)
⎤⎥⎥⎥⎥⎦	Ên (40)

3.4. Mixing theory for composites

Each material point on the beam cross section is treated as a composite material according to the
mixing theory [31, 61]. This theory is based on the early works of Truesdell and Toupin [62] for
bi-phasic materials and further exploited by a number of authors (see e.g. Ortiz and Popov [30]
and references therein, among many others).

In this theory, the interaction between all the components defines the overall mechanical behavior
of the composite at material point level. Supposing N different components coexisting in a generic
material point subjected to the same material strain field Ên , we have the following closing
equation: Ên ≡(Ên)1=·· ·=(Ên)q =·· ·=(Ên)N , which imposes the strain compatibility between
components. The free energy density of the composite, �̄, is obtained as the weighted sum of
the free energy densities of the N components. The weighting factors, kq , correspond to the
quotient between the volume of the qth component, Vq , and the total volume, V , such that∑

q kq =1.

The material form of the FPK stress vector P̂mt
1 for the composite, including the participation

of rate-dependent effects, is obtained in analogous way as for simple materials i.e.

P̂mt
1 ≡

N∑
q
kq(P̂

m
1 + P̂mv

1 )q =
N∑
q
kq

[
(1−d)Cme

(
Ên+ �

E0
Ŝn

)]
q

(41)

where (P̂m
1 )q and (P̂mv

1 )q correspond to the rate-independent and -dependent stresses of each one
of the N components, respectively. The material form of the secant and tangent constitutive tensors
for the composite, C̄

ms
and C̄

mt
, is obtained as [16, 23, 61]

C̄
ms≡

N∑
q=1

kq(C
ms)q , C̄

mt≡
N∑

q=1
kq(C

mt)q (42)

where (Cms)q and (Cmt)q are the material form of the secant and tangent constitutive tensors of
the qth component.

3.5. Constitutive relations for EDDs

The constitutive law proposed for EDDs is based on a previous work of the authors [26] which
provides a versatile strain–stress relationship with the following general form:

Pm
d (Ed1, Ėd1, t)= Pm

d1(Ed1, t)+Pm
d2(Ėd1, t) (43)
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where Pm
d is the average stress in the EDD, Ed1 the strain level, t the time, Ėd1 the strain rate

and, Pm
d1

and Pm
d2

are the strain-dependent and rate-dependent parts of the total stress in the device,
respectively.

The model uncouples the total stress in viscous and non-viscous components, which correspond,
in terms of rheological models, to a viscous dashpot device acting in parallel with a non-linear
hysteretic spring. The purely viscous component does not requires to be a linear function of the
strain rate.

From the results obtained from experiments carried out on a large variety of different types of
devices, it is possible to see that the function Pm

d1
should have the following characteristics:

(i) Hardening for strain levels over 150%.
(ii) Variable instantaneous stiffness.
(iii) For elastomer-based devices, the initial slope of a given loading or unloading branch of

their characteristic force–displacement curves is a function of the point in the strain–stress
space where the velocity of deformation changes of sign (see [26]).

3.5.1. Rate-dependent part. The viscous component of the stress has the following form:

Pm
d2(Ėd1, t)=cd(Ėd1)Ėd1 (44)

where cd is the (non-linear) viscous coefficient function of the device that is obtained fitting a
polynomial to experimental data. A method is proposed in Reference [26] for the case of elastomer-
based devices; however, the same procedure can be applied to other base materials.

3.5.2. Rate-independent part. The capacity of the model for simulating hardening for strain levels
over 150% (e.g. in the case of elastomer-based devices) is given by an adequate non-linear-elastic
backbone added to the non-viscous hysteretic cycles, as it can be seen in the scheme of Figure 5. The
proposed backbone is defined numerically by means of a polynomial, whose coefficients are fitted
to experimental data; for example, for the case of the high damping elastomer of Reference [26]

Figure 5. Non-linear elastic backbone added to the rate-independent part of the constitutive relation.
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the following formula is obtained: Pmh
d1

=sgn[Ėd1]A0(〈|Ed1 |−A1〉)A2 , where A0, A1 and A2 are
scalars obtained from experimental tests.

The response of the non-linear hysteretic spring is obtained solving the following system of
non-linear differential equations:

Pm
d1(Ed1, t) = Ky(E

�
d1

, Pm�
d )Ed1 +[Ke(E

�
d1

, Pm�
d )−Ky(E

�
d1

, Pm�
d )]e (45a)

if Ėd1e�0→ ė =
⎡⎣1−

∣∣∣∣∣ e

dy(E
�
d1

, Pm�
d )

∣∣∣∣∣
n(E

�
d1

,Pm�
d )

⎤⎦ Ėd1 (45b)

else→ ė = Ėd1

where Ky is the post yielding stiffness, Ke the elastic stiffness, dy is the yielding strain of the
material and e represents an internal variable of plastic (hysteretic) strain, which takes values in the
range [−dy,dy]. The parameter n in the associated flow rule of Equation (45c) describes the degree
of smoothness exhibited by the transition zone between the pre and the post yielding branches of
the hysteretic cycle. The solution procedure solves the system of equations taking into account
that Ke, Ky, dy, and n are function of the point in the strain–stress space where the last change of

sign of the strain rate has occurred, which is denoted by (E
�
d1

, Pm�
d ) in Equations (45a) and (45c).

Therefore, the proposed algorithm (see [26]) updates the parameters of the model for each change
of sign of the strain rate. If there is no change in the sign of the strain rate, the parameters of the
model are maintained constants. Hardening can be incorporated by means of adding the non-linear
elastic backbone Pmh

d1
to Equation (45a).

The parameters Ke, Ky, dy, n are non-linear functions of (E
�
d1

, Pm�
d ), i.e.

Ke=℘1(E
�
d1

, Pm�
d ), Ky=℘2(E

�
d1

, Pm�
d ), dy=℘3(E

�
d1

, Pm�
d ), n=℘4(E

�
d1

, Pm�
d ) (46)

Explicit expression for ℘k (k=1, . . . ,4) (in function of (E
�
d1

, Pm�
d )) are determined from experi-

mental data. In any case, it is possible to simulate the mechanical behavior of a wide variety of
devices, e.g.

• cd =0, ℘1=℘2=constant, ℘3∼∞ and ℘4=1: an elastic spring is obtained. This case corre-
sponds to devices designed as re-centering‡‡ elements in structures.

• cd =constant, ℘1=℘2=0, ℘3∼∞ and ℘4=1: a viscous dashpot is obtained. This case can
be found in devices applied to control the effects of wind loads.

• cd =constant, ℘1=℘2=constant, ℘3∼∞ and ℘4=1: Maxwell’s model is obtained. This case
corresponds to a typical viscous device with re-centering mechanism. See Figure 6(a) where
the loading was defined by sinusoidal path of imposed strains with increasing amplitude up
to a maximum value of 2mm/mm (the same applies for the rest of the figures).

‡‡Re-centering forces are considered to be of importance in structures subjected to strong earthquakes. Re-centering
mechanisms help to recover the original configuration of the structure after the seismic action.
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Figure 6. Examples of EDD’s behaviors: (a) Maxwell model, cd =7, ℘1=℘2=25, ℘3∼∞
and ℘4=1; (b) bilinear inviscid plastic model, cd =0, n=1, ℘1=25, ℘2=2.5 and Ey=0.5;
(c) non-linear dashpot, cd =7, Kc=2.1, ℘1=℘2=25, ℘3∼∞ and ℘4=1; and (d) rubber
model, ℘1=−34.9267+217.7Ed1 −530.1(Ed1)

2+655.1(Ed1)
3−451.3(Ed1)

4+176.7(Ed1)
5

−39.7(Ed1)
6+26.6(Ed1)

7, ℘2=2.5, Pmh
d1

=sign(E�
d1

)∗8∗(|E�
d1

|−1.25)5 (if E�
d1

>1.35).

• cd =constant, ℘1�℘2>0, n∈[1,100] and Ey>0: a visco-plastic device can be simulated
(assuming uncoupled Maxwell’s viscosity). Particularly, if cd =℘2=0 and n=1 a bilinear
perfectly plastic model is obtained. See Figure 6(b).

• cd =(Ėd1)
Kc (0<Kc<1), ℘1=℘2=0, ℘3∼∞ and ℘4=1: a non-linear viscous dashpot is

obtained. Some modern viscous devices employ modern valves’s systems that produces the
non-linear force–velocity curve with a saturation level (see e.g. [4] Chapter 6 and Figure 6(c).

• In the case of devices made of high damping elastomers (such as those considered in
Reference [26]) it is possible to consider: cd =constant, ℘1=∑Nc

k=0 Ak(E
�
d1

)k , Ak =constant,
∀k=(1 . . .Nc); the post-yielding stiffness function, ℘2, is maintained constant. The analytical
expression of ℘3 is ℘3=(|Pm�

d |−|Pm�
0 −Pm�

d |)/(℘2−℘1); where Pm�
0 is a parameter calcu-

lated evaluating the line with slope ℘2 at zero strain level. The function ℘4 can be taken
℘4≈1 (see Figure 6(d)).

More complex material behaviors, such as those of other types of rubber or smart-based devices,
can be simulated by means of providing suitable functions for the parameters of the model (see
Equation (46)).
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Figure 7. Flowchart of the constitutive relation for EDDs.

3.5.3. Tangent stiffness. The tangent relation for the EDDs is obtained numerically using the
perturbation method [63]. It consists in applying a small increment§§ to Ed1 , which is denoted by
�Ed1 ; and after solving the system of Equation (45c) for the total strain (Ed1 +�Ed1), the new
stress level Pm

d1
is determined. Furthermore, the hardening and viscous contributions have to be

added to obtain Pm
d (Ed1 +�Ed1). The tangential stiffness of the device, K t , is then calculated as

K t = �Pm
d

�Ed1
= Pm

d (Ed1 +�Ed1)−Pm
d (Ed1)

�Ed1
(47)

§§Here the notion of smallness corresponds to the precision of the machine used in the numerical simulations.
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It is important to note that the sign of the perturbation has to be the same as Ėd1 in order to obtain
a tangential stiffness consistent with the sign of the loading process in the device, when cyclic
actions are considered.

3.5.4. Integration algorithm. The numerical algorithm starts by assigning an initial values to the
parameters of the model. For each strain level, Ei

d1
, the algorithm verifies if the strain rate changes

of sign. If this is the case, an updating procedure for the parameters ℘k (k=1, . . . ,4) is carried
out. On the contrary, the parameters are maintained. Then, plastic strain, stress and the tangential
relation are estimated. The flow-chart of the algorithm is shown in Figure 7.

4. NUMERICAL IMPLEMENTATION

In order to obtain a Newton-type numerical solution, the linearized part of the weak form of
Equation (7) is required, which can be written as

L[Gw(�̂∗,K∗, ĥ)]=Gw(�̂∗,K∗, ĥ)+DGw(�̂∗,K∗, ĥ) · p̂ (48)

where L[Gw(�̂∗,K∗, ĥ)] is the linear part of the functional Gw(�̂,K, ĥ) at the configuration
defined by (�̂,K)=(�̂∗,K∗) and p̂≡(��̂,�
̂) is an admissible variation. The term Gw∗ supplies
the unbalanced force vector obtained adding the contributions of the inertial, external and internal
terms; and DGw∗ · p̂, gives the tangential stiffness [27].

On the one hand, the linearization of the inertial and external components, G ine
w and Gext

w , yields
the inertial and load-dependent parts of the tangential stiffness, KI∗ and KP∗, respectively; and they
can be consulted in [25, 27]. On the other hand, the linearization of the internal term is obtained
as [16, 23]

DG int
w∗ · p̂=

∫ L

0
ĥT(BT∗��−nS∗ p̂)dS (49)

where ��T=[�n̂T∗�m̂T∗ ], the operator nS∗ contributes to the geometric part of the tangent stiffness
and B∗ relates ĥ and the co-rotated variation of the strain vectors. Explicit expression for B and
nS∗ can be found in References [16, 27, 28], respectively.

The computation of �� appearing in Equation (49) requires taking into account the linearized
relation between P̂m

1 and Ên . After integrating over the beam cross section, the following result
is obtained:

��=(CsvB∗−F̃) p̂ (50)

where Csv is the spatial form of the cross-sectional tangent constitutive tensor depending on
the material properties and F̃ is the stress-dependent tensor (see [16, 23] for details). Finally,
Equation (50) allows to rewrite Equation (49) as

DG int
w · p=

∫ L

0
ĥTBT∗Cst∗B∗ p̂dS+

∫ L

0
ĥT(̃nS∗−BT∗ F̃∗) p̂dS=KM∗+KG∗ (51)
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where KG∗, KM∗, evaluated at (�̂∗,K∗), give the geometric and material parts of the tangent
stiffness, which allows to rewrite Equation (48) as

L[G∗]=Gw∗+KI∗+KM∗+KV∗+KG∗+KP∗ (52)

The solution of the discrete form of Equation (51) by using the finite element method follows an
identical procedure as that described in [27] for an iterative Newton–Raphson integration scheme
and it will not be discussed here.

Newmark’s implicit time-stepping algorithm has been chosen as integration method following
the development originally proposed by Simo and Vu-Quoc [25]. For the rotational part, the
time-stepping procedure takes place in SO(3) and the basic steps, as well as the iterative update
algorithm for the strain and strain rate vectors, are given in Reference [23].
Remark 4
Recently, the attention of the research community has been directed toward energy–momentum-
conserving time-stepping schemes. Some algorithms has been developed for inelastic materials
inheriting conservative properties in the elastic range. In particular, Armero [64] presents an algo-
rithm for multiplicative plasticity at finite strains that recovers the energy–momentum-conserving
properties in the elastic range. In Reference [65] Noels et al., propose a modification of the varia-
tional updates framework to introduce numerical dissipation for high-frequency modes, leading to a
energy-dissipative momentum-conserving algorithm for elastoplasticity. In the case of elastic struc-
tural elements with large rotations, it is possible to consult [66] and more recently [67]; however,
in this last case, the conservative properties do not have been extended to the inelastic range.

5. CROSS-SECTIONAL ANALYSIS AND DAMAGE INDICES

5.1. Cross-sectional analysis

The cross-sectional analysis is carried out by expanding each integration point of the beam axis
in a set of integration points located onto the cross section. Then, the cross sections are meshed
into a grid of quadrilaterals, each of them corresponding to a fiber oriented along the beam axis.
The geometry of each quadrilateral is described by means of normalized bi-dimensional shape
functions and several integration points can be specified according to a specific integration rule.
The average value of a quantity, [·], for example the components of FPK stress vector or the
tangential tensor existing on a quadrilateral, are

[·]= 1

Ac

∫
[·]dAc= 1

Ac

Np∑
p=1

Nq∑
q=1

[·](yp, zq)JpqWpq (53)

where Ac is the area of the quadrilateral, Np and Nq are the number of integration points in the
two directions of the normalized geometry, [·](yp, zq) is the value of the quantity [·] existing on
a integration point with coordinates (yp, zq) with respect to the reference beam axis, Jpq is the
Jacobian of the transformation between normalized coordinates and cross-sectional coordinates
and Wpq are the weighting factors. Two additional integration loops are required. The first one
runs over the quadrilaterals and the second loop runs over each simple material associated with
the composite of the quadrilateral. More details can be consulted in [16, 23].
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5.2. Damage indices

A measure of the damage level of a material point can be obtained as the ratio of the existing stress
level to its elastic counterpart. Following this idea, it is possible to define the fictitious damage
variable Ď as [51]

3∑
i=1

|Pm
1i |=(1− Ď)

3∑
i=1

|Pm
1i0|→ Ď=1−

∑3
i=1 |Pm

1i |∑3
i=1 |Pm

1i0|
(54)

where |Pm
1i | and |Pm

1i0| are the absolute values of the components of the existing and elastic stress

vectors, respectively. Initially, the material remains elastic and Ď=0, but when all the energy
of the material has been dissipated |Pm

1i |→0 and Ď→1. Equation (54) can be extended to
consider elements or even the whole structure by means of integrating over a finite volume as
follows:

Ď=1−
∫
Vp

(∑
i |Pm

1i |
)
dVp∫

Vp

(∑
i |Pm

1i0|
)
dVp

(55)

where Vp is the volume of the part of the structure. Equation (55) is easily implemented in an
standard finite element method code without requiring large extra memory storage.

6. NUMERICAL EXAMPLES

6.1. Mesh-independent response

The cantilever beam of Figure 8 is used to verify if regularizating the constitutive equations
according to the fracture energy and the characteristic length of the fractured zone, a mesh-
size-independent response is obtained for softening materials. Additionally, a global mechanical
response independent of the cross-sectional discretization is verified.

The beam is made of a degrading material simulated using the tension–compression model
described in Section 3.1. The mechanical properties are: (i) E=1.5×105Nmm−2; (ii) =0.1;

Figure 8. Cantilever beam.
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Figure 9. Mesh-independent response: (a) vertical displacement versus vertical reaction and (b) vertical
displacement versus moment reaction.

(iii) f −
0 =500Nmm−2; (iv) f +

0 =250Nmm−2; (v) G−
f =500Nmm−2 (G+

f =125Nmm−2);
(vi) K =1. An imposed displacement was applied on the free end in the Y direction. The loading
path was the following: 20 steps of 1mm and then 60 steps of the same magnitude in the opposite
direction.

Four discretizations were used: (1) Eight linear elements along the beam axis and 20 layers in
the cross section. This case is denoted as 8E20L; (2) Eight linear elements along the beam axis and
40 layers in the cross section (case 8E40L); (3) Sixteen linear elements along the beam axis and 20
layers in the cross section (case 16E20L); (4) Sixteen linear elements along the beam and 40 layers
in the cross section (case 16E40L) (see Figure 8). The Gauss integration rule was considered in the
simulations. The length of the fractured zone corresponds to the characteristic length associated
with the integration point.

Figures 9(a) and (b) show two capacity curves relating the vertical reaction and moment reaction
with the vertical displacement of the free end, respectively. It is possible to see that the numerical
responses are almost the same for the four cases considered, confirming thus the independency
of the global mechanical response with the number of elements and the specific discretization
of the cross section. It is possible to appreciate the fact that the independency between tensile
and compressive degradations produces the stiffness recovery phenomenon in the global response
when reverse loading paths are applied.

Figures 10(a)–(c) show the time evolution of the strain–stress relations for three cases: (a) The
En1–Pm

11 relation obtained from the upper layer of the cross-sectional discretization. (b) Idem as
in (a) but obtained from the bottom cross-sectional layer. (c) The (shear) strain–stress relation
En3–Pm

13 obtained from the layer located immediately over the geometrical center of the cross
section. From these figures, it is clear that the obtained strain–stress relations strongly depend on
the size of elements (as expected), but that the number of layers of the cross-sectional discretization
has a minor significance.

Therefore, it is possible to affirm that regularizing the strain–stress relation according to the
specific fracture energy and the characteristic length of the fractured zone (characteristic mesh
size), the purpose of obtaining a mesh-independent response at global level is obtained, even when
the post-yielding strain–stress relations become mesh dependent.
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Figure 10. (a) Evolution of the En1–Pm
11 relation in the upper layer of the cross section; (b) evolution of

the En1–Pm
11 relation in the bottom layer of the cross section; and (c) evolution of the En3–Pm

13 relation
in the layer of the middle of the cross section.

6.2. Experimental–numerical comparative study of a scaled RC building model

This example corresponds to the comparison between the numerical simulation obtained by means
of the proposed formulation and the experimental data obtained by Lu [68] for the seismic analysis
of a scaled model (1:5.5) of a regular bare frame. The structure was designed for a ductility class
medium in accordance with the Eurocode 8 [69] with a peak ground acceleration of 0.3g and soil
profile A.

The material properties are: (i) Concrete class C20 with an elastic modulus of Ec=2×
104Nmm−2, Poisson coefficient c=0.2, characteristic compressive strength f −

c =20Nmm−2

( f +
c =2Nmm−2 and K =1), fracture energy G−

c =10Nmm−2 (G+
c =1Nmm−2), mass density

�c=2.4×10−9Kgmm−3 and fluidity �+ =1500s−1, �− =5×104 s−1 (a± =1) and (ii) Flexural
reinforcement Grade S400, Es=2.1×105Nmm−2, s=0.3, f ±

s =400Nmm−2 (K =1), G±
s =

100Nmm−2, �s=7.8×10−9Kgmm−3 and �± =5000s−1 (a± =1). Other details such as loads,
geometry and distribution of steel reinforcements can be consulted in the same publication. In the
experimental program, the structure was subjected to several scaled versions of the N–S component
of the El Centro 1940 earthquake record.

Four quadratic elements with two Gauss integration points were used for each beam and column.
Cross sections where meshed into a grid of 20 equally spaced layers. Longitudinal steel reinforce-
ments were included in the external layers as part of a composite material. The fracture energy
of the damage model used for concrete was modified to take into account the confining effect
of transversal stirrups [16]. In the numerical simulations, the model is subjected to a pushover
analysis. Static forces derived from the inertial contribution of the masses are applied at the floor
levels considering an inverted triangular distribution.

A relationship between the measured base shear and the top lateral displacement is given in
Reference [68] for each seismic record. This curve is compared in Figure 11 with the capacity
curve obtained by means of using the numerical pushover analysis. Additionally, the result obtained
from a numerical simulation presented by the authors in [70] using an alternative damage model
is given as well.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1037–1075
DOI: 10.1002/nme



1064 P. MATA ET AL.

10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5

3

3.5

4

x 104

Horizontal displacement, mm

B
as

e 
sh

ea
r, 

N

Experimental
Barbat et al. [70]
Current simulation

Figure 11. Capacity curves. Comparison between the results obtained from a numerical
pushover analysis and experimental data.

It is possible to see that the pushover analysis gives a good approximation for the global
maximum response and, therefore, it constitutes a suitable procedure for computing the non-linear
behavior of structures subjected to seismic actions. In the same figure, it is possible to appreciate
that in both the numerical simulation and the experimental data the characteristic values of the
structure; that is, global ductility level, elastic limit and over-strength are similar.

Figure 12 shows a comparison between the distribution of cross-sectional damage predicted
numerically and the map of cracking obtained after the application of several shaking table tests.
The proposed damage index is able to reproduce the general failure mechanism of the structure
where dissipation is mainly concentrated in the beam elements.

6.3. Seismic response of a precast RC building with EDDs

The non-linear seismic response of a typical precast RC industrial building shown in Figure 13 is
studied. The building has a bay width of 24m and 12m of inter-axes length. The storey height is
10m. The concrete of the structure is H-35 with an elastic modulus of Ec=2.9×104Nmm−2, c=
0.2, characteristic compressive strength f −

c =35Nmm−2 ( f +
c =3.5Nmm−2 and K =1), fracture

energy density G−
c =20Nmm−2 (G+

c =5Nmm−2), mass density �c=2.4×10−9Kgmm−3 and
fluidity �+

c =1500s−1, �−
c =5×104 s−1 (a±

c =1). In the case of the steel reinforcements, Es=2.0×
105Nmm−2, s=0.15, f ±

s =510Nmm−2 (K =1), G±
s =500Nmm−2, �s=7.8×10−9Kgmm−3

and �±
s =∞ (a±

s =1). This figure also shows some details of the steel reinforcement of the cross
sections. The dimensions of the columns are 60×60cm2. The beam has an initial height of 50cm on
the supports and 140cm in the middle of the span. The permanent loads considered are 1000Nm−2

and the weight of upper half of the closing walls with 225.000N. The input acceleration is the
same as in Example 6.2.

The building is meshed using eight quadratic elements with two Gauss integration points for
each beam and column. The cross-sectional grid of fibers is shown in Figure 14. One integration
point is used for each quadrilateral. The EDD was simulated by means of the model of Section 3.5
reproducing a purely plastic dissipative mechanism. The properties of the device were designed for
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(a) (b)

Figure 12. Damage: (a) map of fissures obtained from experimental data
and (b) numerical: cross-sectional damage index.

Figure 13. Description of the structure.

obtaining a yielding force of 200000N for a relative displacement between the two end nodes of
1.2mm. Hardening or viscous effects were not considered. The length of the devices was of 3.1m.

First, a set of pushover analyses is performed considering the following cases: (i) The bare frame
under small displacements assumption; (ii) The bare frame in finite deformation; (iii) The frame
with EDDs and small deformation; (iv) Idem as (iii) but with finite deformation. The purpose is
to establish clearly the importance of considering second-order effect coupled with inelasticity in
the study of flexible structures.

Figure 15(a) shows the capacity curves obtained for the four mentioned cases. In this figure it
is possible to see that for both, the passively controlled and uncontrolled cases, the small strain
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Figure 14. Numerical model of the precast frame with energy EDDs and cross-sectional meshes.
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Figure 15. (a) Capacity curves and (b) evolution of the global damage index.

assumption overestimates the real load-carrying capacity of the structure, due to the fact that the
vertical load derived from the self-weight compresses the columns, contributing to control the
cracking and degradation due to the lateral loading. In the case of finite deformation, second-order
effects are taken into account, the so-called P–� [71], and an anticipated strength degradation is
observed for displacements over 60mm, which is a lateral displacement level expectable under
strong seismic actions. Additionally, the incorporation of EDDs increases the stiffness and the
yielding point of the structure at global level without affecting the global ductility. Although at
material point level, softening is always present for the damage model beyond the linear-elastic
limit, at global level only the simulation corresponding to case (iv) captures a small part of the
softening post peak response.

Figure 15(b) shows the evolution of the global damage index for the cases (i)–(iv). Here it
is possible to appreciate that the global damage index grows quickly for the cases when finite
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Figure 16. Time history responses of the top beam–column joint: (a) horizontal
displacement; (b) velocity; and (c) acceleration.

deformation is considered and the benefits of adding EDDs are not visible due to the fact that the
pushover analysis does not takes into account the effects of energy dissipation.

The results of the numerical simulations in the dynamic range allow seeing that the use of plastic
EDDs contributes to improve the seismic behavior of the structure for the case of the employed
acceleration record. Figure 16 shows the time history response of the horizontal displacement,
velocity and acceleration of the upper beam–column joint for the uncontrolled and the controlled
cases. A reduction of approximately 57.5% is obtained for the maximum lateral displacement
when compared with the bare frame. Acceleration and velocity are controlled in the same way,
but only 24.3 and 7.0% of reduction is obtained, respectively. A possible explanation for the
limited effectiveness of the EDD is that the devices only contribute to increase the ductility of the
beam–column joint without alleviating the base shear demand due to the dimensions of the device
and its location in the structure.

Figure 17 shows the evolution of the global damage index. It is possible to see that the damage
index grows quickly and reaching higher values for the non-controlled case, confirming the benefits
obtained from the use of EDDs.

It is worth noting that with the present formulation the need of using specific cross-sectional
constitutive laws depending on the cross-sectional shape and the distribution of steel reinforcements
is completely avoided (compare with [17, 19]). On the contrary, the constitutive relations are
deduced using the cross-sectional integration procedure described in Section 5. Moreover, compared
with other fiber models, [20], the coupling between stress components of thermodynamically
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Figure 17. Evolution of the global damage index.

consistent constitutive laws allows to compute very precisely the dissipated energy and determine
some damage variables.

6.4. Seismic response of a three-dimensional urban building with EDDs

This example corresponds to the study of the seismic non-linear response a 3-storey urban building
designed according to the Eurocode 8 [69] for a ductility class medium, soil profile A and a peak
ground acceleration of 0.2g. A three-dimensional view of the building is shown in Figure 18(e).

The main purpose of this example is to show the ability of the proposed formulation for
simulating the geometric and constitutive non-linear behavior of a three-dimensional structure with
and without EDDs, highlighting some complex phenomena such as the torsional response coupled
with P–� effects for the case of a non-uniform distribution of mass.

The building is subjected to a scaled version of the N–S component of the El Centro earthquake
record corresponding to a peak ground acceleration of 0.3g, greater than the maximum horizontal
load permitted by the design code. The record is applied in the X direction (see Figure 18(c)). The
mechanical properties for the steel and the concrete are the same as in Example 6.3. The details
of the steel reinforcement are shown in Figure 18(d) according to the floor level where the beams
and columns are located. Each beam and column is meshed using five equally spaced quadratic
elements evaluated according to the Gauss integration rule and each cross section is divided into
a 8×8 equally spaced grid of quadrilaterals.

Inertial forces derived from the contribution of the mass corresponding to a concrete floor
of 130mm thickness along with the sum of the dead and live loads of 2500Nm−2 (uniformly
distributed on the floors) are considered. Structural torsion is induced adding two point masses,
with values corresponding to the 10% of the total floor’s mass, on the top corners A and B indicated
in Figures 18(a)–(c). Therefore, even when the seismic action is applied in one direction, coupled
displacement will appear in the another one due to the inhomogeneous distribution of masses.

Several practical aspects of the performance of an engineering structure are considered: structural
torsion, distribution of the seismic damage, over-strength and ductility. Three cases are considered:

(i) Bare building (full geometric and constitutive non-linear model).
(ii) Elastic bare building equipped with viscous EDDs located in the A–A and C–C frames

as indicated in Figures 18(a)–(c). Their mechanical properties are: (i) A linear viscous
coefficient of cd =10000Ns−1 with (ii) an exponent n=0.5 (see Equations (45c) and (46)).

(iii) Full non-linear model of the building equipped with viscous EDDs (idem mechanical
properties as in (ii)).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 78:1037–1075
DOI: 10.1002/nme



NON-LINEAR SEISMIC ANALYSIS OF RC STRUCTURES 1069

(a)

(d) (e)

(b) (c)

Figure 18. 3-storey urban building: (a) A–A plane frame showing the location of the EDDs; (b) C–C
plane frame; (c) horizontal view showing the location of the A–A and C–C frames; (d) RC detailing. P1
and B1 designate the steel reinforcement types of the columns and beams of the first floor (P2, B2, P3
and B3 idem as before but for the second and third floors, respectively); and (e) three-dimensional view.

The purpose of including the case (ii) is to study the influence on the structural response of the
widely used (a priori) assumption that considers that the structure remains elastic as a consequence
of the benefits obtained from EDDs.

The displacement time history responses of the nodes B and C of the building in the direction of
the applied record are shown in Figure 19(a) and (b), respectively. The differences observed in these
figures are due to the global torsion of the building. Additionally, it is possible to appreciate that
the use of the proposed viscous dampers contributes to alleviate the maximum global displacement,
decreasing the response by about 25%. However, another important result is given by the fact
that the a priori assumption that the main structure remains elastic underestimates the maximum
displacement and, therefore, the ductility demand of the structural elements.

Figures 20(a) and (b) show the displacement time history response of the nodes C and D in
the direction perpendicular to the application of the loading. Therefore, they are produced due
to the torsion. The main two aspects that have to be highlighted in this case are: (i) Again the
assumption of a linear bare structure is not able to capture appropriately the torsional components
of the motion and (ii) the inclusion of viscous EDDs can alleviate significatively the torsional
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Figure 19. Displacement time history response in the direction of the applied
record: (a) node B and (b) node C .
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Figure 20. Displacement time history response in the direction of the applied
record: (a) node C and (b) node D.

response in the non-linear range. It has to be noted, however, that the masses added in the present
example are rather small compared with the total one.

It is worth noting that damage appears in columns due to the poor seismic design considered
(weak column–strong beams). The evolution of the global damage index is shown in Figure 21 for
the full non-linear controlled and uncontrolled cases. In the same manner as before, the benefits
obtained from the application of EDDs are clearly evidenced.
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7. CONCLUSIONS

In this work, a geometrically exact formulation for initially curved and twisted beams has been
extended for considering arbitrary distributions of rate-dependent inelastic composite materials on
the cross sections in the static and dynamic (even seismic) cases. The consistent linearization of
the weak form of the momentum balance equations considers the constitutive non-linearity with
rate-dependent effects. The resulting model is implemented in a displacement-based finite element
code. An iterative Newton–Raphson scheme is used for the solution of the time-discrete version
of the linearized problem. A specific finite element for EDDs is developed based on the beam
model, but releasing the rotational degrees of freedom.

Each material point of a cross section is assumed to be composed of several simple materials
with their own constitutive laws. Thermodynamically consistent versions of the plasticity and
the tensile-compressive damage models are developed, which consider full interaction among
the components of the FPK stress vector. The mixing rule is used for describing the resulting
composite. Viscosity is included at constitutive level by means of an adequate regularization of the
evolution equations of the damage thresholds, avoiding ad hoc formulations such as the so-called
Rayleigh’s method (see [72]). A versatile model is proposed for the force–displacement relation of
the EDDs. Calibrating the model’s parameters it is possible to simulate a wide variety of dissipative
mechanisms.

From the numerical point of view, beam cross sections are meshed into a grid of quadrilaterals
corresponding to fibers directed along the beam axis. Then, in each integration point, two additional
integration loops are required to obtain the reduced cross-sectional forces, moments and tangential
tensors. The present approach avoids the formulation of constitutive laws in terms of cross-sectional
quantities, which in most of the cases are valid for specific geometries and the thermodynamic
basis of the constitutive laws are, in general, violated. Moreover, the shear components of the stress
are determined from the inelastic constitutive laws and, therefore, they are not deduced from the
elemental equilibrium as in the case of other fiber models [20]. Local and global damage indices
have been developed based on the ratio between the non-linear stresses and their visco elastic
counterparts. They constitute a measure of the degradation level and, therefore, of the dissipated
energy.

The present formulation is validated by means of a set of numerical examples, which includes
the comparison with existing experimental data and the study of the seismic response of precast
and cast in place RC structures equipped with EDDs. Several rather complex phenomenon can
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be reproduced: (i) The coupling between geometric and constitutive non-linearity (P–� effects)
in the static and dynamic ranges; (ii) The full non-linear dynamic torsional response for struc-
tures presenting non-coincident elasticity and mass centers subjected to seismic loadings; (iii)
The numerical simulation and evaluation (in terms of the evolution of damage indices) of the
effectiveness of using passive EDDs for improving the dynamic response of RC buildings.

The use of EDDs appears as a convenient technique for controlling the dynamic behavior of
RC structures subjected to earthquake loading; however, for strong seismic actions an appreciable
level of damage can also be produced in the main structural elements; therefore, this aspect should
be considered when designing passively controlled structures.
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