
Vol. 5, 1, 3{30 (1998)
Archives of Computational
Methods in Engineering

State of the art reviews

Monte Carlo Techniques in Computational
Stochastic Mechanics

J.E. Hurtado

Facultad de Ingenier��a y Arquitectura

Universidad Nacional de Colombia, Manizales, Colombia

A.H. Barbat

Departmento de Resistencia de Materiales y Estructuras en la Ingenier��a

Universidad Polit�ecnica de Catalu~na, 08034 Barcelona, Espa~na

Summary

A state of the art on simulation methods in stochastic structural analysis is presented. The purpose of the
paper is to review some of the di�erent methods available for analysing the e�ects of randomness of models
and data in structural analysis. While most of these techniques can be grouped under the general name of
Monte Carlo methods, the several published algorithms are more suitable to some objectives of analysis than
to others in each case. These objectives have been classi�ed into the foolowing cathegories: (1), The Statistical
Description of the structural scattering, a primary analysis in which the uncertain parameters are treated as
random variables; (2) The consideration of the spatial variability of the random parameters, that must then
be modelled as Random Fields (Stochastic Finite Elements); (3) The advanced Monte Carlo methods for
calculating the usually very low failure probabilities (Reliability Analysis) and, (4), a deterministic technique
that depart from the random nature of the above methods, but which can be linked with them in some cases,
known as the Response Surface Method. All of these techniques are critically examined and discussed. The
concluding remarks point out some research needs in the �eld from the authors' point of view.

1 INTRODUCTION

The purpose of the present paper is to expose succintly the state of the art of the application
of simulation techniques in Stochastic Mechanics - a �eld of Mechanics related with methods
for dealing with the inherent uncertainties of loads, material properties, geometry and human
factors in the design of structures. The document has been divided into the following
sections, according to the di�erent objectives of analysis:

1. Statistical Description.
2. Stochastic Finite Elements.
3. Reliability Analysis.
4. Response Surface Method.

With the exception of the method to which the fourth section is devoted, which is a
planned, deterministic simulation design, the techniques discussed in rest of the sections
can be grouped under the name of Monte Carlo { a name taken after the famous casino.
This method has for long been recognized as the most exact method for all the calculations
that require the knowledge of the probability distribution of responses of uncertain systems
to uncertain inputs. This is due to the fact that, according to a good de�nition, \the next
best situation to having the probability distribution of a certain random quantity is to have
a corresponding large population" (Ghanem and Spanos 1991).

While the conventional Probabilistic Structural Analysis (PSA) considers the uncertain
quantitites (elastic moduli, loads, etc.) as random variables, in Stochastic Finite Element
Analysis (SFEA) they are modelled as random �elds, that is, as sequences of random
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variables spread over the surface or volume of the structural object, with a de�ned correlation
structure. By this label it can be denoted also loads varying randomy with time, usually
classi�ed as random process. On the other hand, the Response Surface Method can serve
to di�erent purposes in the analysis and design of structural systems, such as those of
Structural Optimization, Statistical Description, etc. In the present context it has been
specially useful for Reliability Analysis in connection with Monte Carlo techniques as it will
be described in the following sections.

For the sake of readability only the most contributing references according to the authors'
judgement are quoted in the text. Many other references appear at the end of the document,
which convey supplementary information that can be useful to the interested reader.

2 STATISTICAL DESCRIPTION

A primary analysis of the uncertainty of the response of a structure due to the randomness
of the model parameters is that of its statistical description. This can give a complete and
quite useful picture of the statistical relationships linking the input and output variables
of the structural model, which provides in some cases surprising insights of the hidden and
winding paths of randomness into the structure. As will be done in the rest of the sections of
the present document, we will �rstly comment the analytical techniques existing for coping
with the problem at hand and then we will concentrate on the correspondent Monte Carlo
methods.

It can be said without simpli�cation that the most common analytical method for the
assessment of statistical measures of response uncertainty of structures is the Perturbation
Technique, which has its roots in the Taylor expansion of the mathemathical operator that
relates the input and output variables. The aplication of the expectation operator on this
expansion provides a set of equations of the (usually �rst two) moments of the response.
(Augusti et al. 1984; Ang and Tang 1975; Kleiber and Hien 1992). It is obvious that
the truncation of the series in the �rst two terms implies that the accuracy of the method
is limited to those cases in which the random input variables have very low coe�cients of
variation (of the order of 0.15 as a maximum), and this makes the applicability of the method
restricted to cases in which this conditions are respected by the most inuent variables. This
is more restrictive in the case of nonlinear systems.

In order to have a statistical scenario of the response of any structural system the most
accurate and general method is the Monte Carlo simulation. Since the joint probability
distribution of the responses is not available in many cases, except in the most simple
ones, and since the possibility of fast and parallel calculations of complex structures has
fantastically increased in the last years, the rejection of Monte Carlo techniques that is
commonly found in the technical literature of the past decades has become obsolete, and
the method appears to be quite promising in the analysis of uncertain systems of any kind.

The general idea of the Monte Carlo method can be summarized as follows: Let the
responses y of a system depend on a set of random variables x, whose marginal probabilistic
description is known. By means of well tested algorithms (Rubinstein 1981; Ripley 1987;
Bratley et al. 1987) a large population of samples of each of these variables can be generated,
in such a way that their histograms approach the marginal and joint distributions the closer,
the larger the population. An equally large population of output responses can be obtained
by making use of the deterministic code of analysis of the system each time with a di�erent
set of random deviates of the input variables.

There are two general methods for generating random variates corresponding to marginal
distributions: the Inversion and the Rejection methods. In the Inversion Method (see Figure
1) uniform random numbers ui are generated in the range (0; 1) and the corresponding
variates are calculated by inversion of the distribution function of the variable. The Rejection
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Figure 1. Inversion method for generating random variates

Figure 2. Rejection method for generating random variates

Method is based on the following idea (Figure 2): a random variate is generated using a
�ctitious density that envelopes the target one and whose area can be greater than one,
thus indicating that it is not a true density function but only a numerical device; the
generated deviate is accepted with a speci�ed probability that depends on the ratio of the
true and �ctitious densities. But in many instances methods for generating variates that
are speci�c for each type of density are preferred (Ripley 1987).

One of the main handicaps encountered in the Stochastic Analysis of structures is the
ignorance of the joint density function of all the random variables implied in a speci�c case,
which are commonly described solely by their marginal distribution (Der Kiureghian and Liu
1986). The most frequently invoked technique to estimate the required joint density is by
far the Nataf's model (Nataf 1962), in which use is made of the multidimensional Gaussian
distribution with correlation coe�cients modi�ed according to the nonlinear transformation
linking the given marginal and Gaussian densities. The corresponding samples of the
correlated variables can then be generated by means of this approximate distribution.

Formulated as in the previous paragraphs the method is known as Simple Random
Sampling because no optimization has been applied to the population with the aim of
reducing its size without sacrifying the quality of the statistical description of the structural
behavior in the whole input variable space. Figure 3 shows a typical \anthill" obtained by
this technique. While this technique can be fast for reliability analysis of single components
or even structures with a reduced number of degrees of freedom, as it is done in the software
provided in the book of Marek et al. (1996), it is too costly for the case of large structures.

The following techniques have been proposed to reduce the population:
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1. Strati�ed Sampling (Rubinstein 1981). In this case the whole space of each variable is
divided into subsets of equal probability. Then an outcome is generated from each subset
and the analysis is performed with the corresponding sets of points.

2. Latin Hypercube Sampling (Iman and Canover 1980; Bazant and Liu 1985) This method
represents an even more drastic reduction of the sampled population because each subset
number (identi�ed with a latin letter, whence the name of the algorithm) of each random
variable is combined with other subset numbers of the rest of the variables only once in
a randomized way. A variant of the method has been proposed (Florian 1992). In it a
Cholesky factorization is applied to the correlation matrix of the permuted ranks of the
input variables, in order to diminish the relatively high correlation resulting from the
drastic reduction of the population with respect to the conventional method.

Figure 3. Cloud of points generated by Simple Random Sampling

3. Descriptive Sampling (Ziha 1995). This method is quite similar to the previous one, the
di�erence between them lying in the way of generating the permutation matrix of the
ranks. Figures 4 and 5 illustrate the way in which samples are generated by Strati�ed
Sampling and the other two methods. It is important to say that in all of them the
sample inside a rank is taken either from the its middle or randomly from it.

3 STOCHASTIC FINITE ELEMENTS

The Stochastic Finite Element (SFE) analysis has become a very active area of research in
the general �eld of Computational Stochastic Mechanics in the last years. As explained in
the Introduction, the consideration of randomness in this area is more elaborate than in the
conventional Probabilistic Structural Analysis, since it is assumed that the parameters of
the model (loads, material properties or geometry) have a random spatial variation. This
means that the parameters are considered as random �elds rather than random variables as
they are in conventional PSA. In spite of the fact that the label SFE has been used in the
sense of conventional PSA, it is employed today almost exclusively for denoting this kind of
probabilistic description (Casciatti and Faravelli 1990; Ghanem and Spanos 1991; Kleiber
and Hien 1992).



Monte Carlo Techniques in Computational Stochastic Mechanics 7

Figure 4. Strati�ed Sampling

Figure 5. Latin Hypercube and Descriptive Sampling

Since either the analytical as well as the simulation methods for analysing the response
of a system modelled by random �elds use some stochastic notions that are not common in
the engineering practice, a brief description of them is in order. The concept of Random
Field stands for an indexed random variable or vector. The index can be that of time, space
or both, and the dimension of the vector can be as large as the number of the correlated
random indexed values. For example, the gust preassure on an aircraft wing is a random
�eld whose only variable is the velocity, which is indexed on the space coordinates and, in
the nonstationary case, on time. The thickness and the cross area of a shell constitute a two-
variate random �eld indexed in two space coordinates, which can not be treated separately
since they are mutually dependent. In the sequel we will restrict ourselves to uni-variate
random �elds.
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The value x(si) of the random �eld x in the m�dimensional space position de�ned by
si = [s1; s2; � � �sm]i can be considered as a random variable. Then, the stochastic �eld
will be de�ned by the probability distribution of x(si) as such, as well as that of the sets
[x(si); x(sj)], [x(si); x(sj); x(sk)], etc. This means that the complete description of the �eld
requires the knowledge of the n�dimensional joint probability distributions of the values of
the �eld at n points of the indexing variable. Since in any real problem the value of n tends
to in�nity, this is of course an exigency di�cult to accomplish in practice.

A simpli�cation of this high dimensional problem can be obtained when attention is
given only to the two �rst joint moments of the variables x(si); x(sj). And an even more
drastic simpli�cation results from the assumption that these variables follow a Gaussian
distribution, because any moment of order greater than two can be determined by the �rst
two. It is for this reason that random �elds are usually considered as Gaussian. The �rst
central moment is then de�ned by

Efx(s)g (1)

and it corresponds to the mean value of the �eld, while the second is a measure of the degree
of correlation of the variables x(si) and x(sj)

R(si; sj) = Efx(si)x(sj)g (2)

It is called the Autocorrelation Function of the �eld. When it can be expressed independently
of the value of si; sj and only as a function of the di�erences � = x1j�x1i; � = x2j�x2i, etc.,
the �eld is called homogeneous, in the sense that the degree of correlation of two random
variables depends only on the distance between them. That is the case when, for example,
the randomness of a parameter of a membrane (e.g. its Young modulus) is not a�ected by
boundaries, holes, etc. This assumption simpli�es the analysis enormously.

The autocorrelation function together with its Fourier transform (particularizing for two
dimensions)

S(�1; �2) =
1

(2�)2

+1Z
�1

+1Z
�1

R(�; �)e�i(�1�+�2�)d�d� (3)

which is named the Spectral Density Function, plays an important role in analysis and
simulation of random �elds. While the �rst measures the e�ect of the distance between
points on their mutual interaction, the second translates this measure to the wave number �
or the frequency ! spaces. In the analysis of random signals the spectral density is a measure
of the energy associated to each frequency, in such a way that the total energy is proportional
to the variance of the signal by virtue of the Parseval's theorem. Thus, the values of the
spectral density in the present case correspond to the contribution of each wave number to
the total variance of the �eld, which is a primary measure of its randomness. It is important
to observe that the random �elds so speci�ed in SFEA are related to those employed in other
areas of stochastic research, such a Signal Processing and Image Analysis, in which Markov,
Poisson and Gibbs �elds are commonly adopted (Winkler 1995) A monograph by Vanmarcke
(1983) is usually quoted as the main reference text on random �elds from an engineering
point of view. The interested reader is referred to that work for an in-depth study of the
subject. In particular the author treats in detail the role played by the local averages in the
analysis of the random �elds. Suppose a material property X(s), such as porosity, has a
random spatial variation along the line axis s. Some laboratory test performed on samples
of the material will measure in fact an average of the �eld in the lenght S of the tested piece

XS(s) =
1

S

s+S

2Z

s�S

2

X(u)du (4)
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At this point it must be taken into account that the �nite element size imposes also an
average of the random �eld variation of the structural property or load in its dominion. As
Figure 6 shows, the randomness of the moving average process XS(s) will be less than that
of the process X(s), implying that a way to reconstruct the real spatial random variation
of the process from the test analysis must be found. The variance function is introduced as
the ratio of the variances of the two processes

(S) =
�
2
S

�2
(5)

and the scale of uctuation de�ned by

� = lim
S!1

S(S) (6)

will be an indirect measure of the correlation lenght of the original process. Important
random �eld models of structural systems properties are speci�ed in terms of this parameter.

Figure 6. Random �eld and local averages

Once the random �eld nature of the spatial variability of the structural model parameters
has been described, the problem that follows is to obtain a probability description of the
response. As it was done in the previous section, a brief comment on the analytical methods
developped for dealing with this problem will be �rst presented before treating the Monte
Carlo techniques in more detail.

The majority of the procedures published up to date for analysing the inuence of the
spatial variability of the material properties and loads on the system response are also of
the perturbation type (Hasselman and Hart 1970, Nakagiri and Hisada 1982, Liu et al.
1986, Zhu and Wu 1990). That is, they are essentially based on a Taylor expansion of the
equilibrium equations (static or dynamic) up to a low order (usually the second) and the
application of averaging operators to the resulting expanded system. Numerical problems
arise with secular terms where higher order moments than the second are of importance
and the accuracy is restricted to those cases where the randomness of the �eld is small, as
measured by its variance (Kleiber and Hein 1992).
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Another technique proposed is that of the Hierarchical Closure Approximation (Barucha
- Reid 1968; Adomian 1983) in which the higher order moments of the system and the
output are expressed as functions of lower order ones, in a similar way as it is done in the
closure techniques of non linear random vibration (Muscolino 1993). Probably the most
interesting analytical method developped in the last years is by far the Spectral Approach
(Ghanem and Spanos 1991, 1997). This technique comprises the following steps:

a. A description of the random �eld by truncated in�nite series using the Karhunen - Loeve
decomposition (Papoulis 1991) which plays a role analog to that of the Fourier series
analysis of deterministic signals.

b. Projection of the decomposed random �eld of the solution on a class of polynomials
introduced by Wiener (1958) in his extension of Volterra's work on nonlinear systems
and known as Homogeneous Chaoses (1989).

c. Solution of the resulting system of equations.

Other recent analytical approaches that deserve consideration are those due to Li and
Der Kiureghian (1993) and Zhang and Ellingwood (1994).

Many of the developments of Monte Carlo techniques for analysis of random �elds have
been contributed by M. Shinozuka and his coworkers along the last three decades. The basic
technique consists in taking advantage of the fact that the spectral density function of a
harmonic process with variance �2 consists of a pair of Dirac pulses located in the respective
frequency with intensity �2=2. This means that in the one dimensional case the process

x(s) =

NX
i=1

Ai(�i) cos(�is+ �i) (7)

in which the �i are random phases, converges to a Gaussian process with one sided spectral
density (i.e., de�ned only over positive wave number or frequencies) G(�) = 2S(�). This
takes place if the amplitudes of the waves Ai(�i) are estimated as functions of the discretized
spectral density in intervals of length ��

Ai(�i) =
p
2G(�i)�� (8)

due to the fact that the variance of the process is equal to the area under the curve of
the spectral density. The extension of the formulation to higher dimensional processes
is straightforward (Shinozuka and Lenoe, 1976; Vanmarcke et al. 1986; Shinozuka, 1987;
Yamazaki and Shinozuka 1988). The simulation of the �eld is better accomplished by trans-
forming the above equations to the complex space and applying the Fast Fourier Transform
technique (Shinozuka and Lenoe 1976). In (Yamazaki and Shinozuka, 1988) the method
is extended to non Gaussian �elds. Finally, greater accuracy is obtained if the simulation
is accomplished if a statistical preconditioning is exerted on the simulation (Yamazaki and
Shinozuka 1990). In this respect the accuracy is de�ned as the approximation to the orig-
inal correlation structure by that corresponding to the generated samples. This method,
however, implies the Choleski decomposition of the covariance matrix of the �eld, a calcu-
lation that for large �elds often found in FEM analysis becomes unwieldy. Nonhomogenity
(also called nonstationarity in the theory of random processes) can be modelled by means
of modulating functions of space and time (Shinozuka 1987c). Figure 7 shows an example
of a simulated homogeneous random �eld.

A variant of the above FFT (Fast Fourier Trasform) technique has been proposed by
Fenton (1990). The author criticizes the selection of the amplitudes of the harmonic function
in the way of equation (8) since the random �eld will be bounded by the sum of the Ai - a
limitation that poses a constraint for reliability calculation. Also, it is demonstrated in that
reference that the FFT method requires doubling the size of the random �eld in order to
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Figure 7. Simulated random �eld

obtain the same covariance structure given as datum to the generation. The same author
had proposed in (Fenton and Vanmarcke 1990) a sampling method of random �elds known
as Local Average Subdivision which is based on the theory of local averages outlined above.
The main disadvantages of this method are that, �rstly, it itself is a mesh generator of a
specif nature (rectangular elements of equal size) that puts it in conict with the particular
FE discretization requirements of each problem, and secondly, that it is more di�cult to
implement than the FFT procedure.

Other methods for simulating random �elds are those proposed in two companion papers
by (Mignolet and Spanos 1992; Spanos and Mignolet 1992) in which use made of the ARMA
(Auto Regressive Moving Averages) procedures commonly used in the �eld of time series
analysis (Priestley 1981); and the Turning Bands Method (Mantoglou and Wilson 1981)
which generates two dimensional �elds by simulating diagonal processes on arbitrary lines
contained in the plane). Some methods devised in earthquake engineering for simulating
random �elds upon the available information of a realization obtained by instrumentation
(Kameda and Morikawa 1994; Lutes et al. 1996) can be useful in SFEM analysis if, for
example, a geometric �eld can be measured by laser or image analysis techniques. The
application of the Krieging methods that are common in Geostatistics has also been proposed
(Hoshiya 1994). It must be observed that the experience of measurement of random �elds
of material properties in structural engineering is quite limited as compared to that existing
in other areas of research, such as those just mentioned (Vanmarcke 1994).

4 RELIABILITY ANALYSIS

The expression Reliability Analysis is tobe understood as the calculation of the probability
of failure of a random system subject to random conditions. The word failure is quite general
since it is de�ned di�erently in each case. For example, one could de�ne the failure of a
structure as the region of deformation or stresses higher than some given critical values or
as the ocurrence of any or both random events. In the �rst case we have a simple limit state
function de�ned as

G(x) = �r � r(x) (9)

where �r is the critical value of the response r(x) to the stochastic input x (basic variables).
In the second or in more general cases we will have a limit state function de�ned by union
(logical _) and intersections (logical ^ ) of di�erent simple functions. In any case the failure
and safe states are de�ned as follows:

� Safe state: G(x) > 0
� Failure state: G(x) � 0
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The probability of failure will then be de�ned as the probability mass of the failure state:

p
f
=

Z
R

f(x)dx (10)

where f(x) is the joint probability density function of the basic variables and R is the region
G(x) � 0. In some cases a less sharp distinction between safe an failure states is de�ned by
means of a transition function. But the usually low value of the probability of failure (of the
order of 10�4 or lower) makes this sophistication unnecessary. It is clear that the feasibility
of the analitycal calculation of this high dimensional integral is too restricted.

The most important analytical tools for calculating failure probabilities are known as
First- and Second-order Reliability Methods (usually abreviated as FORM / SORM) of
which abundant literature is available (see, for example, Melchers 1987). Both of them
require the following steps:

a. To transform the basic variablesX into a set of standard normal variables U . To do this
the so called Rosenblatt transformation is used (Hohenblichler and Rackwitz 1979). It
is important to observe thas this transformation implies no approximation of any kind.
The transformation is performed by the following algorithm:

U1 =�
�1
F (x1)

U2 =�
�1
F (x2jx1)

� ��

Un =�
�1
F (xnjx1; x2; � � �xn) (11)

b. To approximate the failure surface in the u�space in the vicinity of the most likely failure
point. In the FORM method the aproximation is performed by the substitution of the
failure hypersurface by a tangent hyperplane (that is, by the term involved in a �rst
order Taylor expansion of G(�), while in the SORM method a curved surface is obtained
using the second order terms of the Taylor expansion or parabolas that make easier the
multi-dimensional integration (Breitung 1984; Tvedt 1988) (see Figure 8).

Figure 8. FORM/SORM methods
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c. To calculate the failure probaility. In the FORM case it is approximated by

p
f
= �(��) (12)

where � is the distance from the origin to the approximating hypersurface in the U�space;
it is called the �rst order reliability index, since it measures how far the most critical point
is located from the mean value of the random variables, as shown also in the �gure. In
the SORM analysis, the equation for estimating the failure probability depends on the
selected approximating hypersurface.

The available Monte Carlo techniques for estimating the probability of failure can be
grouped into two cathegories:

1. Those whose application depends on the limit state function G(x)

2. The opposite case.

In what follows these groups willl be examined in order.

4.1 Methods dependent on the limit function

An special and widely used application of Monte Carlo techniques is that of determining
the value of a multidimensional de�nite integral. Suppose that the following integral is to
be evaluated:

p =

Z
I(x)f(x)dx (13)

Without loss of generality we can then regard f(�) as a density function so that an estimate
of p is given by

p̂ =
1

n

nX
i=1

I(Xi) (14)

where the n valuesXi have been sampled with density f . As a method of evaluating integrals
the Monte Carlo method has the advantage that it is equally simple for one or for many
dimensions. In the case at hand f(�) it is really a density function and I(�) is the indicator
function

I(x) =

�
1 if G(x) � 0
0 if G(x) > 0

(15)

The application of the above mentioned Simple Random Sampling as the main Monte Carlo
technique to the estimation of failure probabilities is in most cases quite ine�cient. The
reason is that while in other methods of numerical integration the variance of the estimators
diminish as n4 or even more rapidly, in the Monte Carlo method it does as n, with the
consequence that a large number of samples is required to obtain a good estimator of the
integral. In the case of structural reliability problems, where failure probabilities of very
low order are usually expected, a rule of thumb is that an amount of approximately 100=p

f

samples are required to get a good estimate of the integral using Simple Random Sampling.
This magnitude is of course prohibitive for complex structural systems modelled by �nite
elements.
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The so called Variance Reduction Techniques have been devised to the purpose of in-
creasing the e�ciency of Monte Carlo integration (Rubinstein 1981; Bratley et al. 1987;
Ripley 1987). In the following mention will be done of those Variance Reduction Techniques
usually employed in the �eld of structural safety, which are Strati�ed Sampling, Importance
Sampling and Antithetic Variates.

The conventional strategy of Srati�ed Sampling explained in the previous section must
be modi�ed when applied to the evaluation of mutidimensional integrals. As a matter of
fact for simple statistical description it is enough to cover the whole space of the random
variables by one or more samples that represent each rank of them. In the case of Monte
Carlo Integration, the need of a variance reduction imposes a careful selection of the number
of samples from each rank, in such a way that those contributing more to the whole variance
must be more intensively sampled. The failure probability has to be calculated as

p̂
f
=

lX
i

Pi
1

ni

niX
j=1

I(Xi) (16)

where ni is the number of samples of each of the l subregions in which the entire hypervolume
has been divided, and Pi is the probability mass of each subregion.

In the Importance Sampling technique the random variates are not obtained by means
of the original multidimensional density function of the random variables but using an
arbitrary density g(x) which is concentrated in the critical region, that is, in the region that
contributes most to the value of the failure probability, through the following conversion:

p =

Z
I(x)

f(x)

g(x)
g(x)dx (17)

implying that the indicator function can be taken now as

I(x) =

�
f(x)=g(x) if G(x) � 0
0 if G(x) > 0

(18)

As sampling density the multivariate Gaussian is almost exclusively used. The main problem
in this method lies in the selection of the appropiate mean vector and covariance matrix of
this function. As a matter of fact the best position is that corresponding to the highest value
of the density function on the limit state function (see Figure 9). But since in the case of
complex structural systems this function is usually unknown in an explicit form, there exists
always the possibility of locating the center of the sampling function g somewhat far from
that point, with the consequence that the sampling can be wrongly concentrated on the
safe or in the failure regions. In (Ang et al. 1992) a method to overcome the arbitraryness
in the selection of the importance sampling density is proposed, using the information of
a previous simple random sampling. The optimal importance sampling density is built up
by averaging windowed kernel densities whose parameters are obtained from the previous
analysis. The importance sampling density has form

g(x) =
1

M

MX
i=1

1

wd
K(
x� yi

w
) (19)

where M is the number of points obtained in the failure region in the �rst simple random
sampling, yi the corresponding samples, w the window width andK the kernel density, which
as usual is taken to be the multivariate normal. Two di�erent criteria for the estimation of
the window width are suggested by the authors. The main objection that can be addressed
to this method is, however, that at least one run of simple random sampling is required
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Figure 9. Importance Sampling

before its application, which in case of FE runs can amount to a large computational e�ort.
An attempt to overcome this drawback of the method is proposed in (Wang and Ang 1994).
In this version the kernel method is combined with the Adaptive Sampling concept (Bucher
1988), to be explained later, rather than with the Simple Random Sampling as it was in
its original version. The resulting method is quite promising for the accurate calculation of
failure probabilities.

On the other hand, in the case of multiple limite state functions, arising from several
failure criteria, there is a need of more than one sampling density g in di�erent design
points and the weighting of the results. The Figure 10 corresponds to a method proposed
by Melchers (1987), in which the general sampling density g is a linear combination of the
individual sampling densities i

g of each of the m design points:

g(x) =

mX
i=1

ai
i
g(x) (20)

where the ai are normalized weights evaluated on the basis of the distances to the design
points from the origin in the normalized space. Another method proposed in (Schu�eller and
Stix 1987) proposes the weghting of the failure probabilities of each design points by means
of the Gaussian probability associated to the corresponding reliability index � of each of
them.

The method of Antithetic Variates aims at the reduction of the variance of the estimator
by a rather di�erent way. Let p1 and p2 be two estimators of the integral. The estimator

p
f
=
p1 + p2

2
(21)

has the variance

Var(p
f
) =

1

4
(Var(p1) + Var(p2) + 2Cov(p1; p2)) (22)
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Figure 10. Importance Sampling for multiple failure modes

with the consequence that if p1 and p2 are negatively correlated a substantial reduction of
the variance can be obtained by this method. The random variates of each variable xi can
then be obtained using the inversion method. While the estimator p1 is calculated using
these random values based on uniform deviates vi, the sample for p2 is built up with the
uniform variates 1� vi, which give by inversion the x0i negatively correlated with xi.

Under the name of Adaptive Sampling one can mention two techniques that perform
variance reduction using iteratively the information gathered in previous steps. One of
them (Bucher 1988; Schu�eller et al. 1989) modi�es the mean and covariance matrices of
the Importance Sampling density (that is, its position and shape) after the statistics of
the previous samples. The method is specially suitable for the analysis of systems with
multiple failure modes. The second is the Vegas algorithm (Lepage 1980; Press et al.
1992) which looks for a separable importance sampling density, that is, a multidimensional
function that can be expressed as the product of individual functions of each variable. In
probabilistic terms this means to use a sampling density which is a multidimensional function
of independent variables. This function is built up iteratively by using the information
obtained in the previous runs. The method has been routinely applied in the �eld of
particle physics since the last decade but, up to the authors' knowledge, there is no published
experience of its use in structural reliability computations.
Other techniques employed for the assessment of failure probabilities can be grouped under
the name of Conditional Simulation, because they use some known information about some
of the random input variables inloved in the simulation. As an example, the Directional
Simulation (Bjerager, 1988) (see Figure 11) the standard normal vector u is expressed as

U = rA (23)

where r2 plays the role of a radius and then has a chi-square distribution of n degrees of
freedom, and is independent of the unit random vector A which is uniformly distributed on
the n�dimensional unit sphere. Linking this transformation with the Importance Sampling
concept, as indicated in Figure 12, the indicator function is given in this case by

I(a) =

�
f(a)=g(a) if G(ra) � 0
0 if G(ra) > 0

(24)
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Figure 11. Directional Simulation

Figure 12. Directional Importance Sampling

Other techniques are the Axis-Orthogonal Simulation (Fujita and Rackwitz 1987) that is
based on FORM/SORM results, and the Generalized Conditional Expectation (Ayyub and
Haldar 1984; Ayyub and Chia 1992) in which the simulation is governed by a subset of the
random variables having low dispersion. A recent improvement of this technique has been
reported by (Shao and Murotsu 1994) by combining the traditional directional and adaptive
importance sampling techniques.

The main criticisms that can be addressed to all the methods requiring the transformation
of all the random variables to the standard normal space are that, �rst, the Rosenblatt
transformation (Eq. 11) can be very involved in the case of a large number n of random
variables, and second, that there are in general n! ways to perform the transformation, so
that in principle all of them must be considered to detect the critical one (Dolinsky 1983).



18 J.E. Hurtado and A.H. Barbat

This objection makes these methods useful only for improving the results calculated by
analytical methods rather than for general analysis linked to an FE code. That is also the
case of a rapidly convergent method for the iterative estimation of the Importance Sampling
Density proposed by Yonesawa and Okuda (1994), which works only in the standard normal
space.

4.2 Methods not dependent on the limit function

Unlike the above techniques, which obtain the samples for each particular set of limit
state functions, modern statistical theory provides some tools which can be useful for
estimating the probability of failure without reference to the basic variables. Therefore,
the probabilities of a response are estimated on the basis of its own samples. Notice that is
of great practical vaule, because of the following reasons: (a) One can model as that single
response a variable collecting several failure modes using mathematical and logical operators
such as min(�);max(�);_ or ^; (b) There is no need of recalculating the probabilites for a
di�erent set of critical values, since it is always possible to build up again the synthetic
variable with the new thresholds on the available database. (c) The same database can be
used for multiple realiability assessments. For example, contour maps of the probabilites of
exceeding a some threshold stresses by each �nite element can be esaily calculated by such
expansions.

These techniques are, in general, expansions of the empirical density function of the
response. The most important are

1. Cornish-Fisher expansion (Johnson et al. 1994)

2. Saddlepoint expansion (Kolassa 1997)

2. Edgeworth expansion (Hall 1992)

3. Normal expansion (Hong and Lind 1997)

Generally speaking, it can be stated that there is little experience in its use in structural
analysis. In particular, no single reference has been found on structural applications of the
second method, which has been developped in statistics just as a means of modeling the
tails of an empirical density. The quoted recent paper by Hong and Lind (1997) compares
the Cornish-Fisher and Normal expansions and recommends the use of the latter as a the
most accurate of both. This is indeed a promising technique due to the above mentioned
advantages.

Finally, some methods devised for sampling in the very low probability region of dynamic
systems driven by white noise processes must be mentioned (Pradlwarter et al. 1994). In
this procedure the importance sampling in the tails of the time - varying, multidimensional
density function is mantained by doubling the state vectors of a high measure and clumping
those of a low one. The measure used is that of the absorbed energy. In a more recent
contribution (Pradlwarter and Schu�eller 1995) the accuracy of the method is compared with
that obtained with the less involved technique known as Russian Roulette and Splitting.
Both methods succesfully conduct the sampling of rather low failure probabilities (of the
order of 10�7).
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5 RESPONSE SURFACE METHODS

The last section of the present document is devoted to a brief description of the applications
of a traditional statistical method that has gained acceptance in Stochastic Mechanics
in the last years as a valuable tool for obtaining insight into the behavior of structural
random systems at low costs. This is the Response Surface Method which was developped
in the thirties and has been incorpored in the general �eld of experimental design of which
abundant literature exists (see, for example, Box and Draper 1987). The main di�erence of
the method with the Monte Carlo one is that the experiments are not random but rather
carefully planned ones. The objective is to obtain a description of the inuence of each
variable and their possible combinations on the response of the system. The procedure
contemplates the following steps: First of all, levels of value of each variable are de�ned;
for example, four levels considered by the designer as very low, low, high and very high.
Secondly, the responses of the system are obtained for selected combinations of them called
treatments. The plan of the combination of the data is done according to di�erent strategies.
When the number of variables is equal to one, two or three the respective techniques are the
Randomized Block Design, Latin Square and the Graeco-Latin Square. The most general
technique is that of the Factorial Design in which all the combinations of the selected
level values of the variables are combined with each other. A complete combination of
all d factors at two levels each would involve a total number of combinations equal to 2d.
As a di�erence with respect the use of the experimental design used in laboratory tests, in
numerical experimentation there is no need to randomize the order in which the experiments
are done, because the \testing machine" in this case is not a�ected by previous analysis.
Finally, since the total number of runs can be very high, and the e�ects of some of them can
be indistinguishable from other ones, the number of analysis can be reduced by applying
a Fractional Factorial Design of order p, thus giving a total number of replicates equal to
2d�p. The aim of this technique is to gain computational e�ciency without losing important
information.

The results of the analysis are processed to observe the so-called main e�ects, which are
those primarily due to the variation of each input variable, and the two term interaction,
three term interactions, etc., which play the role of higher order terms in the Taylor series
expansions of a function (see Figure 13). This means that the selection of the p degree
of reduction is governed by the order of combinations that are expected to dominate the
polynomial expression of the response surface.

The �nal step of the analysis is precisely the calculation of a �rst or (usually) second order
regression of the response variables with respect to the input ones. Also it is important to
calculate error and variance statistics which can help the analyst to improve the experimental
design and take decisions about the system under analysis. The second order surface can
be obtained by conventional least squares or by Bayesian analysis (Casciatti and Faravelli
1990). A second order surface such as that depicted in Figure 14 can then be represented
by the expression

ŷ = �0 +

dX
i=1

�ixi +

dX
i=1

�iix
2
i +

dX
i=1

i�1X
j=1

�ijxixj (25)

The method has been applied in Reliability Analysis for calculating the limit state
function and the failure probability using the �tted surface as a solver substitute (Bucher
et al. 1991; Faravelli 1992; Enevoldsen et al. 1994; Kim and Na 1997). It has also been
linked with random �eld techniques to incorpore the e�ects of time or spatial variation of
the model parameters discussed previously (Casciatti and Faravelli 1990).
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Figure 13. Fractional Factorial Design

Figure 14. Response Surface

6 CONCLUDING REMARKS

The state of the knowledge in simulation methods for analysing the e�ects of uncertainties in
structural mechanics has been summarized and discussed, after a review of a large number of
references. Most of them concern the numerically di�cult problem of Reliability Assessment,
while only a few are devoted to the emerging area of research about the stochastic spatial
variability of the structural parameters. This is an indirect reect of the evolution of the
interest of the scienti�c community along the last twenty years, which has been undoubtedly
inuenced by the rapid development in the computational resources, which nowadays allow
to perform bigger Monte Carlo analyses whose cost was prohibitive in the recent past.
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Despite this progress, or perhaps as a consequence of it, new areas of research can be
identi�ed. Among them the following can be included:

1. Experimental measurement of the Random Field parameters of di�erent materials for
Stochastic Finite Element modelling, as well as some frequent correlations existing be-
tween di�erent random variables tipically implied in structural models.

2. Stochastic Optimization of structures, that is, the development of techniques and criteria
for performing structural optimization upon the constraint of matching prescribed failure
probabilities.
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