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Abstract

The evaluation of the damage caused by horizontal loads, such as seismic action, to existing bridges has received an important atten-
tion in recent years, because it is the first step towards reducing casualties and economic losses. In damage detection and evaluation, the
application of simple and reliable models has been prioritized, because they are necessary in further multi-analyses required by Monte
Carlo simulations. A simplified moment–curvature damage evaluation model, capable of evaluating the expected seismic behavior of RC
highway bridges is proposed in this paper. The damage of a pier is related to the reduction of the cross-sectional moment of inertia of the
bridge piers. Therefore, the evaluation of the damage is based on a non-linear analysis determining the changes of the mentioned moment
of inertia. The model was validated using experimental results obtained at the JRC Ispra for the Warth Bridge of Austria and also FEM
analyses performed by other authors for the same bridge.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, the evaluation of the damage caused by earthquakes in existing bridges received great attention. Numerous
researches devoted to the structural damage evaluation have been performed, most of them considering the seismic behav-
ior of buildings. The structural damage in bridges can be treated considering the following concepts:

1. Local damage is evaluated at given points of the structure by means of local constitutive models describing the damage
accumulation caused by micro-structural damage [16,24,26,39].

2. Global damage, evaluated starting from local damage, is a scalar depending on some variables (or damage parameters)
that characterize the dynamic response of the whole system [2,3,32].

In this paper, the seismic damage is evaluated at local level and then, global damage indices are obtained at cross-sec-
tional, element and structural level by adequately as weighted averages of the local damage indices. The local damage index
which describes the state of the material at each point of the structure, and which is the starting point of the proposed
structural dynamic model, is based on an isotropic damage constitutive law. Details on this constitutive law are given
in Appendix A of the paper. The global damage of each pier is obtained from reduction of the sectional moment of inertia
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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Nomenclature

cc, cv mass density of piers and girders

DM = M0 �Mint residual bending moment of a pier
M0, Mint maximum elastic external moment and pier internal strength capacity moment
e, r strain and stress tensor at a given point
r̂ ¼ fN M1 M2 g generalized stresses at a given cross-section
ê ¼ f eN v1 v2 g generalized strains at a given cross-section
s*, s effective stress threshold and current effective stress
U ¼ f u v1 v2 g displacement vector of a pier
v curvature of the beam element
xi cyclic frequency of mode i

W(e;d), W0(e) Helmholtz free energy and its elastic part
a(t) ground acceleration
A parameter of the isotropic damage model
A area of cross-section
b, h base and height of piers
d damage at a given point
Di pier damage index
Dm global damage index

E0
c ;E

d
c initial and damaged Young�s modulus of piers

Eh, Ea Young�s modulus for concrete and reinforced steel

f 0c ; ft compression and tension uniaxial strength of the RC material
�Fðr0; qÞ damage threshold function

DF R
i residual force of pier i

F in
i equivalent internal at the top of the pier i

F q
i ; F

T
i independent term and total force of the pier-girder equilibrium equation

I ; Id
T initial and damaged moment of inertia of the cross-section of piers

nJn+1 Jacobian matrix
K bending stiffness of a pier
kh, ka proportion of the concrete and reinforced steel area of an RC element

KS
i equivalent rotational stiffness at the bottom of piers

lðjÞc distance between the neutral axis of the subsection j and the axis of the section

L length of girders of length of the bridge
Lp length of piers
mi mass associated with mode shape i
np number of piers of the bridge

ðqin
i Þ

maxðqin
i Þ

min maximum and minimum inertial load produced by the horizontal acceleration

T0, Tf initial and final period of a given mode shape
TOL tolerance
up relative displacement between the upper and lower part of the bearings
x1, x2, x3 reference system

X CG
1 ;X CG

2 coordinates of neutral axes at the transversal section of piers
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due to the material degradation. This analysis is based on a model able to work in biaxial bending and which is completely
independent of the pier axis. The validation of the proposed pier model was performed by using the experimental tests on
scale models of a pier of the Warth Bridge, Austria, carried out at the Joint Research Center of Ispra, Italy [35] and a FE
model developed by Faria et al. [10] for the same pier. The simplifying hypotheses adopted in this work allowed incorpo-
rating the developed pier model in a dynamic model of the complete bridge, whose overall seismic behaviour is decisively
influenced by the damage of the piers.
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The main objective of this paper is to develop a procedure to evaluate the seismic vulnerability of RC highway bridges
with simple pier bents, a typology of bridges frequently used all over Europe during the period 1960–1980 and which is still
widespread in many European countries. The structural model used to reach this objective is based on the hypothesis of the
flexible pier-rigid deck behaviour for the structure subjected to seismic loads and works in bending, transversally to the
bridge axis, according to the experimental evidence available for Warth Bridge [10,13] and the numerical study shown
in the paper. Thus, the study of the damage produced by horizontal loads has been focussed on the piers of the bridge
[12], while the structural study of the deck should be performed after the analysis of the piers, in an uncoupled way.
The damage of the piers is described by a pier damage index and a mean global damage index has been also proposed
for the bridge.

The proposed structural model allows a simple, reliable and efficient structural analysis. Therefore, it is suitable for con-
sidering uncertainties in the structural and mechanical characteristics and in evaluating the seismic vulnerability of bridges
based on fragility curves by means of Monte Carlo simulations. The model has been applied to develop fragility curves and
damage probability matrices for the Warth Bridge and a summary of the results are shown in the paper.
2. Description of the dynamic model

Reinforced concrete highway bridges with simple pier bents have greater redundancy and higher strength in their lon-
gitudinal direction; therefore they will undergo greater damage when subjected to transversal seismic actions. The proposed
model aims of studying the bridge response to horizontal loads acting transversal relative to the direction of the bridge axis.
Experimental studies confirm that the structural system can be modelled simply by piers loaded transverse to the axis of the
bridge interconnected at the deck level by means of box girders [12,28]. Due to the high stiffness of the bridge in the lon-
gitudinal direction, the structural analysis in this direction is out of the purposes of this work, focusing on the structural
study of the pier in the transverse direction.

The model is not based on the finite element approach but on standard beam members generally used in conventional
structural analysis. The motion of the np piers in transversal direction to the bridge axis is partially restricted by the adja-
cent girders that are supported by laminated neoprene bearings. Thus, the displacement of piers causes the distortion of the
bearings and the consequent rotation of the adjacent girders. The simplified model shown in Fig. 1 is based on the follow-
ing general hypotheses:
Fig. 1. Model for the seismic analysis of the bridge.
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1. The piers are continuous elements with distributed mass and infinite axial stiffness.
2. The girders are perfectly stiff elements concentrating the mass at the top of the piers.
3. The bearings of the girders are equivalent linear short elements that work in shear, having circular cross-section.
4. The soil–structure interaction effect on piers and abutments is considered by means of linear springs that represent the

rotational stiffness of the soil.
5. The abutments are perfectly stiff.

Accordingly, the model has as many degrees of freedom as transversal displacements at the top of the piers, that is, np

degrees of freedom. In following sections, the traverse stiffness of an isolated pier under non-linear damage effects produced
by a horizontal load applied at the deck level will be studied.

2.1. Transversal behaviour of a single pier

According to the general hypotheses and to Fig. 2, the maximum displacement at the top of a pier is
vi ¼ vi
h þ vi

p; ð1Þ

where

vi
h ¼ hiLi

p ¼
Mmax

i

KS
i

ð2Þ
is the elastic displacement produced by a rotation at the base of the pier, and
vi
p ¼

11 qin
i

� �max þ 4 qin
i

� �min
h i

Li
p

� �4

120Eci I i
þ

F in
i Li

p

� �3

3Eci I i
ð3Þ
is the elastic displacement produced by external actions [12]. In Eqs. (2) and (3), hi is the rotation due to the soil–structure
interaction effect, Mmax

i is the maximum bending moment at the base of the pier, KS
i is the equivalent stiffness of the soil,

ðqin
i Þ

max and ðqin
i Þ

min are the maximum and minimum inertial loads per unit length produced by the horizontal acceleration,
F in

i is the total inertial force due to the bridge deck and Li
p;Eci and Ii are the length, Young�s modulus and the moment of

inertia of the reinforced concrete cross-section of the pier, respectively.
i

i
pL

i

S
iK

maxin
iq

minin
iq

in
iF

θ

v

( )

( )

Fig. 2. Transversal displacements of pier I considering the soil effect.
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For the maximum moment of the pier (for x3 = 0), the bending moment equation is [12]

Miðx3 ¼ 0Þ ¼ Mmax
i ¼

2 qin
i

� �max þ qin
i

� �min
h i

Li
p

� �2

6
þ F in

i Li
p

� �
. ð4Þ

Substituting Eqs. (2)–(4) into Eq. (1), the equivalent internal force at the top of the pier is obtained as a function of the
maximum displacement vi of the pier

F in
i ¼

1

Li
p

KS
i

þ
Li

p

� �3

3Eci I i

264
375

vi �
2 qin

i

� �max þ qin
i

� �min
h i

Li
p

� �2

6KS
i

�
11 qin

i

� �max þ 4 qin
i

� �min
h i

Li
p

� �4

120Eci I i

264
375. ð5Þ
3. Non-linear analysis of the pier

When the non-linear behavior of the structural materials is taken into account, the undamped lumped mass equation of
motion for each pier is written as

miai þ F in
i � DF R

i ¼ 0; ð6Þ

where mi is the part of the mass of the girder and pier associated to ith degree of freedom and DF R
i is the residual or out-of-

balance force. This unbalanced force is due to the fact that the cross-section moment of inertia and Young modulus are not
constant during the non-linear process and consequently the solution of Eq. (6) should be obtained throughout an iterative
process using a non-linear Newmark approach [4,8].

The changes of the pier stiffness and of the internal cross-sectional force depend on the damage level reached at each
point of the pier whose numerical evaluation is carried out by means of the continuum damage model (see Appendix
A). In this work, the damage model [24] is used to calculate the local damage index at the points of the base cross-section
of each pier. Then, by means of a numerical integration of the local damage indices on the cross-section at the base of the
piers, the area and the moment of inertia of the damaged cross-section are obtained. In this way, the stiffness of the pier is
reduced at each step of the analysis. Obviously, it is possible to obtain the damage evolution at each cross-section of the
pier, but the moment–curvature model requires the evaluation of damage only at the most loaded section, which is the base
cross-section.

To obtain the response and the maximum damage of all the bridge piers using the proposed model, Newmark�s non-
linear algorithm, summarized in Box 1, is used to solve the equilibrium equation at each time of the process. In this ana-
lysis, the force equilibrium condition is achieved by eliminating DFR

i using a Newton–Raphson process. Indirectly, this
process also eliminates the residual bending moment DM = M0 �Mint included in the residual force array, which is the
difference between the maximum elastic external moment, M0, and the pier internal strength capacity moment, Mint.
For each step of the non-linear analysis the properties of the system are updated, considering the local degradation of
the material caused by the seismic action.

3.1. Solution of the dynamic equation of equilibrium

The steps to define the damage in any pier of the bridge are described in Boxes 1 and 2. The maximum global damage
index of the structure is obtained starting from the cross-sectional damage calculated at the base of the piers for transversal
seismic actions. Box 1 shows the numerical procedure to solve the dynamic equilibrium equation (6) using Newmark�s non-
linear integration method. As shown previously, the type of bridge under study is modeled by means of piers that behave
like cantilever beams, for which the numerical integration of the damage on the cross-section can be simplified, considering
in the analysis only the cross-section at the pier base, that is, for x3 = 0. Nevertheless, the procedure could be generalized
including when necessary other cross-sections at levels x3 in the damage integration procedure.

4. Study of the damaged cross-section for skew bending

4.1. Theoretical aspects

Different distributed damage of reinforced concrete structures have been proposed by several authors [23,33,34].
These formulations are adequate to represent the behavior of beams subjected to compression with biaxial bending. An



1. Displacement and velocity prediction at ‘‘t + Dt’’, starting from null initial conditions

€eUtþDt

¼ 0;
_eU tþDt

¼ _U
t þ ð1� cÞ€Ut

DteUtþDt
¼ Ut þ _U

t
Dt þ 1

2
� b

� �
€U

t
Dt2; iDf tþDt ¼ Fq

i

9=;c ¼ 0:5; b ¼ 0:25.

2. Computation of displacement increment DUt+Dt at instant t + Dt, starting from the linearized equilibrium equation

iDf tþDt ¼ iJtþDt iþ1D€U
tþDt

; iJtþDt ¼
i

M � 1

bDt2

� �
þ K

� 	tþDt

.

3. Displacement and velocity correction

iþ1 €U
tþDt ¼ 1

bDt2

� �
iþ1D€U

tþDt
; iþ1 _U

tþDt ¼ _eUtþDt

þ c
bDt

� �
iþ1DUtþDt; iþ1UtþDt ¼ eUtþDt

þ iþ1DUtþDt.

4. Loop over k bridge piers. The damage constitutive equation is computed at each pier k and at each cross-section (see
next section and Box 2 for more details).
4a. Computation of the generalized forces (predictor) and the elastic curvatures and axial strain at each cross-section

x3, using the displacement i+1Ut+Dt at the top of pier k

M0
1ðx3Þ ¼

�
Lk

p � x3

��
Lk

p

�2

KS
k

þ
�
Lk

p

�3

3E0
ck
ðIkð0ÞÞ11

iþ1

v2ðLk
pÞ

h itþDt

k
; M0

2ðx3Þ ¼
�
Lk

p � x3

��
Lk

p

�2

KS
k

þ
�
Lk

p

�3

3E0
ck

Ikð0Þð Þ22

iþ1

v1ðLk
pÞ

h itþDt

k
;

N 0ðx3Þ ¼ N ap; r̂0ðx3Þ

 �

k
¼

N 0ðx3Þ

M0
1ðx3Þ

M0
2ðx3Þ

8>><>>:
9>>=>>;; iþ1UtþDtðx3Þ


 �
k
¼

iþ1 ½uðx3Þ�k
½v1ðx3Þ�k
½v2ðx3Þ�k

8>><>>:
9>>=>>;

tþDt

.

4b. Computation of the residual flexural moment

For the first load step: ½Jðx3Þ�k � J0ðx3Þ
� 


k
; r̂intðx3Þ
� 


k
¼ 0

Dr̂ðx3Þ½ �k ¼ r̂0ðx3Þ � r̂intðx3Þ

 �

k
¼Unbalanced equivalent force iþ1Df tþDtðx3Þ


 �
k
¼

iþ1DN tþDtðx3Þ
iþ1DMtþDt

1 ðx3Þ=Lk
p

iþ1DMtþDt
2 ðx3Þ=Lk

p

8><>:
9>=>;

k

4c. Equilibrium equation verification on the clamped cross-section

Dr̂ð0Þk k¼?
0 ) go to EXIT ;

6¼ 0 ) Continue.

�
4d. Computation of the incremental generalized strains and their current value

nþ1DêtþDtð0Þ

 �

k
¼ � nJ nþ1ð0Þ


 ��1

k
nDr̂tþDtð0Þ

 �

k
;

nþ1êtþDtð0Þ

 �

k
¼ nêtþDtð0Þ

 �

k
þ nþ1DêtþDtð0Þ

 �

k
.

4e. Damaged moment of inertia at the base cross-section of pier k (see Box 2).
5. Back to point 4b followed by the minimization of generalized unbalanced force equation.
6. Calculate the displacement at each point x3 of the pier and EXIT

iþ1U tþDtðx3Þ

 �

k
¼

iþ1 ½uðx3Þ�k
½v1ðx3Þ�k
½v2ðx3Þ�k

8><>:
9>=>;

tþDt

¼

iþ1 ½uðx3�Dx3Þ�k
½v1ðx3�Dx3Þ�k
½v2ðx3�Dx3Þ�k

8><>:
9>=>;

tþDt

�

iþ1
eN ðx3�Dx3Þ½ �k �Dx3

u2ðx3�Dx3Þ½ �k �Dx3

u1ðx3�Dx3Þ½ �k �Dx3

8><>:
9>=>;

tþDt

þ

iþ1 0
½v2ðx3�Dx3Þ�k

2
�Dx2

3

v1ðx3�Dx3Þ½ �k
2

�Dx2
3

8>>>><>>>>:

9>>>>=>>>>;

tþDt

;

iþ1 ½u1ðx3Þ�k
½u2ðx3Þ�k

� �tþDt

¼
iþ1 ½u1ðx3�Dx3Þ�k
½u2ðx3�Dx3Þ�k

� �tþDt

þ
iþ1 ½v1ðx3�Dx3Þ�k �Dx3

½v2ðx3�Dx3Þ�k �Dx3

� �tþDt

.

7. Back to point 2 after the damage evaluation for all the piers and equilibrium equation for the complete bridge.
Verification of the condition kiDft+Dtk ! 0.

8. New time increment and dynamic load application over all the bridge. Back to point 1.

Box 1. Solution of the non-linear equilibrium equation applied for the bridge using Newmark�s method
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1. Loop over the time t + Dt.
2. Loop over the cross-section position x3.
3. Compute the elastic generalized stresses—predictor—for each cross-section.
4. Compute the residual generalized internal stresses

For the first load step: Jðx3Þ � J 0ðx3Þ; r̂intðx3Þ ¼ 0; Dr̂ðx3Þ ¼ r̂0ðx3Þ � r̂intðx3Þ

 �

5. Equilibrium equation verification on x3 cross-section:

jjDr̂ðx3Þjj ¼
? 0 ) go to EXIT

6¼ 0 ) Continue

�
6. Starting loop over Newton–Raphson niteration process. Incremental generalized strain computation and obtaining of

its current value:

nþ1DêtþDtðx3Þ ¼ � nJ nþ1ðx3Þ

 ��1nDr̂tþDtðx3Þ

nþ1êtþDtðx3Þ ¼ nêtþDtðx3Þ þ nþ1DêtþDtðx3Þ

7. Moment of inertia of the damaged cross-section of pier k calculated at each x3 using the continuum damage model
showed in Box A.1 of Appendix A:

nþ1½r0�tþDtðx1; x2; x3Þ ¼ E0 � nþ1xT � nêtþDtðx3Þ

f ðr0Þ � n½cðf Þ�tþDt 6 0 Maintain the inertia value and go to ð��Þ
> The process of damage continues ð�Þ

�
ð�Þ nþ1½f ðx1; x2; x3Þ�tþDt ¼ cmax

c
eA 1� cðdÞ

cmaxð Þ with 0 6 cmax
6 c

nJ tþDtðx3Þ ¼

n Z
A

f ðx1; x2; x3Þ � dA
Z

A
f ðx1; x2; x3Þ � ðx2ÞdA

Z
A

f ðx1; x2; x3Þ � ðx1ÞdAZ
A

f ðx1; x2; x3Þ � ðx2ÞdA
Z

A
f ðx1; x2; x3Þ � x2

2 dA
Z

A
f ðx1; x2; x3Þ � ðx2 � x1ÞdAZ

A
f ðx1; x2; x3Þ � ðx1ÞdA

Z
A

f ðx1; x2; x3Þ � ðx1 � x2ÞdA
Z

A
f ðx1; x2; x3Þ � x2

1 dA

266666664

377777775

tþDt

ð��Þ r̂intðx3Þ ¼ E0 � nJ tþDtðx3Þ � nþ1êtþDtðx3Þ
nþ1rtþDtðx1; x2; x3Þ ¼ E0ðx1; x2; x3Þ � nþ1xT � nêtþDtðx3Þ

8. Back to point 4
9. EXIT

Box 2. Algorithm for the cross-sectional damage integration
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alternative local constitutive stress–strain formulation is incorporated into the dynamic structural model which is proposed
in this paper. A general isotropic damage and plasticity model, completely framed within the 3D continuous mechanic the-
ory, was developed in previous works [19]. This model allows any cyclic numerical simulation, including the more general
fatigue behavior, the effect of shear stress, the local and the global stability [29,36]. Moreover, this constitutive model
allows dealing with several kinds of non-linearities in composite materials, including the debounding effect between steel
and concrete [5]. Obviously, this general model is not used at its complete capacity in this paper, in which cyclic but
not fatigue effect was considered, while the sliding effect between steel and concrete, the shear stresses and the instability
effects were neglected. These simplifications are due to the main objective of this research, which was to perform seismic
vulnerability evaluations of bridges based on fragility curves. For such an evaluation, Monte Carlo simulations are
required, based on simplified dynamic and constitutive models adequate for massive multi-analysis of structures. This con-
stitutive damage model is then included in the classical moment–curvature structural analysis.

In order to compute the moment of inertia and the bending moment of the damaged base cross-section of a pier required
by the solution of the non-linear equation (6)—see Box 1—the isotropic damage model [24] has been applied (see Appendix
A). In this section, the way of computing the local damage and its contribution to the cross-sectional damage of a pier is



Fig. 3. Bridge pier represented as a cantilever Bernoulli beam.
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described for Bernoulli beams subjected to skew bending. For this purpose, the damaged cantilever beam under skew bend-
ing of Fig. 3 is considered.

The external loads produce the following generalized forces in a cross-section located at a distance x3

r̂0ðx3Þ ¼
N 0ðx3Þ
M0

1ðx3Þ
M0

2ðx3Þ

8><>:
9>=>; ¼

N 0ðx3Þ
M0ðx3Þ � cos a

M0ðx3Þ � sin a

8><>:
9>=>;. ð7Þ

The following strain and curvature of the Bernoulli beam, due to the elastic bending moment of Eq. (7), will be taken as the
predictor variables of the algorithm

eN ðx3Þ ¼
duðx3Þ

dx3

¼ Nðx3Þ
E0A0

;

v1ðx3Þ ¼ �
d2v2ðx3Þ

dx2
3

¼ M0
1ðx3Þ

E0I0
11

;

v2ðx3Þ ¼ �
d2v1ðx3Þ

dx2
3

¼ M0
2ðx3Þ

E0I0
22

ð8Þ

being E0 the initial undamaged elasticity module, A0 the initial area of the undamaged cross-section and I0
ii the initial mo-

ment of inertia of the undamaged cross-section regarding the principal reference system for xi "i = 1, 2.
Considering the Bernoulli beam basic hypotheses, the following expressions for the strain and stress fields are obtained:

eðx1; x2; x3Þ ¼ eNðx3Þ þ v1ðx3Þ � x2 þ v2ðx3Þ � x1 ¼
N 0ðx3Þ
E0A0

þM0
1ðx3Þ

E0I0
11

x2 þ
M0

2ðx3Þ
E0I0

22

x1

¼ 1 x2 x1f g �
E0A0 0 0

0 E0I0
11 0

0 0 E0I0
22

2664
3775
�1

�
N 0ðx3Þ

M0
1ðx3Þ

M0
2ðx3Þ

8>><>>:
9>>=>>;.

rðx1; x2; x3Þ ¼ E0 � eðx1; x2; x3Þ ¼
N 0ðx3Þ

A0
þM0

1ðx3Þ
I0

11

x2 þ
M0

2ðx3Þ
I0

22

x1

¼ 1 x2 x1f g �
A0 0 0

0 I0
11 0

0 0 I0
22

2664
3775
�1

�
N 0ðx3Þ

M0
1ðx3Þ

M0
2ðx3Þ

8>><>>:
9>>=>>;

¼ xT � ½J 0��1 � r̂0ðx3Þ.

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

All the previous descriptions have been made for a linear elastic skew axial-bending problem. Thus, the material has lim-
itless capacity to resist the applied loads as expressed in Eq. (9). This threshold is not possible to be reached for a real mate-
rial, because its strength is limited to cmax, as it can be seen in Eq. (A.8) of Appendix A. Therefore, the initial generalized
internal forces r̂0ðx3Þ produced by the external loads F0(x3) are initially unbalanced with the generalized internal stresses
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r̂ðx3Þ, producing unbalanced residual generalized internal forces Dr̂ðx3Þ. These residual stresses should be zero due to the
equilibrium condition and this state is reached by increasing the curvature Dv(x3) and axial strain DeN(x3) of the beam.
Observe that the plane cross-section hypothesis is used only during the predictor estimation step inside the linearization
loop (Box 1, point 4e). After the integration of the constitutive model (Box 2), the planarity hypothesis of the cross-section
is not fulfilled due to the damage in some of its points. This iterative procedure starts with the linearization of the following
unbalanced equilibrium equation at each cross-section of the beam:

Dr̂ðx3Þ ¼ r̂0ðx3Þ � r̂intðx3Þ

 �

! 0;

DNðx3Þ
DM1ðx3Þ
DM2ðx3Þ

8><>:
9>=>; ¼

N 0ðx3Þ
M0

1ðx3Þ
M0

2ðx3Þ

8><>:
9>=>;�

Z
A

rðx1; x2; x3Þ � dAZ
A

rðx1; x2; x3Þ � x2 dAZ
A

rðx1; x2; x3Þ � x1 dA

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;

266666664

377777775
! 0;

ð10Þ

where the stress at each point of the cross-section is obtained by using the constitutive damage model briefly described by
the following equations:

rðx1; x2; x3Þ ¼ Eðx1; x2; x3Þ � eðx1; x2; x3Þ ¼ Eðx1; x2; x3Þ � eN ðx3Þ þ v1ðx3Þ � x2 þ v2ðx3Þ � x1

� 

with: Eðx1; x2; x3Þ ¼ f ðx1; x2; x3Þ � E0. ð11Þ

According to Appendix A, the evolution of the local damage internal variable at each point of each cross-section of the
Bernoulli beam, obtained from the local damage constitutive model, is f ðx1; x2; x3Þ ¼ ð1� dðx1; x2; x3ÞÞ ¼ cmax

c eA 1� cðdÞ
cmaxð Þ, with

0 6 cmax
6 c. The values cmax and c are the maximum and current tension strength at each point of the solid, A is a para-

meter depending of the fracture energy and Eðx1; x2; x3Þ ¼ f ðx1; x2; x3Þ � E0 is the damaged elastic modulus. Substituting this
expression in Eq. (10), the residual forces become

DNðx3Þ

DM1ðx3Þ

DM2ðx3Þ

8>><>>:
9>>=>>; ¼

N 0ðx3Þ

M0
1ðx3Þ

M0
2ðx3Þ

8>><>>:
9>>=>>;�

E0

Z
A

f ðx1; x2; x3Þ � eN ðx3Þ þ v1ðx3Þ � x2 þ v2ðx3Þ � x1

� �
dA;

E0

Z
A

f ðx1; x2; x3Þ � eN ðx3Þ � x2 þ v1ðx3Þ � x2
2 þ v2ðx3Þ � x1 � x2

� �
dA;

E0

Z
A

f ðx1; x2; x3Þ � eN ðx3Þ � x1 þ v1ðx3Þ � x2 � x1 þ v2ðx3Þ � x2
1

� �
dA;

8>>>>>>>><>>>>>>>>:
DNðx3Þ

DM1ðx3Þ

DM2ðx3Þ

8>><>>:
9>>=>>; ¼

N 0ðx3Þ

M0
1ðx3Þ

M0
2ðx3Þ

8>><>>:
9>>=>>;�
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E0 eNðx3Þ � m1ðx3Þ þ v1ðx3Þ � I11ðx3Þ þ v2ðx3Þ � I12ðx3Þð Þ

E0 eNðx3Þ � m2ðx3Þ þ v1ðx3Þ � I21ðx3Þ þ v2ðx3Þ � I22ðx3Þð Þ

8>><>>:
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eN ðx3Þ

v1ðx3Þ

v2ðx3Þ

8>><>>:
9>>=>>;;

Dr̂ðx3Þ ¼ r̂0ðx3Þ � E0½J� � êðx3Þ.

ð12Þ

In this equation, A(x3) = �A f (x1,x2,x3) Æ dA is the damaged cross-section, miðx3Þ ¼
R

A f ðx1; x2; x3Þ � xj dA are the moment of
the damaged area with respect to the xi centroidal principal axes (initially, for undamaged cross-section, it is equal to zero),
I iiðx3Þ ¼

R
A f ðx1; x2; x3Þ � x2

j dA are the moment of inertia of the damaged cross-section corresponding to the same principal
axes xi and Iij(x3) = �A f (x1,x2,x3) Æ (xj Æ xi)dA are the inertia products of the damaged cross-section with respect to the
same principal axes (xi,xj). Notice that the principal inertia axes at certain time instant of the process can change their
position in a next instant due to the damage of the cross-section of the beam; consequently the inertia products of the dam-
aged cross-section respecting the changed axes can be different than zero.

4.2. Numerical evaluation of the moment of inertia of the damaged cross-section

Due to the difficulties in performing a closed form integration of the non-linear equation (12) using the non-linear dam-
age function defined by Eq. (11), the inertia tensor and the area of the damaged cross-section is calculated by means of a
numerical algorithm (see Box 2). It is important to note that the selected integration algorithm requires considering that
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Fig. 4. Subsections of a box cross-section.
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one of the points at which the function to be integrated is located is on the border of the cross-section, allowing to capture
appropriately the evolution of the damage.

When the cross-section of the pier to be analyzed has a rectangular shape, the described procedure is applied directly.
However, if the piers have a box shape, the moment of inertia of the damaged cross-section is obtained by dividing the
element into four subsections, as shown in Fig. 4. For each subsection, the damaged area, A(x3)(J), is

Aðx3ÞðJÞ ¼
Z

AðJÞ

f ðx1; x2; x3ÞdA ð13Þ

and the distance between the neutral axes of each sub cross-section and the global neutral axis of the complete cross-section
is calculated. The global moment of inertia of the damaged cross-section, I T ðx3ÞðJÞ, is then defined by

IT ðx3ÞðJÞ ¼
X4

j¼1

IðJÞ þ Aðx3ÞðJÞ � X
2
ðJÞ ¼

X4

j¼1

Z
AðJÞ

f ðx1; x2; x3Þ � x2
2 dA

Z
AðJÞ

f ðx1; x2; x3Þ � x2 � x1 dAZ
AðJÞ

f ðx1; x2; x3Þ � x1 � x2 dA
Z

AðJÞ

f ðx1; x2; x3Þ � x2
1 dA

26664
37775

8>>><>>>:
þ
Z

AðJÞ

f ðx1; x2; x3ÞdA

" #
�

X 2
2ðJÞ X 2ðJÞX 1ðJÞ

X 1ðJÞX 2ðJÞ X 2
1ðJÞ

" #9>>>=>>>;; ð14Þ

where I(J) is the moment of inertia of the damaged subsection j, evaluated by means of Eq. (14), A(J) is the damaged area of
the subsection j and X 2

ðJÞ are the distances between the neutral axis of the subsections and the global neutral axis of the
whole cross-section, which depend on the damage at the cross-section. In Eqs. (13) and (14), the numerical integration
has been carried out following its classical form

Aðx3ÞðJÞ ¼
Z

AðJÞ

f ðx1; x2; x3Þ � dA ¼ J acob �
Xn

p¼1

Xn

q¼1

wp � wq½f ðn1; n2; x3Þ�
" #

ðJÞ
;

miðx3ÞðJÞ ¼
Z

AðJÞ

f ðx1; x2; x3Þ � xj dA ¼ J acob �
Xn

p¼1

Xn

q¼1

wp � wq½f ðn1; n2; x3Þ � nj�
" #

ðJÞ
;

I iiðx3ÞðJÞ ¼
Z

AðJÞ

f ðx1; x2; x3Þ � x2
j dA ¼ J acob �

Xn

p¼1

Xn

q¼1

wp � wq f ðn1; n2; x3Þ � n2
j

h i" #
ðJÞ
;

I ijðx3ÞðJÞ ¼
Z

AðJÞ

f ðx1; x2; x3Þ � xj � xi dA ¼ J acob �
Xn

p¼1

Xn

q¼1

wp � wq f ðn1; n2; x3Þ � nj � ni


 �" #
ðJÞ
;

ð15Þ

where Jacob is the determinant of the gradient of the strains, wp and wq are the numerical weight coefficients, n1 and n2 are
the isoperimetric normalized coordinates and n is the order of the quadrature of the numerical integration [39]. Particu-
larly, when damage occurs due to the external load, the position of the neutral axis of each subsection is modified according
to the area of the subsection that is damaged. This modification must be reflected in the calculation of the distances to the
global neutral axis of each subsection. Thus, to obtain each X 2

ðJÞ, it is necessary to know the coordinates X1(J) and X2(J) for
each subsection, which are evaluated in a general form by means of the following equations:
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X 1ðJÞ ¼

Z
AðJÞ

x1f ðx1; x2; x3ÞdAZ
AðJÞ

f ðx1; x2; x3ÞdA

26664
37775; X 2ðJÞ ¼

Z
AðJÞ

x2f ðx1; x2; x3ÞdAZ
AðJÞ

f ðx1; x2; x3ÞdA

26664
37775. ð16Þ
4.3. Linearization of the unbalanced equilibrium equation

Linearizing Eq. (10) and using the Newton–Raphson procedure, the cross-section equilibrium equation is solved by suc-
cessive iterations, increasing the curvature and axial strain of the pier in the corresponding cross-section. For this purpose,
the generalized strains (axial strain and bending moment) at increment (n + 1) and instant (t + Dt) is written by means of
Taylor series, truncated at its first term, and then forced to zero

0 ¼ nþ1Dr̂tþDtðx3Þ ffi nDr̂tþDtðx3Þ þ
o nDr̂tþDtðx3Þ

 �

oê
� nþ1DêtþDtðx3Þ þ � � �

) nþ1DêtþDtðx3Þ ¼ � nJnþ1

 ��1nDr̂tþDtðx3Þ ) nþ1êtþDtðx3Þ ¼ nêtþDtðx3Þ þ nþ1DêtþDtðx3Þ

nþ1DrtþDtðx1; x2; x3Þ ¼ E0ðx1; x2; x3Þ � nþ1xT � DêtþDtðx3Þ ) nþ1rtþDt ¼ nrtþDt þ nþ1DrtþDt ð17Þ

being

nJ nþ1 ¼ o½nDr̂tþDtðx3Þ�
oê

¼ E0 �
Aðx3Þ m1ðx3Þ m2ðx3Þ
m1ðx3Þ I11ðx3Þ I12ðx3Þ
m2ðx3Þ I21ðx3Þ I22ðx3Þ

264
375

the Jacobian matrix.
For each time increment in which the predictor moment produces an unbalanced load increment greater than an

adopted tolerance (Eqs. (17) and (18)), the procedure considers an increment of the curvature in order to obtain a corrector
of generalized stresses which permits to reach the equilibrium state. The convergence criterion used states that the stable
response is obtained for the cross-section ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iDr̂2
iP

i r̂0
i

� �2

vuut 6 TOL; ð18Þ

where TOL is the tolerance adopted (TOL! 0).

5. Numerical example: Validation of the dynamic model

The Warth Bridge is located 63 km far from Vienna, Austria, was built 30 years ago and has two spans of the deck of
62.0 m and five of 67.0 m, with a total length of 459.0 m. The seven spans of the bridge give rise to six piers with heights of
31.0 m, 39.0 m, 37.0 m, 36.0 m, 30.0 m and 17.6 m, as it can be observed in Fig. 5.

The geometrical and mechanical properties of the structure of Warth Bridge were obtained from the original design
drawings [35]. Thus, the simple compression strength of the concrete is f �cu ¼ 45:0 MPa for girders and f �cu ¼ 43:0 MPa
for piers. The weight density and Poisson modulus of the concrete are c = 24.0 kN/m3 and m = 0.2, respectively. In order
to consider the weight of the non-structural components, the value of the weight density of the girders was increased to a
value of c = 28.0 kN/m3. For the reinforcement bars, c = 78.5 kN/m3, m = 0.3 and Es = 2.0 · 105 MPa were considered.
P i = pier
E i = abutment
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Fig. 5. Elevation of the Warth Bridge, Austria.



Table 1
Frequencies and periods corresponding to the first six modes of vibration of Warth Bridge

Mode number Period (s)

Experimental FE model Simplified model

1 1.25 1.18 1.17
2 0.91 0.93 0.94
3 0.62 0.67 0.78
4 0.45 0.52 0.71
5 0.34 0.39 0.60
6 0.27 0.33 0.33
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The elastic modulus of the reinforced concrete, Ec, was obtained using the mixing theory [5,13,28], which determines the
properties of the elements composed of more than one material. In particular, the elastic modulus of the reinforced con-
crete was determined by means of the following expressions:

Ec ¼ khEh þ kaEa; ð19Þ
where in this case

kh ¼
Ah

A
; ka ¼

Aa

A
ð20Þ

and Eh, Ea and Ec are the Young�s modulus of the concrete, longitudinal reinforcement, and composite material, respec-
tively, and Ah, Aa, and A are the corresponding areas. In Eq. (19) a value Eh = 2.8E04 MPa was supposed.

The experimental results obtained by ÖFPZ-ARSENAL Institute [9,11] for Warth Bridge show that the first six modes
of vibration of the structure (see the first column of Table 1) correspond to the direction transversal to the bridge axis. It
can be seen that the experimental periods are similar to the transversal periods obtained with the finite element model (col-
umn 2 of Table 1) and to those calculated with the proposed model (column 3 of Table 1).

The finite element model was developed using the ABAQUS (1999) code [1], using eight Timoshenko-beam elements to
represent the girders and piers and two elements for the foundations (totally 116 elements). Box beams with equivalent
elastic properties have been used for the girders. Pin elements were used for the pier-girder connection zone. The following
constraints were considered: (1) the three translational degrees of freedom were fixed and the rotations released at the con-
nexion zone with the abutments; (2) the connections between piers and girders assured the continuity in translation and
fixed the rotation; and (3) the foundation of the piers was supposed to lean on a rigid base. Thus, the soil–structure inter-
action effect was not considered.
6. Numerical example: Quasi-static analysis of the Warth Bridge pier model tested at JCR, ISPRA, Italy

In this section, the numerical simulation of the quasi-static structural behavior of shorter pier of the Warth Bridge is given
(identified as P6 in the Fig. 5). This pier was studied experimentally in the JCR Ispra Laboratory, Italy [35] and numerically,
using a finite elements approach, by Faria et al. [10]. The top of this 5.75 m high pier has been subjected to a horizontal
quasi-static load. The seismic behavior of the pier has been evaluated using the described Bernoulli beam formulation
extended to the non-linear case of Kachanov damage [15,22]. That is, without using the finite element approach, it has been
introduced within the frame of the classical theory of Bernoulli a non-linear continuum damage model. This formulation
allows for the evaluation of the structural behavior in the non-linear field with a very low computational cost and the
obtained results are similar to the experimental and to the finite element results. This model leads to a good, low computa-
tional cost, non-linear solution required by the evaluation of the seismic vulnerability of the bridge, requiring multiple struc-
tural dynamic response calculations. The objective of the structural solution developed in this paper in not only a good
prediction of the load–displacement relationship, but also a good evaluation of the cross-sectional damage.

The mechanical properties of the reinforced concrete bridge pier are calculated using the mixing theory [5,28], which
combines the mechanical behavior of the concrete and steel. The behavior of the concrete is represented by means of a
damage model described in Appendix A and the behavior of the steel is represented by means of an anisotropic perfect
elasto-plastic model [25]. This combination of the concrete and steel behaviors given by the mixing theory uses the follow-
ing plastic-damage constitutive equation at each point of the composite material:

rðd; epÞ ¼ kcrcðdÞ þ ksrsðepÞ ¼ kc½ð1� dÞðC0Þc : e� þ ks ðC0Þs : ðe� ep
s Þ


 �
ð21Þ

being: r, rc(d), rs(e
p), the stresses in the composite material, in the damaged concrete and in the plastic steel, respectively.

(C0)c and (C0)s are, respectively, the initial constitutive tensors in the concrete and steel while kc = Ac(d)/[Ac(d) + As] and
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ks = As/[Ac(d) + As] are the relative areas corresponding to each material of the cross-section of the pier. The characteris-
tics of the materials used are given in Table 2.

The initial values at the clamped cross-section, corresponding to the initial, non-damaged state, are the following:

ðAcÞ0 ¼ 0:6579 m2; ðAsÞ0 ¼ 76:77� 10�4 m2 )
ðkcÞ0 ¼ 0:9884;

ðksÞ0 ¼ 0:011533;

�
ðEÞ0 ¼ ðkcÞ0ðEcÞ0 þ ðksÞ0Es ¼ 35:418 MPa;

ðf þy Þ0 ¼ ðkcÞ0ðf þcy Þ0 þ ðksÞ0ðf þsy Þ0 ¼ 9:984 MPa

ðf �y Þ0 ¼ ðkcÞ0ðf �cy Þ0 þ ðksÞ0ðf �sy Þ0 ¼ 49:421 MPa

)
nr ¼

ðf �y Þ0
ðf þy Þ0

¼ 4:95.

ð22Þ

Fig. 6 shows the geometric characteristics and boundary condition for pier P6.
In the proposed model, the pier is represented by a single beam. In this example, the moment–curvature is evaluated in

10 points along x3-axis. In each of the x3 points, six Gauss points per each of the subsections of Fig. 4 (totally 24 Gauss
points) are located on the cross-section of the beam.

The pier is considered perfectly clamped to the foundation and the following sequence of loads is applied at its upper
end:

1. A compression axial load of 3820.00 kN.
2. Once applied this load, three horizontal displacements are applied sequentially.
Fig. 6. Geometry and reinforcement description of pier P6 belonging to Warth Bridge [35].

Table 2
Properties of the materials compounding the reinforced concrete

Mechanical properties Steel Concrete

Young�s modulus Es = 200.00 GPa Ec = 33.50 GPa
Compression strength at the elastic limit f�sy ¼ 545:00 MPa f�cy ¼ 20:00 MPa

Maximum compression strength f�su ¼ 600:00 MPa f�cu ¼ 43:00 MPa

Tension strength at the elastic limit fþsy ¼ 545:00 MPa fþcy ¼ 3:10 MPa

Maximum tension strength fþsu ¼ 600:00 MPa fþcy ¼ 3:10 MPa

Fracture energy (Gf)s = 12,000.00 MN/m (Gf)s = 1.20 MN/m



(1) �0.026 m 6 uh 6 +0.026 m.

(2) �0.055 m 6 uh 6 +0.055 m.
(3) �0.1 m 6 uh 6 +0.1 m.

These cycles of displacements introduce degradation on the clamped cross section of the pier and the numerical results
obtained in this paper (Fig. 7b) are compared with those obtained by Faria et al. [10] and in the JCR Ispra laboratory [35]
(see Fig. 7a).

From the results obtained in the present work by using the damage model and the described structural approach, a rea-
sonable solution is obtained and it is adequate to the main objective of the paper which is the development of fragility
curves. In spite of the simplicity of the model, the results, in their general features, reach similar values than those obtained
experimentally and numerically through FEM models with two internal damage variables (damage variable for compres-
sion and tension). Nevertheless, the most important aspect is the very low computational cost that encourages to its appli-
cation in solving multiple analysis problems like Monte Carlo simulations [14]. The most important differences between the
two graphs of Fig. 7 can be observed in the unloading branch, because in this case the recovery of the material properties
during the change of the sign of the load is evaluated using a simple constitutive model with a single damage index.
Remember that it is an intrinsic characteristic of the isotropic damage constitutive model that the unloading–reloading
curves always cross the origin of the coordinate axes. Moreover, according to the principal hypotheses made, the proposed
model is unable to take into account neither the sliding of the steel bars nor the Bauschinger cyclic effect. In Fig. 8, the top
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Fig. 7. Load–displacement behavior in the pier for the load sequences 1, 2 and 3. (a) Experimental results [35] and numeric results [10]. (b) Results
obtained in the present work.

Fig. 8. Displacement of the pier P6 at the end of the first load cycle and at the end of the last load cycle.



Fig. 9. (a) Moment–curvature evolution at the base section of the pier. (b) Evolution of the damage at the base section of the pier in function of the
curvature level.
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pier displacement is represented at the end of the load sequence 1 and then, in the same figure, the deformed pier is drawn
at the end of the last load sequence 3. In this last case the damaged cross-section is located near the foundation of the pier,
while the rest of the cross-sections return to their initial undamaged state (rotation of rigid solid around the kneecap in
Fig. 8).

The degradation of the cross-section is shown in Fig. 9. Fig. 9a shows the moment–curvature evolution, and Fig. 9b
shows the evolution of the damage index as a function of the curvature. It can be seen in this figure that the level of damage
at the end of the process is near to one. This statement signifies the 100% of the available free energy corresponding to the
base cross-section of the pier has been dissipated, according to the second thermodynamic law (see the formulation of
Appendix A).

7. Numerical example: Seismic analysis of Warth Bridge, Austria

The maximum damage at the base cross-section of a pier is obtained as [27]

D ¼ M eðx3Þ �M intðx3Þ
M eðx3Þ

for x3 ¼ 0; ð23Þ

which, in this example, is considered equal to the pier damage Di. Thus, the mean global structural damage caused by the
seismic action in the bridge is calculated as the average of the pier damage indices

Dm ¼

X
i
Di

np

i ¼ 1; . . . ; np; ð24Þ

where np is the number of piers of the bridge.
The seismic behavior of Warth Bridge was analyzed as an example of application of the proposed dynamic model. The

bridge was designed to resist a horizontal acceleration of 0.04g, using a quasi-static method. According to the current Aus-
trian seismic code, it is necessary to consider horizontal design accelerations of the order of 0.1g for the bridge site [30].
This seismic design acceleration takes into account the recent seismic activity in the zone, where occurred more severe
earthquakes than those considered by the previous seismic code. Therefore, a complete study of the structural behavior
was necessary to evaluate the safety of the structure during future earthquakes.

Aiming to compare the damage provided by the proposed model with that obtained by means of the FE model, a non-
linear analysis of the Warth Bridge was performed for an action at the base of each pier a(t) = t sin(xt), x being the frequency
of the input signal, assumed to be similar to the fundamental frequency of each pier. The material properties are the same as in
the previous examples. The damage of the FE model has been calculated by implementing in the ABAQUS code [1] the
isotropic damage model [24] as an external subroutine. For both models, the maximum damage was obtained at the integra-
tion points and their values are shown in Table 3. It can be observed that both models provide similar maximum damages.
The non-linear analysis performed by means of the proposed model requires 25 s of CPU in a Silicon Graphics Origin 2000.
The same analysis performed by using the finite element model in the ABAQUS code needs 3.27 h in the same computer.

The seismic vulnerability of the Warth Bridge was evaluated by developing fragility curves using Monte Carlo simula-
tions. The mechanical parameters considered as random are the following: simple compression and tensile strength,



Table 3
Maximum damage at the integration points of the piers of the Warth Bridge

Pier number FE model Simplified model

1 0.9514 1.0000
2 0.9842 0.9831
3 0.9757 0.9820
4 0.9692 0.9844
5 0.9497 0.9834
6 0.8552 0.9950
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undamaged Young�s modulus of the concrete and reinforcement steel for the piers, Young�s modulus of the reinforced con-
crete of the girders, mass density of piers and girders, area of the steel bars of the piers, energy of fracture and shear mod-
ulus of the bearings. The values given in the previous examples of each characteristic have been considered as mean values
of the random variable. The pier damage index and the mean global damage index were also considered as random output
variables.

The statistical relationship between the input and output variables of the problem was obtained using the Monte Carlo
simulation. The probabilistic characteristics of the input random variables were defined by using experimental and analyt-
ical tests performed in different researches [12]. A marginal distribution function and a correlation coefficient were assigned
to each input variable. Given these values, the statistics of the output variables, in particular the principal statistical
moments, histograms and accumulated frequency curves, were determined.

For each output variable the best distribution function was selected using the Kolmogorov–Smirnov goodness of fit test
for significance levels of 0.01 or 0.05. Fragility curves have been thus obtained, which represent the accumulated proba-
bility for different damage levels.

Warth Bridge is located in a zone of moderate seismicity, for which the number of available real records is insufficient to
estimate its seismic vulnerability. Therefore, artificial accelerograms have been developed for each bridge pier, using a one-
dimensional model for a seismic scenario of magnitude 5.5, depth of 10 km and distance from the source of 8 km. The
records obtained in Ref. [31] were used to determine accelerograms with peak ground accelerations between 0.05g and
0.40g with an increment of 0.05g. The maximum value of the peak ground acceleration of 0.40g was selected because it
is slightly greater than the seismic magnitude of 6.0, predicted by some authors as the probable maximum magnitude at
the bridge site [18].

The fragility curves for the global damage index Dm, of Warth Bridge are shown in Fig. 9, in which the curves associated
with the peak ground accelerations of 0.05g and 0.10g are not shown due to the fact that for these earthquake sizes the
structure has a linear behavior. For all the considered peak ground accelerations, the Gamma theoretical distribution
was fitted for the global damage index Dm. A Monte Carlo simulation considering 500 structural analyses performed in
a Silicon Graphics Origin 2000 with eight 300 MHz processors requires 3.5 h. The same analysis, performed in the same
computer with the ABAQUS code, requires 166 h.

Using the fragility curves of the bridge, a damage probability matrix is obtained, which provides the occurrence prob-
ability of a given damage state if an earthquake having a given ground acceleration occurs (see Table 4).

On the basis of Fig. 10 and the damage probability matrix of Table 4, some results regarding the possible damage to the
bridge can be discussed. For example, for the damage index Dm, the probability of being in the 10–20% damage interval is
0.47, when the peak ground acceleration was 0.25g. It is observed in Fig. 9 that the probability of a damage greater than
50%, which could be associated with irreparable damage, can occur for peak ground accelerations between 0.35g and 0.40g.
Taking into account that for the maximum design acceleration of 0.1g, stipulated by the new Austrian seismic code require-
ments, the response of the structure is practically linear.
Table 4
Damage probability matrix for the global damage index Dm

Damage state (%) Earthquake peak ground acceleration (%g)

0.15 0.20 0.25 0.30 0.35 0.40

0 0.8870 – – – – –
0–10 0.1130 0.9997 0.0148 – – –
10–20 – 0.0003 0.4721 – – –
20–30 – – 0.5110 0.2941 0.0218 0.0242
30–40 – – 0.0021 0.6967 0.6322 0.4733
40–50 – – – 0.0092 0.3385 0.4535
50–60 – – – – 0.0074 0.0480
60–100 – – – – – 0.0009
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Fig. 10. Fragility curves for the Dm global damage index.
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The fragility curves of Fig. 11 relate the global damage with the earthquake size (peak ground acceleration), for different
probabilities of occurrence. This curve can be more easily applied in a practical case.

8. Conclusions

A procedure to evaluate the seismic vulnerability of RC highway bridges with simple pier bents is developed in this
work. It is based on a model of evaluation of the damage caused by a horizontal action in the piers of the bridge. The
proposed model considers a single degree of freedom for each pier, namely the transversal displacements at their top.
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The damage of piers due to the seismic action is obtained by using an isotropic damage model based on the Continuum
Damage Mechanics, in terms of the moment of inertia of the damaged cross-section at the base of each bridge pier. The
proposed simplified model was verified using experimental and FEM results.

The simplified non-linear analysis performed with the proposed model gives satisfactory results similar to those of the
laboratory test and the FEM results. On the basis of these results it is concluded that the proposed model suitably describes
the maximum damages of the piers of RC bridges, and that it is a low-cost computer tool, ideal for the multi-analysis pro-
cesses required by the evaluation of seismic vulnerability.

Uncertainties have been considered in the structural and mechanical characteristics of the Warth Bridge, used as an
example of application of the proposed model. In the Monte Carlo simulation which has been performed, the proposed
model has been used in order to obtain the non-linear seismic response of each one of the 500 samples used in the analysis.
The most important results which have been obtained were fragility curves and damage probability matrices, allowing
assessing the seismic vulnerability of the bridge. A summary of the results are shown in the paper. The model was very
effective in performing this analysis, when compared with the results obtained with a more sophisticated finite element
model.
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Appendix A. Continuum constitutive damage law

A brief review of the isotropic continuum damage model at a point of a structure is made [24]. The damage at a point of
a continuous solid is defined as the degradation of the stiffness and strength due to the decrease of the effective area. The
continuum theory of the damage was formulated by Kachanov [15] in the creep behavior context, but later on it has been
reformulated and accepted as a valid alternative to simulate the rate independent behavior of several materials [5–7,17,19–
21,37,38].

Degradation of the material properties occurs due to the presence and growth of small cracks and voids inside the
structure of the material. This phenomenon can be simulated by means of the continuum mechanics taking into account
a scalar or tensorial internal damage variable. This internal variable of damage measures the level of degradation of the
material in a point and its evaluation is based on the transformation of the real stresses in other effective stresses. For
the isotropic damage used here, the relationship between the real and the effective stress is described by the damage var-
iable d

r0 ¼
r

ð1� dÞ . ðA:1Þ

In this equation, d is the internal variable of damage; r it is the Cauchy stress tensor and r0 is the effective stress tensor,
evaluated in the ‘‘no-damaged’’ space. This internal variable represents the loss of stiffness level in a point of the material
and its upper and lower limits are given by

0 6 d 6 1. ðA:2Þ
The upper limit (d = 1) represents the maximum damage in a point and the lower limit (d = 0) represents a non-damaged
point.

The Helmholtz [22] free energy for the isotropic damage model is given by the expression

W ¼ Wðe; piÞ with pi ¼ fdg;
W ¼ Wðe; dÞ ¼ ð1� dÞW0ðeÞ.

ðA:3Þ

The elastic part of the free energy, in the small strain case, can be written in the following quadratic form:

W0ðeÞ ¼ 1
2
e : C0 : e; ðA:4Þ
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where C0 is the elastic undamaged constitutive tensor. The mechanical part of the dissipation, for uncoupled thermal prob-
lem, can be written by using the Clausius–Plank inequality [22]

N ¼ r� oW
oe

� �
: _e� oW

od
_d P 0. ðA:5Þ

Applying the Coleman method [22] to the dissipative power (Eq. (A.5)) the following constitutive equation and dissipa-
tive inequality are obtained for each point of the material

r ¼ oW
oe
¼ ð1� dÞ oW0

oe
¼ ð1� dÞC0 : e ðA:6Þ

N ¼ W0
_d P 0. ðA:7Þ

This approach defines the beginning of the non-linear behavior in each point of the solid and it can be defined by using
the plasticity theory

�Fðr0; qÞ ¼ f ðr0Þ � cðdÞ 6 0; with q � fdg; ðA:8Þ
where f(r0) is a scalar function of the stress tensor r0 = C0 :e and c(d) is the strength threshold of damage. The initial value
of damage is set up on c(d0) = cmax = rmax and represents the uniaxial strength at crushing state. The damage process be-
gins when f(r0) is greater than cmax = rmax. Eq. (A.8) can be written in a more general form throughout the following
equivalent expression:

�Fðr0; qÞ ¼ G½f ðr0Þ� � G½cðdÞ� 6 0; with q � fdg; ðA:9Þ
where G[v] is a monotonic scalar function, invertible and positive with positives derivative.

The evolution law for the internal damage variable can be written in the following general form:

_d ¼ _l
o�Fðr0; qÞ
o½f ðr0Þ�

� _l
oG½f ðr0Þ�
o½f ðr0Þ�

; ðA:10Þ

where l is a non-negative scalar value named damage consistency parameter, whose definition is close to the plastic con-
sistency parameter k. As in the plasticity theory, the evaluation of this parameter is made using the Ilyushin consistency
condition [22]. From this condition, and from the properties of G[v], the following function is obtained:

�Fðr0; qÞ ¼ 0 ) G½f ðr0Þ� ¼ G½cðdÞ� ) f ðr0Þ ¼ cðdÞ ) oG½f ðr0Þ�
of ðr0Þ

¼ oG½cðdÞ�
ocðdÞ ðA:11Þ

and, from here, the permanency condition is deduced

_�Fðr0; qÞ ¼ 0 ) oG½f ðr0Þ�
of ðr0Þ

_f ðr0Þ �
oG½cðdÞ�
ocðdÞ _cðdÞ ¼ 0 ) _f ðr0Þ ¼ _cðdÞ. ðA:12Þ

Observing the rate of the threshold damage function oG½f ðr0Þ�=ot ¼ _G½f ðr0Þ� (Eq. (A.12)) and comparing with the evo-
lution law of the internal variable _d (Eq. (A.10)), the following expression for the damage consistency parameter is
obtained:

_G½f ðr0Þ� ¼
oG½f ðr0Þ�
of ðr0Þ

_f ðr0Þ

_d ¼ _l
oG½f ðr0Þ�
o½f ðr0Þ�

9>>=>>; ) _d � _G½f ðr0Þ� ) _l � _f ðr0Þ ¼ _cðdÞ ¼ of ðr0Þ
or0

: _r0 ¼
of ðr0Þ

or0

: C0 : _e. ðA:13Þ

Time integration over the rate of internal damage variable (Eq. (A.13)) gives the following explicit expression for the dam-
age evaluation in each point of the solid:

d ¼
Z

t

_d dt ¼
Z

t

_G½f ðr0Þ�dt ¼ G½f ðr0Þ�. ðA:14Þ

Substituting Eq. (A.14) in (A.5), the following expression for the rate of the mechanical dissipation at each damaged point
is established

N ¼ W0
_G½f ðr0Þ� ¼ W0

oG½f ðr0Þ�
of ðr0Þ

of ðr0Þ
or0

: C0 : _e. ðA:15Þ

The current value for the damage threshold c can be written, at time s = t, as

c ¼ maxfcmax;maxff ðr Þj gg 80 6 s 6 t. ðA:16Þ
0 s
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There are several ways to define the damage threshold criterion. In this work, the exponential of Ref. [24] for concrete
structures is used. The scalar function G[v] (Eq. (A.11)) is here defined as a function of the unit normalized dissipation var-

iable j as [19]

_j ¼ Kðr0Þ � Nm ¼
rðr0Þ

gf

þ 1� rðr0Þ
gc

� 	
� Nm ) 0 6 j ¼

Z
t

_jdt
� 	

6 1; ðA:17Þ

where Nm ¼ W0
_d is the damage dissipation and rðrÞ ¼

P3
I¼1hrI i=

P3
I¼1jrI j a scalar function to define the sign of the stress

state at each point and at each time instant of the damage process, being hxi = 0.5[x + jxj] the McAully function. The vari-
ables gf and gc are the maximum values for the tension–compression dissipation at each point, respectively [19]. By this
way, the damage dissipation will be always normalized to the maximum consumed energy during the mechanical process.

Using j as an auxiliary variable, it is now possible to evaluate the damage function G[v] in the following form [24]:

d ¼ G½cðjÞ� ¼ 1� cmax

cðjÞ e
A 1� cðjÞ

cmaxð Þ with 0 6 cmax
6 cðdÞ ðA:18Þ

but, under the damage condition f(r0) � c(j). This equation can be also written as

G½f ðr0Þ� ¼ 1� f 0ðr0Þ
f ðr0Þ

e
A
�

1� f ðr0Þ
f 0ðr0Þ

�
with f 0ðr0Þ ¼ cmax;

where A = [gf/(f
0(r0))2 � 0.5]�1 is a parameter depending on the fracture energy dissipation gf [19]. The value f 0(r0) = cmax

is obtained from the agreement with the first damage threshold, when the condition G[f 0(r0)] � G[cmax] = 0 is reached and
G[f 0(r0)] = G[cmax] � 0 shows the damage integration algorithm for each single point of the structure.
1. Compute the elastic prediction stress and the internal variable at current time ‘‘t + Dt’’, and equilibrium iteration
‘‘i’’.

½r0�tþDt ¼ C0 : ½e�tþDt

i½d�tþDt
; s ¼ i½G½f ðr0Þ��tþDt

s0 ¼ i½G½f 0ðr0Þ��tþDt

2. Damage threshold checking:
(a) If s � smax

6 0:

Then
i½r�tþDt ¼ ½r0�tþDt

i½d�tþDt; smax ¼ s

( )
and go to the EXIT

(b) If s � smax > 0:
Then start with the damage constitutive integration.

3. Integration of the damage constitutive equation,

smax ¼ s

i½d�tþDt ¼ 1�
i

s0

s
eAð1� s

s0Þ
� 	tþDt

4. Stress and tangent constitutive tensor actualization.

i½r�tþDt ¼ ð1� i½d�tþDtÞ½r0�tþDt

i½CT �tþDt ¼
i

ð1� dÞC0 �
oG½f ðr0Þ�
o½f ðr0Þ�

½C0 : e� 	 of ðC0 : eÞ
oe

� 	� 	tþDt

5. EXIT

Box A.1. Integration of the continuum damage equation at each structural point with exponential softening
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The Simo and Ju stress function [37,38] is used in the paper

s ¼ f ðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W0ðeÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e : C0 : e

p
. ðA:19Þ

Taking into account this function, parameter A used in Eq. (A.18) can be written as

A ¼ 1
gf

ðf 0ðr0ÞÞ2
� 1

2

; ðA:20Þ

where gf represents the maximum of the fracture energy to be dissipated at each point of the solid and f 0(r0) is the value
given by the threshold equation for the first damage threshold.
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