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Colombian seismic code NSR-98 establishes the requirement for the seismic 

vulnerability analysis and, if necessary, the strengthening of public facilities 

(schools). Due to the investments required by risk reduction programs, it is 

necessary to establish criteria for assigning priorities for the interventions. This 

article proposes a methodology for obtaining a Benefit-Cost Ratio (BCR) at the 

subnational level, by assessing the expected annual average loss of the built area 

of public schools and the retrofitting cost. The BCR is estimated as the difference 

between the estimates of the net present value for status quo and retrofitted states, 

these two divided by the retrofitting costs. According to the BCR, 47.3% of the 

total school built area of Colombia should be retrofitted where the retrofitting 

costs correspond to 25% of the total investment. Proposed BCR is useful for 

prioritizing regions in function of the feasibility of reducing the seismic 

vulnerability of the schools. 

INTRODUCTION 

In Colombia, the performance of the schools during earthquakes has highlighted the 

vulnerability of these facilities and the importance of the development of risk reduction 

programs. According to CEPAL (1999), during the earthquake of the 25 of January of 1999, 

from 521 facilities, 143 (28%) were completely damaged; 294 (56%) were repairable and 84 

(16%) suffered minor damages. The damages affected near 4,000 classrooms, 15,000 

teachers and more than 143,000 pupils. The economic value of the losses in the educational 
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facilities was around 1.3% of the gross production of the Departments of Colombia affected 

by the earthquake (departments are the second level sub-national administrative areas, like 

estates in EEUU). 

In 1998, the National building code NSR-98 established the requirement of the seismic 

vulnerability analysis and, if necessary, the strengthening of public facilities, including the 

schools. Among the efforts made for vulnerability reduction, the Educational Secretariat of 

Bogotá promoted in 2004 the evaluation of the seismic vulnerability of the public schools of 

the city. The vulnerability of the schools was evaluated by using capacity based indexes 

making rough estimates of the shear and vertical loads, as well as drift based indexes, taking 

into account basic information of the geometry and configuration of the structural systems 

(Proyectos y Diseños – P&D, 2000). Due to the high costs associated to the structural 

intervention and relocation of those facilities (near to 3.5% of the total expenditure in public 

education of the country), the most relevant and critical were considered as a priority for 

strengthening (Coca, 2006). 

For seismic safety management and emergency planning, Barbat et al. (2008) and 

Lantada et al. (2009) proposed procedures to develop seismic scenarios useful to identify, at 

urban scale, the most critical administrative zones regarding the vulnerability of the buildings 

and the expected losses. In the case of schools, different procedures for prioritization of the 

structural interventions have been suggested by Grant et al. (2007), Yakut et al. (2008) and 

Lopez et al. (2008). In those methods, the seismic demand is associated to specific return 

periods, according to the seismic design requirements and to the performance objectives. For 

risk management purposes, it is necessary to consider that any structure is potentially 

exposed along its lifetime to all the possible ground motion intensities being the site  

characterized by specific seismic hazard curves (Hadjian, 2002). In this sense, Kappos & 

Dimitrakopoulos (2008), Smyth et al., (2004a) and Smyth et al. (2004b) developed a Benefit 

Cost Analysis of the seismic retrofitting of residential buildings and schools, taking into 

account all potential harmful events.  

According to Grossi (2008), risk metrics such as the Loss Exceedance Curve (LEC) and 

the Annual Average Loss (AAL) are useful to evaluate risk mitigation strategies for building 

portfolios, following a probabilistic approach. Crowley et al. (2006) propose a methodology 

to obtain the LEC and present examples of loss estimations at the city level, which compare 

the seismic risk among specific portfolios. For risk management and decision making, 
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governments and international organizations may require loss assessments aggregated at 

national and subnational levels. In this sense, estimates of the AAL and LEC curves have 

been obtained for the Global Assessment Report supported by the International Strategy of 

Disaster Risk Reduction, ISDR (GAR, 2011).  

In a benefit cost analysis of risk mitigation strategies, it is necessary to estimate the 

expected costs of the intervention and assign (monetary) values to a list of benefits, and 

summarize the feasibility or goodness of an alternative by using metrics such as the expected 

Net Present Value (Aven & Kristensen, 2005). In the case of schools, a comprehensive 

evaluation of the benefits of risk mitigation strategies should include the expected losses in 

terms of the economic value of the buildings, as well as the risk to the life of the students and 

the disruption of the educational services. Given the difficulties to justify an acceptable value 

of the loss of life (May, 2007) or a target probability of failure of the schools’ services, 

benefit cost analysis often consider consequences measurable into monetary terms and 

exclude others. As a complement, cost effective indices are suggested in order to solve this 

limitation (Aven & Kristensen, 2005). Nevertheless, it is also difficult to express and 

understand these indexes from a political point of view (i.e. it is difficult to state if a cost per 

expected saved lives of students is feasible or not) (Birkmann et al. 2013). Under these 

considerations, the proposed methodology aims evaluating the benefits of the structural 

interventions in schools based on the expected damages and economic losses of buildings. In 

this regard, the use of the AAL is encouraged, given that this metric allows identifying the 

expected losses in buildings due to the seismic hazard of the area where they are located. 

The analysis is carried out in the current case and in the case of a hypothetical structural 

intervention. The expected losses are estimated at municipality level, for a set of random 

events generated according to the seismicity of the country. For each municipality, buildings 

have been classified into structural typologies with specific vulnerability curves that relate, 

for a given ground motion intensity, the expected value of the loss and its standard deviation. 

By comparing the loss estimates with the expected costs of the intervention (both aggregated 

by departments), it is possible to obtain a benefit-cost ratio. This article presents a detailed 

description of the proposed methodology and results of its application at a sub national level 

in Colombia. At national level, for regional comparisons, this methodology has been applied 

in 14 countries of Latin America and the Caribbean (see Valcárcel et al., 2013).  
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METHODOLOGY  

OVERVIEW 

In order to evaluate the feasibility of the seismic risk reduction of the buildings portfolio, 

the Benefit Cost Ratio, BCR, is estimated as:  

R

RU

C

LL
BCR


  (1)

 
where LU is the net present value of the losses due to all future earthquakes for the existing, 

not reinforced, case, LR is the net present value of the losses due to all future earthquakes for 

the retrofitted case and CR corresponds to the retrofitting costs (Mora et al., 2011). A similar 

BCR has been suggested by Silva et al. (2013). In the estimation of the AAL it is assumed 

that, in the long run, the expected losses would be equal to the sum of the AAL. In this sense, 

the AAL could be considered as a loss that occurs indefinitely, in perpetuity. Mora et al. 

(2011) determined that the expected value of LR and LU could be estimated according to the 

following equation: 


AAL

L ][E  (2)

where  corresponds to the discount rate. 

The methodology for obtaining the net present value of the losses the Benefit Cost Ratio, 

encompasses the following steps: i) seismic hazard assessment, in which a set random 

seismic events are generated and the corresponding spectral accelerations at the buildings 

location are obtained; ii) exposure assessment, in which the buildings built area and their 

economic value are estimated and buildings are classified into structural typologies; iii) 

vulnerability assessment, in which vulnerability functions for each typology are developed; 

and, finally, iv) loss assessment, in which the annual average loss of the buildings portfolio in 

the current conditions and in the case of a hypothetical structural intervention are estimated. 

HAZARD: GENERATION OF A SET OF SEISMIC EVENTS 

The objective of this step is to obtain the acceleration spectra for seismic events of 

different return periods in firm soil. This requires i) the definition and characterization of the 

main seismic sources, ii) the definition of the seismicity of the sources, iii) the generation of a 

set of events consistent with the regional distribution of location, depth, frequency and 
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magnitude of the earthquakes and iv) the evaluation of the spectral acceleration at any site of 

interest. This computations have been performed by using the software CRISIS 2007 Version 

7.2 (Ordaz et al., 2007). 

The geometry of the sources and their seismicity parameters have been defined according 

to the national hazard assessment study of Colombia (AIS, 2009). Based on this information, 

a set of seismic events of diverse magnitudes is generated through a sampling procedure, 

based on the recursive division of the sources’ geometry. The seismicity parameters of each 

segment are assigned by weighting its area/length in relation to the total area/length of the 

source. The stochastic process of occurrence of earthquakes in each seismic source zone was 

modeled as a Poisson process (Egozcue et al. 1991). 

Once generated the set of events, the expected spectral acceleration at any site of interest 

(for 5% of critical damping) is obtained using the attenuation laws proposed by Gallego 

(1999) which relate magnitude, relative position source-site and spectral acceleration. This 

variable is approximately proportional to the lateral inertia forces induced in structures during 

earthquakes and, therefore, it is useful for vulnerability modeling. Given the random nature 

of seismic ground motion, the spectral acceleration is assumed as a random variable with 

lognormal distribution. 

By using CRISIS 2007 Version 7.2 (Ordaz et al., 2007), a file containing multiple grids 

of the studied territory has been obtained. Each grid corresponds to the spectral accelerations 

calculated for each event, the structural period and the statistical moment of the spectral 

acceleration (expected value and standard deviation). Those events are characterized by their 

magnitudes and their frequency of occurrence. The number of generated seismic events 

depends on the size of the sub-sources obtained through the recurrent division of the sources’ 

geometry and the ranges of magnitudes between the minimum and maximum of each defined 

source. In this study, a total of 9,223 sub sources and 6 ranges of magnitude have been 

obtained; thus, a total of 55,338 events have been generated. In Figure 1 (a) the seismic 

events included in the analysis are plotted. Figure 1 (b) shows an example of the spectral 

accelerations estimated for a single event generated by the seismic source “Benioff 

intermedia” (located in the subduction zone of the Nazca plate). Figure 1(c) shows the hazard 

map for a return period of 500 years (AIS, 2009). 
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(a) (b) (c) 
Figure 1. (a) Seismic events location included in the analysis (array of epicenters across de seismic 

faults); (b) Example of the spectral accelerations estimated for a single event; seismic source: 
"Benioff intermedia", magnitude: Mw 7.75, depth: ≈100km. (c) Hazard map for a 500 years return 

period (AIS, 2009). 

EXPOSURE 

Location, built area and exposed value 

The analysis is performed for an estimated built area of the public schools, disaggregated 

by municipalities to take into account the changes in the seismic demand, as well as 

disaggregated by structural typologies to take into account the differences in the building 

capacity. The built area has been placed at the centroid of each municipality. A total of 1,114 

municipalities are included. For each municipality, the number of students is obtained from 

the National Department of Statistics (DANE, 2008). The analysis is carried out on public 

schools for which the built area is estimated as a percentage of the total schools built area 

(public schools area plus private schools area). This percentage depends on whether the 

municipality is considered urban or rural, according to the ranges of population shown in 

Table1. These percentages have been obtained from the average number of students enrolled 

in urban and rural areas.  

Table 1. Percentages of public school built area by ranges of population 

Complexity Population range 
Public education (%) 
(World Bank, 2011) 

m2/student 

Urban > 100,000 50 2.51 
Medium 20,000 to 100,000 80 2.15 
Rural  < 20,000 100 1.79 
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From the database of the public school buildings included in the program of vulnerability 

assessment in Bogotá, it was found that, in most of the schools, the built area per student is 

ranged between 0.9 and 2.1 m2 (SED, 2004). Also, in the Guide for Preparation of School 

Infrastructure Plans, the area suggested is around 2.5 m2 per student (GTC 223, 2011). 

Therefore we assumed a standard values for the built area per student shown in Table 1, to 

take into account the infrastructure complexities between urban-rural population 

agglomerations. In order to estimate the economic value of the buildings (replacement value), 

prices per m2 were obtained from the national center of statistics and from the retrofitting 

project of Bogotá. An average cost of 547 $US per m2 have been selected. Table 2 

summarizes the exposed values at country level. 

Table 2. Exposed values 

Students 
Built area 

(thousands of m²) 
Exposed value 
(million $US) 

Exposed value 
($US ) / student 

Exposed value 
(% GDP-2010) 

9’170,199 20,710 11,327 12,354 4.63 

 
This analysis shows that it is possible to build a realistic exposure model for risk analysis, in 

order to do a rapid prioritization of regions for a better resources allocation in risk knowledge 

and, consequently, in an optimal budget allocation for risk mitigation through structural 

reinforcement of schools. 

 

Structural typologies 

The representative structural typologies were selected according to the description of the 

architectural patterns and construction techniques of the educational facilities (Maldonado, 

1999). We also considered the data collected by Coca (2011) regarding the vulnerability 

reduction project of the schools of Bogotá. Accordingly, the most structural typologies used 

in schools are wood frames, unreinforced masonry, reinforced masonry and reinforced 

concrete frames and, typically, they are of low rise buildings, with 2 or 3 floors. Figure 2 

shows the composition of the schools portfolio by structural typologies. 
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Figure 2. Composition of the built area of the schools by structural typologies 

The results of the exposure assessment are summarized in a file which includes: the 

school built area, the economic value and the number of students at each municipality 

disaggregated by structural typologies. 

VULNERABILITY 

Overview 

Probabilistic vulnerability curves are developed in order to define the expected value of 

loss and its variance, given the spectral acceleration demand estimated at the buildings 

location. Following the ATC 13 (1985) and HAZUS’99 (FEMA, 2003) methodologies, the 

loss is expressed in terms of Mean Damage Ratio, which is the ratio of the structural 

reparation costs to the reposition value of the building. In addition, the variables considered 

in the ATC13 and HAZUS methodologies were adapted to the Colombian building code in 

order to reflect features of the Colombian building practices and, consequently, the capacity 

of these buildings. 

Each of the identified structural typology is characterized by a bilinear capacity spectrum 

according to the mentioned methodologies with variables fitted to the Colombian 

environment. Thus, the vulnerability curves are defined as follows: (i) Loss reference levels 

for the yielding (Sdy) and ultimate displacement (Sdu) of the building are selected. According 

to the ATC 13 methodology, 5% and 100% levels were used, respectively. (ii) The 

probability distribution of the losses and the expected value and its variance, are defined, 

given the spectral displacement of the building and the loss reference levels selected in the 

previous step. 
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Expected value of the loss 

The expected value of the loss E(β) is obtained in this article by using the following 

expression (Miranda, 1999; Ordaz et al, 1998): 
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where Sd(Te) corresponds to the spectral displacement, Te is the fundamental period of the 

structural typology, β0 represents the expected loss associated to the reference spectral 

displacement Sdy. Often, β0 takes the value of 5%; Sdy is the spectral displacement at the 

yielding point of the structure in the bilinear capacity spectrum and ε is a factor that is used in 

order to fit the curve to the levels of loss defined for the point of ultimate capacity. 

Since the seismic action is expressed in terms of the spectral acceleration for a given 

structural period Sa(T), it is necessary to convert those values into spectral displacement 

using the following equation (Miranda et al., 1999): 
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where α1 is the ratio of the maximum lateral displacement at the roof to the spectral 

displacement considering an elastic model; 2 is the ratio of the maximum interstory drift to 

the global drift of the structure, which is defined as the maximum lateral displacement at the 

roof divided by the height of the structure; and α3 is the ratio of the maximum lateral 

displacement considering an inelastic model to the maximum displacement of the elastic 

model. 

Probability distribution and standard deviation of the loss 

In this article, we considered that the probability of loss, β, follows a standard beta 

distribution as in ATC-13 (1985) depending on the ground motion intensity. 
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The parameters a and b of the distribution are computed from the expected value of the loss, 

given a specific spectral displacement (see Equation 3) according the following equations: 6 

and 7. 
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The coefficient of variation of the loss C(β) is calculated as follows: 
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where σβ
2(β|Sd(Te)) is the variance of the loss at a given spectral displacement. In order to 

estimate this parameter, the probability distribution of damage from the ATC 13 has been 

adopted 
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where Vmax is the maximum variance of the loss in all range from 0% to 100%, βM is the loss 

where the maximum variance occurs and r is a shape factor. In Graf & Lee (2009), the 

standard deviation is assumed to be 0.15 for the 50% of the damage factor. In this work, Vmax 

is assumed to be 0.0625, whith a standard deviation of 0.25; βM is fixed at the 50% and r is 

assumed to be 3. Once established the expected value of the loss and of its variance, it is 

possible to estimate its probability distribution, given a specific spectral acceleration. As an 

example, the capacity spectrum of the unreinforced masonry building typology is shown in 

Figure 3(a) while Figure 3(b) shows the correspondent vulnerability curve (expected damage 

and variance for certain Seismic demand, E(β|Sd)). 
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Figure 3. Unreinforced masonry building typology. (a) capacity curve and  
(b) vulnerability curve, E(β|Sd) 

Vulnerability characterization of current and retrofitted school building typologies 

School buildings have been characterized in this article by structural typologies and are 

designed for a specific design code level which varies from pre-code (buildings without code 

design) to low code and high code; all these levels are related to the capacity standards for 

seismic strength. The retrofitting or strengthening alternatives considered herein are the 

following: a) unreinforced masonry buildings are replaced by new facilities of reinforced 

masonry; this alternative not only improves the seismic safety, but also upgrades the 

infrastructure. b) For the remaining structural typologies, low-code / high-code capacity 

spectra have been assumed for the current and retrofitted case, respectively. Additional 

modifications have been adopted in the ductility and seismic coefficient for these typologies 

according to the requirements of the Colombian building code NSR-10. The sources of the 

parameters of the capacity spectra are summarized in Table 3. The vulnerability curves 

(expected values) are shown in Figure 4(a) and Figure 4(b) for the current and retrofitted 

cases, respectively. 

Table 3. References of the capacity curves for the current case and the retrofitted 

Structural typology 

Current case Retrofitted 

Original 
source 

Adjusted 
variables Original 

source 
Adjusted variables 

Te | Cs |  | μ Te | Cs* |  | μ 

Unreinforced masonry 
buildings 

Hazus MH 
2003 (FEMA/ 
NIBS, 2003) 

Pre code 

0.4 | 0.1 | 1.3 | 2   N/A 
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Reinforced masonry 
buildings with concrete 
diaphragms Hazus 

MH(2003) 
(FEMA/ 

NIBS, 2003) 
Low code 

N/A 
Hazus 

MH(2003) 
(FEMA/ 

NIBS, 2003) 
High code 

0.3 | 0.20-0.25 | 1.8 | 4 

Concrete frames with 
unreinforced masonry walls 0.3 | 0.1 | 1.5 | 4 0.4 | 0.20-0.25 | 1.5 | 8 

Precast concrete frames 
with concrete shear walls 0.4 | 0.1 | 1.5 | 4 0.4 | 0.20-0.25 | 1.5 | 8 

Wood structures 0.4 | 0.1 | 1.3 | 4 0.3 | 0.20-0.25 | 1.0 | 4 
*The seismic coefficient depends on the location. 

 

 

Figure 4. Vulnerability curves, (a) current case; (b) retrofitted case 

RISK  

Loss Exceedance Curve 

The Loss Exceedance Curve (LEC) usually specifies the annual frequencies (also known 

as the exceedance rate) of the events that exceed a specific loss value. The exceedance rate is 

obtained according to the following equation: 

     



events

i
A ifiB
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|P   (12)

 

where ν(β) is the exceedance rate of the loss, β, which is the sum of the losses that may occur 

in all exposed elements; fA(i) is the annual frequency of the event i; P(B> β |i) is the 

probability that the loss be greater than β, given the occurrence of the event i. The 

exceedance rate is then obtained as the sum of all the potential harmful events. The inverse of 

ν(β) is the return period of loss. 

The sum of the losses that may occur in all the exposed elements due to an event is 

obtained as the linear combination of random variables, using the method proposed by the 

National Commission for Insurance of Mexico (CNSF, 2007) to estimate the expected value 

and the dispersion. A correlation factor between losses from building to building of 0.2 was 

adopted from a performed simulation and a sensitivity analysis. Wesson et al. (2009) present 

a methodology in order to estimate the LEC based on the inputs of the seismic hazard 

analysis. The following procedure to estimate LEC with equation (12) is used in this article: 

(i) for a given hazard scenario, the probability distribution of the loss is estimated for each 

municipality and structural typology using the equations (5), (6) and (7); (ii) the probability 
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distribution of the losses is estimated for each exposed element and summed to the previous 

value; (iii) the probability that the total loss for each scenario exceeds a certain value β is 

calculated; (iv) the probability estimated in the previous step is multiplied by the annual 

frequency of occurrence of the event i. This procedure must be repeated for each event i 

included in the hazard assessment. 

Annual Average Loss 

The area under the LEC is known as the Average Annual Loss (AAL). The AAL is the 

expected value of the annual loss and represents, in a simple insurance scheme, the 

actuarially fair insurance premium. It is obtained either by integration of the ν(β) or by using 

the following equation: 

   



events
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In this article, the metrics described above are estimated using the open source software 

CAPRA GIS1 (Cardona et al., 2010). 

BENEFIT-COST ANALYSIS 

Retrofitting cost is related to the adopted structural intervention solution in order to 

guarantee a pre defined level of safety of the structure and it depends on the structural system 

of the buildings and on their seismic design. For a benchmark on typical retrofitting costs, it 

is possible to consider the values suggested in FEMA 156 (FEMA, 1994 b) and FEMA 157 

(FEMA, 1994 c). Also, rehabilitation costs have been suggested as a 12% of the buildings 

value by Kappos & Dimitrakopoulos (2008). 

According to Coca (2006), the average cost of the structural interventions of the schools 

in Bogotá was about 240 US$ per m2; the interventions consisted in retrofitting some of the 

structures and in replacing others, reason for which that value seems high on average. Based 

on the available information, the retrofitting/replacement costs were assumed as follows: i) 

unreinforced masonry buildings are replaced by new reinforced masonry buildings, that is, a 

new construction is built with an investment equal to the replacement value; ii) for the 

                                                 
1 Comprehensive Approach to Probabilistic Risk Assessment, CAPRA - www.ecapra.org. This software was 
developed with the support of the IADB, the World Bank and the UN-ISDR - International Strategy for Disaster 
Reduction. 
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remaining structural typologies, retrofitting costs were considered to be the 15% of the value 

of the buildings. It should be noticed here that these constant values are assumed for 

retrofitting costs not for reparation costs, to bring back the functionality of the building just 

after a seismic event; herein, retrofitting costs should be considered as investment to reduce 

future possible losses as a risk reduction strategy. At the same time, retrofitting is assumed to 

be over all buildings of municipality whit retrofitting criteria exposed on previous 

vulnerability characterization section. 

The discount rate  used to convert losses due to future earthquakes into present 

(monetary) value is 3%. Similar values have been suggested by Kappos & Dimitrakopoulos 

(2008) and in the Benefit-Cost Model for the assessment of Seismic Rehabilitation of Federal 

Buildings (FEMA, 1994 a). 

RESULTS 

Figure 5a shows the exposed value and Figure 5b the AAL obtained for the municipalities 

of Colombia and for the existing state of the buildings. Using the proposed method, the 

benefit-cost ratio, BCR, has been estimated for each department of Colombia (first order 

administrative division within the country) and the national education budget allocation. The 

obtained results are summarized in figures 6 and 7. 

 

Figure 5 (a) Exposed value; (b) Annual Average Loss for each municipality, 
 for the existing state of the buildings. 
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Figure 6. (a) BCR per Department; (b) Difference between the expected present value of the AAL in 

the initial, not retrofitted state of the buildings and in the retrofitted case (E[LU]-E[LR]); (c) the 
retrofitting costs 

 

 
Figure 7. (a) Difference between the expected value of the AAL in the initial, not retrofitted state of 

the buildings and in the retrofitted case (E[LU]-E[LR]) represented in function of the retrofitting costs; 
(b) BCR per department 

 

The differences between the net present value of the AAL (not retrofitted case – 

retrofitted case) are plotted in Figure 7(a) in function of the retrofitting costs. The points 

above the line corresponding to BCR=1 represent the departments for which, from a financial 

perspective, better resources allocation in risk knowledge of the schools is feasible. And, 

from here, technical studies based on reliable information of school buildings can be 
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developed, addressed to proper investments to increase schools safety. From figures 1(c), 5 

(a), 5(b), 6(a) and 7(b), it is possible to identify that the BCR is higher than 1 in the 

departments in which the seismic hazard, the concentration of exposed values and the 

estimated losses are higher in the context of the country. Also, it is observed in figures 6 (a) 

and 6(b) that in regions of low or moderate seismic hazard, the reduction of the net present 

value of AAL (E[LU]-E[LR]) is not significant when compared to the retrofitting costs. Thus, 

in those regions, the seismic upgrading of the schools is not profitable. The results shown in 

Figure 6 represent not only the BCR values obtained from the above analysis but also a 

prioritization proposal. These results, combined with those of Figure 7, should be used to 

priorities to the structural interventions. 

CONCLUSIONS 

This article proposes a methodology for a preliminary assessment of the feasibility of a 

hypothetical retrofitting of schools built area and applies it to the case of Colombia. Rough 

assumptions have been made to estimate the total built area, its economic value and its 

retrofitting cost, as well as to classify the buildings into structural typologies. Each structural 

typology is characterized by a specific vulnerability curve that relate the expected value of 

loss and its variance with the ground motion intensity. The assessment of the annual average 

loss of public schools built areas is carried out in the initial, non-retrofitted case, and also in 

the case of an hypothetical structural intervention. The expected losses are aggregated by 

subnational administrative units in Colombia (departments), taking into account a set of 

stochastic events generated according to the seismicity of the country. By comparing the loss 

estimates and the expected costs of the intervention, a benefit/cost ratio, BCR, is obtained. 

The mentioned departments may be ranked by BCR in order to decide on the feasibility of 

the structural intervention. It is possible to observe from the case study that the BCR is 

consistent with the seismic hazard (see figure 7b), the geographical distribution of the 

exposed values and the loss estimates. The values of the BCR highlight the regions where the 

structural intervention is more attractive according to the seismic risk, like Nariño, Chocó 

and Putumayo (see figure 6a). Thus, this methodology is very useful for prioritizing the 

investments in risk reduction within the framework of a national program as in the cases of 

Antioquia and Valle del Cauca where the reduction in expected losses is attractive (see figure 

6b). 
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For example, at national level, the retrofitting costs are estimated in 3,562 millions $US. 

Those costs may represent the 30% of the total annual education investment in Colombia in 

2010, which represents a significant financial effort. Without a risk based prioritization 

criterion, the total investment required at the national level would not be profitable. By using 

the BCR, it is possible to define a threshold in order to promote the risk knowledge. On this 

matter, it is possible to define a threshold in order to allocate scarce resources for school 

safety. This means that, if it is assumed that all the departments with a BCR>1 should 

develop risk knowledge strategies, the expected costs would be around 898 million $US (this 

cost includes the first 5 departments of figure 6c), which represent the 25% of the total safety 

upgrading cost of the country and accumulates the 87% of the losses reduction at country 

level(reduction corresponding to the first 5 departments of figure 6b). If the threshold is 

defined by a BCR>0.75, the expected costs would be around 1,529 million $US, which 

represent the 43% of the total safety upgrading cost in the country. These results become an 

input for the decision process in a comprehensive risk management. 

The scope of this methodology is limited to preliminary evaluations, useful only for 

prioritization procedures. Given the uncertainties, the results cannot be considered as actual 

and objective measurements and used as inputs into financial analyses. Conversely, it should 

be noted that the use of the proposed benefit-cost analysis is only valid as an indicative 

comparison of the economical advantages among alternatives (Doorn & Hansson, 2010). The 

sources of uncertainties can be reduced by detailing the information for the buildings 

characteristics distribution across the country and can be solved by developing a reasonable 

description of the common schools typologies as shown in Lopez et al. (2007).  

An important improvement of the results can come from the inclusion of other variables 

such as indirect economic losses, to include also the social and political aspects in the 

decision-making process related to risk reduction programs (Hansson, 2007). In this regard, 

the use of risk indicators, based on a holistic approach is suggested (Carreño et al., 2012; 

Barbat et al., 2011; Barbat et al., 2010). 
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